1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Small functions that help with Scop and LLVM-IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "polly/Support/ScopHelper.h" 14 #include "polly/Options.h" 15 #include "polly/ScopInfo.h" 16 #include "polly/Support/SCEVValidator.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/RegionInfo.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/LoopUtils.h" 23 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 24 25 using namespace llvm; 26 using namespace polly; 27 28 #define DEBUG_TYPE "polly-scop-helper" 29 30 static cl::opt<bool> PollyAllowErrorBlocks( 31 "polly-allow-error-blocks", 32 cl::desc("Allow to speculate on the execution of 'error blocks'."), 33 cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 34 35 static cl::list<std::string> DebugFunctions( 36 "polly-debug-func", 37 cl::desc("Allow calls to the specified functions in SCoPs even if their " 38 "side-effects are unknown. This can be used to do debug output in " 39 "Polly-transformed code."), 40 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); 41 42 // Ensures that there is just one predecessor to the entry node from outside the 43 // region. 44 // The identity of the region entry node is preserved. 45 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 46 RegionInfo *RI) { 47 BasicBlock *EnteringBB = R->getEnteringBlock(); 48 BasicBlock *Entry = R->getEntry(); 49 50 // Before (one of): 51 // 52 // \ / // 53 // EnteringBB // 54 // | \------> // 55 // \ / | // 56 // Entry <--\ Entry <--\ // 57 // / \ / / \ / // 58 // .... .... // 59 60 // Create single entry edge if the region has multiple entry edges. 61 if (!EnteringBB) { 62 SmallVector<BasicBlock *, 4> Preds; 63 for (BasicBlock *P : predecessors(Entry)) 64 if (!R->contains(P)) 65 Preds.push_back(P); 66 67 BasicBlock *NewEntering = 68 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 69 70 if (RI) { 71 // The exit block of predecessing regions must be changed to NewEntering 72 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 73 Region *RegionOfPred = RI->getRegionFor(ExitPred); 74 if (RegionOfPred->getExit() != Entry) 75 continue; 76 77 while (!RegionOfPred->isTopLevelRegion() && 78 RegionOfPred->getExit() == Entry) { 79 RegionOfPred->replaceExit(NewEntering); 80 RegionOfPred = RegionOfPred->getParent(); 81 } 82 } 83 84 // Make all ancestors use EnteringBB as entry; there might be edges to it 85 Region *AncestorR = R->getParent(); 86 RI->setRegionFor(NewEntering, AncestorR); 87 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 88 AncestorR->replaceEntry(NewEntering); 89 AncestorR = AncestorR->getParent(); 90 } 91 } 92 93 EnteringBB = NewEntering; 94 } 95 assert(R->getEnteringBlock() == EnteringBB); 96 97 // After: 98 // 99 // \ / // 100 // EnteringBB // 101 // | // 102 // | // 103 // Entry <--\ // 104 // / \ / // 105 // .... // 106 } 107 108 // Ensure that the region has a single block that branches to the exit node. 109 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 110 RegionInfo *RI) { 111 BasicBlock *ExitBB = R->getExit(); 112 BasicBlock *ExitingBB = R->getExitingBlock(); 113 114 // Before: 115 // 116 // (Region) ______/ // 117 // \ | / // 118 // ExitBB // 119 // / \ // 120 121 if (!ExitingBB) { 122 SmallVector<BasicBlock *, 4> Preds; 123 for (BasicBlock *P : predecessors(ExitBB)) 124 if (R->contains(P)) 125 Preds.push_back(P); 126 127 // Preds[0] Preds[1] otherBB // 128 // \ | ________/ // 129 // \ | / // 130 // BB // 131 ExitingBB = 132 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 133 // Preds[0] Preds[1] otherBB // 134 // \ / / // 135 // BB.region_exiting / // 136 // \ / // 137 // BB // 138 139 if (RI) 140 RI->setRegionFor(ExitingBB, R); 141 142 // Change the exit of nested regions, but not the region itself, 143 R->replaceExitRecursive(ExitingBB); 144 R->replaceExit(ExitBB); 145 } 146 assert(ExitingBB == R->getExitingBlock()); 147 148 // After: 149 // 150 // \ / // 151 // ExitingBB _____/ // 152 // \ / // 153 // ExitBB // 154 // / \ // 155 } 156 157 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 158 RegionInfo *RI) { 159 assert(R && !R->isTopLevelRegion()); 160 assert(!RI || RI == R->getRegionInfo()); 161 assert((!RI || DT) && 162 "RegionInfo requires DominatorTree to be updated as well"); 163 164 simplifyRegionEntry(R, DT, LI, RI); 165 simplifyRegionExit(R, DT, LI, RI); 166 assert(R->isSimple()); 167 } 168 169 // Split the block into two successive blocks. 