xref: /redis-3.2.3/src/dict.c (revision 6710c8dc)
1 /* Hash Tables Implementation.
2  *
3  * This file implements in memory hash tables with insert/del/replace/find/
4  * get-random-element operations. Hash tables will auto resize if needed
5  * tables of power of two in size are used, collisions are handled by
6  * chaining. See the source code for more information... :)
7  *
8  * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions are met:
13  *
14  *   * Redistributions of source code must retain the above copyright notice,
15  *     this list of conditions and the following disclaimer.
16  *   * Redistributions in binary form must reproduce the above copyright
17  *     notice, this list of conditions and the following disclaimer in the
18  *     documentation and/or other materials provided with the distribution.
19  *   * Neither the name of Redis nor the names of its contributors may be used
20  *     to endorse or promote products derived from this software without
21  *     specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include "fmacros.h"
37 
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <limits.h>
43 #include <sys/time.h>
44 #include <ctype.h>
45 
46 #include "dict.h"
47 #include "zmalloc.h"
48 #include "redisassert.h"
49 
50 /* Using dictEnableResize() / dictDisableResize() we make possible to
51  * enable/disable resizing of the hash table as needed. This is very important
52  * for Redis, as we use copy-on-write and don't want to move too much memory
53  * around when there is a child performing saving operations.
54  *
55  * Note that even when dict_can_resize is set to 0, not all resizes are
56  * prevented: a hash table is still allowed to grow if the ratio between
57  * the number of elements and the buckets > dict_force_resize_ratio. */
58 static int dict_can_resize = 1;
59 static unsigned int dict_force_resize_ratio = 5;
60 
61 /* -------------------------- private prototypes ---------------------------- */
62 
63 static int _dictExpandIfNeeded(dict *ht);
64 static unsigned long _dictNextPower(unsigned long size);
65 static int _dictKeyIndex(dict *ht, const void *key);
66 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67 
68 /* -------------------------- hash functions -------------------------------- */
69 
70 /* Thomas Wang's 32 bit Mix Function */
dictIntHashFunction(unsigned int key)71 unsigned int dictIntHashFunction(unsigned int key)
72 {
73     key += ~(key << 15);
74     key ^=  (key >> 10);
75     key +=  (key << 3);
76     key ^=  (key >> 6);
77     key += ~(key << 11);
78     key ^=  (key >> 16);
79     return key;
80 }
81 
82 static uint32_t dict_hash_function_seed = 5381;
83 
dictSetHashFunctionSeed(uint32_t seed)84 void dictSetHashFunctionSeed(uint32_t seed) {
85     dict_hash_function_seed = seed;
86 }
87 
dictGetHashFunctionSeed(void)88 uint32_t dictGetHashFunctionSeed(void) {
89     return dict_hash_function_seed;
90 }
91 
92 /* MurmurHash2, by Austin Appleby
93  * Note - This code makes a few assumptions about how your machine behaves -
94  * 1. We can read a 4-byte value from any address without crashing
95  * 2. sizeof(int) == 4
96  *
97  * And it has a few limitations -
98  *
99  * 1. It will not work incrementally.
100  * 2. It will not produce the same results on little-endian and big-endian
101  *    machines.
102  */
dictGenHashFunction(const void * key,int len)103 unsigned int dictGenHashFunction(const void *key, int len) {
104     /* 'm' and 'r' are mixing constants generated offline.
105      They're not really 'magic', they just happen to work well.  */
106     uint32_t seed = dict_hash_function_seed;
107     const uint32_t m = 0x5bd1e995;
108     const int r = 24;
109 
110     /* Initialize the hash to a 'random' value */
111     uint32_t h = seed ^ len;
112 
113     /* Mix 4 bytes at a time into the hash */
114     const unsigned char *data = (const unsigned char *)key;
115 
116     while(len >= 4) {
117         uint32_t k = *(uint32_t*)data;
118 
119         k *= m;
120         k ^= k >> r;
121         k *= m;
122 
123         h *= m;
124         h ^= k;
125 
126         data += 4;
127         len -= 4;
128     }
129 
130     /* Handle the last few bytes of the input array  */
131     switch(len) {
132     case 3: h ^= data[2] << 16;
133     case 2: h ^= data[1] << 8;
134     case 1: h ^= data[0]; h *= m;
135     };
136 
137     /* Do a few final mixes of the hash to ensure the last few
138      * bytes are well-incorporated. */
139     h ^= h >> 13;
140     h *= m;
141     h ^= h >> 15;
142 
143     return (unsigned int)h;
144 }
145 
146 /* And a case insensitive hash function (based on djb hash) */
dictGenCaseHashFunction(const unsigned char * buf,int len)147 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
148     unsigned int hash = (unsigned int)dict_hash_function_seed;
149 
150     while (len--)
151         hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
152     return hash;
153 }
154 
155 /* ----------------------------- API implementation ------------------------- */
156 
157 /* Reset a hash table already initialized with ht_init().
