1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Small functions that help with Scop and LLVM-IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "polly/Support/ScopHelper.h" 14 #include "polly/Options.h" 15 #include "polly/ScopInfo.h" 16 #include "polly/Support/SCEVValidator.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/RegionInfo.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/LoopUtils.h" 23 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 24 25 using namespace llvm; 26 using namespace polly; 27 28 #define DEBUG_TYPE "polly-scop-helper" 29 30 static cl::list<std::string> DebugFunctions( 31 "polly-debug-func", 32 cl::desc("Allow calls to the specified functions in SCoPs even if their " 33 "side-effects are unknown. This can be used to do debug output in " 34 "Polly-transformed code."), 35 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 36 37 // Ensures that there is just one predecessor to the entry node from outside the 38 // region. 39 // The identity of the region entry node is preserved. 40 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 41 RegionInfo *RI) { 42 BasicBlock *EnteringBB = R->getEnteringBlock(); 43 BasicBlock *Entry = R->getEntry(); 44 45 // Before (one of): 46 // 47 // \ / // 48 // EnteringBB // 49 // | \------> // 50 // \ / | // 51 // Entry <--\ Entry <--\ // 52 // / \ / / \ / // 53 // .... .... // 54 55 // Create single entry edge if the region has multiple entry edges. 56 if (!EnteringBB) { 57 SmallVector<BasicBlock *, 4> Preds; 58 for (BasicBlock *P : predecessors(Entry)) 59 if (!R->contains(P)) 60 Preds.push_back(P); 61 62 BasicBlock *NewEntering = 63 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 64 65 if (RI) { 66 // The exit block of predecessing regions must be changed to NewEntering 67 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 68 Region *RegionOfPred = RI->getRegionFor(ExitPred); 69 if (RegionOfPred->getExit() != Entry) 70 continue; 71 72 while (!RegionOfPred->isTopLevelRegion() && 73 RegionOfPred->getExit() == Entry) { 74 RegionOfPred->replaceExit(NewEntering); 75 RegionOfPred = RegionOfPred->getParent(); 76 } 77 } 78 79 // Make all ancestors use EnteringBB as entry; there might be edges to it 80 Region *AncestorR = R->getParent(); 81 RI->setRegionFor(NewEntering, AncestorR); 82 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 83 AncestorR->replaceEntry(NewEntering); 84 AncestorR = AncestorR->getParent(); 85 } 86 } 87 88 EnteringBB = NewEntering; 89 } 90 assert(R->getEnteringBlock() == EnteringBB); 91 92 // After: 93 // 94 // \ / // 95 // EnteringBB // 96 // | // 97 // | // 98 // Entry <--\ // 99 // / \ / // 100 // .... // 101 } 102 103 // Ensure that the region has a single block that branches to the exit node. 104 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 105 RegionInfo *RI) { 106 BasicBlock *ExitBB = R->getExit(); 107 BasicBlock *ExitingBB = R->getExitingBlock(); 108 109 // Before: 110 // 111 // (Region) ______/ // 112 // \ | / // 113 // ExitBB // 114 // / \ // 115 116 if (!ExitingBB) { 117 SmallVector<BasicBlock *, 4> Preds; 118 for (BasicBlock *P : predecessors(ExitBB)) 119 if (R->contains(P)) 120 Preds.push_back(P); 121 122 // Preds[0] Preds[1] otherBB // 123 // \ | ________/ // 124 // \ | / // 125 // BB // 126 ExitingBB = 127 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 128 // Preds[0] Preds[1] otherBB // 129 // \ / / // 130 // BB.region_exiting / // 131 // \ / // 132 // BB // 133 134 if (RI) 135 RI->setRegionFor(ExitingBB, R); 136 137 // Change the exit of nested regions, but not the region itself, 138 R->replaceExitRecursive(ExitingBB); 139 R->replaceExit(ExitBB); 140 } 141 assert(ExitingBB == R->getExitingBlock()); 142 143 // After: 144 // 145 // \ / // 146 // ExitingBB _____/ // 147 // \ / // 148 // ExitBB // 149 // / \ // 150 } 151 152 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 153 RegionInfo *RI) { 154 assert(R && !R->isTopLevelRegion()); 155 assert(!RI || RI == R->getRegionInfo()); 156 assert((!RI || DT) && 157 "RegionInfo requires DominatorTree to be updated as well"); 158 159 simplifyRegionEntry(R, DT, LI, RI); 160 simplifyRegionExit(R, DT, LI, RI); 161 assert(R->isSimple()); 162 } 163 164 // Split the block into two successive blocks. 