170 // 171 // Like llvm::SplitBlock, but also preserves RegionInfo 172 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 173 DominatorTree *DT, llvm::LoopInfo *LI, 174 RegionInfo *RI) { 175 assert(Old && SplitPt); 176 177 // Before: 178 // 179 // \ / // 180 // Old // 181 // / \ // 182 183 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 184 185 if (RI) { 186 Region *R = RI->getRegionFor(Old); 187 RI->setRegionFor(NewBlock, R); 188 } 189 190 // After: 191 // 192 // \ / // 193 // Old // 194 // | // 195 // NewBlock // 196 // / \ // 197 198 return NewBlock; 199 } 200 201 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, 202 LoopInfo *LI, RegionInfo *RI) { 203 // Find first non-alloca instruction. Every basic block has a non-alloca 204 // instruction, as every well formed basic block has a terminator. 205 BasicBlock::iterator I = EntryBlock->begin(); 206 while (isa<AllocaInst>(I)) 207 ++I; 208 209 // splitBlock updates DT, LI and RI. 210 splitBlock(EntryBlock, &*I, DT, LI, RI); 211 } 212 213 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 214 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 215 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 216 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 217 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 218 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 219 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 220 221 // splitBlock updates DT, LI and RI. 222 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); 223 } 224 225 void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, 226 polly::AssumptionKind Kind, isl::set Set, 227 DebugLoc Loc, polly::AssumptionSign Sign, 228 BasicBlock *BB, bool RTC) { 229 assert((Set.is_params() || BB) && 230 "Assumptions without a basic block must be parameter sets"); 231 if (RecordedAssumptions) 232 RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC}); 233 } 234 235 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 236 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 237 /// however to generate new code if the instruction is in the analyzed region 238 /// and we generate code outside/in front of that region. Hence, we generate the 239 /// code for the SDiv/SRem operands in front of the analyzed region and then 240 /// create a new SDiv/SRem operation there too. 241 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 242 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 243 244 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 245 const DataLayout &DL, const char *Name, ValueMapT *VMap, 246 BasicBlock *RTCBB) 247 : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name), 248 R(R), VMap(VMap), RTCBB(RTCBB) {} 249 250 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 251 // If we generate code in the region we will immediately fall back to the 252 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 253 // needed replace them by copies computed in the entering block. 254 if (!R.contains(I)) 255 E = visit(E); 256 return Expander.expandCodeFor(E, Ty, I); 257 } 258 259 const SCEV *visit(const SCEV *E) { 260 // Cache the expansion results for intermediate SCEV expressions. A SCEV 261 // expression can refer to an operand multiple times (e.g. "x*x), so 262 // a naive visitor takes exponential time. 263 if (SCEVCache.count(E)) 264 return SCEVCache[E]; 265 const SCEV *Result = SCEVVisitor::visit(E); 266 SCEVCache[E] = Result; 267 return Result; 268 } 269 270 private: 271 SCEVExpander Expander; 272 ScalarEvolution &SE; 273 const char *Name; 274 const Region &R; 275 ValueMapT *VMap; 276 BasicBlock *RTCBB; 277 DenseMap<const SCEV *, const SCEV *> SCEVCache; 278 279 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, 280 Instruction *IP) { 281 if (!Inst || !R.contains(Inst)) 