158  * NOTE: This function should only be called by ht_destroy(). */
_dictReset(dictht * ht)159 static void _dictReset(dictht *ht)
160 {
161     ht->table = NULL;
162     ht->size = 0;
163     ht->sizemask = 0;
164     ht->used = 0;
165 }
166 
167 /* Create a new hash table */
dictCreate(dictType * type,void * privDataPtr)168 dict *dictCreate(dictType *type,
169         void *privDataPtr)
170 {
171     dict *d = zmalloc(sizeof(*d));
172 
173     _dictInit(d,type,privDataPtr);
174     return d;
175 }
176 
177 /* Initialize the hash table */
_dictInit(dict * d,dictType * type,void * privDataPtr)178 int _dictInit(dict *d, dictType *type,
179         void *privDataPtr)
180 {
181     _dictReset(&d->ht[0]);
182     _dictReset(&d->ht[1]);
183     d->type = type;
184     d->privdata = privDataPtr;
185     d->rehashidx = -1;
186     d->iterators = 0;
187     return DICT_OK;
188 }
189 
190 /* Resize the table to the minimal size that contains all the elements,
191  * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
dictResize(dict * d)192 int dictResize(dict *d)
193 {
194     int minimal;
195 
196     if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
197     minimal = d->ht[0].used;
198     if (minimal < DICT_HT_INITIAL_SIZE)
199         minimal = DICT_HT_INITIAL_SIZE;
200     return dictExpand(d, minimal);
201 }
202 
203 /* Expand or create the hash table */
dictExpand(dict * d,unsigned long size)204 int dictExpand(dict *d, unsigned long size)
205 {
206     dictht n; /* the new hash table */
207     unsigned long realsize = _dictNextPower(size);
208 
209     /* the size is invalid if it is smaller than the number of
210      * elements already inside the hash table */
211     if (dictIsRehashing(d) || d->ht[0].used > size)
212         return DICT_ERR;
213 
214     /* Rehashing to the same table size is not useful. */
215     if (realsize == d->ht[0].size) return DICT_ERR;
216 
217     /* Allocate the new hash table and initialize all pointers to NULL */
218     n.size = realsize;
219     n.sizemask = realsize-1;
220     n.table = zcalloc(realsize*sizeof(dictEntry*));
221     n.used = 0;
222 
223     /* Is this the first initialization? If so it's not really a rehashing
224      * we just set the first hash table so that it can accept keys. */
225     if (d->ht[0].table == NULL) {
226         d->ht[0] = n;
227         return DICT_OK;
228     }
229 
230     /* Prepare a second hash table for incremental rehashing */
231     d->ht[1] = n;
232     d->rehashidx = 0;
233     return DICT_OK;
234 }
235 
236 /* Performs N steps of incremental rehashing. Returns 1 if there are still
237  * keys to move from the old to the new hash table, otherwise 0 is returned.
238  *
239  * Note that a rehashing step consists in moving a bucket (that may have more
240  * than one key as we use chaining) from the old to the new hash table, however
241  * since part of the hash table may be composed of empty spaces, it is not
242  * guaranteed that this function will rehash even a single bucket, since it
243  * will visit at max N*10 empty buckets in total, otherwise the amount of
244  * work it does would be unbound and the function may block for a long time. */
dictRehash(dict * d,int n)245 int dictRehash(dict *d, int n) {
246     int empty_visits = n*10; /* Max number of empty buckets to visit. */
247     if (!dictIsRehashing(d)) return 0;
248 
249     while(n-- && d->ht[0].used != 0) {
250         dictEntry *de, *nextde;
251 
252         /* Note that rehashidx can't overflow as we are sure there are more
253          * elements because ht[0].used != 0 */
254         assert(d->ht[0].size > (unsigned long)d->rehashidx);
255         while(d->ht[0].table[d->rehashidx] == NULL) {
256             d->rehashidx++;
257             if (--empty_visits == 0) return 1;
258         }
259         de = d->ht[0].table[d->rehashidx];
260         /* Move all the keys in this bucket from the old to the new hash HT */
261         while(de) {
262             unsigned int h;
263 
264             nextde = de->next;
265             /* Get the index in the new hash table */
266             h = dictHashKey(d, de->key) & d->ht[1].sizemask;
267             de->next = d->ht[1].table[h];
268             d->ht[1].table[h] = de;
269             d->ht[0].used--;
270             d->ht[1].used++;
271             de = nextde;
272         }
273         d->ht[0].table[d->rehashidx] = NULL;
274         d->rehashidx++;
275     }
276 
277     /* Check if we already rehashed the whole table... */
278     if (d->ht[0].used == 0) {
279         zfree(d->ht[0].table);
280         d->ht[0] = d->ht[1];
281         _dictReset(&d->ht[1]);
282         d->rehashidx = -1;
283         return 0;
284     }
285 
286     /* More to rehash... */
287     return 1;
288 }
289 
timeInMilliseconds(void)290 long long timeInMilliseconds(void) {
291     struct timeval tv;
292 
293     gettimeofday(&tv,NULL);
294     return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
295 }
296 
297 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
dictRehashMilliseconds(dict * d,int ms)298 int dictRehashMilliseconds(dict *d, int ms) {
299     long long start = timeInMilliseconds();
300     int rehashes = 0;
301 
302     while(dictRehash(d,100)) {
303         rehashes += 100;
304         if (timeInMilliseconds()-start > ms) break;
305     }
306     return rehashes;
307 }
308 
309 /* This function performs just a step of rehashing, and only if there are
310  * no safe iterators bound to our hash table. When we have iterators in the
311  * middle of a rehashing we can't mess with the two hash tables otherwise
312  * some element can be missed or duplicated.
