1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
10 // GPU mapping strategy.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "polly/CodeGen/PPCGCodeGeneration.h"
15 #include "polly/CodeGen/CodeGeneration.h"
16 #include "polly/CodeGen/IslAst.h"
17 #include "polly/CodeGen/IslNodeBuilder.h"
18 #include "polly/CodeGen/PerfMonitor.h"
19 #include "polly/CodeGen/Utils.h"
20 #include "polly/DependenceInfo.h"
21 #include "polly/LinkAllPasses.h"
22 #include "polly/Options.h"
23 #include "polly/ScopDetection.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/ISLTools.h"
26 #include "polly/Support/SCEVValidator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/IR/IntrinsicsNVPTX.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #include "llvm/IR/Verifier.h"
32 #include "llvm/IRReader/IRReader.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Linker/Linker.h"
35 #include "llvm/MC/TargetRegistry.h"
36 #include "llvm/Support/SourceMgr.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "isl/union_map.h"
41 #include <algorithm>
42
43 extern "C" {
44 #include "ppcg/cuda.h"
45 #include "ppcg/gpu.h"
46 #include "ppcg/ppcg.h"
47 }
48
49 #include "llvm/Support/Debug.h"
50
51 using namespace polly;
52 using namespace llvm;
53
54 #define DEBUG_TYPE "polly-codegen-ppcg"
55
56 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
57 cl::desc("Dump the computed GPU Schedule"),
58 cl::Hidden, cl::cat(PollyCategory));
59
60 static cl::opt<bool>
61 DumpCode("polly-acc-dump-code",
62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
63 cl::cat(PollyCategory));
64
65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
66 cl::desc("Dump the kernel LLVM-IR"),
67 cl::Hidden, cl::cat(PollyCategory));
68
69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
70 cl::desc("Dump the kernel assembly code"),
71 cl::Hidden, cl::cat(PollyCategory));
72
73 static cl::opt<bool> FastMath("polly-acc-fastmath",
74 cl::desc("Allow unsafe math optimizations"),
75 cl::Hidden, cl::cat(PollyCategory));
76 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
77 cl::desc("Use shared memory"), cl::Hidden,
78 cl::cat(PollyCategory));
79 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
80 cl::desc("Use private memory"), cl::Hidden,
81 cl::cat(PollyCategory));
82
83 bool polly::PollyManagedMemory;
84 static cl::opt<bool, true>
85 XManagedMemory("polly-acc-codegen-managed-memory",
86 cl::desc("Generate Host kernel code assuming"
87 " that all memory has been"
88 " declared as managed memory"),
89 cl::location(PollyManagedMemory), cl::Hidden,
90 cl::init(false), cl::cat(PollyCategory));
91
92 static cl::opt<bool>
93 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
94 cl::desc("Fail and generate a backtrace if"
95 " verifyModule fails on the GPU "
96 " kernel module."),
97 cl::Hidden, cl::cat(PollyCategory));
98
99 static cl::opt<std::string> CUDALibDevice(
100 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
101 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
102 cl::cat(PollyCategory));
103
104 static cl::opt<std::string>
105 CudaVersion("polly-acc-cuda-version",
106 cl::desc("The CUDA version to compile for"), cl::Hidden,
107 cl::init("sm_30"), cl::cat(PollyCategory));
108
109 static cl::opt<int>
110 MinCompute("polly-acc-mincompute",
111 cl::desc("Minimal number of compute statements to run on GPU."),
112 cl::Hidden, cl::init(10 * 512 * 512));
113
114 GPURuntime polly::GPURuntimeChoice;
115 static cl::opt<GPURuntime, true>
116 XGPURuntimeChoice("polly-gpu-runtime",
117 cl::desc("The GPU Runtime API to target"),
118 cl::values(clEnumValN(GPURuntime::CUDA, "libcudart",
119 "use the CUDA Runtime API"),
120 clEnumValN(GPURuntime::OpenCL, "libopencl",
121 "use the OpenCL Runtime API")),
122 cl::location(polly::GPURuntimeChoice),
123 cl::init(GPURuntime::CUDA), cl::cat(PollyCategory));
124
125 GPUArch polly::GPUArchChoice;
126 static cl::opt<GPUArch, true>
127 XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"),
128 cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64",
129 "target NVIDIA 64-bit architecture"),
130 clEnumValN(GPUArch::SPIR32, "spir32",
131 "target SPIR 32-bit architecture"),
132 clEnumValN(GPUArch::SPIR64, "spir64",
133 "target SPIR 64-bit architecture")),
134 cl::location(polly::GPUArchChoice),
135 cl::init(GPUArch::NVPTX64), cl::cat(PollyCategory));
136
137 extern bool polly::PerfMonitoring;
138
139 /// Return a unique name for a Scop, which is the scop region with the
140 /// function name.
getUniqueScopName(const Scop * S)141 std::string getUniqueScopName(const Scop *S) {
142 return "Scop Region: " + S->getNameStr() +
143 " | Function: " + std::string(S->getFunction().getName());
144 }
145
146 /// Used to store information PPCG wants for kills. This information is
147 /// used by live range reordering.
148 ///
149 /// @see computeLiveRangeReordering
150 /// @see GPUNodeBuilder::createPPCGScop
151 /// @see GPUNodeBuilder::createPPCGProg
152 struct MustKillsInfo {
153 /// Collection of all kill statements that will be sequenced at the end of
154 /// PPCGScop->schedule.
155 ///
156 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
157 /// which merges schedules in *arbitrary* order.
158 /// (we don't care about the order of the kills anyway).
159 isl::schedule KillsSchedule;
160 /// Map from kill statement instances to scalars that need to be
161 /// killed.
162 ///
163 /// We currently derive kill information for:
164 /// 1. phi nodes. PHI nodes are not alive outside the scop and can
165 /// consequently all be killed.
166 /// 2. Scalar arrays that are not used outside the Scop. This is
167 /// checked by `isScalarUsesContainedInScop`.
168 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
169 isl::union_map TaggedMustKills;
170
171 /// Tagged must kills stripped of the tags.
172 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] }
173 isl::union_map MustKills;
174
MustKillsInfoMustKillsInfo175 MustKillsInfo() : KillsSchedule() {}
176 };
177
178 /// Check if SAI's uses are entirely contained within Scop S.
179 /// If a scalar is used only with a Scop, we are free to kill it, as no data
180 /// can flow in/out of the value any more.
181 /// @see computeMustKillsInfo
isScalarUsesContainedInScop(const Scop & S,const ScopArrayInfo * SAI)182 static bool isScalarUsesContainedInScop(const Scop &S,
183 const ScopArrayInfo *SAI) {
184 assert(SAI->isValueKind() && "this function only deals with scalars."
185 " Dealing with arrays required alias analysis");
186
187 const Region &R = S.getRegion();
188 for (User *U : SAI->getBasePtr()->users()) {
189 Instruction *I = dyn_cast<Instruction>(U);
190 assert(I && "invalid user of scop array info");
191 if (!R.contains(I))
192 return false;
193 }
194 return true;
195 }
196
197 /// Compute must-kills needed to enable live range reordering with PPCG.
198 ///
199 /// @params S The Scop to compute live range reordering information
200 /// @returns live range reordering information that can be used to setup
201 /// PPCG.
computeMustKillsInfo(const Scop & S)202 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
203 const isl::space ParamSpace = S.getParamSpace();
204 MustKillsInfo Info;
205
206 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
207 // 1.1 phi nodes in scop.
208 // 1.2 scalars that are only used within the scop
209 SmallVector<isl::id, 4> KillMemIds;
210 for (ScopArrayInfo *SAI : S.arrays()) {
211 if (SAI->isPHIKind() ||
212 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
213 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
214 }
215
216 Info.TaggedMustKills = isl::union_map::empty(ParamSpace.ctx());
217 Info.MustKills = isl::union_map::empty(ParamSpace.ctx());
218
219 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
220 // schedule:
221 // - filter: "[control] -> { }"
222 // So, we choose to not create this to keep the output a little nicer,
223 // at the cost of some code complexity.
224 Info.KillsSchedule = {};
225
226 for (isl::id &ToKillId : KillMemIds) {
227 isl::id KillStmtId = isl::id::alloc(
228 S.getIslCtx(),
229 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
230
231 // NOTE: construction of tagged_must_kill:
232 // 2. We need to construct a map:
233 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
234 // To construct this, we use `isl_map_domain_product` on 2 maps`:
235 // 2a. StmtToScalar:
236 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
237 // 2b. PhantomRefToScalar:
238 // [param] -> { ref_phantom[] -> scalar_to_kill[] }
239 //
240 // Combining these with `isl_map_domain_product` gives us
241 // TaggedMustKill:
242 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
243
244 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
245 isl::map StmtToScalar = isl::map::universe(ParamSpace);
246 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
247 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
248
249 isl::id PhantomRefId = isl::id::alloc(
250 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
251 nullptr);
252
253 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
254 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
255 PhantomRefToScalar =
256 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
257 PhantomRefToScalar =
258 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
259
260 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
261 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
262 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
263
264 // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
265 Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
266
267 // 3. Create the kill schedule of the form:
268 // "[param] -> { Stmt_phantom[] }"
269 // Then add this to Info.KillsSchedule.
270 isl::space KillStmtSpace = ParamSpace;
271 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
272 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
273
274 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
275 if (!Info.KillsSchedule.is_null())
276 Info.KillsSchedule = isl::manage(
277 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy()));
278 else
279 Info.KillsSchedule = KillSchedule;
280 }
281
282 return Info;
283 }
284
285 /// Create the ast expressions for a ScopStmt.
286 ///
287 /// This function is a callback for to generate the ast expressions for each
288 /// of the scheduled ScopStmts.
pollyBuildAstExprForStmt(void * StmtT,__isl_take isl_ast_build * Build_C,isl_multi_pw_aff * (* FunctionIndex)(__isl_take isl_multi_pw_aff * MPA,isl_id * Id,void * User),void * UserIndex,isl_ast_expr * (* FunctionExpr)(isl_ast_expr * Expr,isl_id * Id,void * User),void * UserExpr)289 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
290 void *StmtT, __isl_take isl_ast_build *Build_C,
291 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
292 isl_id *Id, void *User),
293 void *UserIndex,
294 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
295 void *UserExpr) {
296
297 ScopStmt *Stmt = (ScopStmt *)StmtT;
298
299 if (!Stmt || !Build_C)
300 return NULL;
301
302 isl::ast_build Build = isl::manage_copy(Build_C);
303 isl::ctx Ctx = Build.ctx();
304 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
305
306 Stmt->setAstBuild(Build);
307
308 for (MemoryAccess *Acc : *Stmt) {
309 isl::map AddrFunc = Acc->getAddressFunction();
310 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
311
312 isl::id RefId = Acc->getId();
313 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
314
315 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
316 MPA = MPA.coalesce();
317 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
318
319 isl::ast_expr Access = Build.access_from(MPA);
320 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
321 RefToExpr = RefToExpr.set(RefId, Access);
322 }
323
324 return RefToExpr.release();
325 }
326
327 /// Given a LLVM Type, compute its size in bytes,
computeSizeInBytes(const Type * T)328 static int computeSizeInBytes(const Type *T) {
329 int bytes = T->getPrimitiveSizeInBits() / 8;
330 if (bytes == 0)
331 bytes = T->getScalarSizeInBits() / 8;
332 return bytes;
333 }
334
335 /// Generate code for a GPU specific isl AST.
336 ///
337 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
338 /// generates code for general-purpose AST nodes, with special functionality
339 /// for generating GPU specific user nodes.
340 ///
341 /// @see GPUNodeBuilder::createUser
342 class GPUNodeBuilder final : public IslNodeBuilder {
343 public:
GPUNodeBuilder(PollyIRBuilder & Builder,ScopAnnotator & Annotator,const DataLayout & DL,LoopInfo & LI,ScalarEvolution & SE,DominatorTree & DT,Scop & S,BasicBlock * StartBlock,gpu_prog * Prog,GPURuntime Runtime,GPUArch Arch)344 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
345 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
346 DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
347 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
348 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
349 Prog(Prog), Runtime(Runtime), Arch(Arch) {
350 getExprBuilder().setIDToSAI(&IDToSAI);
351 }
352
353 /// Create after-run-time-check initialization code.
354 void initializeAfterRTH();
355
356 /// Finalize the generated scop.
357 void finalize() override;
358
359 /// Track if the full build process was successful.
360 ///
361 /// This value is set to false, if throughout the build process an error
362 /// occurred which prevents us from generating valid GPU code.
363 bool BuildSuccessful = true;
364
365 /// The maximal number of loops surrounding a sequential kernel.
366 unsigned DeepestSequential = 0;
367
368 /// The maximal number of loops surrounding a parallel kernel.
369 unsigned DeepestParallel = 0;
370
371 /// Return the name to set for the ptx_kernel.
372 std::string getKernelFuncName(int Kernel_id);
373
374 private:
375 /// A vector of array base pointers for which a new ScopArrayInfo was created.
376 ///
377 /// This vector is used to delete the ScopArrayInfo when it is not needed any
378 /// more.
379 std::vector<Value *> LocalArrays;
380
381 /// A map from ScopArrays to their corresponding device allocations.
382 std::map<ScopArrayInfo *, Value *> DeviceAllocations;
383
384 /// The current GPU context.
385 Value *GPUContext;
386
387 /// The set of isl_ids allocated in the kernel
388 std::vector<isl_id *> KernelIds;
389
390 /// A module containing GPU code.
391 ///
392 /// This pointer is only set in case we are currently generating GPU code.
393 std::unique_ptr<Module> GPUModule;
394
395 /// The GPU program we generate code for.
396 gpu_prog *Prog;
397
398 /// The GPU Runtime implementation to use (OpenCL or CUDA).
399 GPURuntime Runtime;
400
401 /// The GPU Architecture to target.
402 GPUArch Arch;
403
404 /// Class to free isl_ids.
405 class IslIdDeleter final {
406 public:
operator ()(__isl_take isl_id * Id)407 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
408 };
409
410 /// A set containing all isl_ids allocated in a GPU kernel.
411 ///
412 /// By releasing this set all isl_ids will be freed.
413 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
414
415 IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
416
417 /// Create code for user-defined AST nodes.
418 ///
419 /// These AST nodes can be of type:
420 ///
421 /// - ScopStmt: A computational statement (TODO)
422 /// - Kernel: A GPU kernel call (TODO)
423 /// - Data-Transfer: A GPU <-> CPU data-transfer
424 /// - In-kernel synchronization
425 /// - In-kernel memory copy statement
426 ///
427 /// @param UserStmt The ast node to generate code for.
428 void createUser(__isl_take isl_ast_node *UserStmt) override;
429
430 void createFor(__isl_take isl_ast_node *Node) override;
431
432 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
433
434 /// Create code for a data transfer statement
435 ///
436 /// @param TransferStmt The data transfer statement.
437 /// @param Direction The direction in which to transfer data.
438 void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
439 enum DataDirection Direction);
440
441 /// Find llvm::Values referenced in GPU kernel.
442 ///
443 /// @param Kernel The kernel to scan for llvm::Values
444 ///
445 /// @returns A tuple, whose:
446 /// - First element contains the set of values referenced by the
447 /// kernel
448 /// - Second element contains the set of functions referenced by the
449 /// kernel. All functions in the set satisfy
450 /// `isValidFunctionInKernel`.
451 /// - Third element contains loops that have induction variables
452 /// which are used in the kernel, *and* these loops are *neither*
453 /// in the scop, nor do they immediately surroung the Scop.
454 /// See [Code generation of induction variables of loops outside
455 /// Scops]
456 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
457 isl::space>
458 getReferencesInKernel(ppcg_kernel *Kernel);
459
460 /// Compute the sizes of the execution grid for a given kernel.
