1 //===- ScopHelper.cpp - Some Helper Functions for Scop.  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Small functions that help with Scop and LLVM-IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "polly/Support/ScopHelper.h"
14 #include "polly/Options.h"
15 #include "polly/ScopInfo.h"
16 #include "polly/Support/SCEVValidator.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/LoopUtils.h"
23 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
24 
25 using namespace llvm;
26 using namespace polly;
27 
28 #define DEBUG_TYPE "polly-scop-helper"
29 
30 static cl::list<std::string> DebugFunctions(
31     "polly-debug-func",
32     cl::desc("Allow calls to the specified functions in SCoPs even if their "
33              "side-effects are unknown. This can be used to do debug output in "
34              "Polly-transformed code."),
35     cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
36 
37 // Ensures that there is just one predecessor to the entry node from outside the
38 // region.
39 // The identity of the region entry node is preserved.
simplifyRegionEntry(Region * R,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)40 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
41                                 RegionInfo *RI) {
42   BasicBlock *EnteringBB = R->getEnteringBlock();
43   BasicBlock *Entry = R->getEntry();
44 
45   // Before (one of):
46   //
47   //                       \    /            //
48   //                      EnteringBB         //
49   //                        |    \------>    //
50   //   \   /                |                //
51   //   Entry <--\         Entry <--\         //
52   //   /   \    /         /   \    /         //
53   //        ....               ....          //
54 
55   // Create single entry edge if the region has multiple entry edges.
56   if (!EnteringBB) {
57     SmallVector<BasicBlock *, 4> Preds;
58     for (BasicBlock *P : predecessors(Entry))
59       if (!R->contains(P))
60         Preds.push_back(P);
61 
62     BasicBlock *NewEntering =
63         SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
64 
65     if (RI) {
66       // The exit block of predecessing regions must be changed to NewEntering
67       for (BasicBlock *ExitPred : predecessors(NewEntering)) {
68         Region *RegionOfPred = RI->getRegionFor(ExitPred);
69         if (RegionOfPred->getExit() != Entry)
70           continue;
71 
72         while (!RegionOfPred->isTopLevelRegion() &&
73                RegionOfPred->getExit() == Entry) {
74           RegionOfPred->replaceExit(NewEntering);
75           RegionOfPred = RegionOfPred->getParent();
76         }
77       }
78 
79       // Make all ancestors use EnteringBB as entry; there might be edges to it
80       Region *AncestorR = R->getParent();
81       RI->setRegionFor(NewEntering, AncestorR);
82       while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
83         AncestorR->replaceEntry(NewEntering);
84         AncestorR = AncestorR->getParent();
85       }
86     }
87 
88     EnteringBB = NewEntering;
89   }
90   assert(R->getEnteringBlock() == EnteringBB);
91 
92   // After:
93   //
94   //    \    /       //
95   //  EnteringBB     //
96   //      |          //
97   //      |          //
98   //    Entry <--\   //
99   //    /   \    /   //
100   //         ....    //
101 }
102 
103 // Ensure that the region has a single block that branches to the exit node.
simplifyRegionExit(Region * R,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)104 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
105                                RegionInfo *RI) {
106   BasicBlock *ExitBB = R->getExit();
107   BasicBlock *ExitingBB = R->getExitingBlock();
108 
109   // Before:
110   //
111   //   (Region)   ______/  //
112   //      \  |   /         //
113   //       ExitBB          //
114   //       /    \          //
115 
116   if (!ExitingBB) {
117     SmallVector<BasicBlock *, 4> Preds;
118     for (BasicBlock *P : predecessors(ExitBB))
119       if (R->contains(P))
120         Preds.push_back(P);
121 
122     //  Preds[0] Preds[1]      otherBB //
123     //         \  |  ________/         //
124     //          \ | /                  //
125     //           BB                    //
126     ExitingBB =
127         SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
128     // Preds[0] Preds[1]      otherBB  //
129     //        \  /           /         //
130     // BB.region_exiting    /          //
131     //                  \  /           //
132     //                   BB            //
133 
134     if (RI)
135       RI->setRegionFor(ExitingBB, R);
136 
137     // Change the exit of nested regions, but not the region itself,
138     R->replaceExitRecursive(ExitingBB);
139     R->replaceExit(ExitBB);
140   }
141   assert(ExitingBB == R->getExitingBlock());
142 
143   // After:
144   //
145   //     \   /                //
146   //    ExitingBB     _____/  //
147   //          \      /        //
148   //           ExitBB         //
149   //           /    \         //
150 }
151 
simplifyRegion(Region * R,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)152 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
153                            RegionInfo *RI) {
154   assert(R && !R->isTopLevelRegion());
155   assert(!RI || RI == R->getRegionInfo());
156   assert((!RI || DT) &&
157          "RegionInfo requires DominatorTree to be updated as well");
158 
159   simplifyRegionEntry(R, DT, LI, RI);
160   simplifyRegionExit(R, DT, LI, RI);
161   assert(R->isSimple());
162 }
163 
164 // Split the block into two successive blocks.
