1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Small functions that help with Scop and LLVM-IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "polly/Support/ScopHelper.h" 14 #include "polly/Options.h" 15 #include "polly/ScopInfo.h" 16 #include "polly/Support/SCEVValidator.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/RegionInfo.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpander.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 24 using namespace llvm; 25 using namespace polly; 26 27 #define DEBUG_TYPE "polly-scop-helper" 28 29 static cl::opt<bool> PollyAllowErrorBlocks( 30 "polly-allow-error-blocks", 31 cl::desc("Allow to speculate on the execution of 'error blocks'."), 32 cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 33 34 static cl::list<std::string> DebugFunctions( 35 "polly-debug-func", 36 cl::desc("Allow calls to the specified functions in SCoPs even if their " 37 "side-effects are unknown. This can be used to do debug output in " 38 "Polly-transformed code."), 39 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 40 41 // Ensures that there is just one predecessor to the entry node from outside the 42 // region. 43 // The identity of the region entry node is preserved. 44 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 45 RegionInfo *RI) { 46 BasicBlock *EnteringBB = R->getEnteringBlock(); 47 BasicBlock *Entry = R->getEntry(); 48 49 // Before (one of): 50 // 51 // \ / // 52 // EnteringBB // 53 // | \------> // 54 // \ / | // 55 // Entry <--\ Entry <--\ // 56 // / \ / / \ / // 57 // .... .... // 58 59 // Create single entry edge if the region has multiple entry edges. 60 if (!EnteringBB) { 61 SmallVector<BasicBlock *, 4> Preds; 62 for (BasicBlock *P : predecessors(Entry)) 63 if (!R->contains(P)) 64 Preds.push_back(P); 65 66 BasicBlock *NewEntering = 67 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 68 69 if (RI) { 70 // The exit block of predecessing regions must be changed to NewEntering 71 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 72 Region *RegionOfPred = RI->getRegionFor(ExitPred); 73 if (RegionOfPred->getExit() != Entry) 74 continue; 75 76 while (!RegionOfPred->isTopLevelRegion() && 77 RegionOfPred->getExit() == Entry) { 78 RegionOfPred->replaceExit(NewEntering); 79 RegionOfPred = RegionOfPred->getParent(); 80 } 81 } 82 83 // Make all ancestors use EnteringBB as entry; there might be edges to it 84 Region *AncestorR = R->getParent(); 85 RI->setRegionFor(NewEntering, AncestorR); 86 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 87 AncestorR->replaceEntry(NewEntering); 88 AncestorR = AncestorR->getParent(); 89 } 90 } 91 92 EnteringBB = NewEntering; 93 } 94 assert(R->getEnteringBlock() == EnteringBB); 95 96 // After: 97 // 98 // \ / // 99 // EnteringBB // 100 // | // 101 // | // 102 // Entry <--\ // 103 // / \ / // 104 // .... // 105 } 106 107 // Ensure that the region has a single block that branches to the exit node. 108 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 109 RegionInfo *RI) { 110 BasicBlock *ExitBB = R->getExit(); 111 BasicBlock *ExitingBB = R->getExitingBlock(); 112 113 // Before: 114 // 115 // (Region) ______/ // 116 // \ | / // 117 // ExitBB // 118 // / \ // 119 120 if (!ExitingBB) { 121 SmallVector<BasicBlock *, 4> Preds; 122 for (BasicBlock *P : predecessors(ExitBB)) 123 if (R->contains(P)) 124 Preds.push_back(P); 125 126 // Preds[0] Preds[1] otherBB // 127 // \ | ________/ // 128 // \ | / // 129 // BB // 130 ExitingBB = 131 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 132 // Preds[0] Preds[1] otherBB // 133 // \ / / // 134 // BB.region_exiting / // 135 // \ / // 136 // BB // 137 138 if (RI) 139 RI->setRegionFor(ExitingBB, R); 140 141 // Change the exit of nested regions, but not the region itself, 142 R->replaceExitRecursive(ExitingBB); 143 R->replaceExit(ExitBB); 144 } 145 assert(ExitingBB == R->getExitingBlock()); 146 147 // After: 148 // 149 // \ / // 150 // ExitingBB _____/ // 151 // \ / // 152 // ExitBB // 153 // / \ // 154 } 155 156 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 157 RegionInfo *RI) { 158 assert(R && !R->isTopLevelRegion()); 159 assert(!RI || RI == R->getRegionInfo()); 160 assert((!RI || DT) && 161 "RegionInfo requires DominatorTree to be updated as well"); 162 163 simplifyRegionEntry(R, DT, LI, RI); 164 simplifyRegionExit(R, DT, LI, RI); 165 assert(R->isSimple()); 166 } 167 168 // Split the block into two successive blocks. 