282 return E; 283 284 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && 285 !isa<PHINode>(Inst)); 286 287 auto *InstClone = Inst->clone(); 288 for (auto &Op : Inst->operands()) { 289 assert(SE.isSCEVable(Op->getType())); 290 auto *OpSCEV = SE.getSCEV(Op); 291 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); 292 InstClone->replaceUsesOfWith(Op, OpClone); 293 } 294 295 InstClone->setName(Name + Inst->getName()); 296 InstClone->insertBefore(IP); 297 return SE.getSCEV(InstClone); 298 } 299 300 const SCEV *visitUnknown(const SCEVUnknown *E) { 301 302 // If a value mapping was given try if the underlying value is remapped. 303 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; 304 if (NewVal) { 305 auto *NewE = SE.getSCEV(NewVal); 306 307 // While the mapped value might be different the SCEV representation might 308 // not be. To this end we will check before we go into recursion here. 309 if (E != NewE) 310 return visit(NewE); 311 } 312 313 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 314 Instruction *IP; 315 if (Inst && !R.contains(Inst)) 316 IP = Inst; 317 else if (Inst && RTCBB->getParent() == Inst->getFunction()) 318 IP = RTCBB->getTerminator(); 319 else 320 IP = RTCBB->getParent()->getEntryBlock().getTerminator(); 321 322 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 323 Inst->getOpcode() != Instruction::SDiv)) 324 return visitGenericInst(E, Inst, IP); 325 326 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); 327 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); 328 329 if (!SE.isKnownNonZero(RHSScev)) 330 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 331 332 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); 333 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); 334 335 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 336 LHS, RHS, Inst->getName() + Name, IP); 337 return SE.getSCEV(Inst); 338 } 339 340 /// The following functions will just traverse the SCEV and rebuild it with 341 /// the new operands returned by the traversal. 342 /// 343 ///{ 344 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 345 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { 346 return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType()); 347 } 348 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 349 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 350 } 351 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 352 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 353 } 354 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 355 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 356 } 357 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 358 auto *RHSScev = visit(E->getRHS()); 359 if (!SE.isKnownNonZero(RHSScev)) 360 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 361 return SE.getUDivExpr(visit(E->getLHS()), RHSScev); 362 } 363 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 364 SmallVector<const SCEV *, 4> NewOps; 365 for (const SCEV *Op : E->operands()) 366 NewOps.push_back(visit(Op)); 367 return SE.getAddExpr(NewOps); 368 } 369 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 370 SmallVector<const SCEV *, 4> NewOps; 371 for (const SCEV *Op : E->operands()) 372 NewOps.push_back(visit(Op)); 373 return SE.getMulExpr(NewOps); 374 } 375 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 376 SmallVector<const SCEV *, 4> NewOps; 377 for (const SCEV *Op : E->operands()) 378 NewOps.push_back(visit(Op)); 379 return SE.getUMaxExpr(NewOps); 380 } 381 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 382 SmallVector<const SCEV *, 4> NewOps; 383 for (const SCEV *Op : E->operands()) 384 NewOps.push_back(visit(Op)); 385 return SE.getSMaxExpr(NewOps); 386 } 387 const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { 388 SmallVector<const SCEV *, 4> NewOps; 389 for (const SCEV *Op : E->operands()) 390 NewOps.push_back(visit(Op)); 391 return SE.getUMinExpr(NewOps); 392 } 393 const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { 394 SmallVector<const SCEV *, 4> NewOps; 395 for (const SCEV *Op : E->operands()) 396 NewOps.push_back(visit(Op)); 397 