313  *
314  * This function is called by common lookup or update operations in the
315  * dictionary so that the hash table automatically migrates from H1 to H2
316  * while it is actively used. */
_dictRehashStep(dict * d)317 static void _dictRehashStep(dict *d) {
318     if (d->iterators == 0) dictRehash(d,1);
319 }
320 
321 /* Add an element to the target hash table */
dictAdd(dict * d,void * key,void * val)322 int dictAdd(dict *d, void *key, void *val)
323 {
324     dictEntry *entry = dictAddRaw(d,key);
325 
326     if (!entry) return DICT_ERR;
327     dictSetVal(d, entry, val);
328     return DICT_OK;
329 }
330 
331 /* Low level add. This function adds the entry but instead of setting
332  * a value returns the dictEntry structure to the user, that will make
333  * sure to fill the value field as he wishes.
334  *
335  * This function is also directly exposed to the user API to be called
336  * mainly in order to store non-pointers inside the hash value, example:
337  *
338  * entry = dictAddRaw(dict,mykey);
339  * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
340  *
341  * Return values:
342  *
343  * If key already exists NULL is returned.
344  * If key was added, the hash entry is returned to be manipulated by the caller.
345  */
dictAddRaw(dict * d,void * key)346 dictEntry *dictAddRaw(dict *d, void *key)
347 {
348     int index;
349     dictEntry *entry;
350     dictht *ht;
351 
352     if (dictIsRehashing(d)) _dictRehashStep(d);
353 
354     /* Get the index of the new element, or -1 if
355      * the element already exists. */
356     if ((index = _dictKeyIndex(d, key)) == -1)
357         return NULL;
358 
359     /* Allocate the memory and store the new entry.
360      * Insert the element in top, with the assumption that in a database
361      * system it is more likely that recently added entries are accessed
362      * more frequently. */
363     ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
364     entry = zmalloc(sizeof(*entry));
365     entry->next = ht->table[index];
366     ht->table[index] = entry;
367     ht->used++;
368 
369     /* Set the hash entry fields. */
370     dictSetKey(d, entry, key);
371     return entry;
372 }
373 
374 /* Add an element, discarding the old if the key already exists.
375  * Return 1 if the key was added from scratch, 0 if there was already an
376  * element with such key and dictReplace() just performed a value update
377  * operation. */
dictReplace(dict * d,void * key,void * val)378 int dictReplace(dict *d, void *key, void *val)
379 {
380     dictEntry *entry, auxentry;
381 
382     /* Try to add the element. If the key
383      * does not exists dictAdd will suceed. */
384     if (dictAdd(d, key, val) == DICT_OK)
385         return 1;
386     /* It already exists, get the entry */
387     entry = dictFind(d, key);
388     /* Set the new value and free the old one. Note that it is important
389      * to do that in this order, as the value may just be exactly the same
390      * as the previous one. In this context, think to reference counting,
391      * you want to increment (set), and then decrement (free), and not the
392      * reverse. */
393     auxentry = *entry;
394     dictSetVal(d, entry, val);
395     dictFreeVal(d, &auxentry);
396     return 0;
397 }
398 
399 /* dictReplaceRaw() is simply a version of dictAddRaw() that always
400  * returns the hash entry of the specified key, even if the key already
401  * exists and can't be added (in that case the entry of the already
402  * existing key is returned.)