165 // 166 // Like llvm::SplitBlock, but also preserves RegionInfo 167 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 168 DominatorTree *DT, llvm::LoopInfo *LI, 169 RegionInfo *RI) { 170 assert(Old && SplitPt); 171 172 // Before: 173 // 174 // \ / // 175 // Old // 176 // / \ // 177 178 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 179 180 if (RI) { 181 Region *R = RI->getRegionFor(Old); 182 RI->setRegionFor(NewBlock, R); 183 } 184 185 // After: 186 // 187 // \ / // 188 // Old // 189 // | // 190 // NewBlock // 191 // / \ // 192 193 return NewBlock; 194 } 195 196 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, 197 LoopInfo *LI, RegionInfo *RI) { 198 // Find first non-alloca instruction. Every basic block has a non-alloca 199 // instruction, as every well formed basic block has a terminator. 200 BasicBlock::iterator I = EntryBlock->begin(); 201 while (isa<AllocaInst>(I)) 202 ++I; 203 204 // splitBlock updates DT, LI and RI. 205 splitBlock(EntryBlock, &*I, DT, LI, RI); 206 } 207 208 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 209 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 210 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 211 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 212 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 213 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 214 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 215 216 // splitBlock updates DT, LI and RI. 217 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); 218 } 219 220 void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, 221 polly::AssumptionKind Kind, isl::set Set, 222 DebugLoc Loc, polly::AssumptionSign Sign, 223 BasicBlock *BB, bool RTC) { 224 assert((Set.is_params() || BB) && 225 "Assumptions without a basic block must be parameter sets"); 226 if (RecordedAssumptions) 227 RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC}); 228 } 229 230 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 231 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 232 /// however to generate new code if the instruction is in the analyzed region 233 /// and we generate code outside/in front of that region. Hence, we generate the 234 /// code for the SDiv/SRem operands in front of the analyzed region and then 235 /// create a new SDiv/SRem operation there too. 236 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 237 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 238 239 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 240 const DataLayout &DL, const char *Name, ValueMapT *VMap, 241 BasicBlock *RTCBB) 242 : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name), 243 R(R), VMap(VMap), RTCBB(RTCBB) {} 244 245 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 246 // If we generate code in the region we will immediately fall back to the 247 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 248 // needed replace them by copies computed in the entering block. 249 if (!R.contains(I)) 250 E = visit(E); 251 return Expander.expandCodeFor(E, Ty, I); 252 } 253 254 const SCEV *visit(const SCEV *E) { 255 // Cache the expansion results for intermediate SCEV expressions. A SCEV 256 // expression can refer to an operand multiple times (e.g. "x*x), so 257 // a naive visitor takes exponential time. 258 if (SCEVCache.count(E)) 259 return SCEVCache[E]; 260 const SCEV *Result = SCEVVisitor::visit(E); 261 SCEVCache[E] = Result; 262 return Result; 263 } 264 265 private: 266 SCEVExpander Expander; 267 ScalarEvolution &SE; 268 const char *Name; 269 const Region &R; 270 ValueMapT *VMap; 271 BasicBlock *RTCBB; 272 DenseMap<const SCEV *, const SCEV *> SCEVCache; 273 274 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, 275 Instruction *IP) { 276 if (!Inst || !R.contains(Inst)) 277 return E; 278 279 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && 280 !isa<PHINode>(Inst)); 281 282 auto *InstClone = Inst->clone(); 283 for (auto &Op : Inst->operands()) { 284 assert(SE.isSCEVable(Op->getType())); 285 auto *OpSCEV = SE.getSCEV(Op); 286 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); 287 InstClone->replaceUsesOfWith(Op, OpClone); 288 } 289 290 InstClone->setName(Name + Inst->getName()); 291 InstClone->insertBefore(IP); 292 return SE.getSCEV(InstClone); 293 } 294 295 const SCEV *visitUnknown(const SCEVUnknown *E) { 296 297 // If a value mapping was given try if the underlying value is remapped. 