1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Small functions that help with Scop and LLVM-IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/Support/ScopHelper.h" 15 #include "polly/Options.h" 16 #include "polly/ScopInfo.h" 17 #include "polly/Support/SCEVValidator.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/RegionInfo.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpander.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 28 using namespace llvm; 29 using namespace polly; 30 31 #define DEBUG_TYPE "polly-scop-helper" 32 33 static cl::opt<bool> PollyAllowErrorBlocks( 34 "polly-allow-error-blocks", 35 cl::desc("Allow to speculate on the execution of 'error blocks'."), 36 cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 37 38 bool polly::hasInvokeEdge(const PHINode *PN) { 39 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) 40 if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i))) 41 if (II->getParent() == PN->getIncomingBlock(i)) 42 return true; 43 44 return false; 45 } 46 47 // Ensures that there is just one predecessor to the entry node from outside the 48 // region. 49 // The identity of the region entry node is preserved. 50 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 51 RegionInfo *RI) { 52 BasicBlock *EnteringBB = R->getEnteringBlock(); 53 BasicBlock *Entry = R->getEntry(); 54 55 // Before (one of): 56 // 57 // \ / // 58 // EnteringBB // 59 // | \------> // 60 // \ / | // 61 // Entry <--\ Entry <--\ // 62 // / \ / / \ / // 63 // .... .... // 64 65 // Create single entry edge if the region has multiple entry edges. 66 if (!EnteringBB) { 67 SmallVector<BasicBlock *, 4> Preds; 68 for (BasicBlock *P : predecessors(Entry)) 69 if (!R->contains(P)) 70 Preds.push_back(P); 71 72 BasicBlock *NewEntering = 73 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 74 75 if (RI) { 76 // The exit block of predecessing regions must be changed to NewEntering 77 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 78 Region *RegionOfPred = RI->getRegionFor(ExitPred); 79 if (RegionOfPred->getExit() != Entry) 80 continue; 81 82 while (!RegionOfPred->isTopLevelRegion() && 83 RegionOfPred->getExit() == Entry) { 84 RegionOfPred->replaceExit(NewEntering); 85 RegionOfPred = RegionOfPred->getParent(); 86 } 87 } 88 89 // Make all ancestors use EnteringBB as entry; there might be edges to it 90 Region *AncestorR = R->getParent(); 91 RI->setRegionFor(NewEntering, AncestorR); 92 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 93 AncestorR->replaceEntry(NewEntering); 94 AncestorR = AncestorR->getParent(); 95 } 96 } 97 98 EnteringBB = NewEntering; 99 } 100 assert(R->getEnteringBlock() == EnteringBB); 101 102 // After: 103 // 104 // \ / // 105 // EnteringBB // 106 // | // 107 // | // 108 // Entry <--\ // 109 // / \ / // 110 // .... // 111 } 112 113 // Ensure that the region has a single block that branches to the exit node. 114 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 115 RegionInfo *RI) { 116 BasicBlock *ExitBB = R->getExit(); 117 BasicBlock *ExitingBB = R->getExitingBlock(); 118 119 // Before: 120 // 121 // (Region) ______/ // 122 // \ | / // 123 // ExitBB // 124 // / \ // 125 126 if (!ExitingBB) { 127 SmallVector<BasicBlock *, 4> Preds; 128 for (BasicBlock *P : predecessors(ExitBB)) 129 if (R->contains(P)) 130 Preds.push_back(P); 131 132 // Preds[0] Preds[1] otherBB // 133 // \ | ________/ // 134 // \ | / // 135 // BB // 136 ExitingBB = 137 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 138 // Preds[0] Preds[1] otherBB // 139 // \ / / // 140 // BB.region_exiting / // 141 // \ / // 142 // BB // 143 144 if (RI) 145 RI->setRegionFor(ExitingBB, R); 146 147 // Change the exit of nested regions, but not the region itself, 148 R->replaceExitRecursive(ExitingBB); 149 R->replaceExit(ExitBB); 150 } 151 assert(ExitingBB == R->getExitingBlock()); 152 153 // After: 154 // 155 // \ / // 156 // ExitingBB _____/ // 157 // \ / // 158 // ExitBB // 159 // / \ // 160 } 161 162 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 163 RegionInfo *RI) { 164 assert(R && !R->isTopLevelRegion()); 165 assert(!RI || RI == R->getRegionInfo()); 166 assert((!RI || DT) && 167 "RegionInfo requires DominatorTree to be updated as well"); 168 169 simplifyRegionEntry(R, DT, LI, RI); 170 simplifyRegionExit(R, DT, LI, RI); 171 assert(R->isSimple()); 172 } 173 174 // Split the block into two successive blocks. 