403  *
404  * See dictAddRaw() for more information. */
dictReplaceRaw(dict * d,void * key)405 dictEntry *dictReplaceRaw(dict *d, void *key) {
406     dictEntry *entry = dictFind(d,key);
407 
408     return entry ? entry : dictAddRaw(d,key);
409 }
410 
411 /* Search and remove an element */
dictGenericDelete(dict * d,const void * key,int nofree)412 static int dictGenericDelete(dict *d, const void *key, int nofree)
413 {
414     unsigned int h, idx;
415     dictEntry *he, *prevHe;
416     int table;
417 
418     if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
419     if (dictIsRehashing(d)) _dictRehashStep(d);
420     h = dictHashKey(d, key);
421 
422     for (table = 0; table <= 1; table++) {
423         idx = h & d->ht[table].sizemask;
424         he = d->ht[table].table[idx];
425         prevHe = NULL;
426         while(he) {
427             if (key==he->key || dictCompareKeys(d, key, he->key)) {
428                 /* Unlink the element from the list */
429                 if (prevHe)
430                     prevHe->next = he->next;
431                 else
432                     d->ht[table].table[idx] = he->next;
433                 if (!nofree) {
434                     dictFreeKey(d, he);
435                     dictFreeVal(d, he);
436                 }
437                 zfree(he);
438                 d->ht[table].used--;
439                 return DICT_OK;
440             }
441             prevHe = he;
442             he = he->next;
443         }
444         if (!dictIsRehashing(d)) break;
445     }
446     return DICT_ERR; /* not found */
447 }
448 
dictDelete(dict * ht,const void * key)449 int dictDelete(dict *ht, const void *key) {
450     return dictGenericDelete(ht,key,0);
451 }
452 
dictDeleteNoFree(dict * ht,const void * key)453 int dictDeleteNoFree(dict *ht, const void *key) {
454     return dictGenericDelete(ht,key,1);
455 }
456 
457 /* Destroy an entire dictionary */
_dictClear(dict * d,dictht * ht,void (callback)(void *))458 int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
459     unsigned long i;
460 
461     /* Free all the elements */
462     for (i = 0; i < ht->size && ht->used > 0; i++) {
463         dictEntry *he, *nextHe;
464 
465         if (callback && (i & 65535) == 0) callback(d->privdata);
466 
467         if ((he = ht->table[i]) == NULL) continue;
468         while(he) {
469             nextHe = he->next;
470             dictFreeKey(d, he);
471             dictFreeVal(d, he);
472             zfree(he);
473             ht->used--;
474             he = nextHe;
475         }
476     }
477     /* Free the table and the allocated cache structure */
478     zfree(ht->table);
479     /* Re-initialize the table */
480     _dictReset(ht);
481     return DICT_OK; /* never fails */
482 }
483 
484 /* Clear & Release the hash table */
dictRelease(dict * d)485 void dictRelease(dict *d)
486 {
487     _dictClear(d,&d->ht[0],NULL);
488     _dictClear(d,&d->ht[1],NULL);
489     zfree(d);
490 }
491 
dictFind(dict * d,const void * key)492 dictEntry *dictFind(dict *d, const void *key)
493 {
494     dictEntry *he;
495     unsigned int h, idx, table;
496 
497     if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
498     if (dictIsRehashing(d)) _dictRehashStep(d);
499     h = dictHashKey(d, key);
500     for (table = 0; table <= 1; table++) {
501         idx = h & d->ht[table].sizemask;
502         he = d->ht[table].table[idx];
503         while(he) {
504             if (key==he->key || dictCompareKeys(d, key, he->key))
505                 return he;
506             he = he->next;
507         }
508         if (!dictIsRehashing(d)) return NULL;
509     }
510     return NULL;
511 }
512 
dictFetchValue(dict * d,const void * key)513 void *dictFetchValue(dict *d, const void *key) {
514     dictEntry *he;
515 
516     he = dictFind(d,key);
517     return he ? dictGetVal(he) : NULL;
518 }
519 
520 /* A fingerprint is a 64 bit number that represents the state of the dictionary
521  * at a given time, it's just a few dict properties xored together.
522  * When an unsafe iterator is initialized, we get the dict fingerprint, and check
523  * the fingerprint again when the iterator is released.
524  * If the two fingerprints are different it means that the user of the iterator
525  * performed forbidden operations against the dictionary while iterating. */
dictFingerprint(dict * d)526 long long dictFingerprint(dict *d) {
527     long long integers[6], hash = 0;
528     int j;
529 
530     integers[0] = (long) d->ht[0].table;
531     integers[1] = d->ht[0].size;
532     integers[2] = d->ht[0].used;
533     integers[3] = (long) d->ht[1].table;
534     integers[4] = d->ht[1].size;
535     integers[5] = d->ht[1].used;
536 
537     /* We hash N integers by summing every successive integer with the integer
538      * hashing of the previous sum. Basically:
539      *
540      * Result = hash(hash(hash(int1)+int2)+int3) ...