298 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; 299 if (NewVal) { 300 auto *NewE = SE.getSCEV(NewVal); 301 302 // While the mapped value might be different the SCEV representation might 303 // not be. To this end we will check before we go into recursion here. 304 if (E != NewE) 305 return visit(NewE); 306 } 307 308 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 309 Instruction *IP; 310 if (Inst && !R.contains(Inst)) 311 IP = Inst; 312 else if (Inst && RTCBB->getParent() == Inst->getFunction()) 313 IP = RTCBB->getTerminator(); 314 else 315 IP = RTCBB->getParent()->getEntryBlock().getTerminator(); 316 317 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 318 Inst->getOpcode() != Instruction::SDiv)) 319 return visitGenericInst(E, Inst, IP); 320 321 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); 322 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); 323 324 if (!SE.isKnownNonZero(RHSScev)) 325 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 326 327 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); 328 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); 329 330 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 331 LHS, RHS, Inst->getName() + Name, IP); 332 return SE.getSCEV(Inst); 333 } 334 335 /// The following functions will just traverse the SCEV and rebuild it with 336 /// the new operands returned by the traversal. 337 /// 338 ///{ 339 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 340 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { 341 return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType()); 342 } 343 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 344 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 345 } 346 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 347 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 348 } 349 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 350 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 351 } 352 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 353 auto *RHSScev = visit(E->getRHS()); 354 if (!SE.isKnownNonZero(RHSScev)) 355 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 356 return SE.getUDivExpr(visit(E->getLHS()), RHSScev); 357 } 358 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 359 SmallVector<const SCEV *, 4> NewOps; 360 for (const SCEV *Op : E->operands()) 361 NewOps.push_back(visit(Op)); 362 return SE.getAddExpr(NewOps); 363 } 364 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 365 SmallVector<const SCEV *, 4> NewOps; 366 for (const SCEV *Op : E->operands()) 367 NewOps.push_back(visit(Op)); 368 return SE.getMulExpr(NewOps); 369 } 370 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 371 SmallVector<const SCEV *, 4> NewOps; 372 for (const SCEV *Op : E->operands()) 373 NewOps.push_back(visit(Op)); 374 return SE.getUMaxExpr(NewOps); 375 } 376 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 377 SmallVector<const SCEV *, 4> NewOps; 378 for (const SCEV *Op : E->operands()) 379 NewOps.push_back(visit(Op)); 380 return SE.getSMaxExpr(NewOps); 381 } 382 const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { 383 SmallVector<const SCEV *, 4> NewOps; 384 for (const SCEV *Op : E->operands()) 385 NewOps.push_back(visit(Op)); 386 return SE.getUMinExpr(NewOps); 387 } 388 const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { 389 SmallVector<const SCEV *, 4> NewOps; 390 for (const SCEV *Op : E->operands()) 391 NewOps.push_back(visit(Op)); 392 return SE.getSMinExpr(NewOps); 393 } 394 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 395 SmallVector<const SCEV *, 4> NewOps; 396 for (const SCEV *Op : E->operands()) 397 NewOps.push_back(visit(Op)); 