461 ///
462 /// @param Kernel The kernel to compute grid sizes for.
463 ///
464 /// @returns A tuple with grid sizes for X and Y dimension
465 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
466
467 /// Get the managed array pointer for sending host pointers to the device.
468 /// \note
469 /// This is to be used only with managed memory
470 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
471
472 /// Compute the sizes of the thread blocks for a given kernel.
473 ///
474 /// @param Kernel The kernel to compute thread block sizes for.
475 ///
476 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
477 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
478
479 /// Store a specific kernel launch parameter in the array of kernel launch
480 /// parameters.
481 ///
482 /// @param ArrayTy Array type of \p Parameters.
483 /// @param Parameters The list of parameters in which to store.
484 /// @param Param The kernel launch parameter to store.
485 /// @param Index The index in the parameter list, at which to store the
486 /// parameter.
487 void insertStoreParameter(Type *ArrayTy, Instruction *Parameters,
488 Instruction *Param, int Index);
489
490 /// Create kernel launch parameters.
491 ///
492 /// @param Kernel The kernel to create parameters for.
493 /// @param F The kernel function that has been created.
494 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
495 ///
496 /// @returns A stack allocated array with pointers to the parameter
497 /// values that are passed to the kernel.
498 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
499 SetVector<Value *> SubtreeValues);
500
501 /// Create declarations for kernel variable.
502 ///
503 /// This includes shared memory declarations.
504 ///
505 /// @param Kernel The kernel definition to create variables for.
506 /// @param FN The function into which to generate the variables.
507 void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
508
509 /// Add CUDA annotations to module.
510 ///
511 /// Add a set of CUDA annotations that declares the maximal block dimensions
512 /// that will be used to execute the CUDA kernel. This allows the NVIDIA
513 /// PTX compiler to bound the number of allocated registers to ensure the
514 /// resulting kernel is known to run with up to as many block dimensions
515 /// as specified here.
516 ///
517 /// @param M The module to add the annotations to.
518 /// @param BlockDimX The size of block dimension X.
519 /// @param BlockDimY The size of block dimension Y.
520 /// @param BlockDimZ The size of block dimension Z.
521 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
522 Value *BlockDimZ);
523
524 /// Create GPU kernel.
525 ///
526 /// Code generate the kernel described by @p KernelStmt.
527 ///
528 /// @param KernelStmt The ast node to generate kernel code for.
529 void createKernel(__isl_take isl_ast_node *KernelStmt);
530
531 /// Generate code that computes the size of an array.
532 ///
533 /// @param Array The array for which to compute a size.
534 Value *getArraySize(gpu_array_info *Array);
535
536 /// Generate code to compute the minimal offset at which an array is accessed.
537 ///
538 /// The offset of an array is the minimal array location accessed in a scop.
539 ///
540 /// Example:
541 ///
542 /// for (long i = 0; i < 100; i++)
543 /// A[i + 42] += ...
544 ///
545 /// getArrayOffset(A) results in 42.
546 ///
547 /// @param Array The array for which to compute the offset.
548 /// @returns An llvm::Value that contains the offset of the array.
549 Value *getArrayOffset(gpu_array_info *Array);
550
551 /// Prepare the kernel arguments for kernel code generation
552 ///
553 /// @param Kernel The kernel to generate code for.
554 /// @param FN The function created for the kernel.
555 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
556
557 /// Create kernel function.
558 ///
559 /// Create a kernel function located in a newly created module that can serve
560 /// as target for device code generation. Set the Builder to point to the
561 /// start block of this newly created function.
562 ///
563 /// @param Kernel The kernel to generate code for.
564 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
565 /// @param SubtreeFunctions The set of llvm::Functions referenced by this
566 /// kernel.
567 void createKernelFunction(ppcg_kernel *Kernel,
568 SetVector<Value *> &SubtreeValues,
569 SetVector<Function *> &SubtreeFunctions);
570
571 /// Create the declaration of a kernel function.
572 ///
573 /// The kernel function takes as arguments:
574 ///
575 /// - One i8 pointer for each external array reference used in the kernel.
576 /// - Host iterators
577 /// - Parameters
578 /// - Other LLVM Value references (TODO)
579 ///
580 /// @param Kernel The kernel to generate the function declaration for.
581 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
582 ///
583 /// @returns The newly declared function.
584 Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
585 SetVector<Value *> &SubtreeValues);
586
587 /// Insert intrinsic functions to obtain thread and block ids.
588 ///
589 /// @param The kernel to generate the intrinsic functions for.
590 void insertKernelIntrinsics(ppcg_kernel *Kernel);
591
592 /// Insert function calls to retrieve the SPIR group/local ids.
593 ///
594 /// @param Kernel The kernel to generate the function calls for.
595 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit.
596 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit);
597
598 /// Setup the creation of functions referenced by the GPU kernel.
599 ///
600 /// 1. Create new function declarations in GPUModule which are the same as
601 /// SubtreeFunctions.
602 ///
603 /// 2. Populate IslNodeBuilder::ValueMap with mappings from
604 /// old functions (that come from the original module) to new functions
605 /// (that are created within GPUModule). That way, we generate references
606 /// to the correct function (in GPUModule) in BlockGenerator.
607 ///
608 /// @see IslNodeBuilder::ValueMap
609 /// @see BlockGenerator::GlobalMap
610 /// @see BlockGenerator::getNewValue
611 /// @see GPUNodeBuilder::getReferencesInKernel.
612 ///
613 /// @param SubtreeFunctions The set of llvm::Functions referenced by
614 /// this kernel.
615 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
616
617 /// Create a global-to-shared or shared-to-global copy statement.
618 ///
619 /// @param CopyStmt The copy statement to generate code for
620 void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
621
622 /// Create code for a ScopStmt called in @p Expr.
623 ///
624 /// @param Expr The expression containing the call.
625 /// @param KernelStmt The kernel statement referenced in the call.
626 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
627
628 /// Create an in-kernel synchronization call.
629 void createKernelSync();
630
631 /// Create a PTX assembly string for the current GPU kernel.
632 ///
633 /// @returns A string containing the corresponding PTX assembly code.
634 std::string createKernelASM();
635
636 /// Remove references from the dominator tree to the kernel function @p F.
637 ///
638 /// @param F The function to remove references to.
639 void clearDominators(Function *F);
640
641 /// Remove references from scalar evolution to the kernel function @p F.
642 ///
643 /// @param F The function to remove references to.
644 void clearScalarEvolution(Function *F);
645
646 /// Remove references from loop info to the kernel function @p F.
647 ///
648 /// @param F The function to remove references to.
649 void clearLoops(Function *F);
650
651 /// Check if the scop requires to be linked with CUDA's libdevice.
652 bool requiresCUDALibDevice();
653
654 /// Link with the NVIDIA libdevice library (if needed and available).
655 void addCUDALibDevice();
656
657 /// Finalize the generation of the kernel function.
658 ///
659 /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
660 /// dump its IR to stderr.
661 ///
662 /// @returns The Assembly string of the kernel.
663 std::string finalizeKernelFunction();
664
665 /// Finalize the generation of the kernel arguments.
666 ///
667 /// This function ensures that not-read-only scalars used in a kernel are
668 /// stored back to the global memory location they are backed with before
669 /// the kernel terminates.
670 ///
671 /// @params Kernel The kernel to finalize kernel arguments for.
672 void finalizeKernelArguments(ppcg_kernel *Kernel);
673
674 /// Create code that allocates memory to store arrays on device.
675 void allocateDeviceArrays();
676
677 /// Create code to prepare the managed device pointers.
678 void prepareManagedDeviceArrays();
679
680 /// Free all allocated device arrays.
681 void freeDeviceArrays();
682
683 /// Create a call to initialize the GPU context.
684 ///
685 /// @returns A pointer to the newly initialized context.
686 Value *createCallInitContext();
687
688 /// Create a call to get the device pointer for a kernel allocation.
689 ///
690 /// @param Allocation The Polly GPU allocation
691 ///
692 /// @returns The device parameter corresponding to this allocation.
693 Value *createCallGetDevicePtr(Value *Allocation);
694
695 /// Create a call to free the GPU context.
696 ///
697 /// @param Context A pointer to an initialized GPU context.
698 void createCallFreeContext(Value *Context);
699
700 /// Create a call to allocate memory on the device.
701 ///
702 /// @param Size The size of memory to allocate
703 ///
704 /// @returns A pointer that identifies this allocation.
705 Value *createCallAllocateMemoryForDevice(Value *Size);
706
707 /// Create a call to free a device array.
708 ///
709 /// @param Array The device array to free.
710 void createCallFreeDeviceMemory(Value *Array);
711
712 /// Create a call to copy data from host to device.
713 ///
714 /// @param HostPtr A pointer to the host data that should be copied.
715 /// @param DevicePtr A device pointer specifying the location to copy to.
716 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
717 Value *Size);
718
719 /// Create a call to copy data from device to host.
720 ///
721 /// @param DevicePtr A pointer to the device data that should be copied.
722 /// @param HostPtr A host pointer specifying the location to copy to.
723 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
724 Value *Size);
725
726 /// Create a call to synchronize Host & Device.
727 /// \note
728 /// This is to be used only with managed memory.
729 void createCallSynchronizeDevice();
730
731 /// Create a call to get a kernel from an assembly string.
732 ///
733 /// @param Buffer The string describing the kernel.
734 /// @param Entry The name of the kernel function to call.
735 ///
736 /// @returns A pointer to a kernel object
737 Value *createCallGetKernel(Value *Buffer, Value *Entry);
738
739 /// Create a call to free a GPU kernel.
740 ///
741 /// @param GPUKernel THe kernel to free.
742 void createCallFreeKernel(Value *GPUKernel);
743
744 /// Create a call to launch a GPU kernel.
745 ///
746 /// @param GPUKernel The kernel to launch.
747 /// @param GridDimX The size of the first grid dimension.
748 /// @param GridDimY The size of the second grid dimension.
749 /// @param GridBlockX The size of the first block dimension.
750 /// @param GridBlockY The size of the second block dimension.
751 /// @param GridBlockZ The size of the third block dimension.
752 /// @param Parameters A pointer to an array that contains itself pointers to
753 /// the parameter values passed for each kernel argument.
754 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
755 Value *GridDimY, Value *BlockDimX,
756 Value *BlockDimY, Value *BlockDimZ,
757 Value *Parameters);
758 };
759
getKernelFuncName(int Kernel_id)760 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
761 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
762 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
763 }
764
initializeAfterRTH()765 void GPUNodeBuilder::initializeAfterRTH() {
766 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
767 &*Builder.GetInsertPoint(), &DT, &LI);
768 NewBB->setName("polly.acc.initialize");
769 Builder.SetInsertPoint(&NewBB->front());
770
771 GPUContext = createCallInitContext();
772
773 if (!PollyManagedMemory)
774 allocateDeviceArrays();
775 else
776 prepareManagedDeviceArrays();
777 }
778
finalize()779 void GPUNodeBuilder::finalize() {
780 if (!PollyManagedMemory)
781 freeDeviceArrays();
782
783 createCallFreeContext(GPUContext);
784 IslNodeBuilder::finalize();
785 }
786
allocateDeviceArrays()787 void GPUNodeBuilder::allocateDeviceArrays() {
788 assert(!PollyManagedMemory &&
789 "Managed memory will directly send host pointers "
790 "to the kernel. There is no need for device arrays");
791 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
792
793 for (int i = 0; i < Prog->n_array; ++i) {
794 gpu_array_info *Array = &Prog->array[i];
795 auto *ScopArray = (ScopArrayInfo *)Array->user;
796 std::string DevArrayName("p_dev_array_");
797 DevArrayName.append(Array->name);
798
799 Value *ArraySize = getArraySize(Array);
800 Value *Offset = getArrayOffset(Array);
801 if (Offset)
802 ArraySize = Builder.CreateSub(
803 ArraySize,
804 Builder.CreateMul(Offset,
805 Builder.getInt64(ScopArray->getElemSizeInBytes())));
806 const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
807 // It makes no sense to have an array of size 0. The CUDA API will
808 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
809 // choose to be defensive and catch this at the compile phase. It is
810 // most likely that we are doing something wrong with size computation.
811 if (SizeSCEV->isZero()) {
812 errs() << getUniqueScopName(&S)
813 << " has computed array size 0: " << *ArraySize
814 << " | for array: " << *(ScopArray->getBasePtr())
815 << ". This is illegal, exiting.\n";
816 report_fatal_error("array size was computed to be 0");
817 }
818
819 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
820 DevArray->setName(DevArrayName);
821 DeviceAllocations[ScopArray] = DevArray;
822 }
823
824 isl_ast_build_free(Build);
825 }
826
prepareManagedDeviceArrays()827 void GPUNodeBuilder::prepareManagedDeviceArrays() {
828 assert(PollyManagedMemory &&
829 "Device array most only be prepared in managed-memory mode");
830 for (int i = 0; i < Prog->n_array; ++i) {
831 gpu_array_info *Array = &Prog->array[i];
832 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
833 Value *HostPtr;
834
835 if (gpu_array_is_scalar(Array))
836 HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
837 else
838 HostPtr = ScopArray->getBasePtr();
839 HostPtr = getLatestValue(HostPtr);
840
841 Value *Offset = getArrayOffset(Array);
842 if (Offset) {
843 HostPtr = Builder.CreatePointerCast(
844 HostPtr, ScopArray->getElementType()->getPointerTo());
845 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset);
846 }
847
848 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
849 DeviceAllocations[ScopArray] = HostPtr;
850 }
851 }
852
addCUDAAnnotations(Module * M,Value * BlockDimX,Value * BlockDimY,Value * BlockDimZ)853 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
854 Value *BlockDimY, Value *BlockDimZ) {
855 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
856
857 for (auto &F : *M) {
858 if (F.getCallingConv() != CallingConv::PTX_Kernel)
859 continue;
860
861 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
862
863 Metadata *Elements[] = {
864 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"),
865 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
866 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
867 ValueAsMetadata::get(V[2]),
868 };
869 MDNode *Node = MDNode::get(M->getContext(), Elements);
870 AnnotationNode->addOperand(Node);
871 }
872 }
873
freeDeviceArrays()874 void GPUNodeBuilder::freeDeviceArrays() {
875 assert(!PollyManagedMemory && "Managed memory does not use device arrays");
876 for (auto &Array : DeviceAllocations)
877 createCallFreeDeviceMemory(Array.second);
878 }
879
createCallGetKernel(Value * Buffer,Value * Entry)880 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
881 const char *Name = "polly_getKernel";
882 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
883 Function *F = M->getFunction(Name);
884
885 // If F is not available, declare it.
886 if (!F) {
887 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
888 std::vector<Type *> Args;
889 Args.push_back(Builder.getInt8PtrTy());
890 Args.push_back(Builder.getInt8PtrTy());
891 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
892 F = Function::Create(Ty, Linkage, Name, M);
893 }
894
895 return Builder.CreateCall(F, {Buffer, Entry});
896 }
897
createCallGetDevicePtr(Value * Allocation)898 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
899 const char *Name = "polly_getDevicePtr";
900 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
901 Function *F = M->getFunction(Name);
902
903 // If F is not available, declare it.
904 if (!F) {
905 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
906 std::vector<Type *> Args;
907 Args.push_back(Builder.getInt8PtrTy());
908 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
909 F = Function::Create(Ty, Linkage, Name, M);
910 }
911
912 return Builder.CreateCall(F, {Allocation});
913 }
914
createCallLaunchKernel(Value * GPUKernel,Value * GridDimX,Value * GridDimY,Value * BlockDimX,Value * BlockDimY,Value * BlockDimZ,Value * Parameters)915 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
916 Value *GridDimY, Value *BlockDimX,
917 Value *BlockDimY, Value *BlockDimZ,
918 Value *Parameters) {
919 const char *Name = "polly_launchKernel";
920 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
921 Function *F = M->getFunction(Name);
922
923 // If F is not available, declare it.