541      *
542      * This way the same set of integers in a different order will (likely) hash
543      * to a different number. */
544     for (j = 0; j < 6; j++) {
545         hash += integers[j];
546         /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
547         hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
548         hash = hash ^ (hash >> 24);
549         hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
550         hash = hash ^ (hash >> 14);
551         hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
552         hash = hash ^ (hash >> 28);
553         hash = hash + (hash << 31);
554     }
555     return hash;
556 }
557 
dictGetIterator(dict * d)558 dictIterator *dictGetIterator(dict *d)
559 {
560     dictIterator *iter = zmalloc(sizeof(*iter));
561 
562     iter->d = d;
563     iter->table = 0;
564     iter->index = -1;
565     iter->safe = 0;
566     iter->entry = NULL;
567     iter->nextEntry = NULL;
568     return iter;
569 }
570 
dictGetSafeIterator(dict * d)571 dictIterator *dictGetSafeIterator(dict *d) {
572     dictIterator *i = dictGetIterator(d);
573 
574     i->safe = 1;
575     return i;
576 }
577 
dictNext(dictIterator * iter)578 dictEntry *dictNext(dictIterator *iter)
579 {
580     while (1) {
581         if (iter->entry == NULL) {
582             dictht *ht = &iter->d->ht[iter->table];
583             if (iter->index == -1 && iter->table == 0) {
584                 if (iter->safe)
585                     iter->d->iterators++;
586                 else
587                     iter->fingerprint = dictFingerprint(iter->d);
588             }
589             iter->index++;
590             if (iter->index >= (long) ht->size) {
591                 if (dictIsRehashing(iter->d) && iter->table == 0) {
592                     iter->table++;
593                     iter->index = 0;
594                     ht = &iter->d->ht[1];
595                 } else {
596                     break;
597                 }
598             }
599             iter->entry = ht->table[iter->index];
600         } else {
601             iter->entry = iter->nextEntry;
602         }
603         if (iter->entry) {
604             /* We need to save the 'next' here, the iterator user
605              * may delete the entry we are returning. */
606             iter->nextEntry = iter->entry->next;
607             return iter->entry;
608         }
609     }
610     return NULL;
611 }
612 
dictReleaseIterator(dictIterator * iter)613 void dictReleaseIterator(dictIterator *iter)
614 {
615     if (!(iter->index == -1 && iter->table == 0)) {
616         if (iter->safe)
617             iter->d->iterators--;
618         else
619             assert(iter->fingerprint == dictFingerprint(iter->d));
620     }
621     zfree(iter);
622 }
623 
624 /* Return a random entry from the hash table. Useful to
625  * implement randomized algorithms */
dictGetRandomKey(dict * d)626 dictEntry *dictGetRandomKey(dict *d)
627 {
628     dictEntry *he, *orighe;
629     unsigned int h;
630     int listlen, listele;
631 
632     if (dictSize(d) == 0) return NULL;
633     if (dictIsRehashing(d)) _dictRehashStep(d);
634     if (dictIsRehashing(d)) {
635         do {
636             /* We are sure there are no elements in indexes from 0
637              * to rehashidx-1 */
638             h = d->rehashidx + (random() % (d->ht[0].size +
639                                             d->ht[1].size -
640                                             d->rehashidx));
641             he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
642                                       d->ht[0].table[h];
643         } while(he == NULL);
644     } else {
645         do {
646             h = random() & d->ht[0].sizemask;
647             he = d->ht[0].table[h];
648         } while(he == NULL);
649     }
650 
651     /* Now we found a non empty bucket, but it is a linked
652      * list and we need to get a random element from the list.
653      * The only sane way to do so is counting the elements and
654      * select a random index. */
655     listlen = 0;
656     orighe = he;
657     while(he) {
658         he = he->next;
659         listlen++;
660     }
661     listele = random() % listlen;
662     he = orighe;
663     while(listele--) he = he->next;
664     return he;
665 }
666 
667 /* This function samples the dictionary to return a few keys from random
668  * locations.
669  *
670  * It does not guarantee to return all the keys specified in 'count', nor
671  * it does guarantee to return non-duplicated elements, however it will make
672  * some effort to do both things.
673  *
674  * Returned pointers to hash table entries are stored into 'des' that
675  * points to an array of dictEntry pointers. The array must have room for
676  * at least 'count' elements, that is the argument we pass to the function
677  * to tell how many random elements we need.
678  *
679  * The function returns the number of items stored into 'des', that may
680  * be less than 'count' if the hash table has less than 'count' elements
681  * inside, or if not enough elements were found in a reasonable amount of
682  * steps.