398 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 399 } 400 ///} 401 }; 402 403 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 404 const char *Name, const SCEV *E, Type *Ty, 405 Instruction *IP, ValueMapT *VMap, 406 BasicBlock *RTCBB) { 407 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); 408 return Expander.expandCodeFor(E, Ty, IP); 409 } 410 411 Value *polly::getConditionFromTerminator(Instruction *TI) { 412 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 413 if (BR->isUnconditional()) 414 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 415 416 return BR->getCondition(); 417 } 418 419 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 420 return SI->getCondition(); 421 422 return nullptr; 423 } 424 425 Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { 426 // Start with the smallest loop containing the entry and expand that 427 // loop until it contains all blocks in the region. If there is a loop 428 // containing all blocks in the region check if it is itself contained 429 // and if so take the parent loop as it will be the smallest containing 430 // the region but not contained by it. 431 Loop *L = LI.getLoopFor(S.getEntry()); 432 while (L) { 433 bool AllContained = true; 434 for (auto *BB : S.blocks()) 435 AllContained &= L->contains(BB); 436 if (AllContained) 437 break; 438 L = L->getParentLoop(); 439 } 440 441 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; 442 } 443 444 unsigned polly::getNumBlocksInLoop(Loop *L) { 445 unsigned NumBlocks = L->getNumBlocks(); 446 SmallVector<BasicBlock *, 4> ExitBlocks; 447 L->getExitBlocks(ExitBlocks); 448 449 for (auto ExitBlock : ExitBlocks) { 450 if (isa<UnreachableInst>(ExitBlock->getTerminator())) 451 NumBlocks++; 452 } 453 return NumBlocks; 454 } 455 456 unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { 457 if (!RN->isSubRegion()) 458 return 1; 459 460 Region *R = RN->getNodeAs<Region>(); 461 return std::distance(R->block_begin(), R->block_end()); 462 } 463 464 Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { 465 if (!RN->isSubRegion()) { 466 BasicBlock *BB = RN->getNodeAs<BasicBlock>(); 467 Loop *L = LI.getLoopFor(BB); 468 469 // Unreachable statements are not considered to belong to a LLVM loop, as 470 // they are not part of an actual loop in the control flow graph. 471 // Nevertheless, we handle certain unreachable statements that are common 472 // when modeling run-time bounds checks as being part of the loop to be 473 // able to model them and to later eliminate the run-time bounds checks. 474 // 475 // Specifically, for basic blocks that terminate in an unreachable and 476 // where the immediate predecessor is part of a loop, we assume these 477 // basic blocks belong to the loop the predecessor belongs to. This 478 // allows us to model the following code. 479 // 480 // for (i = 0; i < N; i++) { 481 // if (i > 1024) 482 // abort(); <- this abort might be translated to an 483 // unreachable 484 // 485 // A[i] = ... 486 // } 487 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode()) 488 L = LI.getLoopFor(BB->getPrevNode()); 489 return L; 490 } 491 492 Region *NonAffineSubRegion = RN->getNodeAs<Region>(); 493 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry()); 494 while (L && NonAffineSubRegion->contains(L)) 495 L = L->getParentLoop(); 496 return L; 497 } 498 499 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, 500 ScalarEvolution &SE) { 501 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) { 502 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L); 503 Loop *OuterLoop = R.outermostLoopInRegion(L); 504 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop)) 505 return true; 506 } 507 return false; 508 } 509 510 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, 511 ScalarEvolution &SE, const DominatorTree &DT, 512 const InvariantLoadsSetTy &KnownInvariantLoads) { 513 Loop *L = LI.getLoopFor(LInst->getParent()); 514 auto *Ptr = LInst->getPointerOperand(); 515 516 // A LoadInst is hoistable if the address it is loading from is also 517 // invariant; in this case: another invariant load (whether