return SE.getSMinExpr(NewOps); 398 } 399 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 400 SmallVector<const SCEV *, 4> NewOps; 401 for (const SCEV *Op : E->operands()) 402 NewOps.push_back(visit(Op)); 403 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 404 } 405 ///} 406 }; 407 408 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 409 const char *Name, const SCEV *E, Type *Ty, 410 Instruction *IP, ValueMapT *VMap, 411 BasicBlock *RTCBB) { 412 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); 413 return Expander.expandCodeFor(E, Ty, IP); 414 } 415 416 bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI, 417 const DominatorTree &DT) { 418 if (!PollyAllowErrorBlocks) 419 return false; 420 421 if (isa<UnreachableInst>(BB.getTerminator())) 422 return true; 423 424 if (LI.isLoopHeader(&BB)) 425 return false; 426 427 // Basic blocks that are always executed are not considered error blocks, 428 // as their execution can not be a rare event. 429 bool DominatesAllPredecessors = true; 430 if (R.isTopLevelRegion()) { 431 for (BasicBlock &I : *R.getEntry()->getParent()) 432 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 433 DominatesAllPredecessors = false; 434 } else { 435 for (auto Pred : predecessors(R.getExit())) 436 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 437 DominatesAllPredecessors = false; 438 } 439 440 if (DominatesAllPredecessors) 441 return false; 442 443 for (Instruction &Inst : BB) 444 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) { 445 if (isDebugCall(CI)) 446 continue; 447 448 if (isIgnoredIntrinsic(CI)) 449 continue; 450 451 // memset, memcpy and memmove are modeled intrinsics. 452 if (isa<MemSetInst>(CI) || isa<MemTransferInst>(CI)) 453 continue; 454 455 if (!CI->doesNotAccessMemory()) 456 return true; 457 if (CI->doesNotReturn()) 458 return true; 459 } 460 461 return false; 462 } 463 464 Value *polly::getConditionFromTerminator(Instruction *TI) { 465 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 466 if (BR->isUnconditional()) 467 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 468 469 return BR->getCondition(); 470 } 471 472 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 473 return SI->getCondition(); 474 475 return nullptr; 476 } 477 478 Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { 479 // Start with the smallest loop containing the entry and expand that 480 // loop until it contains all blocks in the region. If there is a loop 481 // containing all blocks in the region check if it is itself contained 482 // and if so take the parent loop as it will be the smallest containing 483 // the region but not contained by it. 484 Loop *L = LI.getLoopFor(S.getEntry()); 485 while (L) { 486 bool AllContained = true; 487 for (auto *BB : S.blocks()) 488 AllContained &= L->contains(BB); 489 if (AllContained) 490 break; 491 L = L->getParentLoop(); 492 } 493 494 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; 495 } 496 497 unsigned polly::getNumBlocksInLoop(Loop *L) { 498 unsigned NumBlocks = L->getNumBlocks(); 499 SmallVector<BasicBlock *, 4> ExitBlocks; 500 L->getExitBlocks(ExitBlocks); 501 502 for (auto ExitBlock : ExitBlocks) { 503 if (isa<UnreachableInst>(ExitBlock->getTerminator())) 504 NumBlocks++; 505 } 506 return NumBlocks; 507 } 508 509 unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { 510 if (!RN->isSubRegion()) 511 return 1; 512 513 Region *R = RN->getNodeAs<Region>(); 514 return std::distance(R->block_begin(), R->block_end()); 515 } 516 517 Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { 518 if (!RN->isSubRegion()) { 519 BasicBlock *BB = RN->getNodeAs<BasicBlock>(); 520 Loop *L = LI.getLoopFor(BB); 521 522 // Unreachable statements are not considered to belong to a LLVM loop, as 523 // they are not part of an actual loop in the control flow graph. 524 // Nevertheless, we handle certain unreachable statements that are common 525 // when modeling run-time bounds checks as being part of the loop to be 526 // able to model them and to later eliminate the run-time bounds checks. 