1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Small functions that help with Scop and LLVM-IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "polly/Support/ScopHelper.h" 14 #include "polly/Options.h" 15 #include "polly/ScopInfo.h" 16 #include "polly/Support/SCEVValidator.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/RegionInfo.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 23 24 using namespace llvm; 25 using namespace polly; 26 27 #define DEBUG_TYPE "polly-scop-helper" 28 29 static cl::opt<bool> PollyAllowErrorBlocks( 30 "polly-allow-error-blocks", 31 cl::desc("Allow to speculate on the execution of 'error blocks'."), 32 cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 33 34 static cl::list<std::string> DebugFunctions( 35 "polly-debug-func", 36 cl::desc("Allow calls to the specified functions in SCoPs even if their " 37 "side-effects are unknown. This can be used to do debug output in " 38 "Polly-transformed code."), 39 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 40 41 // Ensures that there is just one predecessor to the entry node from outside the 42 // region. 43 // The identity of the region entry node is preserved. 44 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 45 RegionInfo *RI) { 46 BasicBlock *EnteringBB = R->getEnteringBlock(); 47 BasicBlock *Entry = R->getEntry(); 48 49 // Before (one of): 50 // 51 // \ / // 52 // EnteringBB // 53 // | \------> // 54 // \ / | // 55 // Entry <--\ Entry <--\ // 56 // / \ / / \ / // 57 // .... .... // 58 59 // Create single entry edge if the region has multiple entry edges. 60 if (!EnteringBB) { 61 SmallVector<BasicBlock *, 4> Preds; 62 for (BasicBlock *P : predecessors(Entry)) 63 if (!R->contains(P)) 64 Preds.push_back(P); 65 66 BasicBlock *NewEntering = 67 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 68 69 if (RI) { 70 // The exit block of predecessing regions must be changed to NewEntering 71 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 72 Region *RegionOfPred = RI->getRegionFor(ExitPred); 73 if (RegionOfPred->getExit() != Entry) 74 continue; 75 76 while (!RegionOfPred->isTopLevelRegion() && 77 RegionOfPred->getExit() == Entry) { 78 RegionOfPred->replaceExit(NewEntering); 79 RegionOfPred = RegionOfPred->getParent(); 80 } 81 } 82 83 // Make all ancestors use EnteringBB as entry; there might be edges to it 84 Region *AncestorR = R->getParent(); 85 RI->setRegionFor(NewEntering, AncestorR); 86 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 87 AncestorR->replaceEntry(NewEntering); 88 AncestorR = AncestorR->getParent(); 89 } 90 } 91 92 EnteringBB = NewEntering; 93 } 94 assert(R->getEnteringBlock() == EnteringBB); 95 96 // After: 97 // 98 // \ / // 99 // EnteringBB // 100 // | // 101 // | // 102 // Entry <--\ // 103 // / \ / // 104 // .... // 105 } 106 107 // Ensure that the region has a single block that branches to the exit node. 108 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 109 RegionInfo *RI) { 110 BasicBlock *ExitBB = R->getExit(); 111 BasicBlock *ExitingBB = R->getExitingBlock(); 112 113 // Before: 114 // 115 // (Region) ______/ // 116 // \ | / // 117 // ExitBB // 118 // / \ // 119 120 if (!ExitingBB) { 121 SmallVector<BasicBlock *, 4> Preds; 122 for (BasicBlock *P : predecessors(ExitBB)) 123 if (R->contains(P)) 124 Preds.push_back(P); 125 126 // Preds[0] Preds[1] otherBB // 127 // \ | ________/ // 128 // \ | / // 129 // BB // 130 ExitingBB = 131 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 132 // Preds[0] Preds[1] otherBB // 133 // \ / / // 134 // BB.region_exiting / // 135 // \ / // 136 // BB // 137 138 if (RI) 139 RI->setRegionFor(ExitingBB, R); 140 141 // Change the exit of nested regions, but not the region itself, 142 R->replaceExitRecursive(ExitingBB); 143 R->replaceExit(ExitBB); 144 } 145 assert(ExitingBB == R->getExitingBlock()); 146 147 // After: 148 // 149 // \ / // 150 // ExitingBB _____/ // 151 // \ / // 152 // ExitBB // 153 // / \ // 154 } 155 156 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 157 RegionInfo *RI) { 158 assert(R && !R->isTopLevelRegion()); 159 assert(!RI || RI == R->getRegionInfo()); 160 assert((!RI || DT) && 161 "RegionInfo requires DominatorTree to be updated as well"); 162 163 simplifyRegionEntry(R, DT, LI, RI); 164 simplifyRegionExit(R, DT, LI, RI); 165 assert(R->isSimple()); 166 } 167 168 // Split the block into two successive blocks. 