1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopDetection.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/SCEVValidator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BasicAliasAnalysis.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/PostDominators.h" 28 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/TargetSelect.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 37 38 #include "isl/union_map.h" 39 40 extern "C" { 41 #include "ppcg/cuda.h" 42 #include "ppcg/gpu.h" 43 #include "ppcg/gpu_print.h" 44 #include "ppcg/ppcg.h" 45 #include "ppcg/schedule.h" 46 } 47 48 #include "llvm/Support/Debug.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen-ppcg" 54 55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 56 cl::desc("Dump the computed GPU Schedule"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, 58 cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 71 cl::desc("Dump the kernel assembly code"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> FastMath("polly-acc-fastmath", 76 cl::desc("Allow unsafe math optimizations"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 80 cl::desc("Use shared memory"), cl::Hidden, 81 cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 84 cl::desc("Use private memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 88 static cl::opt<std::string> 89 CudaVersion("polly-acc-cuda-version", 90 cl::desc("The CUDA version to compile for"), cl::Hidden, 91 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 92 93 /// Create the ast expressions for a ScopStmt. 94 /// 95 /// This function is a callback for to generate the ast expressions for each 96 /// of the scheduled ScopStmts. 97 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 98 void *StmtT, isl_ast_build *Build, 99 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 100 isl_id *Id, void *User), 101 void *UserIndex, 102 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 103 void *UserExpr) { 104 105 ScopStmt *Stmt = (ScopStmt *)StmtT; 106 107 isl_ctx *Ctx; 108 109 if (!Stmt || !Build) 110 return NULL; 111 112 Ctx = isl_ast_build_get_ctx(Build); 113 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 114 115 for (MemoryAccess *Acc : *Stmt) { 116 isl_map *AddrFunc = Acc->getAddressFunction(); 117 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 118 isl_id *RefId = Acc->getId(); 119 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 120 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 121 MPA = isl_multi_pw_aff_coalesce(MPA); 122 MPA = FunctionIndex(MPA, RefId, UserIndex); 123 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 124 Access = FunctionExpr(Access, RefId, UserExpr); 125 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 126 } 127 128 return RefToExpr; 129 } 130 131 /// Generate code for a GPU specific isl AST. 132 /// 133 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 134 /// generates code for general-prupose AST nodes, with special functionality 135 /// for generating GPU specific user nodes. 136 /// 137 /// @see GPUNodeBuilder::createUser 138 class GPUNodeBuilder : public IslNodeBuilder { 139 public: 140 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 141 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 142 DominatorTree &DT, Scop &S, gpu_prog *Prog) 143 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 144 getExprBuilder().setIDToSAI(&IDToSAI); 145 } 146 147 /// Create after-run-time-check initialization code. 148 void initializeAfterRTH(); 149 150 /// Finalize the generated scop. 151 virtual void finalize(); 152 153 private: 154 /// A vector of array base pointers for which a new ScopArrayInfo was created. 155 /// 156 /// This vector is used to delete the ScopArrayInfo when it is not needed any 157 /// more. 158 std::vector<Value *> LocalArrays; 159 160 /// A map from ScopArrays to their corresponding device allocations. 161 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 162 163 /// The current GPU context. 164 Value *GPUContext; 165 166 /// The set of isl_ids allocated in the kernel 167 std::vector<isl_id *> KernelIds; 168 169 /// A module containing GPU code. 170 /// 171 /// This pointer is only set in case we are currently generating GPU code. 172 std::unique_ptr<Module> GPUModule; 173 174 /// The GPU program we generate code for. 175 gpu_prog *Prog; 176 177 /// Class to free isl_ids. 178 class IslIdDeleter { 179 public: 180 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 181 }; 182 183 /// A set containing all isl_ids allocated in a GPU kernel. 184 /// 185 /// By releasing this set all isl_ids will be freed. 186 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 187 188 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 189 190 /// Create code for user-defined AST nodes. 191 /// 192 /// These AST nodes can be of type: 193 /// 194 /// - ScopStmt: A computational statement (TODO) 195 /// - Kernel: A GPU kernel call (TODO) 196 /// - Data-Transfer: A GPU <-> CPU data-transfer 197 /// - In-kernel synchronization 198 /// - In-kernel memory copy statement 199 /// 200 /// @param UserStmt The ast node to generate code for. 201 virtual void createUser(__isl_take isl_ast_node *UserStmt); 202 203 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 204 205 /// Create code for a data transfer statement 206 /// 207 /// @param TransferStmt The data transfer statement. 208 /// @param Direction The direction in which to transfer data. 209 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 210 enum DataDirection Direction); 211 212 /// Find llvm::Values referenced in GPU kernel. 213 /// 214 /// @param Kernel The kernel to scan for llvm::Values 215 /// 216 /// @returns A set of values referenced by the kernel. 217 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 218 219 /// Compute the sizes of the execution grid for a given kernel. 