165 //
166 // Like llvm::SplitBlock, but also preserves RegionInfo
splitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,llvm::LoopInfo * LI,RegionInfo * RI)167 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
168                               DominatorTree *DT, llvm::LoopInfo *LI,
169                               RegionInfo *RI) {
170   assert(Old && SplitPt);
171 
172   // Before:
173   //
174   //  \   /  //
175   //   Old   //
176   //  /   \  //
177 
178   BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
179 
180   if (RI) {
181     Region *R = RI->getRegionFor(Old);
182     RI->setRegionFor(NewBlock, R);
183   }
184 
185   // After:
186   //
187   //   \   /    //
188   //    Old     //
189   //     |      //
190   //  NewBlock  //
191   //   /   \    //
192 
193   return NewBlock;
194 }
195 
splitEntryBlockForAlloca(BasicBlock * EntryBlock,DominatorTree * DT,LoopInfo * LI,RegionInfo * RI)196 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
197                                      LoopInfo *LI, RegionInfo *RI) {
198   // Find first non-alloca instruction. Every basic block has a non-alloca
199   // instruction, as every well formed basic block has a terminator.
200   BasicBlock::iterator I = EntryBlock->begin();
201   while (isa<AllocaInst>(I))
202     ++I;
203 
204   // splitBlock updates DT, LI and RI.
205   splitBlock(EntryBlock, &*I, DT, LI, RI);
206 }
207 
splitEntryBlockForAlloca(BasicBlock * EntryBlock,Pass * P)208 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
209   auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
210   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
211   auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
212   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
213   RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
214   RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
215 
216   // splitBlock updates DT, LI and RI.
217   polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
218 }
219 
recordAssumption(polly::RecordedAssumptionsTy * RecordedAssumptions,polly::AssumptionKind Kind,isl::set Set,DebugLoc Loc,polly::AssumptionSign Sign,BasicBlock * BB,bool RTC)220 void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions,
221                              polly::AssumptionKind Kind, isl::set Set,
222                              DebugLoc Loc, polly::AssumptionSign Sign,
223                              BasicBlock *BB, bool RTC) {
224   assert((Set.is_params() || BB) &&
225          "Assumptions without a basic block must be parameter sets");
226   if (RecordedAssumptions)
227     RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC});
228 }
229 
230 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
231 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want
232 /// however to generate new code if the instruction is in the analyzed region
233 /// and we generate code outside/in front of that region. Hence, we generate the
234 /// code for the SDiv/SRem operands in front of the analyzed region and then
235 /// create a new SDiv/SRem operation there too.
236 struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> {
237   friend struct SCEVVisitor<ScopExpander, const SCEV *>;
238 
ScopExpanderScopExpander239   explicit ScopExpander(const Region &R, ScalarEvolution &SE,
240                         const DataLayout &DL, const char *Name, ValueMapT *VMap,
241                         BasicBlock *RTCBB)
242       : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name),
243         R(R), VMap(VMap), RTCBB(RTCBB) {}
244 
expandCodeForScopExpander245   Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
246     // If we generate code in the region we will immediately fall back to the
247     // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
248     // needed replace them by copies computed in the entering block.