169 // 170 // Like llvm::SplitBlock, but also preserves RegionInfo 171 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 172 DominatorTree *DT, llvm::LoopInfo *LI, 173 RegionInfo *RI) { 174 assert(Old && SplitPt); 175 176 // Before: 177 // 178 // \ / // 179 // Old // 180 // / \ // 181 182 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 183 184 if (RI) { 185 Region *R = RI->getRegionFor(Old); 186 RI->setRegionFor(NewBlock, R); 187 } 188 189 // After: 190 // 191 // \ / // 192 // Old // 193 // | // 194 // NewBlock // 195 // / \ // 196 197 return NewBlock; 198 } 199 200 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, 201 LoopInfo *LI, RegionInfo *RI) { 202 // Find first non-alloca instruction. Every basic block has a non-alloca 203 // instruction, as every well formed basic block has a terminator. 204 BasicBlock::iterator I = EntryBlock->begin(); 205 while (isa<AllocaInst>(I)) 206 ++I; 207 208 // splitBlock updates DT, LI and RI. 209 splitBlock(EntryBlock, &*I, DT, LI, RI); 210 } 211 212 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 213 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 214 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 215 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 216 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 217 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 218 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 219 220 // splitBlock updates DT, LI and RI. 221 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); 222 } 223 224 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 225 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 226 /// however to generate new code if the instruction is in the analyzed region 227 /// and we generate code outside/in front of that region. Hence, we generate the 228 /// code for the SDiv/SRem operands in front of the analyzed region and then 229 /// create a new SDiv/SRem operation there too. 230 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 231 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 232 233 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 234 const DataLayout &DL, const char *Name, ValueMapT *VMap, 235 BasicBlock *RTCBB) 236 : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R), 237 VMap(VMap), RTCBB(RTCBB) {} 238 239 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 240 // If we generate code in the region we will immediately fall back to the 241 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 242 // needed replace them by copies computed in the entering block. 243 if (!R.contains(I)) 244 E = visit(E); 245 return Expander.expandCodeFor(E, Ty, I); 246 } 247 248 const SCEV *visit(const SCEV *E) { 249 // Cache the expansion results for intermediate SCEV expressions. A SCEV 250 // expression can refer to an operand multiple times (e.g. "x*x), so 251 // a naive visitor takes exponential time. 252 if (SCEVCache.count(E)) 253 return SCEVCache[E]; 254 const SCEV *Result = SCEVVisitor::visit(E); 255 SCEVCache[E] = Result; 256 return Result; 257 } 258 259 private: 260 SCEVExpander Expander; 261 ScalarEvolution &SE; 262 const char *Name; 263 const Region &R; 264 ValueMapT *VMap; 265 BasicBlock *RTCBB; 266 DenseMap<const SCEV *, const SCEV *> SCEVCache; 267 268 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, 269 Instruction *IP) { 270 if (!Inst || !R.contains(Inst)) 271 return E; 272 273 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && 274 !isa<PHINode>(Inst)); 275 276 auto *InstClone = Inst->clone(); 277 for (auto &Op : Inst->operands()) { 278 assert(SE.isSCEVable(Op->getType())); 279 auto *OpSCEV = SE.getSCEV(Op); 280 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); 281 InstClone->replaceUsesOfWith(Op, OpClone); 282 } 283 284 InstClone->setName(Name + Inst->getName()); 285 InstClone->insertBefore(IP); 286 return SE.getSCEV(InstClone); 287 } 288 289 const SCEV *visitUnknown(const SCEVUnknown *E) { 290 291 // If a value mapping was given try if the underlying value is remapped. 