924 if (!F) {
925 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
926 std::vector<Type *> Args;
927 Args.push_back(Builder.getInt8PtrTy());
928 Args.push_back(Builder.getInt32Ty());
929 Args.push_back(Builder.getInt32Ty());
930 Args.push_back(Builder.getInt32Ty());
931 Args.push_back(Builder.getInt32Ty());
932 Args.push_back(Builder.getInt32Ty());
933 Args.push_back(Builder.getInt8PtrTy());
934 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
935 F = Function::Create(Ty, Linkage, Name, M);
936 }
937
938 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
939 BlockDimZ, Parameters});
940 }
941
createCallFreeKernel(Value * GPUKernel)942 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
943 const char *Name = "polly_freeKernel";
944 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
945 Function *F = M->getFunction(Name);
946
947 // If F is not available, declare it.
948 if (!F) {
949 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
950 std::vector<Type *> Args;
951 Args.push_back(Builder.getInt8PtrTy());
952 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
953 F = Function::Create(Ty, Linkage, Name, M);
954 }
955
956 Builder.CreateCall(F, {GPUKernel});
957 }
958
createCallFreeDeviceMemory(Value * Array)959 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
960 assert(!PollyManagedMemory &&
961 "Managed memory does not allocate or free memory "
962 "for device");
963 const char *Name = "polly_freeDeviceMemory";
964 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
965 Function *F = M->getFunction(Name);
966
967 // If F is not available, declare it.
968 if (!F) {
969 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
970 std::vector<Type *> Args;
971 Args.push_back(Builder.getInt8PtrTy());
972 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
973 F = Function::Create(Ty, Linkage, Name, M);
974 }
975
976 Builder.CreateCall(F, {Array});
977 }
978
createCallAllocateMemoryForDevice(Value * Size)979 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
980 assert(!PollyManagedMemory &&
981 "Managed memory does not allocate or free memory "
982 "for device");
983 const char *Name = "polly_allocateMemoryForDevice";
984 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
985 Function *F = M->getFunction(Name);
986
987 // If F is not available, declare it.
988 if (!F) {
989 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
990 std::vector<Type *> Args;
991 Args.push_back(Builder.getInt64Ty());
992 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
993 F = Function::Create(Ty, Linkage, Name, M);
994 }
995
996 return Builder.CreateCall(F, {Size});
997 }
998
createCallCopyFromHostToDevice(Value * HostData,Value * DeviceData,Value * Size)999 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
1000 Value *DeviceData,
1001 Value *Size) {
1002 assert(!PollyManagedMemory &&
1003 "Managed memory does not transfer memory between "
1004 "device and host");
1005 const char *Name = "polly_copyFromHostToDevice";
1006 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1007 Function *F = M->getFunction(Name);
1008
1009 // If F is not available, declare it.
1010 if (!F) {
1011 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1012 std::vector<Type *> Args;
1013 Args.push_back(Builder.getInt8PtrTy());
1014 Args.push_back(Builder.getInt8PtrTy());
1015 Args.push_back(Builder.getInt64Ty());
1016 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1017 F = Function::Create(Ty, Linkage, Name, M);
1018 }
1019
1020 Builder.CreateCall(F, {HostData, DeviceData, Size});
1021 }
1022
createCallCopyFromDeviceToHost(Value * DeviceData,Value * HostData,Value * Size)1023 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1024 Value *HostData,
1025 Value *Size) {
1026 assert(!PollyManagedMemory &&
1027 "Managed memory does not transfer memory between "
1028 "device and host");
1029 const char *Name = "polly_copyFromDeviceToHost";
1030 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1031 Function *F = M->getFunction(Name);
1032
1033 // If F is not available, declare it.
1034 if (!F) {
1035 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1036 std::vector<Type *> Args;
1037 Args.push_back(Builder.getInt8PtrTy());
1038 Args.push_back(Builder.getInt8PtrTy());
1039 Args.push_back(Builder.getInt64Ty());
1040 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1041 F = Function::Create(Ty, Linkage, Name, M);
1042 }
1043
1044 Builder.CreateCall(F, {DeviceData, HostData, Size});
1045 }
1046
createCallSynchronizeDevice()1047 void GPUNodeBuilder::createCallSynchronizeDevice() {
1048 assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1049 "managed memory");
1050 const char *Name = "polly_synchronizeDevice";
1051 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1052 Function *F = M->getFunction(Name);
1053
1054 // If F is not available, declare it.
1055 if (!F) {
1056 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1057 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1058 F = Function::Create(Ty, Linkage, Name, M);
1059 }
1060
1061 Builder.CreateCall(F);
1062 }
1063
createCallInitContext()1064 Value *GPUNodeBuilder::createCallInitContext() {
1065 const char *Name;
1066
1067 switch (Runtime) {
1068 case GPURuntime::CUDA:
1069 Name = "polly_initContextCUDA";
1070 break;
1071 case GPURuntime::OpenCL:
1072 Name = "polly_initContextCL";
1073 break;
1074 }
1075
1076 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1077 Function *F = M->getFunction(Name);
1078
1079 // If F is not available, declare it.
1080 if (!F) {
1081 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1082 std::vector<Type *> Args;
1083 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1084 F = Function::Create(Ty, Linkage, Name, M);
1085 }
1086
1087 return Builder.CreateCall(F, {});
1088 }
1089
createCallFreeContext(Value * Context)1090 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1091 const char *Name = "polly_freeContext";
1092 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1093 Function *F = M->getFunction(Name);
1094
1095 // If F is not available, declare it.
1096 if (!F) {
1097 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1098 std::vector<Type *> Args;
1099 Args.push_back(Builder.getInt8PtrTy());
1100 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1101 F = Function::Create(Ty, Linkage, Name, M);
1102 }
1103
1104 Builder.CreateCall(F, {Context});
1105 }
1106
1107 /// Check if one string is a prefix of another.
1108 ///
1109 /// @param String The string in which to look for the prefix.
1110 /// @param Prefix The prefix to look for.
isPrefix(std::string String,std::string Prefix)1111 static bool isPrefix(std::string String, std::string Prefix) {
1112 return String.find(Prefix) == 0;
1113 }
1114
getArraySize(gpu_array_info * Array)1115 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1116 isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1117 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1118
1119 if (!gpu_array_is_scalar(Array)) {
1120 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound);
1121
1122 isl::pw_aff OffsetDimZero = ArrayBound.at(0);
1123 isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1124
1125 for (unsigned int i = 1; i < Array->n_index; i++) {
1126 isl::pw_aff Bound_I = ArrayBound.at(i);
1127 isl::ast_expr Expr = Build.expr_from(Bound_I);
1128 Res = Res.mul(Expr);
1129 }
1130
1131 Value *NumElements = ExprBuilder.create(Res.release());
1132 if (NumElements->getType() != ArraySize->getType())
1133 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1134 ArraySize = Builder.CreateMul(ArraySize, NumElements);
1135 }
1136 return ArraySize;
1137 }
1138
getArrayOffset(gpu_array_info * Array)1139 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1140 if (gpu_array_is_scalar(Array))
1141 return nullptr;
1142
1143 isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1144
1145 isl::set Min = isl::manage_copy(Array->extent).lexmin();
1146
1147 isl::set ZeroSet = isl::set::universe(Min.get_space());
1148
1149 for (unsigned i : rangeIslSize(0, Min.tuple_dim()))
1150 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1151
1152 if (Min.is_subset(ZeroSet)) {
1153 return nullptr;
1154 }
1155
1156 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.ctx(), 0));
1157
1158 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) {
1159 if (i > 0) {
1160 isl::pw_aff Bound_I =
1161 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1162 isl::ast_expr BExpr = Build.expr_from(Bound_I);
1163 Result = Result.mul(BExpr);
1164 }
1165 isl::pw_aff DimMin = Min.dim_min(i);
1166 isl::ast_expr MExpr = Build.expr_from(DimMin);
1167 Result = Result.add(MExpr);
1168 }
1169
1170 return ExprBuilder.create(Result.release());
1171 }
1172
getManagedDeviceArray(gpu_array_info * Array,ScopArrayInfo * ArrayInfo)1173 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1174 ScopArrayInfo *ArrayInfo) {
1175 assert(PollyManagedMemory && "Only used when you wish to get a host "
1176 "pointer for sending data to the kernel, "
1177 "with managed memory");
1178 std::map<ScopArrayInfo *, Value *>::iterator it;
1179 it = DeviceAllocations.find(ArrayInfo);
1180 assert(it != DeviceAllocations.end() &&
1181 "Device array expected to be available");
1182 return it->second;
1183 }
1184
createDataTransfer(__isl_take isl_ast_node * TransferStmt,enum DataDirection Direction)1185 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1186 enum DataDirection Direction) {
1187 assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1188 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1189 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1190 isl_id *Id = isl_ast_expr_get_id(Arg);
1191 auto Array = (gpu_array_info *)isl_id_get_user(Id);
1192 auto ScopArray = (ScopArrayInfo *)(Array->user);
1193
1194 Value *Size = getArraySize(Array);
1195 Value *Offset = getArrayOffset(Array);
1196 Value *DevPtr = DeviceAllocations[ScopArray];
1197
1198 Value *HostPtr;
1199
1200 if (gpu_array_is_scalar(Array))
1201 HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1202 else
1203 HostPtr = ScopArray->getBasePtr();
1204 HostPtr = getLatestValue(HostPtr);
1205
1206 if (Offset) {
1207 HostPtr = Builder.CreatePointerCast(
1208 HostPtr, ScopArray->getElementType()->getPointerTo());
1209 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset);
1210 }
1211
1212 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1213
1214 if (Offset) {
1215 Size = Builder.CreateSub(
1216 Size, Builder.CreateMul(
1217 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1218 }
1219
1220 if (Direction == HOST_TO_DEVICE)
1221 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1222 else
1223 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1224
1225 isl_id_free(Id);
1226 isl_ast_expr_free(Arg);
1227 isl_ast_expr_free(Expr);
1228 isl_ast_node_free(TransferStmt);
1229 }
1230
createUser(__isl_take isl_ast_node * UserStmt)1231 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1232 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1233 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1234 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1235 isl_id_free(Id);
1236 isl_ast_expr_free(StmtExpr);
1237
1238 const char *Str = isl_id_get_name(Id);
1239 if (!strcmp(Str, "kernel")) {
1240 createKernel(UserStmt);
1241 if (PollyManagedMemory)
1242 createCallSynchronizeDevice();
1243 isl_ast_expr_free(Expr);
1244 return;
1245 }
1246 if (!strcmp(Str, "init_device")) {
1247 initializeAfterRTH();
1248 isl_ast_node_free(UserStmt);
1249 isl_ast_expr_free(Expr);
1250 return;
1251 }
1252 if (!strcmp(Str, "clear_device")) {
1253 finalize();
1254 isl_ast_node_free(UserStmt);
1255 isl_ast_expr_free(Expr);
1256 return;
1257 }
1258 if (isPrefix(Str, "to_device")) {
1259 if (!PollyManagedMemory)
1260 createDataTransfer(UserStmt, HOST_TO_DEVICE);
1261 else
1262 isl_ast_node_free(UserStmt);
1263
1264 isl_ast_expr_free(Expr);
1265 return;
1266 }
1267
1268 if (isPrefix(Str, "from_device")) {
1269 if (!PollyManagedMemory) {
1270 createDataTransfer(UserStmt, DEVICE_TO_HOST);
1271 } else {
1272 isl_ast_node_free(UserStmt);
1273 }
1274 isl_ast_expr_free(Expr);
1275 return;
1276 }
1277
1278 isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1279 struct ppcg_kernel_stmt *KernelStmt =
1280 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1281 isl_id_free(Anno);
1282
1283 switch (KernelStmt->type) {
1284 case ppcg_kernel_domain:
1285 createScopStmt(Expr, KernelStmt);
1286 isl_ast_node_free(UserStmt);
1287 return;
1288 case ppcg_kernel_copy:
1289 createKernelCopy(KernelStmt);
1290 isl_ast_expr_free(Expr);
1291 isl_ast_node_free(UserStmt);
1292 return;
1293 case ppcg_kernel_sync:
1294 createKernelSync();
1295 isl_ast_expr_free(Expr);
1296 isl_ast_node_free(UserStmt);
1297 return;
1298 }
1299
1300 isl_ast_expr_free(Expr);
1301 isl_ast_node_free(UserStmt);
1302 }
1303
createFor(__isl_take isl_ast_node * Node)1304 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) {
1305 createForSequential(isl::manage(Node).as<isl::ast_node_for>(), false);
1306 }
1307
createKernelCopy(ppcg_kernel_stmt * KernelStmt)1308 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1309 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1310 auto LocalAddr = ExprBuilder.createAccessAddress(LocalIndex);
1311 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1312 auto GlobalAddr = ExprBuilder.createAccessAddress(Index);
1313
1314 if (KernelStmt->u.c.read) {
1315 LoadInst *Load =
1316 Builder.CreateLoad(GlobalAddr.second, GlobalAddr.first, "shared.read");
1317 Builder.CreateStore(Load, LocalAddr.first);
1318 } else {
1319 LoadInst *Load =
1320 Builder.CreateLoad(LocalAddr.second, LocalAddr.first, "shared.write");
1321 Builder.CreateStore(Load, GlobalAddr.first);
1322 }
1323 }
1324
createScopStmt(isl_ast_expr * Expr,ppcg_kernel_stmt * KernelStmt)1325 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1326 ppcg_kernel_stmt *KernelStmt) {
1327 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1328 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1329
1330 LoopToScevMapT LTS;
1331 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1332
1333 createSubstitutions(Expr, Stmt, LTS);
1334
1335 if (Stmt->isBlockStmt())
1336 BlockGen.copyStmt(*Stmt, LTS, Indexes);
1337 else
1338 RegionGen.copyStmt(*Stmt, LTS, Indexes);
1339 }
1340
createKernelSync()1341 void GPUNodeBuilder::createKernelSync() {
1342 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1343 const char *SpirName = "__gen_ocl_barrier_global";
1344
1345 Function *Sync;
1346
1347 switch (Arch) {
1348 case GPUArch::SPIR64:
1349 case GPUArch::SPIR32:
1350 Sync = M->getFunction(SpirName);
1351
1352 // If Sync is not available, declare it.
1353 if (!Sync) {
1354 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1355 std::vector<Type *> Args;
1356 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1357 Sync = Function::Create(Ty, Linkage, SpirName, M);
1358 Sync->setCallingConv(CallingConv::SPIR_FUNC);
1359 }
1360 break;
1361 case GPUArch::NVPTX64:
1362 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1363 break;
1364 }
1365
1366 Builder.CreateCall(Sync, {});
1367 }
1368
1369 /// Collect llvm::Values referenced from @p Node
1370 ///
1371 /// This function only applies to isl_ast_nodes that are user_nodes referring
1372 /// to a ScopStmt. All other node types are ignore.
1373 ///
1374 /// @param Node The node to collect references for.
1375 /// @param User A user pointer used as storage for the data that is collected.