169 // 170 // Like llvm::SplitBlock, but also preserves RegionInfo 171 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 172 DominatorTree *DT, llvm::LoopInfo *LI, 173 RegionInfo *RI) { 174 assert(Old && SplitPt); 175 176 // Before: 177 // 178 // \ / // 179 // Old // 180 // / \ // 181 182 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 183 184 if (RI) { 185 Region *R = RI->getRegionFor(Old); 186 RI->setRegionFor(NewBlock, R); 187 } 188 189 // After: 190 // 191 // \ / // 192 // Old // 193 // | // 194 // NewBlock // 195 // / \ // 196 197 return NewBlock; 198 } 199 200 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, 201 LoopInfo *LI, RegionInfo *RI) { 202 // Find first non-alloca instruction. Every basic block has a non-alloca 203 // instruction, as every well formed basic block has a terminator. 204 BasicBlock::iterator I = EntryBlock->begin(); 205 while (isa<AllocaInst>(I)) 206 ++I; 207 208 // splitBlock updates DT, LI and RI. 209 splitBlock(EntryBlock, &*I, DT, LI, RI); 210 } 211 212 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 213 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 214 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 215 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 216 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 217 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 218 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 219 220 // splitBlock updates DT, LI and RI. 221 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); 222 } 223 224 void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, 225 polly::AssumptionKind Kind, isl::set Set, 226 DebugLoc Loc, polly::AssumptionSign Sign, 227 BasicBlock *BB, bool RTC) { 228 assert((Set.is_params() || BB) && 229 "Assumptions without a basic block must be parameter sets"); 230 if (RecordedAssumptions) 231 RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC}); 232 } 233 234 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 235 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 236 /// however to generate new code if the instruction is in the analyzed region 237 /// and we generate code outside/in front of that region. Hence, we generate the 238 /// code for the SDiv/SRem operands in front of the analyzed region and then 239 /// create a new SDiv/SRem operation there too. 240 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 241 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 242 243 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 244 const DataLayout &DL, const char *Name, ValueMapT *VMap, 245 BasicBlock *RTCBB) 246 : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name), 247 R(R), VMap(VMap), RTCBB(RTCBB) {} 248 249 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 250 // If we generate code in the region we will immediately fall back to the 251 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 252 // needed replace them by copies computed in the entering block. 253 if (!R.contains(I)) 254 E = visit(E); 255 return Expander.expandCodeFor(E, Ty, I); 256 } 257 258 const SCEV *visit(const SCEV *E) { 259 // Cache the expansion results for intermediate SCEV expressions. A SCEV 260 // expression can refer to an operand multiple times (e.g. "x*x), so 261 // a naive visitor takes exponential time. 262 if (SCEVCache.count(E)) 263 return SCEVCache[E]; 264 const SCEV *Result = SCEVVisitor::visit(E); 265 SCEVCache[E] = Result; 266 return Result; 267 } 268 269 private: 270 SCEVExpander Expander; 271 ScalarEvolution &SE; 272 const char *Name; 273 const Region &R; 274 ValueMapT *VMap; 275 BasicBlock *RTCBB; 276 DenseMap<const SCEV *, const SCEV *> SCEVCache; 277 278 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, 279 Instruction *IP) { 280 if (!Inst || !R.contains(Inst)) 281 return E; 282 283 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && 284 !isa<PHINode>(Inst)); 285 286 auto *InstClone = Inst->clone(); 287 for (auto &Op : Inst->operands()) { 288 assert(SE.isSCEVable(Op->getType())); 289 auto *OpSCEV = SE.getSCEV(Op); 290 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); 291 InstClone->replaceUsesOfWith(Op, OpClone); 292 } 293 294 InstClone->setName(Name + Inst->getName()); 295 InstClone->insertBefore(IP); 296 return SE.getSCEV(InstClone); 297 } 298 299 const SCEV *visitUnknown(const SCEVUnknown *E) { 300 301 // If a value mapping was given try if the underlying value is remapped. 