1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "polly/Support/SCEVValidator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BasicAliasAnalysis.h" 25 #include "llvm/Analysis/GlobalsModRef.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/TargetSelect.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 36 37 #include "isl/union_map.h" 38 39 extern "C" { 40 #include "ppcg/cuda.h" 41 #include "ppcg/gpu.h" 42 #include "ppcg/gpu_print.h" 43 #include "ppcg/ppcg.h" 44 #include "ppcg/schedule.h" 45 } 46 47 #include "llvm/Support/Debug.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen-ppcg" 53 54 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 55 cl::desc("Dump the computed GPU Schedule"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 static cl::opt<bool> 60 DumpCode("polly-acc-dump-code", 61 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 62 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 63 64 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 65 cl::desc("Dump the kernel LLVM-IR"), 66 cl::Hidden, cl::init(false), cl::ZeroOrMore, 67 cl::cat(PollyCategory)); 68 69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 70 cl::desc("Dump the kernel assembly code"), 71 cl::Hidden, cl::init(false), cl::ZeroOrMore, 72 cl::cat(PollyCategory)); 73 74 static cl::opt<bool> FastMath("polly-acc-fastmath", 75 cl::desc("Allow unsafe math optimizations"), 76 cl::Hidden, cl::init(false), cl::ZeroOrMore, 77 cl::cat(PollyCategory)); 78 79 static cl::opt<std::string> 80 CudaVersion("polly-acc-cuda-version", 81 cl::desc("The CUDA version to compile for"), cl::Hidden, 82 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 83 84 /// Create the ast expressions for a ScopStmt. 85 /// 86 /// This function is a callback for to generate the ast expressions for each 87 /// of the scheduled ScopStmts. 88 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 89 void *StmtT, isl_ast_build *Build, 90 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 91 isl_id *Id, void *User), 92 void *UserIndex, 93 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 94 void *UserExpr) { 95 96 ScopStmt *Stmt = (ScopStmt *)StmtT; 97 98 isl_ctx *Ctx; 99 100 if (!Stmt || !Build) 101 return NULL; 102 103 Ctx = isl_ast_build_get_ctx(Build); 104 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 105 106 for (MemoryAccess *Acc : *Stmt) { 107 isl_map *AddrFunc = Acc->getAddressFunction(); 108 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 109 isl_id *RefId = Acc->getId(); 110 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 111 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 112 MPA = isl_multi_pw_aff_coalesce(MPA); 113 MPA = FunctionIndex(MPA, RefId, UserIndex); 114 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 115 Access = FunctionExpr(Access, RefId, UserExpr); 116 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 117 } 118 119 return RefToExpr; 120 } 121 122 /// Generate code for a GPU specific isl AST. 123 /// 124 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 125 /// generates code for general-prupose AST nodes, with special functionality 126 /// for generating GPU specific user nodes. 127 /// 128 /// @see GPUNodeBuilder::createUser 129 class GPUNodeBuilder : public IslNodeBuilder { 130 public: 131 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 132 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 133 DominatorTree &DT, Scop &S, gpu_prog *Prog) 134 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 135 getExprBuilder().setIDToSAI(&IDToSAI); 136 } 137 138 /// Create after-run-time-check initialization code. 139 void initializeAfterRTH(); 140 141 /// Finalize the generated scop. 142 virtual void finalize(); 143 144 private: 145 /// A vector of array base pointers for which a new ScopArrayInfo was created. 146 /// 147 /// This vector is used to delete the ScopArrayInfo when it is not needed any 148 /// more. 149 std::vector<Value *> LocalArrays; 150 151 /// The current GPU context. 152 Value *GPUContext; 153 154 /// A module containing GPU code. 155 /// 156 /// This pointer is only set in case we are currently generating GPU code. 157 std::unique_ptr<Module> GPUModule; 158 159 /// The GPU program we generate code for. 160 gpu_prog *Prog; 161 162 /// Class to free isl_ids. 163 class IslIdDeleter { 164 public: 165 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 166 }; 167 168 /// A set containing all isl_ids allocated in a GPU kernel. 169 /// 170 /// By releasing this set all isl_ids will be freed. 171 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 172 173 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 174 175 /// Create code for user-defined AST nodes. 176 /// 177 /// These AST nodes can be of type: 178 /// 179 /// - ScopStmt: A computational statement (TODO) 180 /// - Kernel: A GPU kernel call (TODO) 181 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 182 /// - In-kernel synchronization 183 /// - In-kernel memory copy statement 184 /// 185 /// @param UserStmt The ast node to generate code for. 186 virtual void createUser(__isl_take isl_ast_node *UserStmt); 187 188 /// Find llvm::Values referenced in GPU kernel. 189 /// 190 /// @param Kernel The kernel to scan for llvm::Values 191 /// 192 /// @returns A set of values referenced by the kernel. 193 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 194 195 /// Create GPU kernel. 196 /// 197 /// Code generate the kernel described by @p KernelStmt. 198 /// 199 /// @param KernelStmt The ast node to generate kernel code for. 200 void createKernel(__isl_take isl_ast_node *KernelStmt); 201 202 /// Create kernel function. 203 /// 204 /// Create a kernel function located in a newly created module that can serve 205 /// as target for device code generation. Set the Builder to point to the 206 /// start block of this newly created function. 207 /// 208 /// @param Kernel The kernel to generate code for. 209 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 210 void createKernelFunction(ppcg_kernel *Kernel, 211 SetVector<Value *> &SubtreeValues); 212 213 /// Create the declaration of a kernel function. 