1376 ///
1377 /// @returns isl_bool_true if data could be collected successfully.
collectReferencesInGPUStmt(__isl_keep isl_ast_node * Node,void * User)1378 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1379 if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1380 return isl_bool_true;
1381
1382 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1383 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1384 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1385 const char *Str = isl_id_get_name(Id);
1386 isl_id_free(Id);
1387 isl_ast_expr_free(StmtExpr);
1388 isl_ast_expr_free(Expr);
1389
1390 if (!isPrefix(Str, "Stmt"))
1391 return isl_bool_true;
1392
1393 Id = isl_ast_node_get_annotation(Node);
1394 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1395 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1396 isl_id_free(Id);
1397
1398 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1399
1400 return isl_bool_true;
1401 }
1402
1403 /// A list of functions that are available in NVIDIA's libdevice.
1404 const std::set<std::string> CUDALibDeviceFunctions = {
1405 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf",
1406 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
1407
1408 // A map from intrinsics to their corresponding libdevice functions.
1409 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
1410 {"llvm.exp.f64", "exp"},
1411 {"llvm.exp.f32", "expf"},
1412 {"llvm.powi.f64.i32", "powi"},
1413 {"llvm.powi.f32.i32", "powif"}};
1414
1415 /// Return the corresponding CUDA libdevice function name @p Name.
1416 /// Note that this function will try to convert instrinsics in the list
1417 /// IntrinsicToLibdeviceFunc into libdevice functions.
1418 /// This is because some intrinsics such as `exp`
1419 /// are not supported by the NVPTX backend.
1420 /// If this restriction of the backend is lifted, we should refactor our code
1421 /// so that we use intrinsics whenever possible.
1422 ///
1423 /// Return "" if we are not compiling for CUDA.
getCUDALibDeviceFuntion(StringRef NameRef)1424 std::string getCUDALibDeviceFuntion(StringRef NameRef) {
1425 std::string Name = NameRef.str();
1426 auto It = IntrinsicToLibdeviceFunc.find(Name);
1427 if (It != IntrinsicToLibdeviceFunc.end())
1428 return getCUDALibDeviceFuntion(It->second);
1429
1430 if (CUDALibDeviceFunctions.count(Name))
1431 return ("__nv_" + Name);
1432
1433 return "";
1434 }
1435
1436 /// Check if F is a function that we can code-generate in a GPU kernel.
isValidFunctionInKernel(llvm::Function * F,bool AllowLibDevice)1437 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1438 assert(F && "F is an invalid pointer");
1439 // We string compare against the name of the function to allow
1440 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1441 // "llvm.copysign".
1442 const StringRef Name = F->getName();
1443
1444 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0)
1445 return true;
1446
1447 return F->isIntrinsic() &&
1448 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1449 Name.startswith("llvm.copysign"));
1450 }
1451
1452 /// Do not take `Function` as a subtree value.
1453 ///
1454 /// We try to take the reference of all subtree values and pass them along
1455 /// to the kernel from the host. Taking an address of any function and
1456 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1457 /// `Function`s.
isValidSubtreeValue(llvm::Value * V)1458 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1459
1460 /// Return `Function`s from `RawSubtreeValues`.
1461 static SetVector<Function *>
getFunctionsFromRawSubtreeValues(SetVector<Value * > RawSubtreeValues,bool AllowCUDALibDevice)1462 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1463 bool AllowCUDALibDevice) {
1464 SetVector<Function *> SubtreeFunctions;
1465 for (Value *It : RawSubtreeValues) {
1466 Function *F = dyn_cast<Function>(It);
1467 if (F) {
1468 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1469 "Code should have bailed out by "
1470 "this point if an invalid function "
1471 "were present in a kernel.");
1472 SubtreeFunctions.insert(F);
1473 }
1474 }
1475 return SubtreeFunctions;
1476 }
1477
1478 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1479 isl::space>
getReferencesInKernel(ppcg_kernel * Kernel)1480 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1481 SetVector<Value *> SubtreeValues;
1482 SetVector<const SCEV *> SCEVs;
1483 SetVector<const Loop *> Loops;
1484 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1485 SubtreeReferences References = {
1486 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1487 &ParamSpace};
1488
1489 for (const auto &I : IDToValue)
1490 SubtreeValues.insert(I.second);
1491
1492 // NOTE: this is populated in IslNodeBuilder::addParameters
1493 // See [Code generation of induction variables of loops outside Scops].
1494 for (const auto &I : OutsideLoopIterations)
1495 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1496
1497 isl_ast_node_foreach_descendant_top_down(
1498 Kernel->tree, collectReferencesInGPUStmt, &References);
1499
1500 for (const SCEV *Expr : SCEVs) {
1501 findValues(Expr, SE, SubtreeValues);
1502 findLoops(Expr, Loops);
1503 }
1504
1505 Loops.remove_if([this](const Loop *L) {
1506 return S.contains(L) || L->contains(S.getEntry());
1507 });
1508
1509 for (auto &SAI : S.arrays())
1510 SubtreeValues.remove(SAI->getBasePtr());
1511
1512 isl_space *Space = S.getParamSpace().release();
1513 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
1514 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1515 assert(IDToValue.count(Id));
1516 Value *Val = IDToValue[Id];
1517 SubtreeValues.remove(Val);
1518 isl_id_free(Id);
1519 }
1520 isl_space_free(Space);
1521
1522 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
1523 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1524 assert(IDToValue.count(Id));
1525 Value *Val = IDToValue[Id];
1526 SubtreeValues.remove(Val);
1527 isl_id_free(Id);
1528 }
1529
1530 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1531 // SubtreeValues. This is important, because we should not lose any
1532 // SubtreeValues in the process of constructing the
1533 // "ValidSubtree{Values, Functions} sets. Nor should the set
1534 // ValidSubtree{Values, Functions} have any common element.
1535 auto ValidSubtreeValuesIt =
1536 make_filter_range(SubtreeValues, isValidSubtreeValue);
1537 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1538 ValidSubtreeValuesIt.end());
1539
1540 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1541
1542 SetVector<Function *> ValidSubtreeFunctions(
1543 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1544
1545 // @see IslNodeBuilder::getReferencesInSubtree
1546 SetVector<Value *> ReplacedValues;
1547 for (Value *V : ValidSubtreeValues) {
1548 auto It = ValueMap.find(V);
1549 if (It == ValueMap.end())
1550 ReplacedValues.insert(V);
1551 else
1552 ReplacedValues.insert(It->second);
1553 }
1554 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1555 ParamSpace);
1556 }
1557
clearDominators(Function * F)1558 void GPUNodeBuilder::clearDominators(Function *F) {
1559 DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1560 std::vector<BasicBlock *> Nodes;
1561 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1562 Nodes.push_back(I->getBlock());
1563
1564 for (BasicBlock *BB : Nodes)
1565 DT.eraseNode(BB);
1566 }
1567
clearScalarEvolution(Function * F)1568 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1569 for (BasicBlock &BB : *F) {
1570 Loop *L = LI.getLoopFor(&BB);
1571 if (L)
1572 SE.forgetLoop(L);
1573 }
1574 }
1575
clearLoops(Function * F)1576 void GPUNodeBuilder::clearLoops(Function *F) {
1577 SmallSet<Loop *, 1> WorkList;
1578 for (BasicBlock &BB : *F) {
1579 Loop *L = LI.getLoopFor(&BB);
1580 if (L)
1581 WorkList.insert(L);
1582 }
1583 for (auto *L : WorkList)
1584 LI.erase(L);
1585 }
1586
getGridSizes(ppcg_kernel * Kernel)1587 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1588 std::vector<Value *> Sizes;
1589 isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1590
1591 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size);
1592 for (long i = 0; i < Kernel->n_grid; i++) {
1593 isl::pw_aff Size = GridSizePwAffs.at(i);
1594 isl::ast_expr GridSize = Context.expr_from(Size);
1595 Value *Res = ExprBuilder.create(GridSize.release());
1596 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1597 Sizes.push_back(Res);
1598 }
1599
1600 for (long i = Kernel->n_grid; i < 3; i++)
1601 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1602
1603 return std::make_tuple(Sizes[0], Sizes[1]);
1604 }
1605
1606 std::tuple<Value *, Value *, Value *>
getBlockSizes(ppcg_kernel * Kernel)1607 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1608 std::vector<Value *> Sizes;
1609
1610 for (long i = 0; i < Kernel->n_block; i++) {
1611 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1612 Sizes.push_back(Res);
1613 }
1614
1615 for (long i = Kernel->n_block; i < 3; i++)
1616 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1617
1618 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1619 }
1620
insertStoreParameter(Type * ArrayTy,Instruction * Parameters,Instruction * Param,int Index)1621 void GPUNodeBuilder::insertStoreParameter(Type *ArrayTy,
1622 Instruction *Parameters,
1623 Instruction *Param, int Index) {
1624 Value *Slot = Builder.CreateGEP(
1625 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1626 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1627 Builder.CreateStore(ParamTyped, Slot);
1628 }
1629
1630 Value *
createLaunchParameters(ppcg_kernel * Kernel,Function * F,SetVector<Value * > SubtreeValues)1631 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1632 SetVector<Value *> SubtreeValues) {
1633 const int NumArgs = F->arg_size();
1634 std::vector<int> ArgSizes(NumArgs);
1635
1636 // If we are using the OpenCL Runtime, we need to add the kernel argument
1637 // sizes to the end of the launch-parameter list, so OpenCL can determine
1638 // how big the respective kernel arguments are.
1639 // Here we need to reserve adequate space for that.
1640 Type *ArrayTy;
1641 if (Runtime == GPURuntime::OpenCL)
1642 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1643 else
1644 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1645
1646 BasicBlock *EntryBlock =
1647 &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1648 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1649 std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1650 Instruction *Parameters = new AllocaInst(
1651 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1652
1653 int Index = 0;
1654 for (long i = 0; i < Prog->n_array; i++) {
1655 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1656 continue;
1657
1658 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1659 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1660
1661 if (Runtime == GPURuntime::OpenCL)
1662 ArgSizes[Index] = SAI->getElemSizeInBytes();
1663
1664 Value *DevArray = nullptr;
1665 if (PollyManagedMemory) {
1666 DevArray = getManagedDeviceArray(&Prog->array[i],
1667 const_cast<ScopArrayInfo *>(SAI));
1668 } else {
1669 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1670 DevArray = createCallGetDevicePtr(DevArray);
1671 }
1672 assert(DevArray != nullptr && "Array to be offloaded to device not "
1673 "initialized");
1674 Value *Offset = getArrayOffset(&Prog->array[i]);
1675
1676 if (Offset) {
1677 DevArray = Builder.CreatePointerCast(
1678 DevArray, SAI->getElementType()->getPointerTo());
1679 DevArray = Builder.CreateGEP(SAI->getElementType(), DevArray,
1680 Builder.CreateNeg(Offset));
1681 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1682 }
1683 Value *Slot = Builder.CreateGEP(
1684 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1685
1686 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1687 Value *ValPtr = nullptr;
1688 if (PollyManagedMemory)
1689 ValPtr = DevArray;
1690 else
1691 ValPtr = BlockGen.getOrCreateAlloca(SAI);
1692
1693 assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1694 " to be stored into Parameters");
1695 Value *ValPtrCast =
1696 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1697 Builder.CreateStore(ValPtrCast, Slot);
1698 } else {
1699 Instruction *Param =
1700 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1701 Launch + "_param_" + std::to_string(Index),
1702 EntryBlock->getTerminator());
1703 Builder.CreateStore(DevArray, Param);
1704 Value *ParamTyped =
1705 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1706 Builder.CreateStore(ParamTyped, Slot);
1707 }
1708 Index++;
1709 }
1710
1711 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1712
1713 for (long i = 0; i < NumHostIters; i++) {
1714 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1715 Value *Val = IDToValue[Id];
1716 isl_id_free(Id);
1717
1718 if (Runtime == GPURuntime::OpenCL)
1719 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1720
1721 Instruction *Param =
1722 new AllocaInst(Val->getType(), AddressSpace,
1723 Launch + "_param_" + std::to_string(Index),
1724 EntryBlock->getTerminator());
1725 Builder.CreateStore(Val, Param);
1726 insertStoreParameter(ArrayTy, Parameters, Param, Index);
1727 Index++;
1728 }
1729
1730 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1731
1732 for (long i = 0; i < NumVars; i++) {
1733 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1734 Value *Val = IDToValue[Id];
1735 if (ValueMap.count(Val))
1736 Val = ValueMap[Val];
1737 isl_id_free(Id);
1738
1739 if (Runtime == GPURuntime::OpenCL)
1740 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1741
1742 Instruction *Param =
1743 new AllocaInst(Val->getType(), AddressSpace,
1744 Launch + "_param_" + std::to_string(Index),
1745 EntryBlock->getTerminator());
1746 Builder.CreateStore(Val, Param);
1747 insertStoreParameter(ArrayTy, Parameters, Param, Index);
1748 Index++;
1749 }
1750
1751 for (auto Val : SubtreeValues) {
1752 if (Runtime == GPURuntime::OpenCL)
1753 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1754
1755 Instruction *Param =
1756 new AllocaInst(Val->getType(), AddressSpace,
1757 Launch + "_param_" + std::to_string(Index),
1758 EntryBlock->getTerminator());
1759 Builder.CreateStore(Val, Param);
1760 insertStoreParameter(ArrayTy, Parameters, Param, Index);
1761 Index++;
1762 }
1763
1764 if (Runtime == GPURuntime::OpenCL) {
1765 for (int i = 0; i < NumArgs; i++) {
1766 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1767 Instruction *Param =
1768 new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1769 Launch + "_param_size_" + std::to_string(i),
1770 EntryBlock->getTerminator());
1771 Builder.CreateStore(Val, Param);
1772 insertStoreParameter(ArrayTy, Parameters, Param, Index);
1773 Index++;
1774 }
1775 }
1776
1777 auto Location = EntryBlock->getTerminator();
1778 return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1779 Launch + "_params_i8ptr", Location);
1780 }
1781
setupKernelSubtreeFunctions(SetVector<Function * > SubtreeFunctions)1782 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1783 SetVector<Function *> SubtreeFunctions) {
1784 for (auto Fn : SubtreeFunctions) {
1785 const std::string ClonedFnName = Fn->getName().str();
1786 Function *Clone = GPUModule->getFunction(ClonedFnName);
1787 if (!Clone)
1788 Clone =
1789 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1790 ClonedFnName, GPUModule.get());
1791 assert(Clone && "Expected cloned function to be initialized.");
1792 assert(ValueMap.find(Fn) == ValueMap.end() &&
1793 "Fn already present in ValueMap");
1794 ValueMap[Fn] = Clone;
1795 }
1796 }
createKernel(__isl_take isl_ast_node * KernelStmt)1797 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1798 isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1799 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1800 isl_id_free(Id);
1801 isl_ast_node_free(KernelStmt);
1802
1803 if (Kernel->n_grid > 1)
1804 DeepestParallel = std::max(
1805 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set));
1806 else
1807 DeepestSequential = std::max(
1808 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set));
1809
1810 Value *BlockDimX, *BlockDimY, *BlockDimZ;
1811 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1812
1813 SetVector<Value *> SubtreeValues;
1814 SetVector<Function *> SubtreeFunctions;
1815 SetVector<const Loop *> Loops;
1816 isl::space ParamSpace;
1817 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1818 getReferencesInKernel(Kernel);
1819
1820 // Add parameters that appear only in the access function to the kernel
1821 // space. This is important to make sure that all isl_ids are passed as
1822 // parameters to the kernel, even though we may not have all parameters
1823 // in the context to improve compile time.
1824 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1825
1826 assert(Kernel->tree && "Device AST of kernel node is empty");
1827
1828 Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1829 IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1830 ValueMapT HostValueMap = ValueMap;
1831 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1832 ScalarMap.clear();
1833 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap;
1834 EscapeMap.clear();
1835
1836 // Create for all loops we depend on values that contain the current loop
1837 // iteration. These values are necessary to generate code for SCEVs that
1838 // depend on such loops. As a result we need to pass them to the subfunction.