302 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; 303 if (NewVal) { 304 auto *NewE = SE.getSCEV(NewVal); 305 306 // While the mapped value might be different the SCEV representation might 307 // not be. To this end we will check before we go into recursion here. 308 if (E != NewE) 309 return visit(NewE); 310 } 311 312 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 313 Instruction *IP; 314 if (Inst && !R.contains(Inst)) 315 IP = Inst; 316 else if (Inst && RTCBB->getParent() == Inst->getFunction()) 317 IP = RTCBB->getTerminator(); 318 else 319 IP = RTCBB->getParent()->getEntryBlock().getTerminator(); 320 321 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 322 Inst->getOpcode() != Instruction::SDiv)) 323 return visitGenericInst(E, Inst, IP); 324 325 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); 326 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); 327 328 if (!SE.isKnownNonZero(RHSScev)) 329 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 330 331 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); 332 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); 333 334 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 335 LHS, RHS, Inst->getName() + Name, IP); 336 return SE.getSCEV(Inst); 337 } 338 339 /// The following functions will just traverse the SCEV and rebuild it with 340 /// the new operands returned by the traversal. 341 /// 342 ///{ 343 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 344 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { 345 return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType()); 346 } 347 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 348 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 349 } 350 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 351 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 352 } 353 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 354 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 355 } 356 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 357 auto *RHSScev = visit(E->getRHS()); 358 if (!SE.isKnownNonZero(RHSScev)) 359 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 360 return SE.getUDivExpr(visit(E->getLHS()), RHSScev); 361 } 362 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 363 SmallVector<const SCEV *, 4> NewOps; 364 for (const SCEV *Op : E->operands()) 365 NewOps.push_back(visit(Op)); 366 return SE.getAddExpr(NewOps); 367 } 368 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 369 SmallVector<const SCEV *, 4> NewOps; 370 for (const SCEV *Op : E->operands()) 371 NewOps.push_back(visit(Op)); 372 return SE.getMulExpr(NewOps); 373 } 374 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 375 SmallVector<const SCEV *, 4> NewOps; 376 for (const SCEV *Op : E->operands()) 377 NewOps.push_back(visit(Op)); 378 return SE.getUMaxExpr(NewOps); 379 } 380 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 381 SmallVector<const SCEV *, 4> NewOps; 382 for (const SCEV *Op : E->operands()) 383 NewOps.push_back(visit(Op)); 384 return SE.getSMaxExpr(NewOps); 385 } 386 const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { 387 SmallVector<const SCEV *, 4> NewOps; 388 for (const SCEV *Op : E->operands()) 389 NewOps.push_back(visit(Op)); 390 return SE.getUMinExpr(NewOps); 391 } 392 const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { 393 SmallVector<const SCEV *, 4> NewOps; 394 for (const SCEV *Op : E->operands()) 395 NewOps.push_back(visit(Op)); 396 return SE.getSMinExpr(NewOps); 397 } 398 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 399 SmallVector<const SCEV *, 4> NewOps; 400 for (const SCEV *Op : E->operands()) 401 NewOps.push_back(visit(Op)); 402 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 403 } 404 ///} 405 }; 406 407 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 408 const char *Name, const SCEV *E, Type *Ty, 409 Instruction *IP, ValueMapT *VMap, 410 BasicBlock *RTCBB) { 411 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); 412 return Expander.expandCodeFor(E, Ty, IP); 413 } 414 415 bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI, 416 const DominatorTree &DT) { 417 if (!PollyAllowErrorBlocks) 418 return false; 419 420 if (isa<UnreachableInst>(BB.getTerminator())) 421 return true; 422 423 if (LI.isLoopHeader(&BB)) 424 return false; 425 426 // Basic blocks that are always executed are not considered error blocks, 427 // as their execution can not be a rare event. 