249     if (!R.contains(I))
250       E = visit(E);
251     return Expander.expandCodeFor(E, Ty, I);
252   }
253 
visitScopExpander254   const SCEV *visit(const SCEV *E) {
255     // Cache the expansion results for intermediate SCEV expressions. A SCEV
256     // expression can refer to an operand multiple times (e.g. "x*x), so
257     // a naive visitor takes exponential time.
258     if (SCEVCache.count(E))
259       return SCEVCache[E];
260     const SCEV *Result = SCEVVisitor::visit(E);
261     SCEVCache[E] = Result;
262     return Result;
263   }
264 
265 private:
266   SCEVExpander Expander;
267   ScalarEvolution &SE;
268   const char *Name;
269   const Region &R;
270   ValueMapT *VMap;
271   BasicBlock *RTCBB;
272   DenseMap<const SCEV *, const SCEV *> SCEVCache;
273 
visitGenericInstScopExpander274   const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
275                                Instruction *IP) {
276     if (!Inst || !R.contains(Inst))
277       return E;
278 
279     assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
280            !isa<PHINode>(Inst));
281 
282     auto *InstClone = Inst->clone();
283     for (auto &Op : Inst->operands()) {
284       assert(SE.isSCEVable(Op->getType()));
285       auto *OpSCEV = SE.getSCEV(Op);
286       auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
287       InstClone->replaceUsesOfWith(Op, OpClone);
288     }
289 
290     InstClone->setName(Name + Inst->getName());
291     InstClone->insertBefore(IP);
292     return SE.getSCEV(InstClone);
293   }
294 
visitUnknownScopExpander295   const SCEV *visitUnknown(const SCEVUnknown *E) {
296 
297     // If a value mapping was given try if the underlying value is remapped.
298     Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
299     if (NewVal) {
300       auto *NewE = SE.getSCEV(NewVal);
301 
302       // While the mapped value might be different the SCEV representation might
303       // not be. To this end we will check before we go into recursion here.
304       if (E != NewE)
305         return visit(NewE);
306     }
307 
308     Instruction *Inst = dyn_cast<Instruction>(E->getValue());
309     Instruction *IP;
310     if (Inst && !R.contains(Inst))
311       IP = Inst;
312     else if (Inst && RTCBB->getParent() == Inst->getFunction())
313       IP = RTCBB->getTerminator();
314     else
315       IP = RTCBB->getParent()->getEntryBlock().getTerminator();
316 
317     if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
318                   Inst->getOpcode() != Instruction::SDiv))
319       return visitGenericInst(E, Inst, IP);
320 
321     const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
322     const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));
323 
324     if (!SE.isKnownNonZero(RHSScev))
325       RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
326 
327     Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
328     Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
329 
330     Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
331                                   LHS, RHS, Inst->getName() + Name, IP);
332     return SE.getSCEV(Inst);
333   }
334 
335   /// The following functions will just traverse the SCEV and rebuild it with
336   /// the new operands returned by the traversal.