1839 for (const Loop *L : Loops) {
1840 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1841 SE.getUnknown(Builder.getInt64(1)),
1842 L, SCEV::FlagAnyWrap);
1843 Value *V = generateSCEV(OuterLIV);
1844 OutsideLoopIterations[L] = SE.getUnknown(V);
1845 SubtreeValues.insert(V);
1846 }
1847
1848 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1849 setupKernelSubtreeFunctions(SubtreeFunctions);
1850
1851 create(isl_ast_node_copy(Kernel->tree));
1852
1853 finalizeKernelArguments(Kernel);
1854 Function *F = Builder.GetInsertBlock()->getParent();
1855 if (Arch == GPUArch::NVPTX64)
1856 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1857 clearDominators(F);
1858 clearScalarEvolution(F);
1859 clearLoops(F);
1860
1861 IDToValue = HostIDs;
1862
1863 ValueMap = std::move(HostValueMap);
1864 ScalarMap = std::move(HostScalarMap);
1865 EscapeMap = std::move(HostEscapeMap);
1866 IDToSAI.clear();
1867 Annotator.resetAlternativeAliasBases();
1868 for (auto &BasePtr : LocalArrays)
1869 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1870 LocalArrays.clear();
1871
1872 std::string ASMString = finalizeKernelFunction();
1873 Builder.SetInsertPoint(&HostInsertPoint);
1874 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1875
1876 std::string Name = getKernelFuncName(Kernel->id);
1877 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1878 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1879 Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1880
1881 Value *GridDimX, *GridDimY;
1882 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1883
1884 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1885 BlockDimZ, Parameters);
1886 createCallFreeKernel(GPUKernel);
1887
1888 for (auto Id : KernelIds)
1889 isl_id_free(Id);
1890
1891 KernelIds.clear();
1892 }
1893
1894 /// Compute the DataLayout string for the NVPTX backend.
1895 ///
1896 /// @param is64Bit Are we looking for a 64 bit architecture?
computeNVPTXDataLayout(bool is64Bit)1897 static std::string computeNVPTXDataLayout(bool is64Bit) {
1898 std::string Ret = "";
1899
1900 if (!is64Bit) {
1901 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1902 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1903 "64-v128:128:128-n16:32:64";
1904 } else {
1905 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1906 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1907 "64-v128:128:128-n16:32:64";
1908 }
1909
1910 return Ret;
1911 }
1912
1913 /// Compute the DataLayout string for a SPIR kernel.
1914 ///
1915 /// @param is64Bit Are we looking for a 64 bit architecture?
computeSPIRDataLayout(bool is64Bit)1916 static std::string computeSPIRDataLayout(bool is64Bit) {
1917 std::string Ret = "";
1918
1919 if (!is64Bit) {
1920 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1921 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1922 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1923 "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1924 } else {
1925 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1926 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1927 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1928 "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1929 }
1930
1931 return Ret;
1932 }
1933
1934 Function *
createKernelFunctionDecl(ppcg_kernel * Kernel,SetVector<Value * > & SubtreeValues)1935 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1936 SetVector<Value *> &SubtreeValues) {
1937 std::vector<Type *> Args;
1938 std::string Identifier = getKernelFuncName(Kernel->id);
1939
1940 std::vector<Metadata *> MemoryType;
1941
1942 for (long i = 0; i < Prog->n_array; i++) {
1943 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1944 continue;
1945
1946 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1947 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1948 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1949 Args.push_back(SAI->getElementType());
1950 MemoryType.push_back(
1951 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1952 } else {
1953 static const int UseGlobalMemory = 1;
1954 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1955 MemoryType.push_back(
1956 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1957 }
1958 }
1959
1960 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1961
1962 for (long i = 0; i < NumHostIters; i++) {
1963 Args.push_back(Builder.getInt64Ty());
1964 MemoryType.push_back(
1965 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1966 }
1967
1968 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1969
1970 for (long i = 0; i < NumVars; i++) {
1971 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1972 Value *Val = IDToValue[Id];
1973 isl_id_free(Id);
1974 Args.push_back(Val->getType());
1975 MemoryType.push_back(
1976 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1977 }
1978
1979 for (auto *V : SubtreeValues) {
1980 Args.push_back(V->getType());
1981 MemoryType.push_back(
1982 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1983 }
1984
1985 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1986 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1987 GPUModule.get());
1988
1989 std::vector<Metadata *> EmptyStrings;
1990
1991 for (unsigned int i = 0; i < MemoryType.size(); i++) {
1992 EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1993 }
1994
1995 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1996 FN->setMetadata("kernel_arg_addr_space",
1997 MDNode::get(FN->getContext(), MemoryType));
1998 FN->setMetadata("kernel_arg_name",
1999 MDNode::get(FN->getContext(), EmptyStrings));
2000 FN->setMetadata("kernel_arg_access_qual",
2001 MDNode::get(FN->getContext(), EmptyStrings));
2002 FN->setMetadata("kernel_arg_type",
2003 MDNode::get(FN->getContext(), EmptyStrings));
2004 FN->setMetadata("kernel_arg_type_qual",
2005 MDNode::get(FN->getContext(), EmptyStrings));
2006 FN->setMetadata("kernel_arg_base_type",
2007 MDNode::get(FN->getContext(), EmptyStrings));
2008 }
2009
2010 switch (Arch) {
2011 case GPUArch::NVPTX64:
2012 FN->setCallingConv(CallingConv::PTX_Kernel);
2013 break;
2014 case GPUArch::SPIR32:
2015 case GPUArch::SPIR64:
2016 FN->setCallingConv(CallingConv::SPIR_KERNEL);
2017 break;
2018 }
2019
2020 auto Arg = FN->arg_begin();
2021 for (long i = 0; i < Kernel->n_array; i++) {
2022 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2023 continue;
2024
2025 Arg->setName(Kernel->array[i].array->name);
2026
2027 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2028 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2029 Type *EleTy = SAI->getElementType();
2030 Value *Val = &*Arg;
2031 SmallVector<const SCEV *, 4> Sizes;
2032 isl_ast_build *Build =
2033 isl_ast_build_from_context(isl_set_copy(Prog->context));
2034 Sizes.push_back(nullptr);
2035 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
2036 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
2037 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
2038 auto V = ExprBuilder.create(DimSize);
2039 Sizes.push_back(SE.getSCEV(V));
2040 }
2041 const ScopArrayInfo *SAIRep =
2042 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
2043 LocalArrays.push_back(Val);
2044
2045 isl_ast_build_free(Build);
2046 KernelIds.push_back(Id);
2047 IDToSAI[Id] = SAIRep;
2048 Arg++;
2049 }
2050
2051 for (long i = 0; i < NumHostIters; i++) {
2052 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2053 Arg->setName(isl_id_get_name(Id));
2054 IDToValue[Id] = &*Arg;
2055 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2056 Arg++;
2057 }
2058
2059 for (long i = 0; i < NumVars; i++) {
2060 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2061 Arg->setName(isl_id_get_name(Id));
2062 Value *Val = IDToValue[Id];
2063 ValueMap[Val] = &*Arg;
2064 IDToValue[Id] = &*Arg;
2065 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2066 Arg++;
2067 }
2068
2069 for (auto *V : SubtreeValues) {
2070 Arg->setName(V->getName());
2071 ValueMap[V] = &*Arg;
2072 Arg++;
2073 }
2074
2075 return FN;
2076 }
2077
insertKernelIntrinsics(ppcg_kernel * Kernel)2078 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2079 Intrinsic::ID IntrinsicsBID[2];
2080 Intrinsic::ID IntrinsicsTID[3];
2081
2082 switch (Arch) {
2083 case GPUArch::SPIR64:
2084 case GPUArch::SPIR32:
2085 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2086 case GPUArch::NVPTX64:
2087 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2088 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2089
2090 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2091 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2092 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2093 break;
2094 }
2095
2096 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2097 std::string Name = isl_id_get_name(Id);
2098 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2099 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2100 Value *Val = Builder.CreateCall(IntrinsicFn, {});
2101 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2102 IDToValue[Id] = Val;
2103 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2104 };
2105
2106 for (int i = 0; i < Kernel->n_grid; ++i) {
2107 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2108 addId(Id, IntrinsicsBID[i]);
2109 }
2110
2111 for (int i = 0; i < Kernel->n_block; ++i) {
2112 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2113 addId(Id, IntrinsicsTID[i]);
2114 }
2115 }
2116
insertKernelCallsSPIR(ppcg_kernel * Kernel,bool SizeTypeIs64bit)2117 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel,
2118 bool SizeTypeIs64bit) {
2119 const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2120 "__gen_ocl_get_group_id1",
2121 "__gen_ocl_get_group_id2"};
2122
2123 const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2124 "__gen_ocl_get_local_id1",
2125 "__gen_ocl_get_local_id2"};
2126 IntegerType *SizeT =
2127 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty();
2128
2129 auto createFunc = [this](const char *Name, __isl_take isl_id *Id,
2130 IntegerType *SizeT) mutable {
2131 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2132 Function *FN = M->getFunction(Name);
2133
2134 // If FN is not available, declare it.
2135 if (!FN) {
2136 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2137 std::vector<Type *> Args;
2138 FunctionType *Ty = FunctionType::get(SizeT, Args, false);
2139 FN = Function::Create(Ty, Linkage, Name, M);
2140 FN->setCallingConv(CallingConv::SPIR_FUNC);
2141 }
2142
2143 Value *Val = Builder.CreateCall(FN, {});
2144 if (SizeT == Builder.getInt32Ty())
2145 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2146 IDToValue[Id] = Val;
2147 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2148 };
2149
2150 for (int i = 0; i < Kernel->n_grid; ++i)
2151 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT);
2152
2153 for (int i = 0; i < Kernel->n_block; ++i)
2154 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT);
2155 }
2156
prepareKernelArguments(ppcg_kernel * Kernel,Function * FN)2157 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2158 auto Arg = FN->arg_begin();
2159 for (long i = 0; i < Kernel->n_array; i++) {
2160 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2161 continue;
2162
2163 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2164 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2165 isl_id_free(Id);
2166
2167 if (SAI->getNumberOfDimensions() > 0) {
2168 Arg++;
2169 continue;
2170 }
2171
2172 Value *Val = &*Arg;
2173
2174 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2175 Type *TypePtr = SAI->getElementType()->getPointerTo();
2176 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2177 Val = Builder.CreateLoad(SAI->getElementType(), TypedArgPtr);
2178 }
2179
2180 Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2181 Builder.CreateStore(Val, Alloca);
2182
2183 Arg++;
2184 }
2185 }
2186
finalizeKernelArguments(ppcg_kernel * Kernel)2187 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2188 auto *FN = Builder.GetInsertBlock()->getParent();
2189 auto Arg = FN->arg_begin();
2190
2191 bool StoredScalar = false;
2192 for (long i = 0; i < Kernel->n_array; i++) {
2193 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2194 continue;
2195
2196 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2197 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2198 isl_id_free(Id);
2199
2200 if (SAI->getNumberOfDimensions() > 0) {
2201 Arg++;
2202 continue;
2203 }
2204
2205 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2206 Arg++;
2207 continue;
2208 }
2209
2210 Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2211 Value *ArgPtr = &*Arg;
2212 Type *TypePtr = SAI->getElementType()->getPointerTo();
2213 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2214 Value *Val = Builder.CreateLoad(SAI->getElementType(), Alloca);
2215 Builder.CreateStore(Val, TypedArgPtr);
2216 StoredScalar = true;
2217
2218 Arg++;
2219 }
2220
2221 if (StoredScalar) {
2222 /// In case more than one thread contains scalar stores, the generated
2223 /// code might be incorrect, if we only store at the end of the kernel.
2224 /// To support this case we need to store these scalars back at each
2225 /// memory store or at least before each kernel barrier.
2226 if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2227 BuildSuccessful = 0;
2228 LLVM_DEBUG(
2229 dbgs() << getUniqueScopName(&S)
2230 << " has a store to a scalar value that"
2231 " would be undefined to run in parallel. Bailing out.\n";);
2232 }
2233 }
2234 }
2235
createKernelVariables(ppcg_kernel * Kernel,Function * FN)2236 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2237 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2238
2239 for (int i = 0; i < Kernel->n_var; ++i) {
2240 struct ppcg_kernel_var &Var = Kernel->var[i];
2241 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2242 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2243
2244 Type *ArrayTy = EleTy;
2245 SmallVector<const SCEV *, 4> Sizes;
2246
2247 Sizes.push_back(nullptr);
2248 for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2249 isl_val *Val = isl_vec_get_element_val(Var.size, j);
2250 long Bound = isl_val_get_num_si(Val);
2251 isl_val_free(Val);
2252 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2253 }
2254
2255 for (int j = Var.array->n_index - 1; j >= 0; --j) {
2256 isl_val *Val = isl_vec_get_element_val(Var.size, j);
2257 long Bound = isl_val_get_num_si(Val);
2258 isl_val_free(Val);
2259 ArrayTy = ArrayType::get(ArrayTy, Bound);
2260 }
2261
2262 const ScopArrayInfo *SAI;
2263 Value *Allocation;
2264 if (Var.type == ppcg_access_shared) {
2265 auto GlobalVar = new GlobalVariable(
2266 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2267 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2268 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8));
2269 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2270
2271 Allocation = GlobalVar;
2272 } else if (Var.type == ppcg_access_private) {
2273 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2274 } else {
2275 llvm_unreachable("unknown variable type");
2276 }
2277 SAI =
2278 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2279 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr);
2280 IDToValue[Id] = Allocation;
2281 LocalArrays.push_back(Allocation);
2282 KernelIds.push_back(Id);
2283 IDToSAI[Id] = SAI;
2284 }
2285 }
2286
createKernelFunction(ppcg_kernel * Kernel,SetVector<Value * > & SubtreeValues,SetVector<Function * > & SubtreeFunctions)2287 void GPUNodeBuilder::createKernelFunction(
2288 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2289 SetVector<Function *> &SubtreeFunctions) {
2290 std::string Identifier = getKernelFuncName(Kernel->id);
2291 GPUModule.reset(new Module(Identifier, Builder.getContext()));
2292
2293 switch (Arch) {
2294 case GPUArch::NVPTX64:
2295 if (Runtime == GPURuntime::CUDA)
2296 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2297 else if (Runtime == GPURuntime::OpenCL)
2298 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2299 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2300 break;
2301 case GPUArch::SPIR32:
2302 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2303 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2304 break;
2305 case GPUArch::SPIR64:
2306 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2307 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2308 break;
2309 }
2310
2311 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2312
2313 BasicBlock *PrevBlock = Builder.GetInsertBlock();
2314 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2315
2316 DT.addNewBlock(EntryBlock, PrevBlock);
2317
2318 Builder.SetInsertPoint(EntryBlock);
2319 Builder.CreateRetVoid();
2320 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2321
2322 ScopDetection::markFunctionAsInvalid(FN);
2323
2324 prepareKernelArguments(Kernel, FN);
2325 createKernelVariables(Kernel, FN);
2326
2327 switch (Arch) {
2328 case GPUArch::NVPTX64:
2329 insertKernelIntrinsics(Kernel);
2330 break;
2331 case GPUArch::SPIR32:
2332 insertKernelCallsSPIR(Kernel, false);
2333 break;
2334 case GPUArch::SPIR64:
2335 insertKernelCallsSPIR(Kernel, true);
2336 break;
2337 }
2338 }
2339
createKernelASM()2340 std::string GPUNodeBuilder::createKernelASM() {
2341 llvm::Triple GPUTriple;
2342
2343 switch (Arch) {
2344 case GPUArch::NVPTX64:
2345 switch (Runtime) {
2346 case GPURuntime::CUDA:
2347 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2348 break;
2349 case GPURuntime::OpenCL:
2350 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2351 break;
2352 }
2353 break;
2354 case GPUArch::SPIR64:
2355 case GPUArch::SPIR32:
2356 std::string SPIRAssembly;
2357 raw_string_ostream IROstream(SPIRAssembly);
2358 IROstream << *GPUModule;
2359 IROstream.flush();
2360 return SPIRAssembly;
2361 }
2362
2363 std::string ErrMsg;
2364 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2365
2366 if (!GPUTarget) {
2367 errs() << ErrMsg << "\n";
2368 return "";
2369 }
2370
2371 TargetOptions Options;
2372 Options.UnsafeFPMath = FastMath;
2373
2374 std::string subtarget;
2375
2376 switch (Arch) {
2377 case GPUArch::NVPTX64:
2378 subtarget = CudaVersion;
2379 break;
2380 case GPUArch::SPIR32:
2381 case GPUArch::SPIR64:
2382 llvm_unreachable("No subtarget for SPIR architecture");
2383 }
2384
2385 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2386 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2387
2388 SmallString<0> ASMString;
2389 raw_svector_ostream ASMStream(ASMString);
2390 llvm::legacy::PassManager PM;
2391
2392 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2393
2394 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile,
2395 true /* verify */)) {
2396 errs() << "The target does not support generation of this file type!\n";
2397 return "";
2398 }
2399
2400 PM.run(*GPUModule);
2401
2402 return ASMStream.str().str();
2403 }
2404
requiresCUDALibDevice()2405 bool GPUNodeBuilder::requiresCUDALibDevice() {
2406 bool RequiresLibDevice = false;
2407 for (Function &F : GPUModule->functions()) {
2408 if (!F.isDeclaration())
2409 continue;
2410
2411 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName());
2412 if (CUDALibDeviceFunc.length() != 0) {
2413 // We need to handle the case where a module looks like this:
2414 // @expf(..)