683  *
684  * Note that this function is not suitable when you need a good distribution
685  * of the returned items, but only when you need to "sample" a given number
686  * of continuous elements to run some kind of algorithm or to produce
687  * statistics. However the function is much faster than dictGetRandomKey()
688  * at producing N elements. */
dictGetSomeKeys(dict * d,dictEntry ** des,unsigned int count)689 unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
690     unsigned long j; /* internal hash table id, 0 or 1. */
691     unsigned long tables; /* 1 or 2 tables? */
692     unsigned long stored = 0, maxsizemask;
693     unsigned long maxsteps;
694 
695     if (dictSize(d) < count) count = dictSize(d);
696     maxsteps = count*10;
697 
698     /* Try to do a rehashing work proportional to 'count'. */
699     for (j = 0; j < count; j++) {
700         if (dictIsRehashing(d))
701             _dictRehashStep(d);
702         else
703             break;
704     }
705 
706     tables = dictIsRehashing(d) ? 2 : 1;
707     maxsizemask = d->ht[0].sizemask;
708     if (tables > 1 && maxsizemask < d->ht[1].sizemask)
709         maxsizemask = d->ht[1].sizemask;
710 
711     /* Pick a random point inside the larger table. */
712     unsigned long i = random() & maxsizemask;
713     unsigned long emptylen = 0; /* Continuous empty entries so far. */
714     while(stored < count && maxsteps--) {
715         for (j = 0; j < tables; j++) {
716             /* Invariant of the dict.c rehashing: up to the indexes already
717              * visited in ht[0] during the rehashing, there are no populated
718              * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
719             if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
720                 /* Moreover, if we are currently out of range in the second
721                  * table, there will be no elements in both tables up to
722                  * the current rehashing index, so we jump if possible.
723                  * (this happens when going from big to small table). */
724                 if (i >= d->ht[1].size) i = d->rehashidx;
725                 continue;
726             }
727             if (i >= d->ht[j].size) continue; /* Out of range for this table. */
728             dictEntry *he = d->ht[j].table[i];
729 
730             /* Count contiguous empty buckets, and jump to other
731              * locations if they reach 'count' (with a minimum of 5). */
732             if (he == NULL) {
733                 emptylen++;
734                 if (emptylen >= 5 && emptylen > count) {
735                     i = random() & maxsizemask;
736                     emptylen = 0;
737                 }
738             } else {
739                 emptylen = 0;
740                 while (he) {
741                     /* Collect all the elements of the buckets found non
742                      * empty while iterating. */
743                     *des = he;
744                     des++;
745                     he = he->next;
746                     stored++;
747                     if (stored == count) return stored;
748                 }
749             }
750         }
751         i = (i+1) & maxsizemask;
752     }
753     return stored;
754 }
755 
756 /* Function to reverse bits. Algorithm from:
757  * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
rev(unsigned long v)758 static unsigned long rev(unsigned long v) {
759     unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
760     unsigned long mask = ~0;
761     while ((s >>= 1) > 0) {
762         mask ^= (mask << s);
763         v = ((v >> s) & mask) | ((v << s) & ~mask);
764     }
765     return v;
766 }
767 
768 /* dictScan() is used to iterate over the elements of a dictionary.
769  *
770  * Iterating works the following way:
771  *
772  * 1) Initially you call the function using a cursor (v) value of 0.
773  * 2) The function performs one step of the iteration, and returns the
774  *    new cursor value you must use in the next call.
775  * 3) When the returned cursor is 0, the iteration is complete.
776  *
777  * The function guarantees all elements present in the
778  * dictionary get returned between the start and end of the iteration.
779  * However it is possible some elements get returned multiple times.
780  *
781  * For every element returned, the callback argument 'fn' is
782  * called with 'privdata' as first argument and the dictionary entry
783  * 'de' as second argument.
784  *
785  * HOW IT WORKS.
786  *
787  * The iteration algorithm was designed by Pieter Noordhuis.
788  * The main idea is to increment a cursor starting from the higher order
789  * bits. That is, instead of incrementing the cursor normally, the bits
790  * of the cursor are reversed, then the cursor is incremented, and finally
791  * the bits are reversed again.
792  *
793  * This strategy is needed because the hash table may be resized between
794  * iteration calls.
795  *
796  * dict.c hash tables are always power of two in size, and they
797  * use chaining, so the position of an element in a given table is given
798  * by computing the bitwise AND between Hash(key) and SIZE-1
799  * (where SIZE-1 is always the mask that is equivalent to taking the rest
800  *  of the division between the Hash of the key and SIZE).
801  *
802  * For example if the current hash table size is 16, the mask is
803  * (in binary) 1111. The position of a key in the hash table will always be
804  * the last four bits of the hash output, and so forth.
805  *
806  * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
807  *
808  * If the hash table grows, elements can go anywhere in one multiple of
809  * the old bucket: for example let's say we already iterated with
810  * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
811  *
812  * If the hash table will be resized to 64 elements, then the new mask will
813  * be 111111. The new buckets you obtain by substituting in ??1100
814  * with either 0 or 1 can be targeted only by keys we already visited
815  * when scanning the bucket 1100 in the smaller hash table.