175 // 176 // Like llvm::SplitBlock, but also preserves RegionInfo 177 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 178 DominatorTree *DT, llvm::LoopInfo *LI, 179 RegionInfo *RI) { 180 assert(Old && SplitPt); 181 182 // Before: 183 // 184 // \ / // 185 // Old // 186 // / \ // 187 188 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 189 190 if (RI) { 191 Region *R = RI->getRegionFor(Old); 192 RI->setRegionFor(NewBlock, R); 193 } 194 195 // After: 196 // 197 // \ / // 198 // Old // 199 // | // 200 // NewBlock // 201 // / \ // 202 203 return NewBlock; 204 } 205 206 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 207 // Find first non-alloca instruction. Every basic block has a non-alloc 208 // instruction, as every well formed basic block has a terminator. 209 BasicBlock::iterator I = EntryBlock->begin(); 210 while (isa<AllocaInst>(I)) 211 ++I; 212 213 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 214 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 215 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 216 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 217 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 218 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 219 220 // splitBlock updates DT, LI and RI. 221 splitBlock(EntryBlock, &*I, DT, LI, RI); 222 } 223 224 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 225 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 226 /// however to generate new code if the instruction is in the analyzed region 227 /// and we generate code outside/in front of that region. Hence, we generate the 228 /// code for the SDiv/SRem operands in front of the analyzed region and then 229 /// create a new SDiv/SRem operation there too. 230 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 231 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 232 233 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 234 const DataLayout &DL, const char *Name, ValueMapT *VMap, 235 BasicBlock *RTCBB) 236 : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R), 237 VMap(VMap), RTCBB(RTCBB) {} 238 239 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 240 // If we generate code in the region we will immediately fall back to the 241 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 242 // needed replace them by copies computed in the entering block. 243 if (!R.contains(I)) 244 E = visit(E); 245 return Expander.expandCodeFor(E, Ty, I); 246 } 247 248 private: 249 SCEVExpander Expander; 250 ScalarEvolution &SE; 251 const char *Name; 252 const Region &R; 253 ValueMapT *VMap; 254 BasicBlock *RTCBB; 255 256 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, 257 Instruction *IP) { 258 if (!Inst || !R.contains(Inst)) 259 return E; 260 261 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && 262 !isa<PHINode>(Inst)); 263 264 auto *InstClone = Inst->clone(); 265 for (auto &Op : Inst->operands()) { 266 assert(SE.isSCEVable(Op->getType())); 267 auto *OpSCEV = SE.getSCEV(Op); 268 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); 269 InstClone->replaceUsesOfWith(Op, OpClone); 270 } 271 272 InstClone->setName(Name + Inst->getName()); 273 InstClone->insertBefore(IP); 274 return SE.getSCEV(InstClone); 275 } 276 277 const SCEV *visitUnknown(const SCEVUnknown *E) { 278 279 // If a value mapping was given try if the underlying value is remapped. 280 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; 281 if (NewVal) { 282 auto *NewE = SE.getSCEV(NewVal); 283 284 // While the mapped value might be different the SCEV representation might 285 // not be. To this end we will check before we go into recursion here. 286 if (E != NewE) 287 return visit(NewE); 288 } 289 290 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 291 Instruction *IP; 292 if (Inst && !R.contains(Inst)) 293 IP = Inst; 294 else if (Inst && RTCBB->getParent() == Inst->getFunction()) 295 IP = RTCBB->getTerminator(); 296 else 297 IP = RTCBB->getParent()->getEntryBlock().getTerminator(); 298 299 if (!Inst || 300 (Inst->getOpcode() != Instruction::SRem && 301 Inst->getOpcode() != Instruction::SDiv)) 302 return visitGenericInst(E, Inst, IP); 303 304 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); 305 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); 306 307 if (!SE.isKnownNonZero(RHSScev)) 308 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 309 310 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); 311 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); 312 313 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 314 LHS, RHS, Inst->getName() + Name, IP); 315 return SE.getSCEV(Inst); 316 } 317 318 /// The following functions will just traverse the SCEV and rebuild it with 319 /// the new operands returned by the traversal. 