220 /// 221 /// @param Kernel The kernel to compute grid sizes for. 222 /// 223 /// @returns A tuple with grid sizes for X and Y dimension 224 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 225 226 /// Compute the sizes of the thread blocks for a given kernel. 227 /// 228 /// @param Kernel The kernel to compute thread block sizes for. 229 /// 230 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 231 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 232 233 /// Create kernel launch parameters. 234 /// 235 /// @param Kernel The kernel to create parameters for. 236 /// @param F The kernel function that has been created. 237 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 238 /// 239 /// @returns A stack allocated array with pointers to the parameter 240 /// values that are passed to the kernel. 241 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 242 SetVector<Value *> SubtreeValues); 243 244 /// Create declarations for kernel variable. 245 /// 246 /// This includes shared memory declarations. 247 /// 248 /// @param Kernel The kernel definition to create variables for. 249 /// @param FN The function into which to generate the variables. 250 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 251 252 /// Create GPU kernel. 253 /// 254 /// Code generate the kernel described by @p KernelStmt. 255 /// 256 /// @param KernelStmt The ast node to generate kernel code for. 257 void createKernel(__isl_take isl_ast_node *KernelStmt); 258 259 /// Generate code that computes the size of an array. 260 /// 261 /// @param Array The array for which to compute a size. 262 Value *getArraySize(gpu_array_info *Array); 263 264 /// Prepare the kernel arguments for kernel code generation 265 /// 266 /// @param Kernel The kernel to generate code for. 267 /// @param FN The function created for the kernel. 268 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 269 270 /// Create kernel function. 271 /// 272 /// Create a kernel function located in a newly created module that can serve 273 /// as target for device code generation. Set the Builder to point to the 274 /// start block of this newly created function. 275 /// 276 /// @param Kernel The kernel to generate code for. 277 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 278 void createKernelFunction(ppcg_kernel *Kernel, 279 SetVector<Value *> &SubtreeValues); 280 281 /// Create the declaration of a kernel function. 282 /// 283 /// The kernel function takes as arguments: 284 /// 285 /// - One i8 pointer for each external array reference used in the kernel. 286 /// - Host iterators 287 /// - Parameters 288 /// - Other LLVM Value references (TODO) 289 /// 290 /// @param Kernel The kernel to generate the function declaration for. 291 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 292 /// 293 /// @returns The newly declared function. 294 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 295 SetVector<Value *> &SubtreeValues); 296 297 /// Insert intrinsic functions to obtain thread and block ids. 298 /// 299 /// @param The kernel to generate the intrinsic functions for. 300 void insertKernelIntrinsics(ppcg_kernel *Kernel); 301 302 /// Create a global-to-shared or shared-to-global copy statement. 303 /// 304 /// @param CopyStmt The copy statement to generate code for 305 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 306 307 /// Create code for a ScopStmt called in @p Expr. 308 /// 309 /// @param Expr The expression containing the call. 310 /// @param KernelStmt The kernel statement referenced in the call. 311 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 312 313 /// Create an in-kernel synchronization call. 314 void createKernelSync(); 315 316 /// Create a PTX assembly string for the current GPU kernel. 317 /// 318 /// @returns A string containing the corresponding PTX assembly code. 319 std::string createKernelASM(); 320 321 /// Remove references from the dominator tree to the kernel function @p F. 322 /// 323 /// @param F The function to remove references to. 324 void clearDominators(Function *F); 325 326 /// Remove references from scalar evolution to the kernel function @p F. 327 /// 328 /// @param F The function to remove references to. 329 void clearScalarEvolution(Function *F); 330 331 /// Remove references from loop info to the kernel function @p F. 332 /// 333 /// @param F The function to remove references to. 334 void clearLoops(Function *F); 335 336 /// Finalize the generation of the kernel function. 337 /// 338 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 339 /// dump its IR to stderr. 340 /// 341 /// @returns The Assembly string of the kernel. 342 std::string finalizeKernelFunction(); 343 344 /// Create code that allocates memory to store arrays on device. 345 void allocateDeviceArrays(); 346 347 /// Free all allocated device arrays. 348 void freeDeviceArrays(); 349 350 /// Create a call to initialize the GPU context. 351 /// 352 /// @returns A pointer to the newly initialized context. 353 Value *createCallInitContext(); 354 355 /// Create a call to get the device pointer for a kernel allocation. 356 /// 357 /// @param Allocation The Polly GPU allocation 358 /// 359 /// @returns The device parameter corresponding to this allocation. 360 Value *createCallGetDevicePtr(Value *Allocation); 361 362 /// Create a call to free the GPU context. 363 /// 364 /// @param Context A pointer to an initialized GPU context. 365 void createCallFreeContext(Value *Context); 366 367 /// Create a call to allocate memory on the device. 368 /// 369 /// @param Size The size of memory to allocate 370 /// 371 /// @returns A pointer that identifies this allocation. 372 Value *createCallAllocateMemoryForDevice(Value *Size); 373 374 /// Create a call to free a device array. 