292 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; 293 if (NewVal) { 294 auto *NewE = SE.getSCEV(NewVal); 295 296 // While the mapped value might be different the SCEV representation might 297 // not be. To this end we will check before we go into recursion here. 298 if (E != NewE) 299 return visit(NewE); 300 } 301 302 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 303 Instruction *IP; 304 if (Inst && !R.contains(Inst)) 305 IP = Inst; 306 else if (Inst && RTCBB->getParent() == Inst->getFunction()) 307 IP = RTCBB->getTerminator(); 308 else 309 IP = RTCBB->getParent()->getEntryBlock().getTerminator(); 310 311 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 312 Inst->getOpcode() != Instruction::SDiv)) 313 return visitGenericInst(E, Inst, IP); 314 315 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); 316 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); 317 318 if (!SE.isKnownNonZero(RHSScev)) 319 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 320 321 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); 322 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); 323 324 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 325 LHS, RHS, Inst->getName() + Name, IP); 326 return SE.getSCEV(Inst); 327 } 328 329 /// The following functions will just traverse the SCEV and rebuild it with 330 /// the new operands returned by the traversal. 331 /// 332 ///{ 333 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 334 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 335 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 336 } 337 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 338 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 339 } 340 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 341 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 342 } 343 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 344 auto *RHSScev = visit(E->getRHS()); 345 if (!SE.isKnownNonZero(RHSScev)) 346 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 347 return SE.getUDivExpr(visit(E->getLHS()), RHSScev); 348 } 349 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 350 SmallVector<const SCEV *, 4> NewOps; 351 for (const SCEV *Op : E->operands()) 352 NewOps.push_back(visit(Op)); 353 return SE.getAddExpr(NewOps); 354 } 355 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 356 SmallVector<const SCEV *, 4> NewOps; 357 for (const SCEV *Op : E->operands()) 358 NewOps.push_back(visit(Op)); 359 return SE.getMulExpr(NewOps); 360 } 361 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 362 SmallVector<const SCEV *, 4> NewOps; 363 for (const SCEV *Op : E->operands()) 364 NewOps.push_back(visit(Op)); 365 return SE.getUMaxExpr(NewOps); 366 } 367 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 368 SmallVector<const SCEV *, 4> NewOps; 369 for (const SCEV *Op : E->operands()) 370 NewOps.push_back(visit(Op)); 371 return SE.getSMaxExpr(NewOps); 372 } 373 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 374 SmallVector<const SCEV *, 4> NewOps; 375 for (const SCEV *Op : E->operands()) 376 NewOps.push_back(visit(Op)); 377 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 378 } 379 ///} 380 }; 381 382 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 383 const char *Name, const SCEV *E, Type *Ty, 384 Instruction *IP, ValueMapT *VMap, 385 BasicBlock *RTCBB) { 386 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); 387 return Expander.expandCodeFor(E, Ty, IP); 388 } 389 390 bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI, 391 const DominatorTree &DT) { 392 if (!PollyAllowErrorBlocks) 393 return false; 394 395 if (isa<UnreachableInst>(BB.getTerminator())) 396 return true; 397 398 if (LI.isLoopHeader(&BB)) 399 return false; 400 401 // Basic blocks that are always executed are not considered error blocks, 402 // as their execution can not be a rare event. 