214 /// 215 /// The kernel function takes as arguments: 216 /// 217 /// - One i8 pointer for each external array reference used in the kernel. 218 /// - Host iterators 219 /// - Parameters 220 /// - Other LLVM Value references (TODO) 221 /// 222 /// @param Kernel The kernel to generate the function declaration for. 223 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 224 /// 225 /// @returns The newly declared function. 226 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 227 SetVector<Value *> &SubtreeValues); 228 229 /// Insert intrinsic functions to obtain thread and block ids. 230 /// 231 /// @param The kernel to generate the intrinsic functions for. 232 void insertKernelIntrinsics(ppcg_kernel *Kernel); 233 234 /// Create code for a ScopStmt called in @p Expr. 235 /// 236 /// @param Expr The expression containing the call. 237 /// @param KernelStmt The kernel statement referenced in the call. 238 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 239 240 /// Create an in-kernel synchronization call. 241 void createKernelSync(); 242 243 /// Create a PTX assembly string for the current GPU kernel. 244 /// 245 /// @returns A string containing the corresponding PTX assembly code. 246 std::string createKernelASM(); 247 248 /// Remove references from the dominator tree to the kernel function @p F. 249 /// 250 /// @param F The function to remove references to. 251 void clearDominators(Function *F); 252 253 /// Remove references from scalar evolution to the kernel function @p F. 254 /// 255 /// @param F The function to remove references to. 256 void clearScalarEvolution(Function *F); 257 258 /// Remove references from loop info to the kernel function @p F. 259 /// 260 /// @param F The function to remove references to. 261 void clearLoops(Function *F); 262 263 /// Finalize the generation of the kernel function. 264 /// 265 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 266 /// dump its IR to stderr. 267 void finalizeKernelFunction(); 268 269 void allocateDeviceArrays(); 270 271 /// Create a call to initialize the GPU context. 272 /// 273 /// @returns A pointer to the newly initialized context. 274 Value *createCallInitContext(); 275 276 /// Create a call to free the GPU context. 277 /// 278 /// @param Context A pointer to an initialized GPU context. 279 void createCallFreeContext(Value *Context); 280 281 Value *createCallAllocateMemoryForDevice(Value *Size); 282 }; 283 284 void GPUNodeBuilder::initializeAfterRTH() { 285 GPUContext = createCallInitContext(); 286 allocateDeviceArrays(); 287 } 288 289 void GPUNodeBuilder::finalize() { 290 createCallFreeContext(GPUContext); 291 IslNodeBuilder::finalize(); 292 } 293 294 void GPUNodeBuilder::allocateDeviceArrays() { 295 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 296 297 for (int i = 0; i < Prog->n_array; ++i) { 298 gpu_array_info *Array = &Prog->array[i]; 299 std::string DevPtrName("p_devptr_"); 300 DevPtrName.append(Array->name); 301 302 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 303 304 if (!gpu_array_is_scalar(Array)) { 305 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 306 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 307 308 for (unsigned int i = 1; i < Array->n_index; i++) { 309 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 310 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 311 Res = isl_ast_expr_mul(Res, Expr); 312 } 313 314 Value *NumElements = ExprBuilder.create(Res); 315 ArraySize = Builder.CreateMul(ArraySize, NumElements); 316 } 317 318 Value *DevPtr = createCallAllocateMemoryForDevice(ArraySize); 319 DevPtr->setName(DevPtrName); 320 } 321 322 isl_ast_build_free(Build); 323 } 324 325 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 326 const char *Name = "polly_allocateMemoryForDevice"; 327 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 328 Function *F = M->getFunction(Name); 329 330 // If F is not available, declare it. 331 if (!F) { 332 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 333 std::vector<Type *> Args; 334 Args.push_back(Builder.getInt64Ty()); 335 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 336 F = Function::Create(Ty, Linkage, Name, M); 337 } 338 339 return Builder.CreateCall(F, {Size}); 340 } 341 342 Value *GPUNodeBuilder::createCallInitContext() { 343 const char *Name = "polly_initContext"; 344 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 345 Function *F = M->getFunction(Name); 346 347 // If F is not available, declare it. 348 if (!F) { 349 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 350 std::vector<Type *> Args; 351 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 352 F = Function::Create(Ty, Linkage, Name, M); 353 } 354 355 return Builder.CreateCall(F, {}); 356 } 357 358 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 359 const char *Name = "polly_freeContext"; 360 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 361 Function *F = M->getFunction(Name); 362 363 // If F is not available, declare it. 364 if (!F) { 365 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 366 std::vector<Type *> Args; 367 Args.push_back(Builder.getInt8PtrTy()); 368 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 369 F = Function::Create(Ty, Linkage, Name, M); 370 } 371 372 Builder.CreateCall(F, {Context}); 373 } 374 375 /// Check if one string is a prefix of another. 376 /// 377 /// @param String The string in which to look for the prefix. 