337   ///
338   ///{
visitConstantScopExpander339   const SCEV *visitConstant(const SCEVConstant *E) { return E; }
visitPtrToIntExprScopExpander340   const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) {
341     return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType());
342   }
visitTruncateExprScopExpander343   const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
344     return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
345   }
visitZeroExtendExprScopExpander346   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
347     return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
348   }
visitSignExtendExprScopExpander349   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
350     return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
351   }
visitUDivExprScopExpander352   const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
353     auto *RHSScev = visit(E->getRHS());
354     if (!SE.isKnownNonZero(RHSScev))
355       RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
356     return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
357   }
visitAddExprScopExpander358   const SCEV *visitAddExpr(const SCEVAddExpr *E) {
359     SmallVector<const SCEV *, 4> NewOps;
360     for (const SCEV *Op : E->operands())
361       NewOps.push_back(visit(Op));
362     return SE.getAddExpr(NewOps);
363   }
visitMulExprScopExpander364   const SCEV *visitMulExpr(const SCEVMulExpr *E) {
365     SmallVector<const SCEV *, 4> NewOps;
366     for (const SCEV *Op : E->operands())
367       NewOps.push_back(visit(Op));
368     return SE.getMulExpr(NewOps);
369   }
visitUMaxExprScopExpander370   const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
371     SmallVector<const SCEV *, 4> NewOps;
372     for (const SCEV *Op : E->operands())
373       NewOps.push_back(visit(Op));
374     return SE.getUMaxExpr(NewOps);
375   }
visitSMaxExprScopExpander376   const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
377     SmallVector<const SCEV *, 4> NewOps;
378     for (const SCEV *Op : E->operands())
379       NewOps.push_back(visit(Op));
380     return SE.getSMaxExpr(NewOps);
381   }
visitUMinExprScopExpander382   const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
383     SmallVector<const SCEV *, 4> NewOps;
384     for (const SCEV *Op : E->operands())
385       NewOps.push_back(visit(Op));
386     return SE.getUMinExpr(NewOps);
387   }
visitSMinExprScopExpander388   const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
389     SmallVector<const SCEV *, 4> NewOps;
390     for (const SCEV *Op : E->operands())
391       NewOps.push_back(visit(Op));
392     return SE.getSMinExpr(NewOps);
393   }
visitSequentialUMinExprScopExpander394   const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) {
395     SmallVector<const SCEV *, 4> NewOps;
396     for (const SCEV *Op : E->operands())
397       NewOps.push_back(visit(Op));
398     return SE.getUMinExpr(NewOps, /*Sequential=*/true);
399   }
visitAddRecExprScopExpander400   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
401     SmallVector<const SCEV *, 4> NewOps;
402     for (const SCEV *Op : E->operands())
403       NewOps.push_back(visit(Op));
404     return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
405   }
406   ///}
407 };
408 
expandCodeFor(Scop & S,ScalarEvolution & SE,const DataLayout & DL,const char * Name,const SCEV * E,Type * Ty,Instruction * IP,ValueMapT * VMap,BasicBlock * RTCBB)409 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
410                             const char *Name, const SCEV *E, Type *Ty,
411                             Instruction *IP, ValueMapT *VMap,
412                             BasicBlock *RTCBB) {
413   ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
414   return Expander.expandCodeFor(E, Ty, IP);
415 }
416 
getConditionFromTerminator(Instruction * TI)417 Value *polly::getConditionFromTerminator(Instruction *TI) {
418   if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
419     if (BR->isUnconditional())
420       return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
421 
422     return BR->getCondition();
423   }
424 
425   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
426     return SI->getCondition();
427 
428   return nullptr;
429 }
430 
getLoopSurroundingScop(Scop & S,LoopInfo & LI)431 Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
432   // Start with the smallest loop containing the entry and expand that
433   // loop until it contains all blocks in the region. If there is a loop
434   // containing all blocks in the region check if it is itself contained
435   // and if so take the parent loop as it will be the smallest containing
436   // the region but not contained by it.
437   Loop *L = LI.getLoopFor(S.getEntry());
438   while (L) {
439     bool AllContained = true;
440     for (auto *BB : S.blocks())
441       AllContained &= L->contains(BB);
442     if (AllContained)
443       break;
444     L = L->getParentLoop();
445   }
446 
447   return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
448 }
449 
getNumBlocksInLoop(Loop * L)450 unsigned polly::getNumBlocksInLoop(Loop *L) {
451   unsigned NumBlocks = L->getNumBlocks();
452   SmallVector<BasicBlock *, 4> ExitBlocks;
453   L->getExitBlocks(ExitBlocks);
454 
455   for (auto ExitBlock : ExitBlocks) {
456     if (isa<UnreachableInst>(ExitBlock->getTerminator()))
457       NumBlocks++;
458   }
459   return NumBlocks;
460 }
461 
getNumBlocksInRegionNode(RegionNode * RN)462 unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
463   if (!RN->isSubRegion())
464     return 1;
465 
466   Region *R = RN->getNodeAs<Region>();
467   return std::distance(R->block_begin(), R->block_end());
468 }
469 
getRegionNodeLoop(RegionNode * RN,LoopInfo & LI)470 Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
471   if (!RN->isSubRegion()) {
472     BasicBlock *BB = RN->getNodeAs<BasicBlock>();
473     Loop *L = LI.getLoopFor(BB);
474 
475     // Unreachable statements are not considered to belong to a LLVM loop, as
476     // they are not part of an actual loop in the control flow graph.