320 /// 321 ///{ 322 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 323 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 324 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 325 } 326 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 327 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 328 } 329 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 330 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 331 } 332 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 333 auto *RHSScev = visit(E->getRHS()); 334 if (!SE.isKnownNonZero(RHSScev)) 335 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 336 return SE.getUDivExpr(visit(E->getLHS()), RHSScev); 337 } 338 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 339 SmallVector<const SCEV *, 4> NewOps; 340 for (const SCEV *Op : E->operands()) 341 NewOps.push_back(visit(Op)); 342 return SE.getAddExpr(NewOps); 343 } 344 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 345 SmallVector<const SCEV *, 4> NewOps; 346 for (const SCEV *Op : E->operands()) 347 NewOps.push_back(visit(Op)); 348 return SE.getMulExpr(NewOps); 349 } 350 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 351 SmallVector<const SCEV *, 4> NewOps; 352 for (const SCEV *Op : E->operands()) 353 NewOps.push_back(visit(Op)); 354 return SE.getUMaxExpr(NewOps); 355 } 356 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 357 SmallVector<const SCEV *, 4> NewOps; 358 for (const SCEV *Op : E->operands()) 359 NewOps.push_back(visit(Op)); 360 return SE.getSMaxExpr(NewOps); 361 } 362 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 363 SmallVector<const SCEV *, 4> NewOps; 364 for (const SCEV *Op : E->operands()) 365 NewOps.push_back(visit(Op)); 366 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 367 } 368 ///} 369 }; 370 371 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 372 const char *Name, const SCEV *E, Type *Ty, 373 Instruction *IP, ValueMapT *VMap, 374 BasicBlock *RTCBB) { 375 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); 376 return Expander.expandCodeFor(E, Ty, IP); 377 } 378 379 bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI, 380 const DominatorTree &DT) { 381 if (!PollyAllowErrorBlocks) 382 return false; 383 384 if (isa<UnreachableInst>(BB.getTerminator())) 385 return true; 386 387 if (LI.isLoopHeader(&BB)) 388 return false; 389 390 // Basic blocks that are always executed are not considered error blocks, 391 // as their execution can not be a rare event. 392 bool DominatesAllPredecessors = true; 393 for (auto Pred : predecessors(R.getExit())) 394 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 395 DominatesAllPredecessors = false; 396 397 if (DominatesAllPredecessors) 398 return false; 399 400 // FIXME: This is a simple heuristic to determine if the load is executed 401 // in a conditional. However, we actually would need the control 402 // condition, i.e., the post dominance frontier. Alternatively we 403 // could walk up the dominance tree until we find a block that is 404 // not post dominated by the load and check if it is a conditional 405 // or a loop header. 406 auto *DTNode = DT.getNode(&BB); 407 auto *IDomBB = DTNode->getIDom()->getBlock(); 408 if (LI.isLoopHeader(IDomBB)) 409 return false; 410 411 for (Instruction &Inst : BB) 412 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) { 413 if (isIgnoredIntrinsic(CI)) 414 return false; 415 416 if (!CI->doesNotAccessMemory()) 417 return true; 418 if (CI->doesNotReturn()) 419 return true; 420 } 421 422 return false; 423 } 424 425 Value *polly::getConditionFromTerminator(TerminatorInst *TI) { 426 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 427 if (BR->isUnconditional()) 428 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 429 430 return BR->getCondition(); 431 } 432 433 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 434 return SI->getCondition(); 435 436 return nullptr; 437 } 438 439 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, 440 ScalarEvolution &SE, const DominatorTree &DT) { 441 Loop *L = LI.getLoopFor(LInst->getParent()); 442 auto *Ptr = LInst->getPointerOperand(); 443 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); 444 while (L && R.contains(L)) { 445 if (!SE.isLoopInvariant(PtrSCEV, L)) 446 return false; 447 L = L->getParentLoop(); 448 } 449 450 for (auto *User : Ptr->users()) { 451 auto *UserI = dyn_cast<Instruction>(User); 452 if (!UserI || !R.contains(UserI)) 453 continue; 454 if (!UserI->mayWriteToMemory()) 455 continue; 456 457 auto &BB = *UserI->getParent(); 458 if (DT.dominates(&BB, LInst->getParent())) 459 return false; 460 461 bool DominatesAllPredecessors = true; 462 for (auto Pred : predecessors(R.getExit())) 463 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 464 DominatesAllPredecessors = false; 465 466 if (!DominatesAllPredecessors) 467 continue; 468 469 return false; 470 } 471 472 return true; 473 } 474 475 bool polly::isIgnoredIntrinsic(const Value *V) { 476 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 477 switch (IT->getIntrinsicID()) { 478 // Lifetime markers are supported/ignored. 479 case llvm::Intrinsic::lifetime_start: 480 case llvm::Intrinsic::lifetime_end: 481 // Invariant markers are supported/ignored. 482 case llvm::Intrinsic::invariant_start: 483 case llvm::Intrinsic::invariant_end: 484 // Some misc annotations are supported/ignored. 485 case llvm::Intrinsic::var_annotation: 486 case llvm::Intrinsic::ptr_annotation: 487 case llvm::Intrinsic::annotation: 488 case llvm::Intrinsic::donothing: 489 case llvm::Intrinsic::assume: 490 case llvm::Intrinsic::expect: 491 // Some debug info intrisics are supported/ignored. 492 case llvm::Intrinsic::dbg_value: 493 case llvm::Intrinsic::dbg_declare: 494 return true; 495 default: 496 break; 497 } 498 } 499 return false; 500 } 501 502 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, 503 Loop *Scope) { 504 if (!V || !SE->isSCEVable(V->getType())) 505 return false; 506 507 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope)) 508 if (!isa<SCEVCouldNotCompute>(Scev)) 509 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false)) 510 return true; 511 512 return false; 513 } 514 515 llvm::BasicBlock *polly::getUseBlock(llvm::Use &U) { 516 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 517 if (!UI) 518 return nullptr; 519 520 if (PHINode *PHI = dyn_cast<PHINode>(UI)) 521 return PHI->getIncomingBlock(U); 522 523 return UI->getParent(); 524 } 525 526 std::tuple<std::vector<const SCEV *>, std::vector<int>> 527 polly::getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) { 528 std::vector<const SCEV *> Subscripts; 529 std::vector<int> Sizes; 530 531 Type *Ty = GEP->getPointerOperandType(); 532 533 bool DroppedFirstDim = false; 534 535 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 536 537 const SCEV *Expr = SE.getSCEV(GEP->getOperand(i)); 538 539 if (i == 1) { 540 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 541 Ty = PtrTy->getElementType(); 542 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 543 Ty = ArrayTy->getElementType(); 544 } else { 545 Subscripts.clear(); 546 Sizes.clear(); 547 break; 548 } 549 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 550 if (Const->getValue()->isZero()) { 551 DroppedFirstDim = true; 552 continue; 553 } 554 Subscripts.push_back(Expr); 555 continue; 556 } 557 558 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 559 if (!ArrayTy) { 560 Subscripts.clear(); 561 Sizes.clear(); 562 break; 563 } 564 565 Subscripts.push_back(Expr); 566 if (!(DroppedFirstDim && i == 2)) 567 Sizes.push_back(ArrayTy->getNumElements()); 568 569 Ty = ArrayTy->getElementType(); 570 } 571 572 return std::make_tuple(Subscripts, Sizes); 573 } 574 575 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, 576 const BoxedLoopsSetTy &BoxedLoops) { 577 while (BoxedLoops.count(L)) 578 L = L->getParentLoop(); 579 return L; 580 } 581 582 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, 583 llvm::LoopInfo &LI, 584 const BoxedLoopsSetTy &BoxedLoops) { 585 Loop *L = LI.getLoopFor(BB); 586 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); 587 } 588