375 /// 376 /// @param Array The device array to free. 377 void createCallFreeDeviceMemory(Value *Array); 378 379 /// Create a call to copy data from host to device. 380 /// 381 /// @param HostPtr A pointer to the host data that should be copied. 382 /// @param DevicePtr A device pointer specifying the location to copy to. 383 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 384 Value *Size); 385 386 /// Create a call to copy data from device to host. 387 /// 388 /// @param DevicePtr A pointer to the device data that should be copied. 389 /// @param HostPtr A host pointer specifying the location to copy to. 390 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 391 Value *Size); 392 393 /// Create a call to get a kernel from an assembly string. 394 /// 395 /// @param Buffer The string describing the kernel. 396 /// @param Entry The name of the kernel function to call. 397 /// 398 /// @returns A pointer to a kernel object 399 Value *createCallGetKernel(Value *Buffer, Value *Entry); 400 401 /// Create a call to free a GPU kernel. 402 /// 403 /// @param GPUKernel THe kernel to free. 404 void createCallFreeKernel(Value *GPUKernel); 405 406 /// Create a call to launch a GPU kernel. 407 /// 408 /// @param GPUKernel The kernel to launch. 409 /// @param GridDimX The size of the first grid dimension. 410 /// @param GridDimY The size of the second grid dimension. 411 /// @param GridBlockX The size of the first block dimension. 412 /// @param GridBlockY The size of the second block dimension. 413 /// @param GridBlockZ The size of the third block dimension. 414 /// @param Paramters A pointer to an array that contains itself pointers to 415 /// the parameter values passed for each kernel argument. 416 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 417 Value *GridDimY, Value *BlockDimX, 418 Value *BlockDimY, Value *BlockDimZ, 419 Value *Parameters); 420 }; 421 422 void GPUNodeBuilder::initializeAfterRTH() { 423 GPUContext = createCallInitContext(); 424 allocateDeviceArrays(); 425 } 426 427 void GPUNodeBuilder::finalize() { 428 freeDeviceArrays(); 429 createCallFreeContext(GPUContext); 430 IslNodeBuilder::finalize(); 431 } 432 433 void GPUNodeBuilder::allocateDeviceArrays() { 434 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 435 436 for (int i = 0; i < Prog->n_array; ++i) { 437 gpu_array_info *Array = &Prog->array[i]; 438 auto *ScopArray = (ScopArrayInfo *)Array->user; 439 std::string DevArrayName("p_dev_array_"); 440 DevArrayName.append(Array->name); 441 442 Value *ArraySize = getArraySize(Array); 443 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 444 DevArray->setName(DevArrayName); 445 DeviceAllocations[ScopArray] = DevArray; 446 } 447 448 isl_ast_build_free(Build); 449 } 450 451 void GPUNodeBuilder::freeDeviceArrays() { 452 for (auto &Array : DeviceAllocations) 453 createCallFreeDeviceMemory(Array.second); 454 } 455 456 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 457 const char *Name = "polly_getKernel"; 458 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 459 Function *F = M->getFunction(Name); 460 461 // If F is not available, declare it. 462 if (!F) { 463 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 464 std::vector<Type *> Args; 465 Args.push_back(Builder.getInt8PtrTy()); 466 Args.push_back(Builder.getInt8PtrTy()); 467 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 468 F = Function::Create(Ty, Linkage, Name, M); 469 } 470 471 return Builder.CreateCall(F, {Buffer, Entry}); 472 } 473 474 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 475 const char *Name = "polly_getDevicePtr"; 476 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 477 Function *F = M->getFunction(Name); 478 479 // If F is not available, declare it. 480 if (!F) { 481 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 482 std::vector<Type *> Args; 483 Args.push_back(Builder.getInt8PtrTy()); 484 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 485 F = Function::Create(Ty, Linkage, Name, M); 486 } 487 488 return Builder.CreateCall(F, {Allocation}); 489 } 490 491 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 492 Value *GridDimY, Value *BlockDimX, 493 Value *BlockDimY, Value *BlockDimZ, 494 Value *Parameters) { 495 const char *Name = "polly_launchKernel"; 496 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 497 Function *F = M->getFunction(Name); 498 499 // If F is not available, declare it. 500 if (!F) { 501 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 502 std::vector<Type *> Args; 503 Args.push_back(Builder.getInt8PtrTy()); 504 Args.push_back(Builder.getInt32Ty()); 505 Args.push_back(Builder.getInt32Ty()); 506 Args.push_back(Builder.getInt32Ty()); 507 Args.push_back(Builder.getInt32Ty()); 508 Args.push_back(Builder.getInt32Ty()); 509 Args.push_back(Builder.getInt8PtrTy()); 510 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 511 F = Function::Create(Ty, Linkage, Name, M); 512 } 513 514 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 515 BlockDimZ, Parameters}); 516 } 517 518 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 519 const char *Name = "polly_freeKernel"; 520 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 521 Function *F = M->getFunction(Name); 522 523 // If F is not available, declare it. 524 if (!F) { 525 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 526 std::vector<Type *> Args; 527 Args.push_back(Builder.getInt8PtrTy()); 528 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 529 F = Function::Create(Ty, Linkage, Name, M); 530 } 531 532 Builder.CreateCall(F, {GPUKernel}); 533 } 534 535 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 536 const char *Name = "polly_freeDeviceMemory"; 537 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 538 Function *F = M->getFunction(Name); 539 540 // If F is not available, declare it. 541 if (!F) { 542 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 543 