428 bool DominatesAllPredecessors = true; 429 if (R.isTopLevelRegion()) { 430 for (BasicBlock &I : *R.getEntry()->getParent()) 431 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 432 DominatesAllPredecessors = false; 433 } else { 434 for (auto Pred : predecessors(R.getExit())) 435 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 436 DominatesAllPredecessors = false; 437 } 438 439 if (DominatesAllPredecessors) 440 return false; 441 442 for (Instruction &Inst : BB) 443 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) { 444 if (isDebugCall(CI)) 445 continue; 446 447 if (isIgnoredIntrinsic(CI)) 448 continue; 449 450 // memset, memcpy and memmove are modeled intrinsics. 451 if (isa<MemSetInst>(CI) || isa<MemTransferInst>(CI)) 452 continue; 453 454 if (!CI->doesNotAccessMemory()) 455 return true; 456 if (CI->doesNotReturn()) 457 return true; 458 } 459 460 return false; 461 } 462 463 Value *polly::getConditionFromTerminator(Instruction *TI) { 464 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 465 if (BR->isUnconditional()) 466 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 467 468 return BR->getCondition(); 469 } 470 471 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 472 return SI->getCondition(); 473 474 return nullptr; 475 } 476 477 Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { 478 // Start with the smallest loop containing the entry and expand that 479 // loop until it contains all blocks in the region. If there is a loop 480 // containing all blocks in the region check if it is itself contained 481 // and if so take the parent loop as it will be the smallest containing 482 // the region but not contained by it. 483 Loop *L = LI.getLoopFor(S.getEntry()); 484 while (L) { 485 bool AllContained = true; 486 for (auto *BB : S.blocks()) 487 AllContained &= L->contains(BB); 488 if (AllContained) 489 break; 490 L = L->getParentLoop(); 491 } 492 493 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; 494 } 495 496 unsigned polly::getNumBlocksInLoop(Loop *L) { 497 unsigned NumBlocks = L->getNumBlocks(); 498 SmallVector<BasicBlock *, 4> ExitBlocks; 499 L->getExitBlocks(ExitBlocks); 500 501 for (auto ExitBlock : ExitBlocks) { 502 if (isa<UnreachableInst>(ExitBlock->getTerminator())) 503 NumBlocks++; 504 } 505 return NumBlocks; 506 } 507 508 unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { 509 if (!RN->isSubRegion()) 510 return 1; 511 512 Region *R = RN->getNodeAs<Region>(); 513 return std::distance(R->block_begin(), R->block_end()); 514 } 515 516 Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { 517 if (!RN->isSubRegion()) { 518 BasicBlock *BB = RN->getNodeAs<BasicBlock>(); 519 Loop *L = LI.getLoopFor(BB); 520 521 // Unreachable statements are not considered to belong to a LLVM loop, as 522 // they are not part of an actual loop in the control flow graph. 523 // Nevertheless, we handle certain unreachable statements that are common 524 // when modeling run-time bounds checks as being part of the loop to be 525 // able to model them and to later eliminate the run-time bounds checks. 526 // 527 // Specifically, for basic blocks that terminate in an unreachable and 528 // where the immediate predecessor is part of a loop, we assume these 529 // basic blocks belong to the loop the predecessor belongs to. This 530 // allows us to model the following code. 531 // 532 // for (i = 0; i < N; i++) { 533 // if (i > 1024) 534 // abort(); <- this abort might be translated to an 535 // unreachable 536 // 537 // A[i] = ... 538 // } 539 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode()) 540 L = LI.getLoopFor(BB->getPrevNode()); 541 return L; 542 } 543 544 Region *NonAffineSubRegion = RN->getNodeAs<Region>(); 545 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry()); 546 while (L && NonAffineSubRegion->contains(L)) 547 L = L->getParentLoop(); 548 return L; 549 } 550 551 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, 552 ScalarEvolution &SE) { 553 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) { 554 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L); 555 Loop *OuterLoop = R.outermostLoopInRegion(L); 556 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop)) 557 return true; 558 } 559 return false; 560 } 561 562 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, 563 ScalarEvolution &SE, const DominatorTree &DT, 564 const InvariantLoadsSetTy &KnownInvariantLoads) { 565 Loop *L = LI.getLoopFor(LInst->getParent()); 566 auto *Ptr = LInst->getPointerOperand(); 567 568 // A LoadInst is hoistable if the address it is loading from is also 569 // invariant; in this case: another invariant load (whether that address 570 // is also not written