403 bool DominatesAllPredecessors = true; 404 if (R.isTopLevelRegion()) { 405 for (BasicBlock &I : *R.getEntry()->getParent()) 406 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 407 DominatesAllPredecessors = false; 408 } else { 409 for (auto Pred : predecessors(R.getExit())) 410 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 411 DominatesAllPredecessors = false; 412 } 413 414 if (DominatesAllPredecessors) 415 return false; 416 417 for (Instruction &Inst : BB) 418 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) { 419 if (isDebugCall(CI)) 420 continue; 421 422 if (isIgnoredIntrinsic(CI)) 423 continue; 424 425 // memset, memcpy and memmove are modeled intrinsics. 426 if (isa<MemSetInst>(CI) || isa<MemTransferInst>(CI)) 427 continue; 428 429 if (!CI->doesNotAccessMemory()) 430 return true; 431 if (CI->doesNotReturn()) 432 return true; 433 } 434 435 return false; 436 } 437 438 Value *polly::getConditionFromTerminator(Instruction *TI) { 439 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 440 if (BR->isUnconditional()) 441 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 442 443 return BR->getCondition(); 444 } 445 446 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 447 return SI->getCondition(); 448 449 return nullptr; 450 } 451 452 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, 453 ScalarEvolution &SE) { 454 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) { 455 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L); 456 Loop *OuterLoop = R.outermostLoopInRegion(L); 457 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop)) 458 return true; 459 } 460 return false; 461 } 462 463 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, 464 ScalarEvolution &SE, const DominatorTree &DT, 465 const InvariantLoadsSetTy &KnownInvariantLoads) { 466 Loop *L = LI.getLoopFor(LInst->getParent()); 467 auto *Ptr = LInst->getPointerOperand(); 468 469 // A LoadInst is hoistable if the address it is loading from is also 470 // invariant; in this case: another invariant load (whether that address 471 // is also not written to has to be checked separately) 472 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst 473 // pattern generated by the Chapel frontend, but generally this applies 474 // for any chain of instruction that does not also depend on any 475 // induction variable 476 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) { 477 if (!hasVariantIndex(GepInst, L, R, SE)) { 478 if (auto *DecidingLoad = 479 dyn_cast<LoadInst>(GepInst->getPointerOperand())) { 480 if (KnownInvariantLoads.count(DecidingLoad)) 481 return true; 482 } 483 } 484 } 485 486 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); 487 while (L && R.contains(L)) { 488 if (!SE.isLoopInvariant(PtrSCEV, L)) 489 return false; 490 L = L->getParentLoop(); 491 } 492 493 for (auto *User : Ptr->users()) { 494 auto *UserI = dyn_cast<Instruction>(User); 495 if (!UserI || !R.contains(UserI)) 496 continue; 497 if (!UserI->mayWriteToMemory()) 498 continue; 499 500 auto &BB = *UserI->getParent(); 501 if (DT.dominates(&BB, LInst->getParent())) 502 return false; 503 504 bool DominatesAllPredecessors = true; 505 if (R.isTopLevelRegion()) { 506 for (BasicBlock &I : *R.getEntry()->getParent()) 507 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 508 DominatesAllPredecessors = false; 509 } else { 510 for (auto Pred : predecessors(R.getExit())) 511 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 512 DominatesAllPredecessors = false; 513 } 514 515 if (!DominatesAllPredecessors) 516 continue; 517 518 return false; 519 } 520 521 return true; 522 } 523 524 bool polly::isIgnoredIntrinsic(const Value *V) { 525 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 526 switch (IT->getIntrinsicID()) { 527 // Lifetime markers are supported/ignored. 