378 /// @param Prefix The prefix to look for. 379 static bool isPrefix(std::string String, std::string Prefix) { 380 return String.find(Prefix) == 0; 381 } 382 383 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 384 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 385 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 386 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 387 isl_id_free(Id); 388 isl_ast_expr_free(StmtExpr); 389 390 const char *Str = isl_id_get_name(Id); 391 if (!strcmp(Str, "kernel")) { 392 createKernel(UserStmt); 393 isl_ast_expr_free(Expr); 394 return; 395 } 396 397 if (isPrefix(Str, "to_device") || isPrefix(Str, "from_device")) { 398 // TODO: Insert memory copies 399 isl_ast_expr_free(Expr); 400 isl_ast_node_free(UserStmt); 401 return; 402 } 403 404 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 405 struct ppcg_kernel_stmt *KernelStmt = 406 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 407 isl_id_free(Anno); 408 409 switch (KernelStmt->type) { 410 case ppcg_kernel_domain: 411 createScopStmt(Expr, KernelStmt); 412 isl_ast_node_free(UserStmt); 413 return; 414 case ppcg_kernel_copy: 415 // TODO: Create kernel copy stmt 416 isl_ast_expr_free(Expr); 417 isl_ast_node_free(UserStmt); 418 return; 419 case ppcg_kernel_sync: 420 createKernelSync(); 421 isl_ast_expr_free(Expr); 422 isl_ast_node_free(UserStmt); 423 return; 424 } 425 426 isl_ast_expr_free(Expr); 427 isl_ast_node_free(UserStmt); 428 return; 429 } 430 431 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 432 ppcg_kernel_stmt *KernelStmt) { 433 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 434 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 435 436 LoopToScevMapT LTS; 437 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 438 439 createSubstitutions(Expr, Stmt, LTS); 440 441 if (Stmt->isBlockStmt()) 442 BlockGen.copyStmt(*Stmt, LTS, Indexes); 443 else 444 assert(0 && "Region statement not supported\n"); 445 } 446 447 void GPUNodeBuilder::createKernelSync() { 448 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 449 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 450 Builder.CreateCall(Sync, {}); 451 } 452 453 /// Collect llvm::Values referenced from @p Node 454 /// 455 /// This function only applies to isl_ast_nodes that are user_nodes referring 456 /// to a ScopStmt. All other node types are ignore. 457 /// 458 /// @param Node The node to collect references for. 459 /// @param User A user pointer used as storage for the data that is collected. 460 /// 461 /// @returns isl_bool_true if data could be collected successfully. 462 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 463 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 464 return isl_bool_true; 465 466 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 467 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 468 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 469 const char *Str = isl_id_get_name(Id); 470 isl_id_free(Id); 471 isl_ast_expr_free(StmtExpr); 472 isl_ast_expr_free(Expr); 473 474 if (!isPrefix(Str, "Stmt")) 475 return isl_bool_true; 476 477 Id = isl_ast_node_get_annotation(Node); 478 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 479 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 480 isl_id_free(Id); 481 482 addReferencesFromStmt(Stmt, User); 483 484 return isl_bool_true; 485 } 486 487 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 488 SetVector<Value *> SubtreeValues; 489 SetVector<const SCEV *> SCEVs; 490 SetVector<const Loop *> Loops; 491 SubtreeReferences References = { 492 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 493 494 for (const auto &I : IDToValue) 495 SubtreeValues.insert(I.second); 496 497 isl_ast_node_foreach_descendant_top_down( 498 Kernel->tree, collectReferencesInGPUStmt, &References); 499 500 for (const SCEV *Expr : SCEVs) 501 findValues(Expr, SE, SubtreeValues); 502 503 for (auto &SAI : S.arrays()) 504 SubtreeValues.remove(SAI.second->getBasePtr()); 505 506 isl_space *Space = S.getParamSpace(); 507 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 508 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 509 assert(IDToValue.count(Id)); 510 Value *Val = IDToValue[Id]; 511 SubtreeValues.remove(Val); 512 isl_id_free(Id); 513 } 514 isl_space_free(Space); 515 516 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 517 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 518 assert(IDToValue.count(Id)); 519 Value *Val = IDToValue[Id]; 520 SubtreeValues.remove(Val); 521 isl_id_free(Id); 522 } 523 524 return SubtreeValues; 525 } 526 527 void GPUNodeBuilder::clearDominators(Function *F) { 528 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 529 std::vector<BasicBlock *> Nodes; 530 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 531 Nodes.push_back(I->getBlock()); 532 533 for (BasicBlock *BB : Nodes) 534 DT.eraseNode(BB); 535 } 536 537 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 538 for (BasicBlock &BB : *F) { 539 Loop *L = LI.getLoopFor(&BB); 540 if (L) 541 SE.forgetLoop(L); 542 } 543 } 544 545 void GPUNodeBuilder::clearLoops(Function *F) { 546 for (BasicBlock &BB : *F) { 547 Loop *L = LI.getLoopFor(&BB); 548 if (L) 549 SE.forgetLoop(L); 550 LI.removeBlock(&BB); 551 } 552 } 553 554 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 555 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 556 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 557 isl_id_free(Id); 558 isl_ast_node_free(KernelStmt); 559 560 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 561 562 assert(Kernel->tree && "Device AST of kernel node is empty"); 563 564 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 565 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 566 ValueMapT HostValueMap = ValueMap; 567 568 SetVector<const Loop *> Loops; 569 570 // Create for all loops we depend on values that contain the current loop 571 // iteration. These values are necessary to generate code for SCEVs that 572 // depend on such loops. As a result we need to pass them to the subfunction. 573 for (const Loop *L : Loops) { 574 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 575 SE.getUnknown(Builder.getInt64(1)), 576 L, SCEV::FlagAnyWrap); 577 Value *V = generateSCEV(OuterLIV); 578 OutsideLoopIterations[L] = SE.getUnknown(V); 579 SubtreeValues.insert(V); 580 } 581 582 createKernelFunction(Kernel, SubtreeValues); 583 584 create(isl_ast_node_copy(Kernel->tree)); 585 586 Function *F = Builder.GetInsertBlock()->getParent(); 587 clearDominators(F); 588 clearScalarEvolution(F); 589 clearLoops(F); 590 591 Builder.SetInsertPoint(&HostInsertPoint); 592 IDToValue = HostIDs; 593 594 ValueMap = HostValueMap; 595 ScalarMap.clear(); 596 PHIOpMap.clear(); 597 EscapeMap.clear(); 598 IDToSAI.clear(); 599 Annotator.resetAlternativeAliasBases(); 600 for (auto &BasePtr : LocalArrays) 601 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 602 LocalArrays.clear(); 603 604 finalizeKernelFunction(); 605 } 606 607 /// Compute the DataLayout string for the NVPTX backend. 