1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Small functions that help with Scop and LLVM-IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/Support/ScopHelper.h" 15 #include "polly/ScopInfo.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/RegionInfo.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpander.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 26 using namespace llvm; 27 using namespace polly; 28 29 #define DEBUG_TYPE "polly-scop-helper" 30 31 Value *polly::getPointerOperand(Instruction &Inst) { 32 if (LoadInst *load = dyn_cast<LoadInst>(&Inst)) 33 return load->getPointerOperand(); 34 else if (StoreInst *store = dyn_cast<StoreInst>(&Inst)) 35 return store->getPointerOperand(); 36 else if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&Inst)) 37 return gep->getPointerOperand(); 38 39 return 0; 40 } 41 42 bool polly::hasInvokeEdge(const PHINode *PN) { 43 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 44 if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i))) 45 if (II->getParent() == PN->getIncomingBlock(i)) 46 return true; 47 48 return false; 49 } 50 51 // Ensures that there is just one predecessor to the entry node from outside the 52 // region. 53 // The identity of the region entry node is preserved. 54 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 55 RegionInfo *RI) { 56 BasicBlock *EnteringBB = R->getEnteringBlock(); 57 BasicBlock *Entry = R->getEntry(); 58 59 // Before (one of): 60 // 61 // \ / // 62 // EnteringBB // 63 // | \------> // 64 // \ / | // 65 // Entry <--\ Entry <--\ // 66 // / \ / / \ / // 67 // .... .... // 68 69 // Create single entry edge if the region has multiple entry edges. 70 if (!EnteringBB) { 71 SmallVector<BasicBlock *, 4> Preds; 72 for (BasicBlock *P : predecessors(Entry)) 73 if (!R->contains(P)) 74 Preds.push_back(P); 75 76 BasicBlock *NewEntering = 77 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 78 79 if (RI) { 80 // The exit block of predecessing regions must be changed to NewEntering 81 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 82 Region *RegionOfPred = RI->getRegionFor(ExitPred); 83 if (RegionOfPred->getExit() != Entry) 84 continue; 85 86 while (!RegionOfPred->isTopLevelRegion() && 87 RegionOfPred->getExit() == Entry) { 88 RegionOfPred->replaceExit(NewEntering); 89 RegionOfPred = RegionOfPred->getParent(); 90 } 91 } 92 93 // Make all ancestors use EnteringBB as entry; there might be edges to it 94 Region *AncestorR = R->getParent(); 95 RI->setRegionFor(NewEntering, AncestorR); 96 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 97 AncestorR->replaceEntry(NewEntering); 98 AncestorR = AncestorR->getParent(); 99 } 100 } 101 102 EnteringBB = NewEntering; 103 } 104 assert(R->getEnteringBlock() == EnteringBB); 105 106 // After: 107 // 108 // \ / // 109 // EnteringBB // 110 // | // 111 // | // 112 // Entry <--\ // 113 // / \ / // 114 // .... // 115 } 116 117 // Ensure that the region has a single block that branches to the exit node. 118 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 119 RegionInfo *RI) { 120 BasicBlock *ExitBB = R->getExit(); 121 BasicBlock *ExitingBB = R->getExitingBlock(); 122 123 // Before: 124 // 125 // (Region) ______/ // 126 // \ | / // 127 // ExitBB // 128 // / \ // 129 130 if (!ExitingBB) { 131 SmallVector<BasicBlock *, 4> Preds; 132 for (BasicBlock *P : predecessors(ExitBB)) 133 if (R->contains(P)) 134 Preds.push_back(P); 135 136 // Preds[0] Preds[1] otherBB // 137 // \ | ________/ // 138 // \ | / // 139 // BB // 140 ExitingBB = 141 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 142 // Preds[0] Preds[1] otherBB // 143 // \ / / // 144 // BB.region_exiting / // 145 // \ / // 146 // BB // 147 148 if (RI) 149 RI->setRegionFor(ExitingBB, R); 150 151 // Change the exit of nested regions, but not the region itself, 152 R->replaceExitRecursive(ExitingBB); 153 R->replaceExit(ExitBB); 154 } 155 assert(ExitingBB == R->getExitingBlock()); 156 157 // After: 158 // 159 // \ / // 160 // ExitingBB _____/ // 161 // \ / // 162 // ExitBB // 163 // / \ // 164 } 165 166 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 167 RegionInfo *RI) { 168 assert(R && !R->isTopLevelRegion()); 169 assert(!RI || RI == R->getRegionInfo()); 170 assert((!RI || DT) && 171 "RegionInfo requires DominatorTree to be updated as well"); 172 173 simplifyRegionEntry(R, DT, LI, RI); 174 simplifyRegionExit(R, DT, LI, RI); 175 assert(R->isSimple()); 176 } 177 178 // Split the block into two successive blocks. 179 // 180 // Like llvm::SplitBlock, but also preserves RegionInfo 181 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 182 DominatorTree *DT, llvm::LoopInfo *LI, 183 RegionInfo *RI) { 184 assert(Old && SplitPt); 185 186 // Before: 187 // 188 // \ / // 189 // Old // 190 // / \ // 191 192 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 193 194 if (RI) { 195 Region *R = RI->getRegionFor(Old); 196 RI->setRegionFor(NewBlock, R); 197 } 198 199 // After: 200 // 201 // \ / // 202 // Old // 203 // | // 204 // NewBlock // 205 // / \ // 206 207 return NewBlock; 208 } 209 210 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 211 // Find first non-alloca instruction. Every basic block has a non-alloc 212 // instruction, as every well formed basic block has a terminator. 