std::vector<Type *> Args; 544 Args.push_back(Builder.getInt8PtrTy()); 545 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 546 F = Function::Create(Ty, Linkage, Name, M); 547 } 548 549 Builder.CreateCall(F, {Array}); 550 } 551 552 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 553 const char *Name = "polly_allocateMemoryForDevice"; 554 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 555 Function *F = M->getFunction(Name); 556 557 // If F is not available, declare it. 558 if (!F) { 559 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 560 std::vector<Type *> Args; 561 Args.push_back(Builder.getInt64Ty()); 562 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 563 F = Function::Create(Ty, Linkage, Name, M); 564 } 565 566 return Builder.CreateCall(F, {Size}); 567 } 568 569 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 570 Value *DeviceData, 571 Value *Size) { 572 const char *Name = "polly_copyFromHostToDevice"; 573 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 574 Function *F = M->getFunction(Name); 575 576 // If F is not available, declare it. 577 if (!F) { 578 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 579 std::vector<Type *> Args; 580 Args.push_back(Builder.getInt8PtrTy()); 581 Args.push_back(Builder.getInt8PtrTy()); 582 Args.push_back(Builder.getInt64Ty()); 583 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 584 F = Function::Create(Ty, Linkage, Name, M); 585 } 586 587 Builder.CreateCall(F, {HostData, DeviceData, Size}); 588 } 589 590 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 591 Value *HostData, 592 Value *Size) { 593 const char *Name = "polly_copyFromDeviceToHost"; 594 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 595 Function *F = M->getFunction(Name); 596 597 // If F is not available, declare it. 598 if (!F) { 599 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 600 std::vector<Type *> Args; 601 Args.push_back(Builder.getInt8PtrTy()); 602 Args.push_back(Builder.getInt8PtrTy()); 603 Args.push_back(Builder.getInt64Ty()); 604 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 605 F = Function::Create(Ty, Linkage, Name, M); 606 } 607 608 Builder.CreateCall(F, {DeviceData, HostData, Size}); 609 } 610 611 Value *GPUNodeBuilder::createCallInitContext() { 612 const char *Name = "polly_initContext"; 613 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 614 Function *F = M->getFunction(Name); 615 616 // If F is not available, declare it. 617 if (!F) { 618 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 619 std::vector<Type *> Args; 620 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 621 F = Function::Create(Ty, Linkage, Name, M); 622 } 623 624 return Builder.CreateCall(F, {}); 625 } 626 627 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 628 const char *Name = "polly_freeContext"; 629 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 630 Function *F = M->getFunction(Name); 631 632 // If F is not available, declare it. 633 if (!F) { 634 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 635 std::vector<Type *> Args; 636 Args.push_back(Builder.getInt8PtrTy()); 637 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 638 F = Function::Create(Ty, Linkage, Name, M); 639 } 640 641 Builder.CreateCall(F, {Context}); 642 } 643 644 /// Check if one string is a prefix of another. 645 /// 646 /// @param String The string in which to look for the prefix. 647 /// @param Prefix The prefix to look for. 648 static bool isPrefix(std::string String, std::string Prefix) { 649 return String.find(Prefix) == 0; 650 } 651 652 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 653 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 654 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 655 656 if (!gpu_array_is_scalar(Array)) { 657 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 658 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 659 660 for (unsigned int i = 1; i < Array->n_index; i++) { 661 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 662 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 663 Res = isl_ast_expr_mul(Res, Expr); 664 } 665 666 Value *NumElements = ExprBuilder.create(Res); 667 ArraySize = Builder.CreateMul(ArraySize, NumElements); 668 } 669 isl_ast_build_free(Build); 670 return ArraySize; 671 } 672 673 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 674 enum DataDirection Direction) { 675 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 676 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 677 isl_id *Id = isl_ast_expr_get_id(Arg); 678 auto Array = (gpu_array_info *)isl_id_get_user(Id); 679 auto ScopArray = (ScopArrayInfo *)(Array->user); 680 681 Value *Size = getArraySize(Array); 682 Value *HostPtr = ScopArray->getBasePtr(); 683 684 Value *DevPtr = DeviceAllocations[ScopArray]; 685 686 if (gpu_array_is_scalar(Array)) { 687 HostPtr = Builder.CreateAlloca(ScopArray->getElementType()); 688 Builder.CreateStore(ScopArray->getBasePtr(), HostPtr); 689 } 690 691 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 692 693 if (Direction == HOST_TO_DEVICE) 694 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 695 else 696 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 697 698 isl_id_free(Id); 699 isl_ast_expr_free(Arg); 700 isl_ast_expr_free(Expr); 701 isl_ast_node_free(TransferStmt); 702 } 703 704 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 705 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 706 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 707 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 708 isl_id_free(Id); 709 isl_ast_expr_free(StmtExpr); 710 711 const char *Str = isl_id_get_name(Id); 712 if (!strcmp(Str, "kernel")) { 713 createKernel(UserStmt); 714 isl_ast_expr_free(Expr); 715 return; 716 } 717 718 if (isPrefix(Str, "to_device")) { 719 