that address 518 // is also not written to has to be checked separately) 519 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst 520 // pattern generated by the Chapel frontend, but generally this applies 521 // for any chain of instruction that does not also depend on any 522 // induction variable 523 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) { 524 if (!hasVariantIndex(GepInst, L, R, SE)) { 525 if (auto *DecidingLoad = 526 dyn_cast<LoadInst>(GepInst->getPointerOperand())) { 527 if (KnownInvariantLoads.count(DecidingLoad)) 528 return true; 529 } 530 } 531 } 532 533 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); 534 while (L && R.contains(L)) { 535 if (!SE.isLoopInvariant(PtrSCEV, L)) 536 return false; 537 L = L->getParentLoop(); 538 } 539 540 for (auto *User : Ptr->users()) { 541 auto *UserI = dyn_cast<Instruction>(User); 542 if (!UserI || !R.contains(UserI)) 543 continue; 544 if (!UserI->mayWriteToMemory()) 545 continue; 546 547 auto &BB = *UserI->getParent(); 548 if (DT.dominates(&BB, LInst->getParent())) 549 return false; 550 551 bool DominatesAllPredecessors = true; 552 if (R.isTopLevelRegion()) { 553 for (BasicBlock &I : *R.getEntry()->getParent()) 554 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 555 DominatesAllPredecessors = false; 556 } else { 557 for (auto Pred : predecessors(R.getExit())) 558 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 559 DominatesAllPredecessors = false; 560 } 561 562 if (!DominatesAllPredecessors) 563 continue; 564 565 return false; 566 } 567 568 return true; 569 } 570 571 bool polly::isIgnoredIntrinsic(const Value *V) { 572 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 573 switch (IT->getIntrinsicID()) { 574 // Lifetime markers are supported/ignored. 575 case llvm::Intrinsic::lifetime_start: 576 case llvm::Intrinsic::lifetime_end: 577 // Invariant markers are supported/ignored. 578 case llvm::Intrinsic::invariant_start: 579 case llvm::Intrinsic::invariant_end: 580 // Some misc annotations are supported/ignored. 581 case llvm::Intrinsic::var_annotation: 582 case llvm::Intrinsic::ptr_annotation: 583 case llvm::Intrinsic::annotation: 584 case llvm::Intrinsic::donothing: 585 case llvm::Intrinsic::assume: 586 // Some debug info intrinsics are supported/ignored. 587 case llvm::Intrinsic::dbg_value: 588 case llvm::Intrinsic::dbg_declare: 589 return true; 590 default: 591 break; 592 } 593 } 594 return false; 595 } 596 597 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, 598 Loop *Scope) { 599 if (!V || !SE->isSCEVable(V->getType())) 600 return false; 601 602 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); 603 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope)) 604 if (!isa<SCEVCouldNotCompute>(Scev)) 605 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS)) 606 return true; 607 608 return false; 609 } 610 611 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { 612 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 613 if (!UI) 614 return nullptr; 615 616 if (PHINode *PHI = dyn_cast<PHINode>(UI)) 617 return PHI->getIncomingBlock(U); 618 619 return UI->getParent(); 620 } 621 622 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, 623 const BoxedLoopsSetTy &BoxedLoops) { 624 while (BoxedLoops.count(L)) 625 L = L->getParentLoop(); 626 return L; 627 } 628 629 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, 630 llvm::LoopInfo &LI, 631 const BoxedLoopsSetTy &BoxedLoops) { 632 Loop *L = LI.getLoopFor(BB); 633 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); 634 } 635 636 bool polly::isDebugCall(Instruction *Inst) { 637 auto *CI = dyn_cast<CallInst>(Inst); 638 if (!CI) 639 return false; 640 641 Function *CF = CI->getCalledFunction(); 642 if (!CF) 643 return false; 644 645 return std::find(DebugFunctions.begin(), DebugFunctions.end(), 646 CF->getName()) != DebugFunctions.end(); 647 } 648 649 static bool hasDebugCall(BasicBlock *BB) { 650 for (Instruction &Inst : *BB) { 651 if (isDebugCall(&Inst)) 652 return true; 653 } 654 return false; 655 } 656 657 bool polly::hasDebugCall(ScopStmt *Stmt) { 658 // Quick skip if no debug functions have been defined. 