816  *
817  * By iterating the higher bits first, because of the inverted counter, the
818  * cursor does not need to restart if the table size gets bigger. It will
819  * continue iterating using cursors without '1100' at the end, and also
820  * without any other combination of the final 4 bits already explored.
821  *
822  * Similarly when the table size shrinks over time, for example going from
823  * 16 to 8, if a combination of the lower three bits (the mask for size 8
824  * is 111) were already completely explored, it would not be visited again
825  * because we are sure we tried, for example, both 0111 and 1111 (all the
826  * variations of the higher bit) so we don't need to test it again.
827  *
828  * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
829  *
830  * Yes, this is true, but we always iterate the smaller table first, then
831  * we test all the expansions of the current cursor into the larger
832  * table. For example if the current cursor is 101 and we also have a
833  * larger table of size 16, we also test (0)101 and (1)101 inside the larger
834  * table. This reduces the problem back to having only one table, where
835  * the larger one, if it exists, is just an expansion of the smaller one.
836  *
837  * LIMITATIONS
838  *
839  * This iterator is completely stateless, and this is a huge advantage,
840  * including no additional memory used.
841  *
842  * The disadvantages resulting from this design are:
843  *
844  * 1) It is possible we return elements more than once. However this is usually
845  *    easy to deal with in the application level.
846  * 2) The iterator must return multiple elements per call, as it needs to always
847  *    return all the keys chained in a given bucket, and all the expansions, so
848  *    we are sure we don't miss keys moving during rehashing.
849  * 3) The reverse cursor is somewhat hard to understand at first, but this
850  *    comment is supposed to help.
851  */
dictScan(dict * d,unsigned long v,dictScanFunction * fn,void * privdata)852 unsigned long dictScan(dict *d,
853                        unsigned long v,
854                        dictScanFunction *fn,
855                        void *privdata)
856 {
857     dictht *t0, *t1;
858     const dictEntry *de;
859     unsigned long m0, m1;
860 
861     if (dictSize(d) == 0) return 0;
862 
863     if (!dictIsRehashing(d)) {
864         t0 = &(d->ht[0]);
865         m0 = t0->sizemask;
866 
867         /* Emit entries at cursor */
868         de = t0->table[v & m0];
869         while (de) {
870             fn(privdata, de);
871             de = de->next;
872         }
873 
874     } else {
875         t0 = &d->ht[0];
876         t1 = &d->ht[1];
877 
878         /* Make sure t0 is the smaller and t1 is the bigger table */
879         if (t0->size > t1->size) {
880             t0 = &d->ht[1];
881             t1 = &d->ht[0];
882         }
883 
884         m0 = t0->sizemask;
885         m1 = t1->sizemask;
886 
887         /* Emit entries at cursor */
888         de = t0->table[v & m0];
889         while (de) {
890             fn(privdata, de);
891             de = de->next;
892         }
893 
894         /* Iterate over indices in larger table that are the expansion
895          * of the index pointed to by the cursor in the smaller table */
896         do {
897             /* Emit entries at cursor */
898             de = t1->table[v & m1];
899             while (de) {
900                 fn(privdata, de);
901                 de = de->next;
902             }
903 
904             /* Increment bits not covered by the smaller mask */
905             v = (((v | m0) + 1) & ~m0) | (v & m0);
906 
907             /* Continue while bits covered by mask difference is non-zero */
908         } while (v & (m0 ^ m1));
909     }
910 
911     /* Set unmasked bits so incrementing the reversed cursor
912      * operates on the masked bits of the smaller table */
913     v |= ~m0;
914 
915     /* Increment the reverse cursor */
916     v = rev(v);
917     v++;
918     v = rev(v);
919 
920     return v;
921 }
922 
923 /* ------------------------- private functions ------------------------------ */
924 
925 /* Expand the hash table if needed */
_dictExpandIfNeeded(dict * d)926 static int _dictExpandIfNeeded(dict *d)
927 {
928     /* Incremental rehashing already in progress. Return. */
929     if (dictIsRehashing(d)) return DICT_OK;
930 
931     /* If the hash table is empty expand it to the initial size. */
932     if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
933 
934     /* If we reached the 1:1 ratio, and we are allowed to resize the hash
935      * table (global setting) or we should avoid it but the ratio between
936      * elements/buckets is over the "safe" threshold, we resize doubling
937      * the number of buckets. */
938     if (d->ht[0].used >= d->ht[0].size &&
939         (dict_can_resize ||
940          d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
941     {
942         return dictExpand(d, d->ht[0].used*2);
943     }
944     return DICT_OK;
945 }
946 
947 /* Our hash table capability is a power of two */
_dictNextPower(unsigned long size)948 static unsigned long _dictNextPower(unsigned long size)
949 {
950     unsigned long i = DICT_HT_INITIAL_SIZE;
951 
952     if (size >= LONG_MAX) return LONG_MAX;
953     while(1) {
954         if (i >= size)
955             return i;
956         i *= 2;
957     }
958 }
959 
960 /* Returns the index of a free slot that can be populated with
961  * a hash entry for the given 'key'.