608 /// 609 /// @param is64Bit Are we looking for a 64 bit architecture? 610 static std::string computeNVPTXDataLayout(bool is64Bit) { 611 std::string Ret = "e"; 612 613 if (!is64Bit) 614 Ret += "-p:32:32"; 615 616 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 617 618 return Ret; 619 } 620 621 Function * 622 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 623 SetVector<Value *> &SubtreeValues) { 624 std::vector<Type *> Args; 625 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 626 627 for (long i = 0; i < Prog->n_array; i++) { 628 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 629 continue; 630 631 Args.push_back(Builder.getInt8PtrTy()); 632 } 633 634 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 635 636 for (long i = 0; i < NumHostIters; i++) 637 Args.push_back(Builder.getInt64Ty()); 638 639 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 640 641 for (long i = 0; i < NumVars; i++) 642 Args.push_back(Builder.getInt64Ty()); 643 644 for (auto *V : SubtreeValues) 645 Args.push_back(V->getType()); 646 647 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 648 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 649 GPUModule.get()); 650 FN->setCallingConv(CallingConv::PTX_Kernel); 651 652 auto Arg = FN->arg_begin(); 653 for (long i = 0; i < Kernel->n_array; i++) { 654 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 655 continue; 656 657 Arg->setName(Kernel->array[i].array->name); 658 659 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 660 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 661 Type *EleTy = SAI->getElementType(); 662 Value *Val = &*Arg; 663 SmallVector<const SCEV *, 4> Sizes; 664 isl_ast_build *Build = 665 isl_ast_build_from_context(isl_set_copy(Prog->context)); 666 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 667 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 668 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 669 auto V = ExprBuilder.create(DimSize); 670 Sizes.push_back(SE.getSCEV(V)); 671 } 672 const ScopArrayInfo *SAIRep = 673 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 674 LocalArrays.push_back(Val); 675 676 isl_ast_build_free(Build); 677 isl_id_free(Id); 678 IDToSAI[Id] = SAIRep; 679 Arg++; 680 } 681 682 for (long i = 0; i < NumHostIters; i++) { 683 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 684 Arg->setName(isl_id_get_name(Id)); 685 IDToValue[Id] = &*Arg; 686 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 687 Arg++; 688 } 689 690 for (long i = 0; i < NumVars; i++) { 691 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 692 Arg->setName(isl_id_get_name(Id)); 693 IDToValue[Id] = &*Arg; 694 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 695 Arg++; 696 } 697 698 for (auto *V : SubtreeValues) { 699 Arg->setName(V->getName()); 700 ValueMap[V] = &*Arg; 701 Arg++; 702 } 703 704 return FN; 705 } 706 707 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 708 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 709 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 710 711 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 712 Intrinsic::nvvm_read_ptx_sreg_tid_y, 713 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 714 715 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 716 std::string Name = isl_id_get_name(Id); 717 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 718 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 719 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 720 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 721 IDToValue[Id] = Val; 722 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 723 }; 724 725 for (int i = 0; i < Kernel->n_grid; ++i) { 726 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 727 addId(Id, IntrinsicsBID[i]); 728 } 729 730 for (int i = 0; i < Kernel->n_block; ++i) { 731 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 732 addId(Id, IntrinsicsTID[i]); 733 } 734 } 735 736 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 737 SetVector<Value *> &SubtreeValues) { 738 739 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 740 GPUModule.reset(new Module(Identifier, Builder.getContext())); 741 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 742 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 743 744 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 745 746 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 747 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 748 749 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 750 DT.addNewBlock(EntryBlock, PrevBlock); 751 752 Builder.SetInsertPoint(EntryBlock); 753 Builder.CreateRetVoid(); 754 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 755 756 insertKernelIntrinsics(Kernel); 757 } 758 759 std::string GPUNodeBuilder::createKernelASM() { 760 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 761 std::string ErrMsg; 762 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 763 764 if (!GPUTarget) { 765 errs() << ErrMsg << "\n"; 766 return ""; 767 } 768 769 TargetOptions Options; 770 Options.UnsafeFPMath = FastMath; 771 std::unique_ptr<TargetMachine> TargetM( 772 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 773 Options, Optional<Reloc::Model>())); 774 775 SmallString<0> ASMString; 776 raw_svector_ostream ASMStream(ASMString); 777 llvm::legacy::PassManager PM; 778 779 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 780 781 if (TargetM->addPassesToEmitFile( 782 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 783 errs() << "The target does not support generation of this file type!\n"; 784 return ""; 785 } 786 787 PM.run(*GPUModule); 788 789 return ASMStream.str(); 790 } 791 792 void GPUNodeBuilder::finalizeKernelFunction() { 793 // Verify module. 