213 BasicBlock::iterator I = EntryBlock->begin(); 214 while (isa<AllocaInst>(I)) 215 ++I; 216 217 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 218 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 219 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 220 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 221 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 222 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 223 224 // splitBlock updates DT, LI and RI. 225 splitBlock(EntryBlock, I, DT, LI, RI); 226 } 227 228 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 229 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 230 /// however to generate new code if the instruction is in the analyzed region 231 /// and we generate code outside/in front of that region. Hence, we generate the 232 /// code for the SDiv/SRem operands in front of the analyzed region and then 233 /// create a new SDiv/SRem operation there too. 234 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 235 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 236 237 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 238 const DataLayout &DL, const char *Name, ValueMapT *VMap) 239 : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R), 240 VMap(VMap) {} 241 242 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 243 // If we generate code in the region we will immediately fall back to the 244 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 245 // needed replace them by copies computed in the entering block. 246 if (!R.contains(I)) 247 E = visit(E); 248 return Expander.expandCodeFor(E, Ty, I); 249 } 250 251 private: 252 SCEVExpander Expander; 253 ScalarEvolution &SE; 254 const char *Name; 255 const Region &R; 256 ValueMapT *VMap; 257 258 const SCEV *visitUnknown(const SCEVUnknown *E) { 259 260 // If a value mapping was given try if the underlying value is remapped. 261 if (VMap) 262 if (Value *NewVal = VMap->lookup(E->getValue())) 263 if (NewVal != E->getValue()) 264 return visit(SE.getSCEV(NewVal)); 265 266 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 267 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 268 Inst->getOpcode() != Instruction::SDiv)) 269 return E; 270 271 if (!R.contains(Inst)) 272 return E; 273 274 Instruction *StartIP = R.getEnteringBlock()->getTerminator(); 275 276 const SCEV *LHSScev = visit(SE.getSCEV(Inst->getOperand(0))); 277 const SCEV *RHSScev = visit(SE.getSCEV(Inst->getOperand(1))); 278 279 Value *LHS = Expander.expandCodeFor(LHSScev, E->getType(), StartIP); 280 Value *RHS = Expander.expandCodeFor(RHSScev, E->getType(), StartIP); 281 282 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 283 LHS, RHS, Inst->getName() + Name, StartIP); 284 return SE.getSCEV(Inst); 285 } 286 287 /// The following functions will just traverse the SCEV and rebuild it with 288 /// the new operands returned by the traversal. 289 /// 290 ///{ 291 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 292 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 293 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 294 } 295 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 296 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 297 } 298 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 299 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 300 } 301 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 302 return SE.getUDivExpr(visit(E->getLHS()), visit(E->getRHS())); 303 } 304 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 305 SmallVector<const SCEV *, 4> NewOps; 306 for (const SCEV *Op : E->operands()) 307 NewOps.push_back(visit(Op)); 308 return SE.getAddExpr(NewOps); 309 } 310 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 311 SmallVector<const SCEV *, 4> NewOps; 312 for (const SCEV *Op : E->operands()) 313 NewOps.push_back(visit(Op)); 314 return SE.getMulExpr(NewOps); 315 } 316 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 317 SmallVector<const SCEV *, 4> NewOps; 318 for (const SCEV *Op : E->operands()) 319 NewOps.push_back(visit(Op)); 320 return SE.getUMaxExpr(NewOps); 321 } 322 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 323 SmallVector<const SCEV *, 4> NewOps; 324 for (const SCEV *Op : E->operands()) 325 NewOps.push_back(visit(Op)); 326 return SE.getSMaxExpr(NewOps); 327 } 328 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 329 SmallVector<const SCEV *, 4> NewOps; 330 for (const SCEV *Op : E->operands()) 331 NewOps.push_back(visit(Op)); 332 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 333 } 334 ///} 335 }; 336 337 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 338 const char *Name, const SCEV *E, Type *Ty, 339 Instruction *IP, ValueMapT *VMap) { 340 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap); 341 return Expander.expandCodeFor(E, Ty, IP); 342 } 343 344 bool polly::isErrorBlock(BasicBlock &BB) { 345 346 for (Instruction &Inst : BB) 347 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 348 if (Function *F = CI->getCalledFunction()) 349 if (F->getName().equals("__ubsan_handle_out_of_bounds")) 350 return true; 351 352 if (isa<UnreachableInst>(BB.getTerminator())) 353 return true; 354 355 return false; 356 } 357 358 Value *polly::getConditionFromTerminator(TerminatorInst *TI) { 359 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 360 if (BR->isUnconditional()) 361 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 362 363 return BR->getCondition(); 364 } 365 366 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 367 return SI->getCondition(); 368 369 return nullptr; 370 } 371