1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Small functions that help with Scop and LLVM-IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/Support/ScopHelper.h" 15 #include "polly/Options.h" 16 #include "polly/ScopInfo.h" 17 #include "polly/Support/SCEVValidator.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/RegionInfo.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpander.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 28 using namespace llvm; 29 using namespace polly; 30 31 #define DEBUG_TYPE "polly-scop-helper" 32 33 static cl::opt<bool> PollyAllowErrorBlocks( 34 "polly-allow-error-blocks", 35 cl::desc("Allow to speculate on the execution of 'error blocks'."), 36 cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); 37 38 // Ensures that there is just one predecessor to the entry node from outside the 39 // region. 40 // The identity of the region entry node is preserved. 41 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, 42 RegionInfo *RI) { 43 BasicBlock *EnteringBB = R->getEnteringBlock(); 44 BasicBlock *Entry = R->getEntry(); 45 46 // Before (one of): 47 // 48 // \ / // 49 // EnteringBB // 50 // | \------> // 51 // \ / | // 52 // Entry <--\ Entry <--\ // 53 // / \ / / \ / // 54 // .... .... // 55 56 // Create single entry edge if the region has multiple entry edges. 57 if (!EnteringBB) { 58 SmallVector<BasicBlock *, 4> Preds; 59 for (BasicBlock *P : predecessors(Entry)) 60 if (!R->contains(P)) 61 Preds.push_back(P); 62 63 BasicBlock *NewEntering = 64 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); 65 66 if (RI) { 67 // The exit block of predecessing regions must be changed to NewEntering 68 for (BasicBlock *ExitPred : predecessors(NewEntering)) { 69 Region *RegionOfPred = RI->getRegionFor(ExitPred); 70 if (RegionOfPred->getExit() != Entry) 71 continue; 72 73 while (!RegionOfPred->isTopLevelRegion() && 74 RegionOfPred->getExit() == Entry) { 75 RegionOfPred->replaceExit(NewEntering); 76 RegionOfPred = RegionOfPred->getParent(); 77 } 78 } 79 80 // Make all ancestors use EnteringBB as entry; there might be edges to it 81 Region *AncestorR = R->getParent(); 82 RI->setRegionFor(NewEntering, AncestorR); 83 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { 84 AncestorR->replaceEntry(NewEntering); 85 AncestorR = AncestorR->getParent(); 86 } 87 } 88 89 EnteringBB = NewEntering; 90 } 91 assert(R->getEnteringBlock() == EnteringBB); 92 93 // After: 94 // 95 // \ / // 96 // EnteringBB // 97 // | // 98 // | // 99 // Entry <--\ // 100 // / \ / // 101 // .... // 102 } 103 104 // Ensure that the region has a single block that branches to the exit node. 105 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, 106 RegionInfo *RI) { 107 BasicBlock *ExitBB = R->getExit(); 108 BasicBlock *ExitingBB = R->getExitingBlock(); 109 110 // Before: 111 // 112 // (Region) ______/ // 113 // \ | / // 114 // ExitBB // 115 // / \ // 116 117 if (!ExitingBB) { 118 SmallVector<BasicBlock *, 4> Preds; 119 for (BasicBlock *P : predecessors(ExitBB)) 120 if (R->contains(P)) 121 Preds.push_back(P); 122 123 // Preds[0] Preds[1] otherBB // 124 // \ | ________/ // 125 // \ | / // 126 // BB // 127 ExitingBB = 128 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); 129 // Preds[0] Preds[1] otherBB // 130 // \ / / // 131 // BB.region_exiting / // 132 // \ / // 133 // BB // 134 135 if (RI) 136 RI->setRegionFor(ExitingBB, R); 137 138 // Change the exit of nested regions, but not the region itself, 139 R->replaceExitRecursive(ExitingBB); 140 R->replaceExit(ExitBB); 141 } 142 assert(ExitingBB == R->getExitingBlock()); 143 144 // After: 145 // 146 // \ / // 147 // ExitingBB _____/ // 148 // \ / // 149 // ExitBB // 150 // / \ // 151 } 152 153 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, 154 RegionInfo *RI) { 155 assert(R && !R->isTopLevelRegion()); 156 assert(!RI || RI == R->getRegionInfo()); 157 assert((!RI || DT) && 158 "RegionInfo requires DominatorTree to be updated as well"); 159 160 simplifyRegionEntry(R, DT, LI, RI); 161 simplifyRegionExit(R, DT, LI, RI); 162 assert(R->isSimple()); 163 } 164 165 // Split the block into two successive blocks. 