794 llvm::legacy::PassManager Passes; 795 Passes.add(createVerifierPass()); 796 Passes.run(*GPUModule); 797 798 if (DumpKernelIR) 799 outs() << *GPUModule << "\n"; 800 801 // Optimize module. 802 llvm::legacy::PassManager OptPasses; 803 PassManagerBuilder PassBuilder; 804 PassBuilder.OptLevel = 3; 805 PassBuilder.SizeLevel = 0; 806 PassBuilder.populateModulePassManager(OptPasses); 807 OptPasses.run(*GPUModule); 808 809 std::string Assembly = createKernelASM(); 810 811 if (DumpKernelASM) 812 outs() << Assembly << "\n"; 813 814 GPUModule.release(); 815 KernelIDs.clear(); 816 } 817 818 namespace { 819 class PPCGCodeGeneration : public ScopPass { 820 public: 821 static char ID; 822 823 /// The scop that is currently processed. 824 Scop *S; 825 826 LoopInfo *LI; 827 DominatorTree *DT; 828 ScalarEvolution *SE; 829 const DataLayout *DL; 830 RegionInfo *RI; 831 832 PPCGCodeGeneration() : ScopPass(ID) {} 833 834 /// Construct compilation options for PPCG. 835 /// 836 /// @returns The compilation options. 837 ppcg_options *createPPCGOptions() { 838 auto DebugOptions = 839 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 840 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 841 842 DebugOptions->dump_schedule_constraints = false; 843 DebugOptions->dump_schedule = false; 844 DebugOptions->dump_final_schedule = false; 845 DebugOptions->dump_sizes = false; 846 847 Options->debug = DebugOptions; 848 849 Options->reschedule = true; 850 Options->scale_tile_loops = false; 851 Options->wrap = false; 852 853 Options->non_negative_parameters = false; 854 Options->ctx = nullptr; 855 Options->sizes = nullptr; 856 857 Options->tile_size = 32; 858 859 Options->use_private_memory = false; 860 Options->use_shared_memory = false; 861 Options->max_shared_memory = 0; 862 863 Options->target = PPCG_TARGET_CUDA; 864 Options->openmp = false; 865 Options->linearize_device_arrays = true; 866 Options->live_range_reordering = false; 867 868 Options->opencl_compiler_options = nullptr; 869 Options->opencl_use_gpu = false; 870 Options->opencl_n_include_file = 0; 871 Options->opencl_include_files = nullptr; 872 Options->opencl_print_kernel_types = false; 873 Options->opencl_embed_kernel_code = false; 874 875 Options->save_schedule_file = nullptr; 876 Options->load_schedule_file = nullptr; 877 878 return Options; 879 } 880 881 /// Get a tagged access relation containing all accesses of type @p AccessTy. 882 /// 883 /// Instead of a normal access of the form: 884 /// 885 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 886 /// 887 /// a tagged access has the form 888 /// 889 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 890 /// 891 /// where 'id' is an additional space that references the memory access that 892 /// triggered the access. 893 /// 894 /// @param AccessTy The type of the memory accesses to collect. 895 /// 896 /// @return The relation describing all tagged memory accesses. 897 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 898 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 899 900 for (auto &Stmt : *S) 901 for (auto &Acc : Stmt) 902 if (Acc->getType() == AccessTy) { 903 isl_map *Relation = Acc->getAccessRelation(); 904 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 905 906 isl_space *Space = isl_map_get_space(Relation); 907 Space = isl_space_range(Space); 908 Space = isl_space_from_range(Space); 909 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 910 isl_map *Universe = isl_map_universe(Space); 911 Relation = isl_map_domain_product(Relation, Universe); 912 Accesses = isl_union_map_add_map(Accesses, Relation); 913 } 914 915 return Accesses; 916 } 917 918 /// Get the set of all read accesses, tagged with the access id. 919 /// 920 /// @see getTaggedAccesses 921 isl_union_map *getTaggedReads() { 922 return getTaggedAccesses(MemoryAccess::READ); 923 } 924 925 /// Get the set of all may (and must) accesses, tagged with the access id. 926 /// 927 /// @see getTaggedAccesses 928 isl_union_map *getTaggedMayWrites() { 929 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 930 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 931 } 932 933 /// Get the set of all must accesses, tagged with the access id. 934 /// 935 /// @see getTaggedAccesses 936 isl_union_map *getTaggedMustWrites() { 937 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 938 } 939 940 /// Collect parameter and array names as isl_ids. 941 /// 942 /// To reason about the different parameters and arrays used, ppcg requires 943 /// a list of all isl_ids in use. As PPCG traditionally performs 944 /// source-to-source compilation each of these isl_ids is mapped to the 945 /// expression that represents it. As we do not have a corresponding 946 /// expression in Polly, we just map each id to a 'zero' expression to match 947 /// the data format that ppcg expects. 948 /// 949 /// @returns Retun a map from collected ids to 'zero' ast expressions. 950 __isl_give isl_id_to_ast_expr *getNames() { 951 auto *Names = isl_id_to_ast_expr_alloc( 952 S->getIslCtx(), 953 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 954 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 955 auto *Space = S->getParamSpace(); 956 957 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 958 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 959 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 960 } 961 962 for (auto &Array : S->arrays()) { 963 auto Id = Array.second->getBasePtrId(); 964 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 965 } 966 967 isl_space_free(Space); 968 isl_ast_expr_free(Zero); 969 970 return Names; 971 } 972 973 /// Create a new PPCG scop from the current scop. 974 /// 975 /// The PPCG scop is initialized with data from the current polly::Scop. From 976 /// this initial data, the data-dependences in the PPCG scop are initialized. 977 /// We do not use Polly's dependence analysis for now, to ensure we match 978 /// the PPCG default behaviour more closely. 