477     // Nevertheless, we handle certain unreachable statements that are common
478     // when modeling run-time bounds checks as being part of the loop to be
479     // able to model them and to later eliminate the run-time bounds checks.
480     //
481     // Specifically, for basic blocks that terminate in an unreachable and
482     // where the immediate predecessor is part of a loop, we assume these
483     // basic blocks belong to the loop the predecessor belongs to. This
484     // allows us to model the following code.
485     //
486     // for (i = 0; i < N; i++) {
487     //   if (i > 1024)
488     //     abort();            <- this abort might be translated to an
489     //                            unreachable
490     //
491     //   A[i] = ...
492     // }
493     if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
494       L = LI.getLoopFor(BB->getPrevNode());
495     return L;
496   }
497 
498   Region *NonAffineSubRegion = RN->getNodeAs<Region>();
499   Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
500   while (L && NonAffineSubRegion->contains(L))
501     L = L->getParentLoop();
502   return L;
503 }
504 
hasVariantIndex(GetElementPtrInst * Gep,Loop * L,Region & R,ScalarEvolution & SE)505 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
506                             ScalarEvolution &SE) {
507   for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
508     const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
509     Loop *OuterLoop = R.outermostLoopInRegion(L);
510     if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
511       return true;
512   }
513   return false;
514 }
515 
isHoistableLoad(LoadInst * LInst,Region & R,LoopInfo & LI,ScalarEvolution & SE,const DominatorTree & DT,const InvariantLoadsSetTy & KnownInvariantLoads)516 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
517                             ScalarEvolution &SE, const DominatorTree &DT,
518                             const InvariantLoadsSetTy &KnownInvariantLoads) {
519   Loop *L = LI.getLoopFor(LInst->getParent());
520   auto *Ptr = LInst->getPointerOperand();
521 
522   // A LoadInst is hoistable if the address it is loading from is also
523   // invariant; in this case: another invariant load (whether that address
524   // is also not written to has to be checked separately)
525   // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
526   // pattern generated by the Chapel frontend, but generally this applies
527   // for any chain of instruction that does not also depend on any
528   // induction variable
529   if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
530     if (!hasVariantIndex(GepInst, L, R, SE)) {
531       if (auto *DecidingLoad =
532               dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
533         if (KnownInvariantLoads.count(DecidingLoad))
534           return true;
535       }
536     }
537   }
538 
539   const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
540   while (L && R.contains(L)) {
541     if (!SE.isLoopInvariant(PtrSCEV, L))
542       return false;
543     L = L->getParentLoop();
544   }
545 
546   for (auto *User : Ptr->users()) {
547     auto *UserI = dyn_cast<Instruction>(User);
548     if (!UserI || !R.contains(UserI))
549       continue;
550     if (!UserI->mayWriteToMemory())
551       continue;
552 
553     auto &BB = *UserI->getParent();
554     if (DT.dominates(&BB, LInst->getParent()))
555       return false;
556 
557     bool DominatesAllPredecessors = true;
558     if (R.isTopLevelRegion()) {
559       for (BasicBlock &I : *R.getEntry()->getParent())
560         if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
561           DominatesAllPredecessors = false;
562     } else {
563       for (auto Pred : predecessors(R.getExit()))
564         if (R.contains(Pred) && !DT.dominates(&BB, Pred))
565           DominatesAllPredecessors = false;
566     }
567 
568     if (!DominatesAllPredecessors)
569       continue;
570 
571     return false;
572   }
573 
574   return true;
575 }
576 
isIgnoredIntrinsic(const Value * V)577 bool polly::isIgnoredIntrinsic(const Value *V) {
578   if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
579     switch (IT->getIntrinsicID()) {
580     // Lifetime markers are supported/ignored.