166 // 167 // Like llvm::SplitBlock, but also preserves RegionInfo 168 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, 169 DominatorTree *DT, llvm::LoopInfo *LI, 170 RegionInfo *RI) { 171 assert(Old && SplitPt); 172 173 // Before: 174 // 175 // \ / // 176 // Old // 177 // / \ // 178 179 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); 180 181 if (RI) { 182 Region *R = RI->getRegionFor(Old); 183 RI->setRegionFor(NewBlock, R); 184 } 185 186 // After: 187 // 188 // \ / // 189 // Old // 190 // | // 191 // NewBlock // 192 // / \ // 193 194 return NewBlock; 195 } 196 197 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { 198 // Find first non-alloca instruction. Every basic block has a non-alloc 199 // instruction, as every well formed basic block has a terminator. 200 BasicBlock::iterator I = EntryBlock->begin(); 201 while (isa<AllocaInst>(I)) 202 ++I; 203 204 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 205 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 206 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 207 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 208 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); 209 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; 210 211 // splitBlock updates DT, LI and RI. 212 splitBlock(EntryBlock, &*I, DT, LI, RI); 213 } 214 215 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem 216 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want 217 /// however to generate new code if the instruction is in the analyzed region 218 /// and we generate code outside/in front of that region. Hence, we generate the 219 /// code for the SDiv/SRem operands in front of the analyzed region and then 220 /// create a new SDiv/SRem operation there too. 221 struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> { 222 friend struct SCEVVisitor<ScopExpander, const SCEV *>; 223 224 explicit ScopExpander(const Region &R, ScalarEvolution &SE, 225 const DataLayout &DL, const char *Name, ValueMapT *VMap, 226 BasicBlock *RTCBB) 227 : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R), 228 VMap(VMap), RTCBB(RTCBB) {} 229 230 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { 231 // If we generate code in the region we will immediately fall back to the 232 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if 233 // needed replace them by copies computed in the entering block. 234 if (!R.contains(I)) 235 E = visit(E); 236 return Expander.expandCodeFor(E, Ty, I); 237 } 238 239 private: 240 SCEVExpander Expander; 241 ScalarEvolution &SE; 242 const char *Name; 243 const Region &R; 244 ValueMapT *VMap; 245 BasicBlock *RTCBB; 246 247 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, 248 Instruction *IP) { 249 if (!Inst || !R.contains(Inst)) 250 return E; 251 252 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && 253 !isa<PHINode>(Inst)); 254 255 auto *InstClone = Inst->clone(); 256 for (auto &Op : Inst->operands()) { 257 assert(SE.isSCEVable(Op->getType())); 258 auto *OpSCEV = SE.getSCEV(Op); 259 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); 260 InstClone->replaceUsesOfWith(Op, OpClone); 261 } 262 263 InstClone->setName(Name + Inst->getName()); 264 InstClone->insertBefore(IP); 265 return SE.getSCEV(InstClone); 266 } 267 268 const SCEV *visitUnknown(const SCEVUnknown *E) { 269 270 // If a value mapping was given try if the underlying value is remapped. 271 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; 272 if (NewVal) { 273 auto *NewE = SE.getSCEV(NewVal); 274 275 // While the mapped value might be different the SCEV representation might 276 // not be. To this end we will check before we go into recursion here. 277 if (E != NewE) 278 return visit(NewE); 279 } 280 281 Instruction *Inst = dyn_cast<Instruction>(E->getValue()); 282 Instruction *IP; 283 if (Inst && !R.contains(Inst)) 284 IP = Inst; 285 else if (Inst && RTCBB->getParent() == Inst->getFunction()) 286 IP = RTCBB->getTerminator(); 287 else 288 IP = RTCBB->getParent()->getEntryBlock().getTerminator(); 289 290 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 291 Inst->getOpcode() != Instruction::SDiv)) 292 return visitGenericInst(E, Inst, IP); 293 294 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); 295 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); 296 297 if (!SE.isKnownNonZero(RHSScev)) 298 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 299 300 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); 301 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); 302 303 Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), 304 LHS, RHS, Inst->getName() + Name, IP); 305 return SE.getSCEV(Inst); 306 } 307 308 /// The following functions will just traverse the SCEV and rebuild it with 309 /// the new operands returned by the traversal. 