to has to be checked separately) 571 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst 572 // pattern generated by the Chapel frontend, but generally this applies 573 // for any chain of instruction that does not also depend on any 574 // induction variable 575 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) { 576 if (!hasVariantIndex(GepInst, L, R, SE)) { 577 if (auto *DecidingLoad = 578 dyn_cast<LoadInst>(GepInst->getPointerOperand())) { 579 if (KnownInvariantLoads.count(DecidingLoad)) 580 return true; 581 } 582 } 583 } 584 585 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); 586 while (L && R.contains(L)) { 587 if (!SE.isLoopInvariant(PtrSCEV, L)) 588 return false; 589 L = L->getParentLoop(); 590 } 591 592 for (auto *User : Ptr->users()) { 593 auto *UserI = dyn_cast<Instruction>(User); 594 if (!UserI || !R.contains(UserI)) 595 continue; 596 if (!UserI->mayWriteToMemory()) 597 continue; 598 599 auto &BB = *UserI->getParent(); 600 if (DT.dominates(&BB, LInst->getParent())) 601 return false; 602 603 bool DominatesAllPredecessors = true; 604 if (R.isTopLevelRegion()) { 605 for (BasicBlock &I : *R.getEntry()->getParent()) 606 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 607 DominatesAllPredecessors = false; 608 } else { 609 for (auto Pred : predecessors(R.getExit())) 610 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 611 DominatesAllPredecessors = false; 612 } 613 614 if (!DominatesAllPredecessors) 615 continue; 616 617 return false; 618 } 619 620 return true; 621 } 622 623 bool polly::isIgnoredIntrinsic(const Value *V) { 624 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 625 switch (IT->getIntrinsicID()) { 626 // Lifetime markers are supported/ignored. 627 case llvm::Intrinsic::lifetime_start: 628 case llvm::Intrinsic::lifetime_end: 629 // Invariant markers are supported/ignored. 630 case llvm::Intrinsic::invariant_start: 631 case llvm::Intrinsic::invariant_end: 632 // Some misc annotations are supported/ignored. 633 case llvm::Intrinsic::var_annotation: 634 case llvm::Intrinsic::ptr_annotation: 635 case llvm::Intrinsic::annotation: 636 case llvm::Intrinsic::donothing: 637 case llvm::Intrinsic::assume: 638 // Some debug info intrinsics are supported/ignored. 639 case llvm::Intrinsic::dbg_value: 640 case llvm::Intrinsic::dbg_declare: 641 return true; 642 default: 643 break; 644 } 645 } 646 return false; 647 } 648 649 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, 650 Loop *Scope) { 651 if (!V || !SE->isSCEVable(V->getType())) 652 return false; 653 654 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); 655 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope)) 656 if (!isa<SCEVCouldNotCompute>(Scev)) 657 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS)) 658 return true; 659 660 return false; 661 } 662 663 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { 664 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 665 if (!UI) 666 return nullptr; 667 668 if (PHINode *PHI = dyn_cast<PHINode>(UI)) 669 return PHI->getIncomingBlock(U); 670 671 return UI->getParent(); 672 } 673 674 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, 675 const BoxedLoopsSetTy &BoxedLoops) { 676 while (BoxedLoops.count(L)) 677 L = L->getParentLoop(); 678 return L; 679 } 680 681 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, 682 llvm::LoopInfo &LI, 683 const BoxedLoopsSetTy &BoxedLoops) { 684 Loop *L = LI.getLoopFor(BB); 685 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); 686 } 687 688 bool polly::isDebugCall(Instruction *Inst) { 689 auto *CI = dyn_cast<CallInst>(Inst); 690 if (!CI) 691 return false; 692 693 Function *CF = CI->getCalledFunction(); 694 if (!CF) 695 return false; 696 697 return std::find(DebugFunctions.begin(), DebugFunctions.end(), 698 CF->getName()) != DebugFunctions.end(); 699 } 700 701 static bool hasDebugCall(BasicBlock *BB) { 702 for (Instruction &Inst : *BB) { 703 if (isDebugCall(&Inst)) 704 return true; 705 } 706 return false; 707 } 708 709 bool polly::hasDebugCall(ScopStmt *Stmt) { 710 // Quick skip if no debug functions have been defined. 711 if (DebugFunctions.empty()) 712 return false; 713 714 if (!Stmt) 715 return false; 716 717 for (Instruction *Inst : Stmt->getInstructions()) 718 if (isDebugCall(Inst)) 719 return true; 720 721 if (Stmt->isRegionStmt()) { 722 for (BasicBlock *RBB : Stmt->getRegion()->blocks()) 723 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB)) 724 return true; 725 } 726 727 return false; 728 } 729