528 case llvm::Intrinsic::lifetime_start: 529 case llvm::Intrinsic::lifetime_end: 530 // Invariant markers are supported/ignored. 531 case llvm::Intrinsic::invariant_start: 532 case llvm::Intrinsic::invariant_end: 533 // Some misc annotations are supported/ignored. 534 case llvm::Intrinsic::var_annotation: 535 case llvm::Intrinsic::ptr_annotation: 536 case llvm::Intrinsic::annotation: 537 case llvm::Intrinsic::donothing: 538 case llvm::Intrinsic::assume: 539 // Some debug info intrinsics are supported/ignored. 540 case llvm::Intrinsic::dbg_value: 541 case llvm::Intrinsic::dbg_declare: 542 return true; 543 default: 544 break; 545 } 546 } 547 return false; 548 } 549 550 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, 551 Loop *Scope) { 552 if (!V || !SE->isSCEVable(V->getType())) 553 return false; 554 555 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); 556 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope)) 557 if (!isa<SCEVCouldNotCompute>(Scev)) 558 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS)) 559 return true; 560 561 return false; 562 } 563 564 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { 565 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 566 if (!UI) 567 return nullptr; 568 569 if (PHINode *PHI = dyn_cast<PHINode>(UI)) 570 return PHI->getIncomingBlock(U); 571 572 return UI->getParent(); 573 } 574 575 std::tuple<std::vector<const SCEV *>, std::vector<int>> 576 polly::getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) { 577 std::vector<const SCEV *> Subscripts; 578 std::vector<int> Sizes; 579 580 Type *Ty = GEP->getPointerOperandType(); 581 582 bool DroppedFirstDim = false; 583 584 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 585 586 const SCEV *Expr = SE.getSCEV(GEP->getOperand(i)); 587 588 if (i == 1) { 589 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 590 Ty = PtrTy->getElementType(); 591 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 592 Ty = ArrayTy->getElementType(); 593 } else { 594 Subscripts.clear(); 595 Sizes.clear(); 596 break; 597 } 598 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 599 if (Const->getValue()->isZero()) { 600 DroppedFirstDim = true; 601 continue; 602 } 603 Subscripts.push_back(Expr); 604 continue; 605 } 606 607 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 608 if (!ArrayTy) { 609 Subscripts.clear(); 610 Sizes.clear(); 611 break; 612 } 613 614 Subscripts.push_back(Expr); 615 if (!(DroppedFirstDim && i == 2)) 616 Sizes.push_back(ArrayTy->getNumElements()); 617 618 Ty = ArrayTy->getElementType(); 619 } 620 621 return std::make_tuple(Subscripts, Sizes); 622 } 623 624 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, 625 const BoxedLoopsSetTy &BoxedLoops) { 626 while (BoxedLoops.count(L)) 627 L = L->getParentLoop(); 628 return L; 629 } 630 631 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, 632 llvm::LoopInfo &LI, 633 const BoxedLoopsSetTy &BoxedLoops) { 634 Loop *L = LI.getLoopFor(BB); 635 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); 636 } 637 638 bool polly::isDebugCall(Instruction *Inst) { 639 auto *CI = dyn_cast<CallInst>(Inst); 640 if (!CI) 641 return false; 642 643 Function *CF = CI->getCalledFunction(); 644 if (!CF) 645 return false; 646 647 return std::find(DebugFunctions.begin(), DebugFunctions.end(), 648 CF->getName()) != DebugFunctions.end(); 649 } 650 651 static bool hasDebugCall(BasicBlock *BB) { 652 for (Instruction &Inst : *BB) { 653 if (isDebugCall(&Inst)) 654 return true; 655 } 656 return false; 657 } 658 659 bool polly::hasDebugCall(ScopStmt *Stmt) { 660 // Quick skip if no debug functions have been defined. 661 if (DebugFunctions.empty()) 662 return false; 663 664 if (!Stmt) 665 return false; 666 667 for (Instruction *Inst : Stmt->getInstructions()) 668 if (isDebugCall(Inst)) 669 return true; 670 671 if (Stmt->isRegionStmt()) { 672 for (BasicBlock *RBB : Stmt->getRegion()->blocks()) 673 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB)) 674 return true; 675 } 676 677 return false; 678 } 679