310 /// 311 ///{ 312 const SCEV *visitConstant(const SCEVConstant *E) { return E; } 313 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { 314 return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); 315 } 316 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { 317 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); 318 } 319 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { 320 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); 321 } 322 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { 323 auto *RHSScev = visit(E->getRHS()); 324 if (!SE.isKnownNonZero(RHSScev)) 325 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); 326 return SE.getUDivExpr(visit(E->getLHS()), RHSScev); 327 } 328 const SCEV *visitAddExpr(const SCEVAddExpr *E) { 329 SmallVector<const SCEV *, 4> NewOps; 330 for (const SCEV *Op : E->operands()) 331 NewOps.push_back(visit(Op)); 332 return SE.getAddExpr(NewOps); 333 } 334 const SCEV *visitMulExpr(const SCEVMulExpr *E) { 335 SmallVector<const SCEV *, 4> NewOps; 336 for (const SCEV *Op : E->operands()) 337 NewOps.push_back(visit(Op)); 338 return SE.getMulExpr(NewOps); 339 } 340 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { 341 SmallVector<const SCEV *, 4> NewOps; 342 for (const SCEV *Op : E->operands()) 343 NewOps.push_back(visit(Op)); 344 return SE.getUMaxExpr(NewOps); 345 } 346 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { 347 SmallVector<const SCEV *, 4> NewOps; 348 for (const SCEV *Op : E->operands()) 349 NewOps.push_back(visit(Op)); 350 return SE.getSMaxExpr(NewOps); 351 } 352 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { 353 SmallVector<const SCEV *, 4> NewOps; 354 for (const SCEV *Op : E->operands()) 355 NewOps.push_back(visit(Op)); 356 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); 357 } 358 ///} 359 }; 360 361 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, 362 const char *Name, const SCEV *E, Type *Ty, 363 Instruction *IP, ValueMapT *VMap, 364 BasicBlock *RTCBB) { 365 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); 366 return Expander.expandCodeFor(E, Ty, IP); 367 } 368 369 bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI, 370 const DominatorTree &DT) { 371 if (!PollyAllowErrorBlocks) 372 return false; 373 374 if (isa<UnreachableInst>(BB.getTerminator())) 375 return true; 376 377 if (LI.isLoopHeader(&BB)) 378 return false; 379 380 // Basic blocks that are always executed are not considered error blocks, 381 // as their execution can not be a rare event. 382 bool DominatesAllPredecessors = true; 383 for (auto Pred : predecessors(R.getExit())) 384 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 385 DominatesAllPredecessors = false; 386 387 if (DominatesAllPredecessors) 388 return false; 389 390 // FIXME: This is a simple heuristic to determine if the load is executed 391 // in a conditional. However, we actually would need the control 392 // condition, i.e., the post dominance frontier. Alternatively we 393 // could walk up the dominance tree until we find a block that is 394 // not post dominated by the load and check if it is a conditional 395 // or a loop header. 