2415 // @llvm.exp.f64(..)
2416 // Both of these functions would be renamed to `__nv_expf`.
2417 //
2418 // So, we must first check for the existence of the libdevice function.
2419 // If this exists, we replace our current function with it.
2420 //
2421 // If it does not exist, we rename the current function to the
2422 // libdevice functiono name.
2423 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
2424 F.replaceAllUsesWith(Replacement);
2425 else
2426 F.setName(CUDALibDeviceFunc);
2427 RequiresLibDevice = true;
2428 }
2429 }
2430
2431 return RequiresLibDevice;
2432 }
2433
addCUDALibDevice()2434 void GPUNodeBuilder::addCUDALibDevice() {
2435 if (Arch != GPUArch::NVPTX64)
2436 return;
2437
2438 if (requiresCUDALibDevice()) {
2439 SMDiagnostic Error;
2440
2441 errs() << CUDALibDevice << "\n";
2442 auto LibDeviceModule =
2443 parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2444
2445 if (!LibDeviceModule) {
2446 BuildSuccessful = false;
2447 report_fatal_error("Could not find or load libdevice. Skipping GPU "
2448 "kernel generation. Please set -polly-acc-libdevice "
2449 "accordingly.\n");
2450 return;
2451 }
2452
2453 Linker L(*GPUModule);
2454
2455 // Set an nvptx64 target triple to avoid linker warnings. The original
2456 // triple of the libdevice files are nvptx-unknown-unknown.
2457 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2458 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2459 }
2460 }
2461
finalizeKernelFunction()2462 std::string GPUNodeBuilder::finalizeKernelFunction() {
2463
2464 if (verifyModule(*GPUModule)) {
2465 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n";
2466 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2467 LLVM_DEBUG(dbgs() << "verifyModule Error:\n";
2468 verifyModule(*GPUModule, &dbgs()););
2469
2470 if (FailOnVerifyModuleFailure)
2471 llvm_unreachable("VerifyModule failed.");
2472
2473 BuildSuccessful = false;
2474 return "";
2475 }
2476
2477 addCUDALibDevice();
2478
2479 if (DumpKernelIR)
2480 outs() << *GPUModule << "\n";
2481
2482 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2483 // Optimize module.
2484 llvm::legacy::PassManager OptPasses;
2485 PassManagerBuilder PassBuilder;
2486 PassBuilder.OptLevel = 3;
2487 PassBuilder.SizeLevel = 0;
2488 PassBuilder.populateModulePassManager(OptPasses);
2489 OptPasses.run(*GPUModule);
2490 }
2491
2492 std::string Assembly = createKernelASM();
2493
2494 if (DumpKernelASM)
2495 outs() << Assembly << "\n";
2496
2497 GPUModule.release();
2498 KernelIDs.clear();
2499
2500 return Assembly;
2501 }
2502 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2503 /// @param PwAffs The list of piecewise affine functions to create an
2504 /// `isl_pw_aff_list` from. We expect an rvalue ref because
2505 /// all the isl_pw_aff are used up by this function.
2506 ///
2507 /// @returns The `isl_pw_aff_list`.
2508 __isl_give isl_pw_aff_list *
createPwAffList(isl_ctx * Context,const std::vector<__isl_take isl_pw_aff * > && PwAffs)2509 createPwAffList(isl_ctx *Context,
2510 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2511 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2512
2513 for (unsigned i = 0; i < PwAffs.size(); i++) {
2514 List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2515 }
2516 return List;
2517 }
2518
2519 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2520 ///
2521 /// We loop over all `pw_aff` and align all of their spaces together to
2522 /// create a common space for all the `pw_aff`. This common space is the
2523 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2524 /// with the given `SeedSpace`.
2525 /// @param PwAffs The list of piecewise affine functions we want to align.
2526 /// This is an rvalue reference because the entire vector is
2527 /// used up by the end of the operation.
2528 /// @param SeedSpace The space to start the alignment process with.
2529 /// @returns A std::pair, whose first element is the aligned space,
2530 /// whose second element is the vector of aligned piecewise
2531 /// affines.
2532 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
alignPwAffs(const std::vector<__isl_take isl_pw_aff * > && PwAffs,__isl_take isl_space * SeedSpace)2533 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2534 __isl_take isl_space *SeedSpace) {
2535 assert(SeedSpace && "Invalid seed space given.");
2536
2537 isl_space *AlignSpace = SeedSpace;
2538 for (isl_pw_aff *PwAff : PwAffs) {
2539 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2540 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2541 }
2542 std::vector<isl_pw_aff *> AdjustedPwAffs;
2543
2544 for (unsigned i = 0; i < PwAffs.size(); i++) {
2545 isl_pw_aff *Adjusted = PwAffs[i];
2546 assert(Adjusted && "Invalid pw_aff given.");
2547 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2548 AdjustedPwAffs.push_back(Adjusted);
2549 }
2550 return std::make_pair(AlignSpace, AdjustedPwAffs);
2551 }
2552
2553 namespace {
2554 class PPCGCodeGeneration final : public ScopPass {
2555 public:
2556 static char ID;
2557
2558 GPURuntime Runtime = GPURuntime::CUDA;
2559
2560 GPUArch Architecture = GPUArch::NVPTX64;
2561
2562 /// The scop that is currently processed.
2563 Scop *S;
2564
2565 LoopInfo *LI;
2566 DominatorTree *DT;
2567 ScalarEvolution *SE;
2568 const DataLayout *DL;
2569 RegionInfo *RI;
2570
PPCGCodeGeneration()2571 PPCGCodeGeneration() : ScopPass(ID) {
2572 // Apply defaults.
2573 Runtime = GPURuntimeChoice;
2574 Architecture = GPUArchChoice;
2575 }
2576
2577 /// Construct compilation options for PPCG.
2578 ///
2579 /// @returns The compilation options.
createPPCGOptions()2580 ppcg_options *createPPCGOptions() {
2581 auto DebugOptions =
2582 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2583 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2584
2585 DebugOptions->dump_schedule_constraints = false;
2586 DebugOptions->dump_schedule = false;
2587 DebugOptions->dump_final_schedule = false;
2588 DebugOptions->dump_sizes = false;
2589 DebugOptions->verbose = false;
2590
2591 Options->debug = DebugOptions;
2592
2593 Options->group_chains = false;
2594 Options->reschedule = true;
2595 Options->scale_tile_loops = false;
2596 Options->wrap = false;
2597
2598 Options->non_negative_parameters = false;
2599 Options->ctx = nullptr;
2600 Options->sizes = nullptr;
2601
2602 Options->tile = true;
2603 Options->tile_size = 32;
2604
2605 Options->isolate_full_tiles = false;
2606
2607 Options->use_private_memory = PrivateMemory;
2608 Options->use_shared_memory = SharedMemory;
2609 Options->max_shared_memory = 48 * 1024;
2610
2611 Options->target = PPCG_TARGET_CUDA;
2612 Options->openmp = false;
2613 Options->linearize_device_arrays = true;
2614 Options->allow_gnu_extensions = false;
2615
2616 Options->unroll_copy_shared = false;
2617 Options->unroll_gpu_tile = false;
2618 Options->live_range_reordering = true;
2619
2620 Options->live_range_reordering = true;
2621 Options->hybrid = false;
2622 Options->opencl_compiler_options = nullptr;
2623 Options->opencl_use_gpu = false;
2624 Options->opencl_n_include_file = 0;
2625 Options->opencl_include_files = nullptr;
2626 Options->opencl_print_kernel_types = false;
2627 Options->opencl_embed_kernel_code = false;
2628
2629 Options->save_schedule_file = nullptr;
2630 Options->load_schedule_file = nullptr;
2631
2632 return Options;
2633 }
2634
2635 /// Get a tagged access relation containing all accesses of type @p AccessTy.
2636 ///
2637 /// Instead of a normal access of the form:
2638 ///
2639 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2640 ///
2641 /// a tagged access has the form
2642 ///
2643 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2644 ///
2645 /// where 'id' is an additional space that references the memory access that
2646 /// triggered the access.
2647 ///
2648 /// @param AccessTy The type of the memory accesses to collect.
2649 ///
2650 /// @return The relation describing all tagged memory accesses.
getTaggedAccesses(enum MemoryAccess::AccessType AccessTy)2651 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2652 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2653
2654 for (auto &Stmt : *S)
2655 for (auto &Acc : Stmt)
2656 if (Acc->getType() == AccessTy) {
2657 isl_map *Relation = Acc->getAccessRelation().release();
2658 Relation =
2659 isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2660
2661 isl_space *Space = isl_map_get_space(Relation);
2662 Space = isl_space_range(Space);
2663 Space = isl_space_from_range(Space);
2664 Space =
2665 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2666 isl_map *Universe = isl_map_universe(Space);
2667 Relation = isl_map_domain_product(Relation, Universe);
2668 Accesses = isl_union_map_add_map(Accesses, Relation);
2669 }
2670
2671 return Accesses;
2672 }
2673
2674 /// Get the set of all read accesses, tagged with the access id.
2675 ///
2676 /// @see getTaggedAccesses
getTaggedReads()2677 isl_union_map *getTaggedReads() {
2678 return getTaggedAccesses(MemoryAccess::READ);
2679 }
2680
2681 /// Get the set of all may (and must) accesses, tagged with the access id.
2682 ///
2683 /// @see getTaggedAccesses
getTaggedMayWrites()2684 isl_union_map *getTaggedMayWrites() {
2685 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2686 getTaggedAccesses(MemoryAccess::MUST_WRITE));
2687 }
2688
2689 /// Get the set of all must accesses, tagged with the access id.
2690 ///
2691 /// @see getTaggedAccesses
getTaggedMustWrites()2692 isl_union_map *getTaggedMustWrites() {
2693 return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2694 }
2695
2696 /// Collect parameter and array names as isl_ids.
2697 ///
2698 /// To reason about the different parameters and arrays used, ppcg requires
2699 /// a list of all isl_ids in use. As PPCG traditionally performs
2700 /// source-to-source compilation each of these isl_ids is mapped to the
2701 /// expression that represents it. As we do not have a corresponding
2702 /// expression in Polly, we just map each id to a 'zero' expression to match
2703 /// the data format that ppcg expects.
2704 ///
2705 /// @returns Retun a map from collected ids to 'zero' ast expressions.
getNames()2706 __isl_give isl_id_to_ast_expr *getNames() {
2707 auto *Names = isl_id_to_ast_expr_alloc(
2708 S->getIslCtx().get(),
2709 S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2710 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get()));
2711
2712 for (const SCEV *P : S->parameters()) {
2713 isl_id *Id = S->getIdForParam(P).release();
2714 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2715 }
2716
2717 for (auto &Array : S->arrays()) {
2718 auto Id = Array->getBasePtrId().release();
2719 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2720 }
2721
2722 isl_ast_expr_free(Zero);
2723
2724 return Names;
2725 }
2726
2727 /// Create a new PPCG scop from the current scop.
2728 ///
2729 /// The PPCG scop is initialized with data from the current polly::Scop. From
2730 /// this initial data, the data-dependences in the PPCG scop are initialized.
2731 /// We do not use Polly's dependence analysis for now, to ensure we match
2732 /// the PPCG default behaviour more closely.
2733 ///
2734 /// @returns A new ppcg scop.
createPPCGScop()2735 ppcg_scop *createPPCGScop() {
2736 MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2737
2738 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2739
2740 PPCGScop->options = createPPCGOptions();
2741 // enable live range reordering
2742 PPCGScop->options->live_range_reordering = 1;
2743
2744 PPCGScop->start = 0;
2745 PPCGScop->end = 0;
2746
2747 PPCGScop->context = S->getContext().release();
2748 PPCGScop->domain = S->getDomains().release();
2749 // TODO: investigate this further. PPCG calls collect_call_domains.
2750 PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2751 PPCGScop->tagged_reads = getTaggedReads();
2752 PPCGScop->reads = S->getReads().release();
2753 PPCGScop->live_in = nullptr;
2754 PPCGScop->tagged_may_writes = getTaggedMayWrites();
2755 PPCGScop->may_writes = S->getWrites().release();
2756 PPCGScop->tagged_must_writes = getTaggedMustWrites();
2757 PPCGScop->must_writes = S->getMustWrites().release();
2758 PPCGScop->live_out = nullptr;
2759 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release();
2760 PPCGScop->must_kills = KillsInfo.MustKills.release();
2761
2762 PPCGScop->tagger = nullptr;
2763 PPCGScop->independence =
2764 isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2765 PPCGScop->dep_flow = nullptr;
2766 PPCGScop->tagged_dep_flow = nullptr;
2767 PPCGScop->dep_false = nullptr;
2768 PPCGScop->dep_forced = nullptr;
2769 PPCGScop->dep_order = nullptr;
2770 PPCGScop->tagged_dep_order = nullptr;
2771
2772 PPCGScop->schedule = S->getScheduleTree().release();
2773 // If we have something non-trivial to kill, add it to the schedule
2774 if (KillsInfo.KillsSchedule.get())
2775 PPCGScop->schedule = isl_schedule_sequence(
2776 PPCGScop->schedule, KillsInfo.KillsSchedule.release());
2777
2778 PPCGScop->names = getNames();
2779 PPCGScop->pet = nullptr;
2780
2781 compute_tagger(PPCGScop);
2782 compute_dependences(PPCGScop);
2783 eliminate_dead_code(PPCGScop);
2784
2785 return PPCGScop;
2786 }
2787
2788 /// Collect the array accesses in a statement.
2789 ///
2790 /// @param Stmt The statement for which to collect the accesses.