527 // 528 // Specifically, for basic blocks that terminate in an unreachable and 529 // where the immediate predecessor is part of a loop, we assume these 530 // basic blocks belong to the loop the predecessor belongs to. This 531 // allows us to model the following code. 532 // 533 // for (i = 0; i < N; i++) { 534 // if (i > 1024) 535 // abort(); <- this abort might be translated to an 536 // unreachable 537 // 538 // A[i] = ... 539 // } 540 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode()) 541 L = LI.getLoopFor(BB->getPrevNode()); 542 return L; 543 } 544 545 Region *NonAffineSubRegion = RN->getNodeAs<Region>(); 546 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry()); 547 while (L && NonAffineSubRegion->contains(L)) 548 L = L->getParentLoop(); 549 return L; 550 } 551 552 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, 553 ScalarEvolution &SE) { 554 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) { 555 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L); 556 Loop *OuterLoop = R.outermostLoopInRegion(L); 557 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop)) 558 return true; 559 } 560 return false; 561 } 562 563 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, 564 ScalarEvolution &SE, const DominatorTree &DT, 565 const InvariantLoadsSetTy &KnownInvariantLoads) { 566 Loop *L = LI.getLoopFor(LInst->getParent()); 567 auto *Ptr = LInst->getPointerOperand(); 568 569 // A LoadInst is hoistable if the address it is loading from is also 570 // invariant; in this case: another invariant load (whether that address 571 // is also not written to has to be checked separately) 572 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst 573 // pattern generated by the Chapel frontend, but generally this applies 574 // for any chain of instruction that does not also depend on any 575 // induction variable 576 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) { 577 if (!hasVariantIndex(GepInst, L, R, SE)) { 578 if (auto *DecidingLoad = 579 dyn_cast<LoadInst>(GepInst->getPointerOperand())) { 580 if (KnownInvariantLoads.count(DecidingLoad)) 581 return true; 582 } 583 } 584 } 585 586 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); 587 while (L && R.contains(L)) { 588 if (!SE.isLoopInvariant(PtrSCEV, L)) 589 return false; 590 L = L->getParentLoop(); 591 } 592 593 for (auto *User : Ptr->users()) { 594 auto *UserI = dyn_cast<Instruction>(User); 595 if (!UserI || !R.contains(UserI)) 596 continue; 597 if (!UserI->mayWriteToMemory()) 598 continue; 599 600 auto &BB = *UserI->getParent(); 601 if (DT.dominates(&BB, LInst->getParent())) 602 return false; 603 604 bool DominatesAllPredecessors = true; 605 if (R.isTopLevelRegion()) { 606 for (BasicBlock &I : *R.getEntry()->getParent()) 607 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) 608 DominatesAllPredecessors = false; 609 } else { 610 for (auto Pred : predecessors(R.getExit())) 611 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 612 DominatesAllPredecessors = false; 613 } 614 615 if (!DominatesAllPredecessors) 616 continue; 617 618 return false; 619 } 620 621 return true; 622 } 623 624 bool polly::isIgnoredIntrinsic(const Value *V) { 625 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 626 switch (IT->getIntrinsicID()) { 627 // Lifetime markers are supported/ignored. 628 case llvm::Intrinsic::lifetime_start: 629 case llvm::Intrinsic::lifetime_end: 630 // Invariant markers are supported/ignored. 631 case llvm::Intrinsic::invariant_start: 632 case llvm::Intrinsic::invariant_end: 633 // Some misc annotations are supported/ignored. 634 case llvm::Intrinsic::var_annotation: 635 case llvm::Intrinsic::ptr_annotation: 636 case llvm::Intrinsic::annotation: 637 case llvm::Intrinsic::donothing: 638 case llvm::Intrinsic::assume: 639 // Some debug info intrinsics are supported/ignored. 