396 auto *DTNode = DT.getNode(&BB); 397 auto *IDomBB = DTNode->getIDom()->getBlock(); 398 if (LI.isLoopHeader(IDomBB)) 399 return false; 400 401 for (Instruction &Inst : BB) 402 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) { 403 if (isIgnoredIntrinsic(CI)) 404 return false; 405 406 if (!CI->doesNotAccessMemory()) 407 return true; 408 if (CI->doesNotReturn()) 409 return true; 410 } 411 412 return false; 413 } 414 415 Value *polly::getConditionFromTerminator(TerminatorInst *TI) { 416 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) { 417 if (BR->isUnconditional()) 418 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); 419 420 return BR->getCondition(); 421 } 422 423 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) 424 return SI->getCondition(); 425 426 return nullptr; 427 } 428 429 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, 430 ScalarEvolution &SE, const DominatorTree &DT) { 431 Loop *L = LI.getLoopFor(LInst->getParent()); 432 auto *Ptr = LInst->getPointerOperand(); 433 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); 434 while (L && R.contains(L)) { 435 if (!SE.isLoopInvariant(PtrSCEV, L)) 436 return false; 437 L = L->getParentLoop(); 438 } 439 440 for (auto *User : Ptr->users()) { 441 auto *UserI = dyn_cast<Instruction>(User); 442 if (!UserI || !R.contains(UserI)) 443 continue; 444 if (!UserI->mayWriteToMemory()) 445 continue; 446 447 auto &BB = *UserI->getParent(); 448 if (DT.dominates(&BB, LInst->getParent())) 449 return false; 450 451 bool DominatesAllPredecessors = true; 452 for (auto Pred : predecessors(R.getExit())) 453 if (R.contains(Pred) && !DT.dominates(&BB, Pred)) 454 DominatesAllPredecessors = false; 455 456 if (!DominatesAllPredecessors) 457 continue; 458 459 return false; 460 } 461 462 return true; 463 } 464 465 bool polly::isIgnoredIntrinsic(const Value *V) { 466 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 467 switch (IT->getIntrinsicID()) { 468 // Lifetime markers are supported/ignored. 469 case llvm::Intrinsic::lifetime_start: 470 case llvm::Intrinsic::lifetime_end: 471 // Invariant markers are supported/ignored. 472 case llvm::Intrinsic::invariant_start: 473 case llvm::Intrinsic::invariant_end: 474 // Some misc annotations are supported/ignored. 475 case llvm::Intrinsic::var_annotation: 476 case llvm::Intrinsic::ptr_annotation: 477 case llvm::Intrinsic::annotation: 478 case llvm::Intrinsic::donothing: 479 case llvm::Intrinsic::assume: 480 case llvm::Intrinsic::expect: 481 // Some debug info intrisics are supported/ignored. 482 case llvm::Intrinsic::dbg_value: 483 case llvm::Intrinsic::dbg_declare: 484 return true; 485 default: 486 break; 487 } 488 } 489 return false; 490 } 491 492 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, 493 Loop *Scope) { 494 if (!V || !SE->isSCEVable(V->getType())) 495 return false; 496 497 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope)) 498 if (!isa<SCEVCouldNotCompute>(Scev)) 499 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false)) 500 return true; 501 502 return false; 503 } 504 505 llvm::BasicBlock *polly::getUseBlock(llvm::Use &U) { 506 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 507 if (!UI) 508 return nullptr; 509 510 if (PHINode *PHI = dyn_cast<PHINode>(UI)) 511 return PHI->getIncomingBlock(U); 512 513 return UI->getParent(); 514 } 515 516 std::tuple<std::vector<const SCEV *>, std::vector<int>> 517 polly::getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) { 518 std::vector<const SCEV *> Subscripts; 519 std::vector<int> Sizes; 520 521 Type *Ty = GEP->getPointerOperandType(); 522 523 bool DroppedFirstDim = false; 524 525 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 526 527 const SCEV *Expr = SE.getSCEV(GEP->getOperand(i)); 528 529 if (i == 1) { 530 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 531 Ty = PtrTy->getElementType(); 532 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 533 Ty = ArrayTy->getElementType(); 534 } else { 535 Subscripts.clear(); 536 Sizes.clear(); 537 break; 538 } 539 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 540 if (Const->getValue()->isZero()) { 541 DroppedFirstDim = true; 542 continue; 543 } 544 Subscripts.push_back(Expr); 545 continue; 546 } 547 548 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 549 if (!ArrayTy) { 550 Subscripts.clear(); 551 Sizes.clear(); 552 break; 553 } 554 555 Subscripts.push_back(Expr); 556 if (!(DroppedFirstDim && i == 2)) 557 Sizes.push_back(ArrayTy->getNumElements()); 558 559 Ty = ArrayTy->getElementType(); 560 } 561 562 return std::make_tuple(Subscripts, Sizes); 563 } 564