2791 ///
2792 /// @returns A list of array accesses.
getStmtAccesses(ScopStmt & Stmt)2793 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2794 gpu_stmt_access *Accesses = nullptr;
2795
2796 for (MemoryAccess *Acc : Stmt) {
2797 auto Access =
2798 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access);
2799 Access->read = Acc->isRead();
2800 Access->write = Acc->isWrite();
2801 Access->access = Acc->getAccessRelation().release();
2802 isl_space *Space = isl_map_get_space(Access->access);
2803 Space = isl_space_range(Space);
2804 Space = isl_space_from_range(Space);
2805 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2806 isl_map *Universe = isl_map_universe(Space);
2807 Access->tagged_access =
2808 isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2809 Access->exact_write = !Acc->isMayWrite();
2810 Access->ref_id = Acc->getId().release();
2811 Access->next = Accesses;
2812 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2813 // TODO: Also mark one-element accesses to arrays as fixed-element.
2814 Access->fixed_element =
2815 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2816 Accesses = Access;
2817 }
2818
2819 return Accesses;
2820 }
2821
2822 /// Collect the list of GPU statements.
2823 ///
2824 /// Each statement has an id, a pointer to the underlying data structure,
2825 /// as well as a list with all memory accesses.
2826 ///
2827 /// TODO: Initialize the list of memory accesses.
2828 ///
2829 /// @returns A linked-list of statements.
getStatements()2830 gpu_stmt *getStatements() {
2831 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt,
2832 std::distance(S->begin(), S->end()));
2833
2834 int i = 0;
2835 for (auto &Stmt : *S) {
2836 gpu_stmt *GPUStmt = &Stmts[i];
2837
2838 GPUStmt->id = Stmt.getDomainId().release();
2839
2840 // We use the pet stmt pointer to keep track of the Polly statements.
2841 GPUStmt->stmt = (pet_stmt *)&Stmt;
2842 GPUStmt->accesses = getStmtAccesses(Stmt);
2843 i++;
2844 }
2845
2846 return Stmts;
2847 }
2848
2849 /// Derive the extent of an array.
2850 ///
2851 /// The extent of an array is the set of elements that are within the
2852 /// accessed array. For the inner dimensions, the extent constraints are
2853 /// 0 and the size of the corresponding array dimension. For the first
2854 /// (outermost) dimension, the extent constraints are the minimal and maximal
2855 /// subscript value for the first dimension.
2856 ///
2857 /// @param Array The array to derive the extent for.
2858 ///
2859 /// @returns An isl_set describing the extent of the array.
getExtent(ScopArrayInfo * Array)2860 isl::set getExtent(ScopArrayInfo *Array) {
2861 unsigned NumDims = Array->getNumberOfDimensions();
2862
2863 if (Array->getNumberOfDimensions() == 0)
2864 return isl::set::universe(Array->getSpace());
2865
2866 isl::union_map Accesses = S->getAccesses(Array);
2867 isl::union_set AccessUSet = Accesses.range();
2868 AccessUSet = AccessUSet.coalesce();
2869 AccessUSet = AccessUSet.detect_equalities();
2870 AccessUSet = AccessUSet.coalesce();
2871
2872 if (AccessUSet.is_empty())
2873 return isl::set::empty(Array->getSpace());
2874
2875 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2876
2877 isl::local_space LS = isl::local_space(Array->getSpace());
2878
2879 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2880 isl::pw_aff OuterMin = AccessSet.dim_min(0);
2881 isl::pw_aff OuterMax = AccessSet.dim_max(0);
2882 OuterMin = OuterMin.add_dims(isl::dim::in,
2883 unsignedFromIslSize(Val.dim(isl::dim::in)));
2884 OuterMax = OuterMax.add_dims(isl::dim::in,
2885 unsignedFromIslSize(Val.dim(isl::dim::in)));
2886 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2887 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2888
2889 isl::set Extent = isl::set::universe(Array->getSpace());
2890
2891 Extent = Extent.intersect(OuterMin.le_set(Val));
2892 Extent = Extent.intersect(OuterMax.ge_set(Val));
2893
2894 for (unsigned i = 1; i < NumDims; ++i)
2895 Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2896
2897 for (unsigned i = 0; i < NumDims; ++i) {
2898 isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2899
2900 // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2901 // Fortran array will we have a legitimate dimension.
2902 if (PwAff.is_null()) {
2903 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2904 continue;
2905 }
2906
2907 isl::pw_aff Val = isl::aff::var_on_domain(
2908 isl::local_space(Array->getSpace()), isl::dim::set, i);
2909 PwAff = PwAff.add_dims(isl::dim::in,
2910 unsignedFromIslSize(Val.dim(isl::dim::in)));
2911 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2912 isl::set Set = PwAff.gt_set(Val);
2913 Extent = Set.intersect(Extent);
2914 }
2915
2916 return Extent;
2917 }
2918
2919 /// Derive the bounds of an array.
2920 ///
2921 /// For the first dimension we derive the bound of the array from the extent
2922 /// of this dimension. For inner dimensions we obtain their size directly from
2923 /// ScopArrayInfo.
2924 ///
2925 /// @param PPCGArray The array to compute bounds for.
2926 /// @param Array The polly array from which to take the information.
setArrayBounds(gpu_array_info & PPCGArray,ScopArrayInfo * Array)2927 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2928 std::vector<isl_pw_aff *> Bounds;
2929
2930 if (PPCGArray.n_index > 0) {
2931 if (isl_set_is_empty(PPCGArray.extent)) {
2932 isl_set *Dom = isl_set_copy(PPCGArray.extent);
2933 isl_local_space *LS = isl_local_space_from_space(
2934 isl_space_params(isl_set_get_space(Dom)));
2935 isl_set_free(Dom);
2936 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2937 Bounds.push_back(Zero);
2938 } else {
2939 isl_set *Dom = isl_set_copy(PPCGArray.extent);
2940 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2941 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2942 isl_set_free(Dom);
2943 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2944 isl_local_space *LS =
2945 isl_local_space_from_space(isl_set_get_space(Dom));
2946 isl_aff *One = isl_aff_zero_on_domain(LS);
2947 One = isl_aff_add_constant_si(One, 1);
2948 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2949 Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2950 Bounds.push_back(Bound);
2951 }
2952 }
2953
2954 for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2955 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2956 auto LS = isl_pw_aff_get_domain_space(Bound);
2957 auto Aff = isl_multi_aff_zero(LS);
2958
2959 // We need types to work out, which is why we perform this weird dance
2960 // with `Aff` and `Bound`. Consider this example:
2961
2962 // LS: [p] -> { [] }
2963 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }.
2964 // This `~` is used to denote a "null space" (which is different from
2965 // a *zero dimensional* space), which is something that ISL does not
2966 // show you when pretty printing.
2967
2968 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional*
2969 // space, not a "null space" which does not exist at all.
2970
2971 // When we pullback (precompose) `Bound` with `Zero`, we get:
2972 // Bound . Zero =
2973 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) =
2974 // [p] -> { ~ -> [(10p)] } =
2975 // [p] -> [(10p)] (as ISL pretty prints it)
2976 // Bound Pullback: [p] -> { [(10p)] }
2977
2978 // We want this kind of an expression for Bound, without a
2979 // zero dimensional input, but with a "null space" input for the types
2980 // to work out later on, as far as I (Siddharth Bhat) understand.
2981 // I was unable to find a reference to this in the ISL manual.
2982 // References: Tobias Grosser.
2983
2984 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2985 Bounds.push_back(Bound);
2986 }
2987
2988 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2989 /// to have the same parameter dimensions. So, we need to align them to an
2990 /// appropriate space.
2991 /// Scop::Context is _not_ an appropriate space, because when we have
2992 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2993 /// contain all parameter dimensions.
2994 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2995 isl_space *SeedAlignSpace = S->getParamSpace().release();
2996 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2997
2998 isl_space *AlignSpace = nullptr;
2999 std::vector<isl_pw_aff *> AlignedBounds;
3000 std::tie(AlignSpace, AlignedBounds) =
3001 alignPwAffs(std::move(Bounds), SeedAlignSpace);
3002
3003 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
3004
3005 isl_pw_aff_list *BoundsList =
3006 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds));
3007
3008 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
3009 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
3010
3011 assert(BoundsSpace && "Unable to access space of array.");
3012 assert(BoundsList && "Unable to access list of bounds.");
3013
3014 PPCGArray.bound =
3015 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
3016 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
3017 }
3018
3019 /// Create the arrays for @p PPCGProg.
3020 ///
3021 /// @param PPCGProg The program to compute the arrays for.
createArrays(gpu_prog * PPCGProg,const SmallVector<ScopArrayInfo *,4> & ValidSAIs)3022 void createArrays(gpu_prog *PPCGProg,
3023 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
3024 int i = 0;
3025 for (auto &Array : ValidSAIs) {
3026 std::string TypeName;
3027 raw_string_ostream OS(TypeName);
3028
3029 OS << *Array->getElementType();
3030 TypeName = OS.str();
3031
3032 gpu_array_info &PPCGArray = PPCGProg->array[i];
3033
3034 PPCGArray.space = Array->getSpace().release();
3035 PPCGArray.type = strdup(TypeName.c_str());
3036 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
3037 PPCGArray.name = strdup(Array->getName().c_str());
3038 PPCGArray.extent = nullptr;
3039 PPCGArray.n_index = Array->getNumberOfDimensions();
3040 PPCGArray.extent = getExtent(Array).release();
3041 PPCGArray.n_ref = 0;
3042 PPCGArray.refs = nullptr;
3043 PPCGArray.accessed = true;
3044 PPCGArray.read_only_scalar =
3045 Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
3046 PPCGArray.has_compound_element = false;
3047 PPCGArray.local = false;
3048 PPCGArray.declare_local = false;
3049 PPCGArray.global = false;
3050 PPCGArray.linearize = false;
3051 PPCGArray.dep_order = nullptr;
3052 PPCGArray.user = Array;
3053
3054 PPCGArray.bound = nullptr;
3055 setArrayBounds(PPCGArray, Array);
3056 i++;
3057
3058 collect_references(PPCGProg, &PPCGArray);
3059 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
3060 }
3061 }
3062
3063 /// Create an identity map between the arrays in the scop.
3064 ///
3065 /// @returns An identity map between the arrays in the scop.
getArrayIdentity()3066 isl_union_map *getArrayIdentity() {
3067 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
3068
3069 for (auto &Array : S->arrays()) {
3070 isl_space *Space = Array->getSpace().release();
3071 Space = isl_space_map_from_set(Space);
3072 isl_map *Identity = isl_map_identity(Space);
3073 Maps = isl_union_map_add_map(Maps, Identity);
3074 }
3075
3076 return Maps;
3077 }
3078
3079 /// Create a default-initialized PPCG GPU program.
3080 ///
3081 /// @returns A new gpu program description.
createPPCGProg(ppcg_scop * PPCGScop)3082 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
3083
3084 if (!PPCGScop)
3085 return nullptr;
3086
3087 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog);
3088
3089 PPCGProg->ctx = S->getIslCtx().get();
3090 PPCGProg->scop = PPCGScop;
3091 PPCGProg->context = isl_set_copy(PPCGScop->context);
3092 PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
3093 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
3094 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
3095 PPCGProg->tagged_must_kill =
3096 isl_union_map_copy(PPCGScop->tagged_must_kills);
3097 PPCGProg->to_inner = getArrayIdentity();
3098 PPCGProg->to_outer = getArrayIdentity();
3099 // TODO: verify that this assignment is correct.
3100 PPCGProg->any_to_outer = nullptr;
3101 PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3102 PPCGProg->stmts = getStatements();
3103
3104 // Only consider arrays that have a non-empty extent.
3105 // Otherwise, this will cause us to consider the following kinds of
3106 // empty arrays:
3107 // 1. Invariant loads that are represented by SAI objects.
3108 // 2. Arrays with statically known zero size.
3109 auto ValidSAIsRange =
3110 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3111 return !getExtent(SAI).is_empty();
3112 });
3113 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3114 ValidSAIsRange.end());
3115
3116 PPCGProg->n_array =
3117 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3118 PPCGProg->array = isl_calloc_array(
3119 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array);
3120
3121 createArrays(PPCGProg, ValidSAIs);
3122
3123 PPCGProg->array_order = nullptr;
3124 collect_order_dependences(PPCGProg);
3125
3126 PPCGProg->may_persist = compute_may_persist(PPCGProg);
3127 return PPCGProg;
3128 }
3129
3130 struct PrintGPUUserData {
3131 struct cuda_info *CudaInfo;
3132 struct gpu_prog *PPCGProg;
3133 std::vector<ppcg_kernel *> Kernels;
3134 };
3135
3136 /// Print a user statement node in the host code.
3137 ///
3138 /// We use ppcg's printing facilities to print the actual statement and
3139 /// additionally build up a list of all kernels that are encountered in the
3140 /// host ast.
3141 ///
3142 /// @param P The printer to print to
3143 /// @param Options The printing options to use
3144 /// @param Node The node to print
3145 /// @param User A user pointer to carry additional data. This pointer is
3146 /// expected to be of type PrintGPUUserData.
3147 ///
3148 /// @returns A printer to which the output has been printed.
3149 static __isl_give isl_printer *
printHostUser(__isl_take isl_printer * P,__isl_take isl_ast_print_options * Options,__isl_take isl_ast_node * Node,void * User)3150 printHostUser(__isl_take isl_printer *P,
3151 __isl_take isl_ast_print_options *Options,
3152 __isl_take isl_ast_node *Node, void *User) {
3153 auto Data = (struct PrintGPUUserData *)User;
3154 auto Id = isl_ast_node_get_annotation(Node);
3155
3156 if (Id) {
3157 bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3158
3159 // If this is a user statement, format it ourselves as ppcg would
3160 // otherwise try to call pet functionality that is not available in
3161 // Polly.
3162 if (IsUser) {
3163 P = isl_printer_start_line(P);
3164 P = isl_printer_print_ast_node(P, Node);
3165 P = isl_printer_end_line(P);
3166 isl_id_free(Id);
3167 isl_ast_print_options_free(Options);
3168 return P;
3169 }
3170
3171 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3172 isl_id_free(Id);
3173 Data->Kernels.push_back(Kernel);
3174 }
3175
3176 return print_host_user(P, Options, Node, User);
3177 }
3178
3179 /// Print C code corresponding to the control flow in @p Kernel.
3180 ///
3181 /// @param Kernel The kernel to print
printKernel(ppcg_kernel * Kernel)3182 void printKernel(ppcg_kernel *Kernel) {
3183 auto *P = isl_printer_to_str(S->getIslCtx().get());
3184 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3185 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3186 P = isl_ast_node_print(Kernel->tree, P, Options);
3187 char *String = isl_printer_get_str(P);
3188 outs() << String << "\n";
3189 free(String);
3190 isl_printer_free(P);
3191 }
3192
3193 /// Print C code corresponding to the GPU code described by @p Tree.
3194 ///
3195 /// @param Tree An AST describing GPU code
3196 /// @param PPCGProg The PPCG program from which @Tree has been constructed.
printGPUTree(isl_ast_node * Tree,gpu_prog * PPCGProg)3197 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3198 auto *P = isl_printer_to_str(S->getIslCtx().get());
3199 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3200
3201 PrintGPUUserData Data;
3202 Data.PPCGProg = PPCGProg;
3203
3204 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3205 Options =
3206 isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3207 P = isl_ast_node_print(Tree, P, Options);
3208 char *String = isl_printer_get_str(P);
3209 outs() << "# host\n";
3210 outs() << String << "\n";
3211 free(String);
3212 isl_printer_free(P);
3213
3214 for (auto Kernel : Data.Kernels) {
3215 outs() << "# kernel" << Kernel->id << "\n";
3216 printKernel(Kernel);
3217 }
3218 }
3219
3220 // Generate a GPU program using PPCG.