979 /// 980 /// @returns A new ppcg scop. 981 ppcg_scop *createPPCGScop() { 982 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 983 984 PPCGScop->options = createPPCGOptions(); 985 986 PPCGScop->start = 0; 987 PPCGScop->end = 0; 988 989 PPCGScop->context = S->getContext(); 990 PPCGScop->domain = S->getDomains(); 991 PPCGScop->call = nullptr; 992 PPCGScop->tagged_reads = getTaggedReads(); 993 PPCGScop->reads = S->getReads(); 994 PPCGScop->live_in = nullptr; 995 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 996 PPCGScop->may_writes = S->getWrites(); 997 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 998 PPCGScop->must_writes = S->getMustWrites(); 999 PPCGScop->live_out = nullptr; 1000 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1001 PPCGScop->tagger = nullptr; 1002 1003 PPCGScop->independence = nullptr; 1004 PPCGScop->dep_flow = nullptr; 1005 PPCGScop->tagged_dep_flow = nullptr; 1006 PPCGScop->dep_false = nullptr; 1007 PPCGScop->dep_forced = nullptr; 1008 PPCGScop->dep_order = nullptr; 1009 PPCGScop->tagged_dep_order = nullptr; 1010 1011 PPCGScop->schedule = S->getScheduleTree(); 1012 PPCGScop->names = getNames(); 1013 1014 PPCGScop->pet = nullptr; 1015 1016 compute_tagger(PPCGScop); 1017 compute_dependences(PPCGScop); 1018 1019 return PPCGScop; 1020 } 1021 1022 /// Collect the array acesses in a statement. 1023 /// 1024 /// @param Stmt The statement for which to collect the accesses. 1025 /// 1026 /// @returns A list of array accesses. 1027 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1028 gpu_stmt_access *Accesses = nullptr; 1029 1030 for (MemoryAccess *Acc : Stmt) { 1031 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1032 Access->read = Acc->isRead(); 1033 Access->write = Acc->isWrite(); 1034 Access->access = Acc->getAccessRelation(); 1035 isl_space *Space = isl_map_get_space(Access->access); 1036 Space = isl_space_range(Space); 1037 Space = isl_space_from_range(Space); 1038 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1039 isl_map *Universe = isl_map_universe(Space); 1040 Access->tagged_access = 1041 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1042 Access->exact_write = Acc->isWrite(); 1043 Access->ref_id = Acc->getId(); 1044 Access->next = Accesses; 1045 Accesses = Access; 1046 } 1047 1048 return Accesses; 1049 } 1050 1051 /// Collect the list of GPU statements. 1052 /// 1053 /// Each statement has an id, a pointer to the underlying data structure, 1054 /// as well as a list with all memory accesses. 1055 /// 1056 /// TODO: Initialize the list of memory accesses. 1057 /// 1058 /// @returns A linked-list of statements. 1059 gpu_stmt *getStatements() { 1060 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1061 std::distance(S->begin(), S->end())); 1062 1063 int i = 0; 1064 for (auto &Stmt : *S) { 1065 gpu_stmt *GPUStmt = &Stmts[i]; 1066 1067 GPUStmt->id = Stmt.getDomainId(); 1068 1069 // We use the pet stmt pointer to keep track of the Polly statements. 1070 GPUStmt->stmt = (pet_stmt *)&Stmt; 1071 GPUStmt->accesses = getStmtAccesses(Stmt); 1072 i++; 1073 } 1074 1075 return Stmts; 1076 } 1077 1078 /// Derive the extent of an array. 1079 /// 1080 /// The extent of an array is defined by the set of memory locations for 1081 /// which a memory access in the iteration domain exists. 1082 /// 1083 /// @param Array The array to derive the extent for. 1084 /// 1085 /// @returns An isl_set describing the extent of the array. 1086 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1087 isl_union_map *Accesses = S->getAccesses(); 1088 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1089 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1090 isl_set *AccessSet = 1091 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1092 isl_union_set_free(AccessUSet); 1093 1094 return AccessSet; 1095 } 1096 1097 /// Derive the bounds of an array. 1098 /// 1099 /// For the first dimension we derive the bound of the array from the extent 1100 /// of this dimension. For inner dimensions we obtain their size directly from 1101 /// ScopArrayInfo. 1102 /// 1103 /// @param PPCGArray The array to compute bounds for. 1104 /// @param Array The polly array from which to take the information. 1105 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1106 if (PPCGArray.n_index > 0) { 1107 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1108 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1109 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1110 isl_set_free(Dom); 1111 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1112 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 1113 isl_aff *One = isl_aff_zero_on_domain(LS); 1114 One = isl_aff_add_constant_si(One, 1); 1115 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1116 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1117 PPCGArray.bound[0] = Bound; 1118 } 1119 1120 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1121 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1122 auto LS = isl_pw_aff_get_domain_space(Bound); 1123 auto Aff = isl_multi_aff_zero(LS); 1124 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1125 PPCGArray.bound[i] = Bound; 1126 } 1127 } 1128 1129 /// Create the arrays for @p PPCGProg. 1130 /// 1131 /// @param PPCGProg The program to compute the arrays for. 1132 void createArrays(gpu_prog *PPCGProg) { 1133 int i = 0; 1134 for (auto &Element : S->arrays()) { 1135 ScopArrayInfo *Array = Element.second.get(); 1136 1137 std::string TypeName; 1138 raw_string_ostream OS(TypeName); 1139 1140 OS << *Array->getElementType(); 1141 TypeName = OS.str(); 1142 1143 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1144 1145 PPCGArray.space = Array->getSpace(); 1146 PPCGArray.type = strdup(TypeName.c_str()); 1147 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1148 PPCGArray.name = strdup(Array->getName().c_str()); 1149 PPCGArray.extent = nullptr; 1150 PPCGArray.n_index = Array->getNumberOfDimensions(); 1151 PPCGArray.bound = 1152 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1153 PPCGArray.extent = getExtent(Array); 1154 PPCGArray.n_ref = 0; 1155 PPCGArray.refs = nullptr; 1156 PPCGArray.accessed = true; 1157 PPCGArray.read_only_scalar = false; 1158 PPCGArray.has_compound_element = false; 1159 PPCGArray.local = false; 1160 PPCGArray.declare_local = false; 1161 PPCGArray.global = false; 1162 PPCGArray.linearize = false; 1163 PPCGArray.dep_order = nullptr; 1164 1165 setArrayBounds(PPCGArray, Array); 1166 i++; 1167 1168 collect_references(PPCGProg, &PPCGArray); 1169 } 1170 } 1171 1172 /// Create an identity map between the arrays in the scop. 1173 /// 1174 /// @returns An identity map between the arrays in the scop. 1175 isl_union_map *getArrayIdentity() { 1176 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1177 1178 for (auto &Item : S->arrays()) { 1179 ScopArrayInfo *Array = Item.second.get(); 1180 isl_space *Space = Array->getSpace(); 1181 Space = isl_space_map_from_set(Space); 1182 isl_map *Identity = isl_map_identity(Space); 1183 Maps = isl_union_map_add_map(Maps, Identity); 1184 } 1185 1186 return Maps; 1187 } 1188 1189 /// Create a default-initialized PPCG GPU program. 