581     case llvm::Intrinsic::lifetime_start:
582     case llvm::Intrinsic::lifetime_end:
583     // Invariant markers are supported/ignored.
584     case llvm::Intrinsic::invariant_start:
585     case llvm::Intrinsic::invariant_end:
586     // Some misc annotations are supported/ignored.
587     case llvm::Intrinsic::var_annotation:
588     case llvm::Intrinsic::ptr_annotation:
589     case llvm::Intrinsic::annotation:
590     case llvm::Intrinsic::donothing:
591     case llvm::Intrinsic::assume:
592     // Some debug info intrinsics are supported/ignored.
593     case llvm::Intrinsic::dbg_value:
594     case llvm::Intrinsic::dbg_declare:
595       return true;
596     default:
597       break;
598     }
599   }
600   return false;
601 }
602 
canSynthesize(const Value * V,const Scop & S,ScalarEvolution * SE,Loop * Scope)603 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
604                           Loop *Scope) {
605   if (!V || !SE->isSCEVable(V->getType()))
606     return false;
607 
608   const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
609   if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
610     if (!isa<SCEVCouldNotCompute>(Scev))
611       if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
612         return true;
613 
614   return false;
615 }
616 
getUseBlock(const llvm::Use & U)617 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
618   Instruction *UI = dyn_cast<Instruction>(U.getUser());
619   if (!UI)
620     return nullptr;
621 
622   if (PHINode *PHI = dyn_cast<PHINode>(UI))
623     return PHI->getIncomingBlock(U);
624 
625   return UI->getParent();
626 }
627 
getFirstNonBoxedLoopFor(llvm::Loop * L,llvm::LoopInfo & LI,const BoxedLoopsSetTy & BoxedLoops)628 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
629                                            const BoxedLoopsSetTy &BoxedLoops) {
630   while (BoxedLoops.count(L))
631     L = L->getParentLoop();
632   return L;
633 }
634 
getFirstNonBoxedLoopFor(llvm::BasicBlock * BB,llvm::LoopInfo & LI,const BoxedLoopsSetTy & BoxedLoops)635 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
636                                            llvm::LoopInfo &LI,
637                                            const BoxedLoopsSetTy &BoxedLoops) {
638   Loop *L = LI.getLoopFor(BB);
639   return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
640 }
641 
isDebugCall(Instruction * Inst)642 bool polly::isDebugCall(Instruction *Inst) {
643   auto *CI = dyn_cast<CallInst>(Inst);
644   if (!CI)
645     return false;
646 
647   Function *CF = CI->getCalledFunction();
648   if (!CF)
649     return false;
650 
651   return std::find(DebugFunctions.begin(), DebugFunctions.end(),
652                    CF->getName()) != DebugFunctions.end();
653 }
654 
hasDebugCall(BasicBlock * BB)655 static bool hasDebugCall(BasicBlock *BB) {
656   for (Instruction &Inst : *BB) {
657     if (isDebugCall(&Inst))
658       return true;
659   }
660   return false;
661 }
662 
hasDebugCall(ScopStmt * Stmt)663 bool polly::hasDebugCall(ScopStmt *Stmt) {
664   // Quick skip if no debug functions have been defined.
665   if (DebugFunctions.empty())
666     return false;
667 
668   if (!Stmt)
669     return false;
670 
671   for (Instruction *Inst : Stmt->getInstructions())
672     if (isDebugCall(Inst))
673       return true;
674 
675   if (Stmt->isRegionStmt()) {
676     for (BasicBlock *RBB : Stmt->getRegion()->blocks())
677       if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
678         return true;
679   }
680 
681   return false;
682 }
683 
684 /// Find a property in a LoopID.