createDataTransfer(UserStmt, HOST_TO_DEVICE); 720 isl_ast_expr_free(Expr); 721 return; 722 } 723 724 if (isPrefix(Str, "from_device")) { 725 createDataTransfer(UserStmt, DEVICE_TO_HOST); 726 isl_ast_expr_free(Expr); 727 return; 728 } 729 730 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 731 struct ppcg_kernel_stmt *KernelStmt = 732 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 733 isl_id_free(Anno); 734 735 switch (KernelStmt->type) { 736 case ppcg_kernel_domain: 737 createScopStmt(Expr, KernelStmt); 738 isl_ast_node_free(UserStmt); 739 return; 740 case ppcg_kernel_copy: 741 createKernelCopy(KernelStmt); 742 isl_ast_expr_free(Expr); 743 isl_ast_node_free(UserStmt); 744 return; 745 case ppcg_kernel_sync: 746 createKernelSync(); 747 isl_ast_expr_free(Expr); 748 isl_ast_node_free(UserStmt); 749 return; 750 } 751 752 isl_ast_expr_free(Expr); 753 isl_ast_node_free(UserStmt); 754 return; 755 } 756 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 757 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 758 LocalIndex = isl_ast_expr_address_of(LocalIndex); 759 Value *LocalAddr = ExprBuilder.create(LocalIndex); 760 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 761 Index = isl_ast_expr_address_of(Index); 762 Value *GlobalAddr = ExprBuilder.create(Index); 763 764 if (KernelStmt->u.c.read) { 765 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 766 Builder.CreateStore(Load, LocalAddr); 767 } else { 768 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 769 Builder.CreateStore(Load, GlobalAddr); 770 } 771 } 772 773 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 774 ppcg_kernel_stmt *KernelStmt) { 775 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 776 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 777 778 LoopToScevMapT LTS; 779 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 780 781 createSubstitutions(Expr, Stmt, LTS); 782 783 if (Stmt->isBlockStmt()) 784 BlockGen.copyStmt(*Stmt, LTS, Indexes); 785 else 786 assert(0 && "Region statement not supported\n"); 787 } 788 789 void GPUNodeBuilder::createKernelSync() { 790 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 791 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 792 Builder.CreateCall(Sync, {}); 793 } 794 795 /// Collect llvm::Values referenced from @p Node 796 /// 797 /// This function only applies to isl_ast_nodes that are user_nodes referring 798 /// to a ScopStmt. All other node types are ignore. 799 /// 800 /// @param Node The node to collect references for. 801 /// @param User A user pointer used as storage for the data that is collected. 802 /// 803 /// @returns isl_bool_true if data could be collected successfully. 804 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 805 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 806 return isl_bool_true; 807 808 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 809 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 810 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 811 const char *Str = isl_id_get_name(Id); 812 isl_id_free(Id); 813 isl_ast_expr_free(StmtExpr); 814 isl_ast_expr_free(Expr); 815 816 if (!isPrefix(Str, "Stmt")) 817 return isl_bool_true; 818 819 Id = isl_ast_node_get_annotation(Node); 820 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 821 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 822 isl_id_free(Id); 823 824 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 825 826 return isl_bool_true; 827 } 828 829 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 830 SetVector<Value *> SubtreeValues; 831 SetVector<const SCEV *> SCEVs; 832 SetVector<const Loop *> Loops; 833 SubtreeReferences References = { 834 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 835 836 for (const auto &I : IDToValue) 837 SubtreeValues.insert(I.second); 838 839 isl_ast_node_foreach_descendant_top_down( 840 Kernel->tree, collectReferencesInGPUStmt, &References); 841 842 for (const SCEV *Expr : SCEVs) 843 findValues(Expr, SE, SubtreeValues); 844 845 for (auto &SAI : S.arrays()) 846 SubtreeValues.remove(SAI->getBasePtr()); 847 848 isl_space *Space = S.getParamSpace(); 849 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 850 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 851 assert(IDToValue.count(Id)); 852 Value *Val = IDToValue[Id]; 853 SubtreeValues.remove(Val); 854 isl_id_free(Id); 855 } 856 isl_space_free(Space); 857 858 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 859 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 860 assert(IDToValue.count(Id)); 861 Value *Val = IDToValue[Id]; 862 SubtreeValues.remove(Val); 863 isl_id_free(Id); 864 } 865 866 return SubtreeValues; 867 } 868 869 void GPUNodeBuilder::clearDominators(Function *F) { 870 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 871 std::vector<BasicBlock *> Nodes; 872 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 873 Nodes.push_back(I->getBlock()); 874 875 for (BasicBlock *BB : Nodes) 876 DT.eraseNode(BB); 877 } 878 879 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 880 for (BasicBlock &BB : *F) { 881 Loop *L = LI.getLoopFor(&BB); 882 if (L) 883 SE.forgetLoop(L); 884 } 885 } 886 887 void GPUNodeBuilder::clearLoops(Function *F) { 888 for (BasicBlock &BB : *F) { 889 Loop *L = LI.getLoopFor(&BB); 890 if (L) 891 SE.forgetLoop(L); 892 LI.removeBlock(&BB); 893 } 894 } 895 896 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 897 std::vector<Value *> Sizes; 898 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 899 900 for (long i = 0; i < Kernel->n_grid; i++) { 901 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 902 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 903 Value *Res = ExprBuilder.create(GridSize); 904 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 905 Sizes.push_back(Res); 906 } 907 isl_ast_build_free(Context); 908 909 for (long i = Kernel->n_grid; i < 3; i++) 910 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 911 912 return std::make_tuple(Sizes[0], Sizes[1]); 913 } 914 915 std::tuple<Value *, Value *, Value *> 916 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 917 std::vector<Value *> Sizes; 918 919 for (long i = 0; i < Kernel->n_block; i++) { 920 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 921 Sizes.push_back(Res); 922 } 923 924 for (long i = Kernel->n_block; i < 3; i++) 925 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 926 927 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 928 } 929 930 Value * 931 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 932 SetVector<Value *> SubtreeValues) { 933 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 934 std::distance(F->arg_begin(), F->arg_end())); 935 936 BasicBlock *EntryBlock = 937 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 938 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 939 Instruction *Parameters = 940 new AllocaInst(ArrayTy, Launch + "_params", EntryBlock->getTerminator()); 941 942 int Index = 0; 943 for (long i = 0; i < Prog->n_array; i++) { 944 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 945 continue; 946 947 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 948 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 949 950 Value *DevArray = DeviceAllocations[(ScopArrayInfo *)SAI]; 951 DevArray = createCallGetDevicePtr(DevArray); 952 Instruction *Param = new AllocaInst( 953 Builder.getInt8PtrTy(), Launch + "_param_" + std::to_string(Index), 954 EntryBlock->getTerminator()); 955 Builder.CreateStore(DevArray, Param); 956 Value *Slot = Builder.CreateGEP( 957 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 958 Value *ParamTyped = 959 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 960 Builder.CreateStore(ParamTyped, Slot); 961 Index++; 962 } 963 964 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 965 966 for (long i = 0; i < NumHostIters; i++) { 967 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 968 Value *Val = IDToValue[Id]; 969 isl_id_free(Id); 970 Instruction *Param = new AllocaInst( 971 Val->getType(), Launch + "_param_" + std::to_string(Index), 972 EntryBlock->getTerminator()); 973 Builder.CreateStore(Val, Param); 974 Value *Slot = Builder.CreateGEP( 975 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 976 Value *ParamTyped = 977 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 978 Builder.CreateStore(ParamTyped, Slot); 979 Index++; 980 } 981 982 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 983 984 for (long i = 0; i < NumVars; i++) { 985 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 986 Value *Val = IDToValue[Id]; 987 isl_id_free(Id); 988 Instruction *Param = new AllocaInst( 989 Val->getType(), Launch + "_param_" + std::to_string(Index), 990 EntryBlock->getTerminator()); 991 Builder.CreateStore(Val, Param); 992 Value *Slot = Builder.CreateGEP( 993 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 994 Value *ParamTyped = 995 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 996 Builder.CreateStore(ParamTyped, Slot); 997 Index++; 998 } 999 1000 for (auto Val : SubtreeValues) { 1001 Instruction *Param = new AllocaInst( 1002 Val->getType(), Launch + "_param_" + std::to_string(Index), 1003 EntryBlock->getTerminator()); 1004 Builder.CreateStore(Val, Param); 1005 Value *Slot = Builder.CreateGEP( 1006 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1007 Value *ParamTyped = 1008 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1009 Builder.CreateStore(ParamTyped, Slot); 1010 Index++; 1011 } 1012 1013 auto Location = EntryBlock->getTerminator(); 1014 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1015 Launch + "_params_i8ptr", Location); 1016 } 1017 1018 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1019 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1020 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1021 isl_id_free(Id); 1022 isl_ast_node_free(KernelStmt); 1023 1024 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 1025 1026 assert(Kernel->tree && "Device AST of kernel node is empty"); 1027 1028 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1029 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1030 ValueMapT HostValueMap = ValueMap; 1031 1032 SetVector<const Loop *> Loops; 1033 1034 // Create for all loops we depend on values that contain the current loop 1035 // iteration. These values are necessary to generate code for SCEVs that 1036 // depend on such loops. As a result we need to pass them to the subfunction. 1037 for (const Loop *L : Loops) { 1038 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1039 SE.getUnknown(Builder.getInt64(1)), 1040 L, SCEV::FlagAnyWrap); 1041 Value *V = generateSCEV(OuterLIV); 1042 OutsideLoopIterations[L] = SE.getUnknown(V); 1043 SubtreeValues.insert(V); 1044 } 1045 1046 createKernelFunction(Kernel, SubtreeValues); 1047 1048 create(isl_ast_node_copy(Kernel->tree)); 1049 1050 Function *F = Builder.GetInsertBlock()->getParent(); 1051 clearDominators(F); 1052 clearScalarEvolution(F); 1053 clearLoops(F); 1054 1055 Builder.SetInsertPoint(&HostInsertPoint); 1056 IDToValue = HostIDs; 1057 1058 ValueMap = HostValueMap; 1059 ScalarMap.clear(); 1060 PHIOpMap.clear(); 1061 EscapeMap.clear(); 1062 IDToSAI.clear(); 1063 Annotator.resetAlternativeAliasBases(); 1064 for (auto &BasePtr : LocalArrays) 1065 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 1066 LocalArrays.clear(); 1067 1068 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1069 1070 std::string ASMString = finalizeKernelFunction(); 1071 std::string Name = "kernel_" + std::to_string(Kernel->id); 1072 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1073 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1074 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1075 1076 Value *GridDimX, *GridDimY; 1077 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1078 1079 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1080 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1081 1082 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1083 BlockDimZ, Parameters); 1084 createCallFreeKernel(GPUKernel); 1085 1086 for (auto Id : KernelIds) 1087 isl_id_free(Id); 1088 1089 KernelIds.clear(); 1090 } 1091 1092 /// Compute the DataLayout string for the NVPTX backend. 