1190 /// 1191 /// @returns A new gpu grogram description. 1192 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1193 1194 if (!PPCGScop) 1195 return nullptr; 1196 1197 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1198 1199 PPCGProg->ctx = S->getIslCtx(); 1200 PPCGProg->scop = PPCGScop; 1201 PPCGProg->context = isl_set_copy(PPCGScop->context); 1202 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1203 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1204 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1205 PPCGProg->tagged_must_kill = 1206 isl_union_map_copy(PPCGScop->tagged_must_kills); 1207 PPCGProg->to_inner = getArrayIdentity(); 1208 PPCGProg->to_outer = getArrayIdentity(); 1209 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1210 PPCGProg->any_to_outer = nullptr; 1211 PPCGProg->array_order = nullptr; 1212 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1213 PPCGProg->stmts = getStatements(); 1214 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1215 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1216 PPCGProg->n_array); 1217 1218 createArrays(PPCGProg); 1219 1220 return PPCGProg; 1221 } 1222 1223 struct PrintGPUUserData { 1224 struct cuda_info *CudaInfo; 1225 struct gpu_prog *PPCGProg; 1226 std::vector<ppcg_kernel *> Kernels; 1227 }; 1228 1229 /// Print a user statement node in the host code. 1230 /// 1231 /// We use ppcg's printing facilities to print the actual statement and 1232 /// additionally build up a list of all kernels that are encountered in the 1233 /// host ast. 1234 /// 1235 /// @param P The printer to print to 1236 /// @param Options The printing options to use 1237 /// @param Node The node to print 1238 /// @param User A user pointer to carry additional data. This pointer is 1239 /// expected to be of type PrintGPUUserData. 1240 /// 1241 /// @returns A printer to which the output has been printed. 1242 static __isl_give isl_printer * 1243 printHostUser(__isl_take isl_printer *P, 1244 __isl_take isl_ast_print_options *Options, 1245 __isl_take isl_ast_node *Node, void *User) { 1246 auto Data = (struct PrintGPUUserData *)User; 1247 auto Id = isl_ast_node_get_annotation(Node); 1248 1249 if (Id) { 1250 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1251 1252 // If this is a user statement, format it ourselves as ppcg would 1253 // otherwise try to call pet functionality that is not available in 1254 // Polly. 1255 if (IsUser) { 1256 P = isl_printer_start_line(P); 1257 P = isl_printer_print_ast_node(P, Node); 1258 P = isl_printer_end_line(P); 1259 isl_id_free(Id); 1260 isl_ast_print_options_free(Options); 1261 return P; 1262 } 1263 1264 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1265 isl_id_free(Id); 1266 Data->Kernels.push_back(Kernel); 1267 } 1268 1269 return print_host_user(P, Options, Node, User); 1270 } 1271 1272 /// Print C code corresponding to the control flow in @p Kernel. 1273 /// 1274 /// @param Kernel The kernel to print 1275 void printKernel(ppcg_kernel *Kernel) { 1276 auto *P = isl_printer_to_str(S->getIslCtx()); 1277 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1278 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1279 P = isl_ast_node_print(Kernel->tree, P, Options); 1280 char *String = isl_printer_get_str(P); 1281 printf("%s\n", String); 1282 free(String); 1283 isl_printer_free(P); 1284 } 1285 1286 /// Print C code corresponding to the GPU code described by @p Tree. 1287 /// 1288 /// @param Tree An AST describing GPU code 1289 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1290 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1291 auto *P = isl_printer_to_str(S->getIslCtx()); 1292 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1293 1294 PrintGPUUserData Data; 1295 Data.PPCGProg = PPCGProg; 1296 1297 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1298 Options = 1299 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1300 P = isl_ast_node_print(Tree, P, Options); 1301 char *String = isl_printer_get_str(P); 1302 printf("# host\n"); 1303 printf("%s\n", String); 1304 free(String); 1305 isl_printer_free(P); 1306 1307 for (auto Kernel : Data.Kernels) { 1308 printf("# kernel%d\n", Kernel->id); 1309 printKernel(Kernel); 1310 } 1311 } 1312 1313 // Generate a GPU program using PPCG. 1314 // 1315 // GPU mapping consists of multiple steps: 1316 // 1317 // 1) Compute new schedule for the program. 1318 // 2) Map schedule to GPU (TODO) 1319 // 3) Generate code for new schedule (TODO) 1320 // 1321 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1322 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1323 // strategy directly from this pass. 1324 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1325 1326 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1327 1328 PPCGGen->ctx = S->getIslCtx(); 1329 PPCGGen->options = PPCGScop->options; 1330 PPCGGen->print = nullptr; 1331 PPCGGen->print_user = nullptr; 1332 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1333 PPCGGen->prog = PPCGProg; 1334 PPCGGen->tree = nullptr; 1335 PPCGGen->types.n = 0; 1336 PPCGGen->types.name = nullptr; 1337 PPCGGen->sizes = nullptr; 1338 PPCGGen->used_sizes = nullptr; 1339 PPCGGen->kernel_id = 0; 1340 1341 // Set scheduling strategy to same strategy PPCG is using. 