640 case llvm::Intrinsic::dbg_value: 641 case llvm::Intrinsic::dbg_declare: 642 return true; 643 default: 644 break; 645 } 646 } 647 return false; 648 } 649 650 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, 651 Loop *Scope) { 652 if (!V || !SE->isSCEVable(V->getType())) 653 return false; 654 655 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); 656 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope)) 657 if (!isa<SCEVCouldNotCompute>(Scev)) 658 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS)) 659 return true; 660 661 return false; 662 } 663 664 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { 665 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 666 if (!UI) 667 return nullptr; 668 669 if (PHINode *PHI = dyn_cast<PHINode>(UI)) 670 return PHI->getIncomingBlock(U); 671 672 return UI->getParent(); 673 } 674 675 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, 676 const BoxedLoopsSetTy &BoxedLoops) { 677 while (BoxedLoops.count(L)) 678 L = L->getParentLoop(); 679 return L; 680 } 681 682 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, 683 llvm::LoopInfo &LI, 684 const BoxedLoopsSetTy &BoxedLoops) { 685 Loop *L = LI.getLoopFor(BB); 686 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); 687 } 688 689 bool polly::isDebugCall(Instruction *Inst) { 690 auto *CI = dyn_cast<CallInst>(Inst); 691 if (!CI) 692 return false; 693 694 Function *CF = CI->getCalledFunction(); 695 if (!CF) 696 return false; 697 698 return std::find(DebugFunctions.begin(), DebugFunctions.end(), 699 CF->getName()) != DebugFunctions.end(); 700 } 701 702 static bool hasDebugCall(BasicBlock *BB) { 703 for (Instruction &Inst : *BB) { 704 if (isDebugCall(&Inst)) 705 return true; 706 } 707 return false; 708 } 709 710 bool polly::hasDebugCall(ScopStmt *Stmt) { 711 // Quick skip if no debug functions have been defined. 712 if (DebugFunctions.empty()) 713 return false; 714 715 if (!Stmt) 716 return false; 717 718 for (Instruction *Inst : Stmt->getInstructions()) 719 if (isDebugCall(Inst)) 720 return true; 721 722 if (Stmt->isRegionStmt()) { 723 for (BasicBlock *RBB : Stmt->getRegion()->blocks()) 724 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB)) 725 return true; 726 } 727 728 return false; 729 } 730 731 /// Find a property in a LoopID. 732 static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) { 733 if (!LoopMD) 734 return nullptr; 735 for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) { 736 auto *OpNode = dyn_cast<MDNode>(X.get()); 737 if (!OpNode) 738 continue; 739 740 auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0)); 741 if (!OpName) 742 continue; 743 if (OpName->getString() == Name) 744 return OpNode; 745 } 746 return nullptr; 747 } 748 749 Optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD, 750 StringRef Name) { 751 MDNode *MD = findNamedMetadataNode(LoopMD, Name); 752 if (!MD) 753 return None; 754 switch (MD->getNumOperands()) { 755 case 1: 756 return nullptr; 757 case 2: 758 return MD->getOperand(1).get(); 759 default: 760 llvm_unreachable("loop metadata must have 0 or 1 operands"); 761 } 762 } 763 764 bool polly::hasDisableAllTransformsHint(Loop *L) { 765 return llvm::hasDisableAllTransformsHint(L); 766 } 767 768 isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) { 769 assert(Attr && "Must be a valid BandAttr"); 770 771 // The name "Loop" signals that this id contains a pointer to a BandAttr. 772 // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in 773 // markers, but it's user pointer is an llvm::Value. 774 isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr); 775 Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) { 776 BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr); 777 delete Attr; 778 })); 779 return Result; 780 } 781 782 isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) { 783 if (!L) 784 return {}; 785 786 // A loop without metadata does not need to be annotated. 787 MDNode *LoopID = L->getLoopID(); 788 if (!LoopID) 789 return {}; 790 791 BandAttr *Attr = new BandAttr(); 792 Attr->OriginalLoop = L; 793 Attr->Metadata = L->getLoopID(); 794 795 return getIslLoopAttr(Ctx, Attr); 796 } 797 798 bool polly::isLoopAttr(const isl::id &Id) { 799 if (Id.is_null()) 800 return false; 801 802 return Id.get_name() == "Loop with Metadata"; 803 } 804 805 BandAttr *polly::getLoopAttr(const isl::id &Id) { 806 if (!isLoopAttr(Id)) 807 return nullptr; 808 809 return reinterpret_cast<BandAttr *>(Id.get_user()); 810 } 811