659 if (DebugFunctions.empty()) 660 return false; 661 662 if (!Stmt) 663 return false; 664 665 for (Instruction *Inst : Stmt->getInstructions()) 666 if (isDebugCall(Inst)) 667 return true; 668 669 if (Stmt->isRegionStmt()) { 670 for (BasicBlock *RBB : Stmt->getRegion()->blocks()) 671 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB)) 672 return true; 673 } 674 675 return false; 676 } 677 678 /// Find a property in a LoopID. 679 static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) { 680 if (!LoopMD) 681 return nullptr; 682 for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) { 683 auto *OpNode = dyn_cast<MDNode>(X.get()); 684 if (!OpNode) 685 continue; 686 687 auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0)); 688 if (!OpName) 689 continue; 690 if (OpName->getString() == Name) 691 return OpNode; 692 } 693 return nullptr; 694 } 695 696 static Optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID, 697 StringRef Name) { 698 MDNode *MD = findNamedMetadataNode(LoopID, Name); 699 if (!MD) 700 return None; 701 switch (MD->getNumOperands()) { 702 case 1: 703 return nullptr; 704 case 2: 705 return &MD->getOperand(1); 706 default: 707 llvm_unreachable("loop metadata has 0 or 1 operand"); 708 } 709 } 710 711 Optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD, 712 StringRef Name) { 713 MDNode *MD = findNamedMetadataNode(LoopMD, Name); 714 if (!MD) 715 return None; 716 switch (MD->getNumOperands()) { 717 case 1: 718 return nullptr; 719 case 2: 720 return MD->getOperand(1).get(); 721 default: 722 llvm_unreachable("loop metadata must have 0 or 1 operands"); 723 } 724 } 725 726 static Optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID, 727 StringRef Name) { 728 MDNode *MD = findNamedMetadataNode(LoopID, Name); 729 if (!MD) 730 return None; 731 switch (MD->getNumOperands()) { 732 case 1: 733 return true; 734 case 2: 735 if (ConstantInt *IntMD = 736 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 737 return IntMD->getZExtValue(); 738 return true; 739 } 740 llvm_unreachable("unexpected number of options"); 741 } 742 743 bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) { 744 return getOptionalBoolLoopAttribute(LoopID, Name).getValueOr(false); 745 } 746 747 llvm::Optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID, 748 StringRef Name) { 749 const MDOperand *AttrMD = 750 findNamedMetadataArg(LoopID, Name).getValueOr(nullptr); 751 if (!AttrMD) 752 return None; 753 754 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 755 if (!IntMD) 756 return None; 757 758 return IntMD->getSExtValue(); 759 } 760 761 bool polly::hasDisableAllTransformsHint(Loop *L) { 762 return llvm::hasDisableAllTransformsHint(L); 763 } 764 765 bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) { 766 return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced"); 767 } 768 769 isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) { 770 assert(Attr && "Must be a valid BandAttr"); 771 772 // The name "Loop" signals that this id contains a pointer to a BandAttr. 773 // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in 774 // markers, but it's user pointer is an llvm::Value. 775 isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr); 776 Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) { 777 BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr); 778 delete Attr; 779 })); 780 return Result; 781 } 782 783 isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) { 784 if (!L) 785 return {}; 786 787 // A loop without metadata does not need to be annotated. 788 MDNode *LoopID = L->getLoopID(); 789 if (!LoopID) 790 return {}; 791 792 BandAttr *Attr = new BandAttr(); 793 Attr->OriginalLoop = L; 794 Attr->Metadata = L->getLoopID(); 795 796 return getIslLoopAttr(Ctx, Attr); 797 } 798 799 bool polly::isLoopAttr(const isl::id &Id) { 800 if (Id.is_null()) 801 return false; 802 803 return Id.get_name() == "Loop with Metadata"; 804 } 805 806 BandAttr *polly::getLoopAttr(const isl::id &Id) { 807 if (!isLoopAttr(Id)) 808 return nullptr; 809 810 return reinterpret_cast<BandAttr *>(Id.get_user()); 811 } 812