3221 //
3222 // GPU mapping consists of multiple steps:
3223 //
3224 // 1) Compute new schedule for the program.
3225 // 2) Map schedule to GPU (TODO)
3226 // 3) Generate code for new schedule (TODO)
3227 //
3228 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3229 // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3230 // strategy directly from this pass.
generateGPU(ppcg_scop * PPCGScop,gpu_prog * PPCGProg)3231 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3232
3233 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen);
3234
3235 PPCGGen->ctx = S->getIslCtx().get();
3236 PPCGGen->options = PPCGScop->options;
3237 PPCGGen->print = nullptr;
3238 PPCGGen->print_user = nullptr;
3239 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3240 PPCGGen->prog = PPCGProg;
3241 PPCGGen->tree = nullptr;
3242 PPCGGen->types.n = 0;
3243 PPCGGen->types.name = nullptr;
3244 PPCGGen->sizes = nullptr;
3245 PPCGGen->used_sizes = nullptr;
3246 PPCGGen->kernel_id = 0;
3247
3248 // Set scheduling strategy to same strategy PPCG is using.
3249 isl_options_set_schedule_serialize_sccs(PPCGGen->ctx, false);
3250 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3251 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3252 isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3253
3254 isl_schedule *Schedule = get_schedule(PPCGGen);
3255
3256 int has_permutable = has_any_permutable_node(Schedule);
3257
3258 Schedule =
3259 isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3260
3261 if (!has_permutable || has_permutable < 0) {
3262 Schedule = isl_schedule_free(Schedule);
3263 LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3264 << " does not have permutable bands. Bailing out\n";);
3265 } else {
3266 const bool CreateTransferToFromDevice = !PollyManagedMemory;
3267 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3268 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3269 }
3270
3271 if (DumpSchedule) {
3272 isl_printer *P = isl_printer_to_str(S->getIslCtx().get());
3273 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3274 P = isl_printer_print_str(P, "Schedule\n");
3275 P = isl_printer_print_str(P, "========\n");
3276 if (Schedule)
3277 P = isl_printer_print_schedule(P, Schedule);
3278 else
3279 P = isl_printer_print_str(P, "No schedule found\n");
3280
3281 outs() << isl_printer_get_str(P) << "\n";
3282 isl_printer_free(P);
3283 }
3284
3285 if (DumpCode) {
3286 outs() << "Code\n";
3287 outs() << "====\n";
3288 if (PPCGGen->tree)
3289 printGPUTree(PPCGGen->tree, PPCGProg);
3290 else
3291 outs() << "No code generated\n";
3292 }
3293
3294 isl_schedule_free(Schedule);
3295
3296 return PPCGGen;
3297 }
3298
3299 /// Free gpu_gen structure.
3300 ///
3301 /// @param PPCGGen The ppcg_gen object to free.
freePPCGGen(gpu_gen * PPCGGen)3302 void freePPCGGen(gpu_gen *PPCGGen) {
3303 isl_ast_node_free(PPCGGen->tree);
3304 isl_union_map_free(PPCGGen->sizes);
3305 isl_union_map_free(PPCGGen->used_sizes);
3306 free(PPCGGen);
3307 }
3308
3309 /// Free the options in the ppcg scop structure.
3310 ///
3311 /// ppcg is not freeing these options for us. To avoid leaks we do this
3312 /// ourselves.
3313 ///
3314 /// @param PPCGScop The scop referencing the options to free.
freeOptions(ppcg_scop * PPCGScop)3315 void freeOptions(ppcg_scop *PPCGScop) {
3316 free(PPCGScop->options->debug);
3317 PPCGScop->options->debug = nullptr;
3318 free(PPCGScop->options);
3319 PPCGScop->options = nullptr;
3320 }
3321
3322 /// Approximate the number of points in the set.
3323 ///
3324 /// This function returns an ast expression that overapproximates the number
3325 /// of points in an isl set through the rectangular hull surrounding this set.
3326 ///
3327 /// @param Set The set to count.
3328 /// @param Build The isl ast build object to use for creating the ast
3329 /// expression.
3330 ///
3331 /// @returns An approximation of the number of points in the set.
approxPointsInSet(__isl_take isl_set * Set,__isl_keep isl_ast_build * Build)3332 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3333 __isl_keep isl_ast_build *Build) {
3334
3335 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3336 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3337
3338 isl_space *Space = isl_set_get_space(Set);
3339 Space = isl_space_params(Space);
3340 auto *Univ = isl_set_universe(Space);
3341 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3342
3343 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
3344 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3345 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3346 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3347 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3348 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3349 Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3350 }
3351
3352 isl_set_free(Set);
3353 isl_pw_aff_free(OneAff);
3354
3355 return Expr;
3356 }
3357
3358 /// Approximate a number of dynamic instructions executed by a given
3359 /// statement.
3360 ///
3361 /// @param Stmt The statement for which to compute the number of dynamic
3362 /// instructions.
3363 /// @param Build The isl ast build object to use for creating the ast
3364 /// expression.
3365 /// @returns An approximation of the number of dynamic instructions executed
3366 /// by @p Stmt.
approxDynamicInst(ScopStmt & Stmt,__isl_keep isl_ast_build * Build)3367 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3368 __isl_keep isl_ast_build *Build) {
3369 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3370
3371 long InstCount = 0;
3372
3373 if (Stmt.isBlockStmt()) {
3374 auto *BB = Stmt.getBasicBlock();
3375 InstCount = std::distance(BB->begin(), BB->end());
3376 } else {
3377 auto *R = Stmt.getRegion();
3378
3379 for (auto *BB : R->blocks()) {
3380 InstCount += std::distance(BB->begin(), BB->end());
3381 }
3382 }
3383
3384 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount);
3385 auto *InstExpr = isl_ast_expr_from_val(InstVal);
3386 return isl_ast_expr_mul(InstExpr, Iterations);
3387 }
3388
3389 /// Approximate dynamic instructions executed in scop.
3390 ///
3391 /// @param S The scop for which to approximate dynamic instructions.
3392 /// @param Build The isl ast build object to use for creating the ast
3393 /// expression.
3394 /// @returns An approximation of the number of dynamic instructions executed
3395 /// in @p S.
3396 __isl_give isl_ast_expr *
getNumberOfIterations(Scop & S,__isl_keep isl_ast_build * Build)3397 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3398 isl_ast_expr *Instructions;
3399
3400 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0);
3401 Instructions = isl_ast_expr_from_val(Zero);
3402
3403 for (ScopStmt &Stmt : S) {
3404 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3405 Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3406 }
3407 return Instructions;
3408 }
3409
3410 /// Create a check that ensures sufficient compute in scop.
3411 ///
3412 /// @param S The scop for which to ensure sufficient compute.
3413 /// @param Build The isl ast build object to use for creating the ast
3414 /// expression.
3415 /// @returns An expression that evaluates to TRUE in case of sufficient
3416 /// compute and to FALSE, otherwise.
3417 __isl_give isl_ast_expr *
createSufficientComputeCheck(Scop & S,__isl_keep isl_ast_build * Build)3418 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3419 auto Iterations = getNumberOfIterations(S, Build);
3420 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute);
3421 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3422 return isl_ast_expr_ge(Iterations, MinComputeExpr);
3423 }
3424
3425 /// Check if the basic block contains a function we cannot codegen for GPU
3426 /// kernels.
3427 ///
3428 /// If this basic block does something with a `Function` other than calling
3429 /// a function that we support in a kernel, return true.
containsInvalidKernelFunctionInBlock(const BasicBlock * BB,bool AllowCUDALibDevice)3430 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3431 bool AllowCUDALibDevice) {
3432 for (const Instruction &Inst : *BB) {
3433 const CallInst *Call = dyn_cast<CallInst>(&Inst);
3434 if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3435 AllowCUDALibDevice))
3436 continue;
3437
3438 for (Value *Op : Inst.operands())
3439 // Look for functions among operands of Inst.
3440 if (isa<Function>(Op->stripPointerCasts())) {
3441 LLVM_DEBUG(dbgs()
3442 << Inst << " has illegal use of function in kernel.\n");
3443 return true;
3444 }
3445 }
3446 return false;
3447 }
3448
3449 /// Return whether the Scop S uses functions in a way that we do not support.
containsInvalidKernelFunction(const Scop & S,bool AllowCUDALibDevice)3450 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3451 for (auto &Stmt : S) {
3452 if (Stmt.isBlockStmt()) {
3453 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3454 AllowCUDALibDevice))
3455 return true;
3456 } else {
3457 assert(Stmt.isRegionStmt() &&
3458 "Stmt was neither block nor region statement");
3459 for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3460 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3461 return true;
3462 }
3463 }
3464 return false;
3465 }
3466
3467 /// Generate code for a given GPU AST described by @p Root.
3468 ///
3469 /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3470 /// @param Prog The GPU Program to generate code for.
generateCode(__isl_take isl_ast_node * Root,gpu_prog * Prog)3471 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3472 ScopAnnotator Annotator;
3473 Annotator.buildAliasScopes(*S);
3474
3475 Region *R = &S->getRegion();
3476
3477 simplifyRegion(R, DT, LI, RI);
3478
3479 BasicBlock *EnteringBB = R->getEnteringBlock();
3480
3481 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(),
3482 IRInserter(Annotator));
3483 Builder.SetInsertPoint(EnteringBB->getTerminator());
3484
3485 // Only build the run-time condition and parameters _after_ having
3486 // introduced the conditional branch. This is important as the conditional
3487 // branch will guard the original scop from new induction variables that
3488 // the SCEVExpander may introduce while code generating the parameters and
3489 // which may introduce scalar dependences that prevent us from correctly
3490 // code generating this scop.
3491 BBPair StartExitBlocks;
3492 BranchInst *CondBr = nullptr;
3493 std::tie(StartExitBlocks, CondBr) =
3494 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3495 BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3496
3497 assert(CondBr && "CondBr not initialized by executeScopConditionally");
3498
3499 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3500 StartBlock, Prog, Runtime, Architecture);
3501
3502 // TODO: Handle LICM
3503 auto SplitBlock = StartBlock->getSinglePredecessor();
3504 Builder.SetInsertPoint(SplitBlock->getTerminator());
3505
3506 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get());
3507 isl::ast_expr Condition =
3508 IslAst::buildRunCondition(*S, isl::manage_copy(Build));
3509 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3510 Condition =
3511 isl::manage(isl_ast_expr_and(Condition.release(), SufficientCompute));
3512 isl_ast_build_free(Build);
3513
3514 // preload invariant loads. Note: This should happen before the RTC
3515 // because the RTC may depend on values that are invariant load hoisted.
3516 if (!NodeBuilder.preloadInvariantLoads()) {
3517 // Patch the introduced branch condition to ensure that we always execute
3518 // the original SCoP.
3519 auto *FalseI1 = Builder.getFalse();
3520 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
3521 SplitBBTerm->setOperand(0, FalseI1);
3522
3523 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3524 S->getFunction().getName() +
3525 " | Scop Region: " + S->getNameStr());
3526 // adjust the dominator tree accordingly.
3527 auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3528 assert(ExitingBlock);
3529 auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3530 assert(MergeBlock);
3531 polly::markBlockUnreachable(*StartBlock, Builder);
3532 polly::markBlockUnreachable(*ExitingBlock, Builder);
3533 auto *ExitingBB = S->getExitingBlock();
3534 assert(ExitingBB);
3535
3536 DT->changeImmediateDominator(MergeBlock, ExitingBB);
3537 DT->eraseNode(ExitingBlock);
3538 isl_ast_node_free(Root);
3539 } else {
3540
3541 if (polly::PerfMonitoring) {
3542 PerfMonitor P(*S, EnteringBB->getParent()->getParent());
3543 P.initialize();
3544 P.insertRegionStart(SplitBlock->getTerminator());
3545
3546 // TODO: actually think if this is the correct exiting block to place
3547 // the `end` performance marker. Invariant load hoisting changes
3548 // the CFG in a way that I do not precisely understand, so I
3549 // (Siddharth<[email protected]>) should come back to this and
3550 // think about which exiting block to use.
3551 auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3552 assert(ExitingBlock);
3553 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
3554 P.insertRegionEnd(MergeBlock->getTerminator());
3555 }
3556
3557 NodeBuilder.addParameters(S->getContext().release());
3558 Value *RTC = NodeBuilder.createRTC(Condition.release());
3559 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3560
3561 Builder.SetInsertPoint(&*StartBlock->begin());
3562
3563 NodeBuilder.create(Root);
3564 }
3565
3566 /// In case a sequential kernel has more surrounding loops as any parallel
3567 /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3568 /// point in running it on a GPU.
3569 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3570 CondBr->setOperand(0, Builder.getFalse());
3571
3572 if (!NodeBuilder.BuildSuccessful)
3573 CondBr->setOperand(0, Builder.getFalse());
3574 }
3575
runOnScop(Scop & CurrentScop)3576 bool runOnScop(Scop &CurrentScop) override {
3577 S = &CurrentScop;
3578 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3579 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3580 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3581 DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3582 RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3583
3584 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3585 << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3586
3587 // We currently do not support functions other than intrinsics inside
3588 // kernels, as code generation will need to offload function calls to the
3589 // kernel. This may lead to a kernel trying to call a function on the host.
3590 // This also allows us to prevent codegen from trying to take the
3591 // address of an intrinsic function to send to the kernel.
3592 if (containsInvalidKernelFunction(CurrentScop,
3593 Architecture == GPUArch::NVPTX64)) {
3594 LLVM_DEBUG(
3595 dbgs() << getUniqueScopName(S)
3596 << " contains function which cannot be materialised in a GPU "
3597 "kernel. Bailing out.\n";);
3598 return false;
3599 }
3600
3601 auto PPCGScop = createPPCGScop();
3602 auto PPCGProg = createPPCGProg(PPCGScop);
3603 auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3604
3605 if (PPCGGen->tree) {
3606 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3607 CurrentScop.markAsToBeSkipped();
3608 } else {
3609 LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3610 << " has empty PPCGGen->tree. Bailing out.\n");
3611 }
3612
3613 freeOptions(PPCGScop);
3614 freePPCGGen(PPCGGen);
3615 gpu_prog_free(PPCGProg);
3616 ppcg_scop_free(PPCGScop);
3617
3618 return true;
3619 }
3620
printScop(raw_ostream &,Scop &) const3621 void printScop(raw_ostream &, Scop &) const override {}
3622
getAnalysisUsage(AnalysisUsage & AU) const3623 void getAnalysisUsage(AnalysisUsage &AU) const override {
3624 ScopPass::getAnalysisUsage(AU);
3625
3626 AU.addRequired<DominatorTreeWrapperPass>();
3627 AU.addRequired<RegionInfoPass>();
3628 AU.addRequired<ScalarEvolutionWrapperPass>();
3629 AU.addRequired<ScopDetectionWrapperPass>();
3630 AU.addRequired<ScopInfoRegionPass>();
3631 AU.addRequired<LoopInfoWrapperPass>();
3632
3633 // FIXME: We do not yet add regions for the newly generated code to the
3634 // region tree.
3635 }
3636 };
3637 } // namespace
3638
3639 char PPCGCodeGeneration::ID = 1;
3640
createPPCGCodeGenerationPass(GPUArch Arch,GPURuntime Runtime)3641 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3642 PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3643 generator->Runtime = Runtime;
3644 generator->Architecture = Arch;
3645 return generator;
3646 }
3647
3648 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3649 "Polly - Apply PPCG translation to SCOP", false, false)
3650 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3651 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3652 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3653 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3655 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3656 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3657 "Polly - Apply PPCG translation to SCOP", false, false)
3658