1342 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1343 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1344 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1345 1346 isl_schedule *Schedule = get_schedule(PPCGGen); 1347 1348 int has_permutable = has_any_permutable_node(Schedule); 1349 1350 if (!has_permutable || has_permutable < 0) { 1351 Schedule = isl_schedule_free(Schedule); 1352 } else { 1353 Schedule = map_to_device(PPCGGen, Schedule); 1354 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1355 } 1356 1357 if (DumpSchedule) { 1358 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1359 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1360 P = isl_printer_print_str(P, "Schedule\n"); 1361 P = isl_printer_print_str(P, "========\n"); 1362 if (Schedule) 1363 P = isl_printer_print_schedule(P, Schedule); 1364 else 1365 P = isl_printer_print_str(P, "No schedule found\n"); 1366 1367 printf("%s\n", isl_printer_get_str(P)); 1368 isl_printer_free(P); 1369 } 1370 1371 if (DumpCode) { 1372 printf("Code\n"); 1373 printf("====\n"); 1374 if (PPCGGen->tree) 1375 printGPUTree(PPCGGen->tree, PPCGProg); 1376 else 1377 printf("No code generated\n"); 1378 } 1379 1380 isl_schedule_free(Schedule); 1381 1382 return PPCGGen; 1383 } 1384 1385 /// Free gpu_gen structure. 1386 /// 1387 /// @param PPCGGen The ppcg_gen object to free. 1388 void freePPCGGen(gpu_gen *PPCGGen) { 1389 isl_ast_node_free(PPCGGen->tree); 1390 isl_union_map_free(PPCGGen->sizes); 1391 isl_union_map_free(PPCGGen->used_sizes); 1392 free(PPCGGen); 1393 } 1394 1395 /// Free the options in the ppcg scop structure. 1396 /// 1397 /// ppcg is not freeing these options for us. To avoid leaks we do this 1398 /// ourselves. 1399 /// 1400 /// @param PPCGScop The scop referencing the options to free. 1401 void freeOptions(ppcg_scop *PPCGScop) { 1402 free(PPCGScop->options->debug); 1403 PPCGScop->options->debug = nullptr; 1404 free(PPCGScop->options); 1405 PPCGScop->options = nullptr; 1406 } 1407 1408 /// Generate code for a given GPU AST described by @p Root. 1409 /// 1410 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1411 /// @param Prog The GPU Program to generate code for. 1412 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1413 ScopAnnotator Annotator; 1414 Annotator.buildAliasScopes(*S); 1415 1416 Region *R = &S->getRegion(); 1417 1418 simplifyRegion(R, DT, LI, RI); 1419 1420 BasicBlock *EnteringBB = R->getEnteringBlock(); 1421 1422 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1423 1424 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1425 Prog); 1426 1427 // Only build the run-time condition and parameters _after_ having 1428 // introduced the conditional branch. This is important as the conditional 1429 // branch will guard the original scop from new induction variables that 1430 // the SCEVExpander may introduce while code generating the parameters and 1431 // which may introduce scalar dependences that prevent us from correctly 1432 // code generating this scop. 1433 BasicBlock *StartBlock = 1434 executeScopConditionally(*S, this, Builder.getTrue()); 1435 1436 // TODO: Handle LICM 1437 // TODO: Verify run-time checks 1438 auto SplitBlock = StartBlock->getSinglePredecessor(); 1439 Builder.SetInsertPoint(SplitBlock->getTerminator()); 1440 NodeBuilder.addParameters(S->getContext()); 1441 Builder.SetInsertPoint(&*StartBlock->begin()); 1442 1443 NodeBuilder.initializeAfterRTH(); 1444 NodeBuilder.create(Root); 1445 NodeBuilder.finalize(); 1446 } 1447 1448 bool runOnScop(Scop &CurrentScop) override { 1449 S = &CurrentScop; 1450 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1451 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1452 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1453 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 1454 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 1455 1456 // We currently do not support scops with invariant loads. 1457 if (S->hasInvariantAccesses()) 1458 return false; 1459 1460 auto PPCGScop = createPPCGScop(); 1461 auto PPCGProg = createPPCGProg(PPCGScop); 1462 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 1463 1464 if (PPCGGen->tree) 1465 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 1466 1467 freeOptions(PPCGScop); 1468 freePPCGGen(PPCGGen); 1469 gpu_prog_free(PPCGProg); 1470 ppcg_scop_free(PPCGScop); 1471 1472 return true; 1473 } 1474 1475 void printScop(raw_ostream &, Scop &) const override {} 1476 1477 void getAnalysisUsage(AnalysisUsage &AU) const override { 1478 AU.addRequired<DominatorTreeWrapperPass>(); 1479 AU.addRequired<RegionInfoPass>(); 1480 AU.addRequired<ScalarEvolutionWrapperPass>(); 1481 AU.addRequired<ScopDetection>(); 1482 AU.addRequired<ScopInfoRegionPass>(); 1483 AU.addRequired<LoopInfoWrapperPass>(); 1484 1485 AU.addPreserved<AAResultsWrapperPass>(); 1486 AU.addPreserved<BasicAAWrapperPass>(); 1487 AU.addPreserved<LoopInfoWrapperPass>(); 1488 AU.addPreserved<DominatorTreeWrapperPass>(); 1489 AU.addPreserved<GlobalsAAWrapperPass>(); 1490 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1491 AU.addPreserved<ScopDetection>(); 1492 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1493 AU.addPreserved<SCEVAAWrapperPass>(); 1494 1495 // FIXME: We do not yet add regions for the newly generated code to the 1496 // region tree. 1497 AU.addPreserved<RegionInfoPass>(); 1498 AU.addPreserved<ScopInfoRegionPass>(); 1499 } 1500 }; 1501 } 1502 1503 char PPCGCodeGeneration::ID = 1; 1504 1505 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1506 1507 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1508 "Polly - Apply PPCG translation to SCOP", false, false) 1509 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1510 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1511 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1512 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1513 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1514 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1515 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1516 "Polly - Apply PPCG translation to SCOP", false, false) 1517