findNamedMetadataNode(MDNode * LoopMD,StringRef Name)685 static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) {
686   if (!LoopMD)
687     return nullptr;
688   for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) {
689     auto *OpNode = dyn_cast<MDNode>(X.get());
690     if (!OpNode)
691       continue;
692 
693     auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0));
694     if (!OpName)
695       continue;
696     if (OpName->getString() == Name)
697       return OpNode;
698   }
699   return nullptr;
700 }
701 
findNamedMetadataArg(MDNode * LoopID,StringRef Name)702 static Optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID,
703                                                         StringRef Name) {
704   MDNode *MD = findNamedMetadataNode(LoopID, Name);
705   if (!MD)
706     return None;
707   switch (MD->getNumOperands()) {
708   case 1:
709     return nullptr;
710   case 2:
711     return &MD->getOperand(1);
712   default:
713     llvm_unreachable("loop metadata has 0 or 1 operand");
714   }
715 }
716 
findMetadataOperand(MDNode * LoopMD,StringRef Name)717 Optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD,
718                                                 StringRef Name) {
719   MDNode *MD = findNamedMetadataNode(LoopMD, Name);
720   if (!MD)
721     return None;
722   switch (MD->getNumOperands()) {
723   case 1:
724     return nullptr;
725   case 2:
726     return MD->getOperand(1).get();
727   default:
728     llvm_unreachable("loop metadata must have 0 or 1 operands");
729   }
730 }
731 
getOptionalBoolLoopAttribute(MDNode * LoopID,StringRef Name)732 static Optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID,
733                                                    StringRef Name) {
734   MDNode *MD = findNamedMetadataNode(LoopID, Name);
735   if (!MD)
736     return None;
737   switch (MD->getNumOperands()) {
738   case 1:
739     return true;
740   case 2:
741     if (ConstantInt *IntMD =
742             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
743       return IntMD->getZExtValue();
744     return true;
745   }
746   llvm_unreachable("unexpected number of options");
747 }
748 
getBooleanLoopAttribute(MDNode * LoopID,StringRef Name)749 bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) {
750   return getOptionalBoolLoopAttribute(LoopID, Name).value_or(false);
751 }
752 
getOptionalIntLoopAttribute(MDNode * LoopID,StringRef Name)753 llvm::Optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID,
754                                                        StringRef Name) {
755   const MDOperand *AttrMD =
756       findNamedMetadataArg(LoopID, Name).value_or(nullptr);
757   if (!AttrMD)
758     return None;
759 
760   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
761   if (!IntMD)
762     return None;
763 
764   return IntMD->getSExtValue();
765 }
766 
hasDisableAllTransformsHint(Loop * L)767 bool polly::hasDisableAllTransformsHint(Loop *L) {
768   return llvm::hasDisableAllTransformsHint(L);
769 }
770 
hasDisableAllTransformsHint(llvm::MDNode * LoopID)771 bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) {
772   return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced");
773 }
774 
getIslLoopAttr(isl::ctx Ctx,BandAttr * Attr)775 isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) {
776   assert(Attr && "Must be a valid BandAttr");
777 
778   // The name "Loop" signals that this id contains a pointer to a BandAttr.
779   // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in
780   // markers, but it's user pointer is an llvm::Value.
781   isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr);
782   Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) {
783     BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr);
784     delete Attr;
785   }));
786   return Result;
787 }
788 
createIslLoopAttr(isl::ctx Ctx,Loop * L)789 isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) {
790   if (!L)
791     return {};
792 
793   // A loop without metadata does not need to be annotated.
794   MDNode *LoopID = L->getLoopID();
795   if (!LoopID)
796     return {};
797 
798   BandAttr *Attr = new BandAttr();
799   Attr->OriginalLoop = L;
800   Attr->Metadata = L->getLoopID();
801 
802   return getIslLoopAttr(Ctx, Attr);
803 }
804 
isLoopAttr(const isl::id & Id)805 bool polly::isLoopAttr(const isl::id &Id) {
806   if (Id.is_null())
807     return false;
808 
809   return Id.get_name() == "Loop with Metadata";
810 }
811 
getLoopAttr(const isl::id & Id)812 BandAttr *polly::getLoopAttr(const isl::id &Id) {
813   if (!isLoopAttr(Id))
814     return nullptr;
815 
816   return reinterpret_cast<BandAttr *>(Id.get_user());
817 }
818