962  * If the key already exists, -1 is returned.
963  *
964  * Note that if we are in the process of rehashing the hash table, the
965  * index is always returned in the context of the second (new) hash table. */
_dictKeyIndex(dict * d,const void * key)966 static int _dictKeyIndex(dict *d, const void *key)
967 {
968     unsigned int h, idx, table;
969     dictEntry *he;
970 
971     /* Expand the hash table if needed */
972     if (_dictExpandIfNeeded(d) == DICT_ERR)
973         return -1;
974     /* Compute the key hash value */
975     h = dictHashKey(d, key);
976     for (table = 0; table <= 1; table++) {
977         idx = h & d->ht[table].sizemask;
978         /* Search if this slot does not already contain the given key */
979         he = d->ht[table].table[idx];
980         while(he) {
981             if (key==he->key || dictCompareKeys(d, key, he->key))
982                 return -1;
983             he = he->next;
984         }
985         if (!dictIsRehashing(d)) break;
986     }
987     return idx;
988 }
989 
dictEmpty(dict * d,void (callback)(void *))990 void dictEmpty(dict *d, void(callback)(void*)) {
991     _dictClear(d,&d->ht[0],callback);
992     _dictClear(d,&d->ht[1],callback);
993     d->rehashidx = -1;
994     d->iterators = 0;
995 }
996 
dictEnableResize(void)997 void dictEnableResize(void) {
998     dict_can_resize = 1;
999 }
1000 
dictDisableResize(void)1001 void dictDisableResize(void) {
1002     dict_can_resize = 0;
1003 }
1004 
1005 /* ------------------------------- Debugging ---------------------------------*/
1006 
1007 #define DICT_STATS_VECTLEN 50
_dictGetStatsHt(char * buf,size_t bufsize,dictht * ht,int tableid)1008 size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
1009     unsigned long i, slots = 0, chainlen, maxchainlen = 0;
1010     unsigned long totchainlen = 0;
1011     unsigned long clvector[DICT_STATS_VECTLEN];
1012     size_t l = 0;
1013 
1014     if (ht->used == 0) {
1015         return snprintf(buf,bufsize,
1016             "No stats available for empty dictionaries\n");
1017     }
1018 
1019     /* Compute stats. */
1020     for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
1021     for (i = 0; i < ht->size; i++) {
1022         dictEntry *he;
1023 
1024         if (ht->table[i] == NULL) {
1025             clvector[0]++;
1026             continue;
1027         }
1028         slots++;
1029         /* For each hash entry on this slot... */
1030         chainlen = 0;
1031         he = ht->table[i];
1032         while(he) {
1033             chainlen++;
1034             he = he->next;
1035         }
1036         clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
1037         if (chainlen > maxchainlen) maxchainlen = chainlen;
1038         totchainlen += chainlen;
1039     }
1040 
1041     /* Generate human readable stats. */
1042     l += snprintf(buf+l,bufsize-l,
1043         "Hash table %d stats (%s):\n"
1044         " table size: %ld\n"
1045         " number of elements: %ld\n"
1046         " different slots: %ld\n"
1047         " max chain length: %ld\n"
1048         " avg chain length (counted): %.02f\n"
1049         " avg chain length (computed): %.02f\n"
1050         " Chain length distribution:\n",
1051         tableid, (tableid == 0) ? "main hash table" : "rehashing target",
1052         ht->size, ht->used, slots, maxchainlen,
1053         (float)totchainlen/slots, (float)ht->used/slots);
1054 
1055     for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
1056         if (clvector[i] == 0) continue;
1057         if (l >= bufsize) break;
1058         l += snprintf(buf+l,bufsize-l,
1059             "   %s%ld: %ld (%.02f%%)\n",
1060             (i == DICT_STATS_VECTLEN-1)?">= ":"",
1061             i, clvector[i], ((float)clvector[i]/ht->size)*100);
1062     }
1063 
1064     /* Unlike snprintf(), teturn the number of characters actually written. */
1065     if (bufsize) buf[bufsize-1] = '\0';
1066     return strlen(buf);
1067 }
1068 
dictGetStats(char * buf,size_t bufsize,dict * d)1069 void dictGetStats(char *buf, size_t bufsize, dict *d) {
1070     size_t l;
1071     char *orig_buf = buf;
1072     size_t orig_bufsize = bufsize;
1073 
1074     l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
1075     buf += l;
1076     bufsize -= l;
1077     if (dictIsRehashing(d) && bufsize > 0) {
1078         _dictGetStatsHt(buf,bufsize,&d->ht[1],1);
1079     }
1080     /* Make sure there is a NULL term at the end. */
1081     if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
1082 }
1083