1093 /// 1094 /// @param is64Bit Are we looking for a 64 bit architecture? 1095 static std::string computeNVPTXDataLayout(bool is64Bit) { 1096 std::string Ret = "e"; 1097 1098 if (!is64Bit) 1099 Ret += "-p:32:32"; 1100 1101 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 1102 1103 return Ret; 1104 } 1105 1106 Function * 1107 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1108 SetVector<Value *> &SubtreeValues) { 1109 std::vector<Type *> Args; 1110 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1111 1112 for (long i = 0; i < Prog->n_array; i++) { 1113 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1114 continue; 1115 1116 Args.push_back(Builder.getInt8PtrTy()); 1117 } 1118 1119 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1120 1121 for (long i = 0; i < NumHostIters; i++) 1122 Args.push_back(Builder.getInt64Ty()); 1123 1124 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1125 1126 for (long i = 0; i < NumVars; i++) 1127 Args.push_back(Builder.getInt64Ty()); 1128 1129 for (auto *V : SubtreeValues) 1130 Args.push_back(V->getType()); 1131 1132 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1133 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1134 GPUModule.get()); 1135 FN->setCallingConv(CallingConv::PTX_Kernel); 1136 1137 auto Arg = FN->arg_begin(); 1138 for (long i = 0; i < Kernel->n_array; i++) { 1139 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1140 continue; 1141 1142 Arg->setName(Kernel->array[i].array->name); 1143 1144 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1145 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1146 Type *EleTy = SAI->getElementType(); 1147 Value *Val = &*Arg; 1148 SmallVector<const SCEV *, 4> Sizes; 1149 isl_ast_build *Build = 1150 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1151 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1152 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1153 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1154 auto V = ExprBuilder.create(DimSize); 1155 Sizes.push_back(SE.getSCEV(V)); 1156 } 1157 const ScopArrayInfo *SAIRep = 1158 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 1159 LocalArrays.push_back(Val); 1160 1161 isl_ast_build_free(Build); 1162 KernelIds.push_back(Id); 1163 IDToSAI[Id] = SAIRep; 1164 Arg++; 1165 } 1166 1167 for (long i = 0; i < NumHostIters; i++) { 1168 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1169 Arg->setName(isl_id_get_name(Id)); 1170 IDToValue[Id] = &*Arg; 1171 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1172 Arg++; 1173 } 1174 1175 for (long i = 0; i < NumVars; i++) { 1176 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1177 Arg->setName(isl_id_get_name(Id)); 1178 IDToValue[Id] = &*Arg; 1179 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1180 Arg++; 1181 } 1182 1183 for (auto *V : SubtreeValues) { 1184 Arg->setName(V->getName()); 1185 ValueMap[V] = &*Arg; 1186 Arg++; 1187 } 1188 1189 return FN; 1190 } 1191 1192 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1193 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 1194 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 1195 1196 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 1197 Intrinsic::nvvm_read_ptx_sreg_tid_y, 1198 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 1199 1200 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1201 std::string Name = isl_id_get_name(Id); 1202 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1203 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1204 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1205 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1206 IDToValue[Id] = Val; 1207 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1208 }; 1209 1210 for (int i = 0; i < Kernel->n_grid; ++i) { 1211 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1212 addId(Id, IntrinsicsBID[i]); 1213 } 1214 1215 for (int i = 0; i < Kernel->n_block; ++i) { 1216 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1217 addId(Id, IntrinsicsTID[i]); 1218 } 1219 } 1220 1221 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1222 auto Arg = FN->arg_begin(); 1223 for (long i = 0; i < Kernel->n_array; i++) { 1224 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1225 continue; 1226 1227 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1228 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1229 isl_id_free(Id); 1230 1231 if (SAI->getNumberOfDimensions() > 0) { 1232 Arg++; 1233 continue; 1234 } 1235 1236 Value *Alloca = BlockGen.getOrCreateScalarAlloca(SAI->getBasePtr()); 1237 Value *ArgPtr = &*Arg; 1238 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1239 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1240 Value *Val = Builder.CreateLoad(TypedArgPtr); 1241 Builder.CreateStore(Val, Alloca); 1242 1243 Arg++; 1244 } 1245 } 1246 1247 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1248 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1249 1250 for (int i = 0; i < Kernel->n_var; ++i) { 1251 struct ppcg_kernel_var &Var = Kernel->var[i]; 1252 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1253 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1254 1255 Type *ArrayTy = EleTy; 1256 SmallVector<const SCEV *, 4> Sizes; 1257 1258 for (unsigned int j = 0; j < Var.array->n_index; ++j) { 1259 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1260 long Bound = isl_val_get_num_si(Val); 1261 isl_val_free(Val); 1262 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1263 ArrayTy = ArrayType::get(ArrayTy, Bound); 1264 } 1265 1266 const ScopArrayInfo *SAI; 1267 Value *Allocation; 1268 if (Var.type == ppcg_access_shared) { 1269 auto GlobalVar = new GlobalVariable( 1270 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1271 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1272 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1273 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1274 1275 Allocation = GlobalVar; 1276 } else if (Var.type == ppcg_access_private) { 1277 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1278 } else { 1279 llvm_unreachable("unknown variable type"); 1280 } 1281 SAI = S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, 1282 ScopArrayInfo::MK_Array); 1283 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1284 IDToValue[Id] = Allocation; 1285 LocalArrays.push_back(Allocation); 1286 KernelIds.push_back(Id); 1287 IDToSAI[Id] = SAI; 1288 } 1289 } 1290 1291 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1292 SetVector<Value *> &SubtreeValues) { 1293 1294 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1295 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1296 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1297 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1298 1299 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1300 1301 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1302 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1303 1304 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1305 DT.addNewBlock(EntryBlock, PrevBlock); 1306 1307 Builder.SetInsertPoint(EntryBlock); 1308 Builder.CreateRetVoid(); 1309 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1310 1311 ScopDetection::markFunctionAsInvalid(FN); 1312 1313 prepareKernelArguments(Kernel, FN); 1314 createKernelVariables(Kernel, FN); 1315 insertKernelIntrinsics(Kernel); 1316 } 1317 1318 std::string GPUNodeBuilder::createKernelASM() { 1319 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1320 std::string ErrMsg; 1321 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1322 1323 if (!GPUTarget) { 1324 errs() << ErrMsg << "\n"; 1325 return ""; 1326 } 1327 1328 TargetOptions Options; 1329 Options.UnsafeFPMath = FastMath; 1330 std::unique_ptr<TargetMachine> TargetM( 1331 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 1332 Options, Optional<Reloc::Model>())); 1333 1334 SmallString<0> ASMString; 1335 raw_svector_ostream ASMStream(ASMString); 1336 llvm::legacy::PassManager PM; 1337 1338 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1339 1340 if (TargetM->addPassesToEmitFile( 1341 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1342 errs() << "The target does not support generation of this file type!\n"; 1343 return ""; 1344 } 1345 1346 PM.run(*GPUModule); 1347 1348 return ASMStream.str(); 1349 } 1350 1351 std::string GPUNodeBuilder::finalizeKernelFunction() { 1352 // Verify module. 1353 llvm::legacy::PassManager Passes; 1354 Passes.add(createVerifierPass()); 1355 Passes.run(*GPUModule); 1356 1357 if (DumpKernelIR) 1358 outs() << *GPUModule << "\n"; 1359 1360 // Optimize module. 1361 llvm::legacy::PassManager OptPasses; 1362 PassManagerBuilder PassBuilder; 1363 PassBuilder.OptLevel = 3; 1364 PassBuilder.SizeLevel = 0; 1365 PassBuilder.populateModulePassManager(OptPasses); 1366 OptPasses.run(*GPUModule); 1367 1368 std::string Assembly = createKernelASM(); 1369 1370 if (DumpKernelASM) 1371 outs() << Assembly << "\n"; 1372 1373 GPUModule.release(); 1374 KernelIDs.clear(); 1375 1376 return Assembly; 1377 } 1378 1379 namespace { 1380 class PPCGCodeGeneration : public ScopPass { 1381 public: 1382 static char ID; 1383 1384 /// The scop that is currently processed. 1385 Scop *S; 1386 1387 LoopInfo *LI; 1388 DominatorTree *DT; 1389 ScalarEvolution *SE; 1390 const DataLayout *DL; 1391 RegionInfo *RI; 1392 1393 PPCGCodeGeneration() : ScopPass(ID) {} 1394 1395 /// Construct compilation options for PPCG. 1396 /// 1397 /// @returns The compilation options. 1398 ppcg_options *createPPCGOptions() { 1399 auto DebugOptions = 1400 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1401 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1402 1403 DebugOptions->dump_schedule_constraints = false; 1404 DebugOptions->dump_schedule = false; 1405 DebugOptions->dump_final_schedule = false; 1406 DebugOptions->dump_sizes = false; 1407 DebugOptions->verbose = false; 1408 1409 Options->debug = DebugOptions; 1410 1411 Options->reschedule = true; 1412 Options->scale_tile_loops = false; 1413 Options->wrap = false; 1414 1415 Options->non_negative_parameters = false; 1416 Options->ctx = nullptr; 1417 Options->sizes = nullptr; 1418 1419 Options->tile_size = 32; 1420 1421 Options->use_private_memory = PrivateMemory; 1422 Options->use_shared_memory = SharedMemory; 1423 Options->max_shared_memory = 48 * 1024; 1424 1425 Options->target = PPCG_TARGET_CUDA; 1426 Options->openmp = false; 1427 Options->linearize_device_arrays = true; 1428 Options->live_range_reordering = false; 1429 1430 Options->opencl_compiler_options = nullptr; 1431 Options->opencl_use_gpu = false; 1432 Options->opencl_n_include_file = 0; 1433 Options->opencl_include_files = nullptr; 1434 Options->opencl_print_kernel_types = false; 1435 Options->opencl_embed_kernel_code = false; 1436 1437 Options->save_schedule_file = nullptr; 1438 Options->load_schedule_file = nullptr; 1439 1440 return Options; 1441 } 1442 1443 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1444 /// 1445 /// Instead of a normal access of the form: 1446 /// 1447 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1448 /// 1449 /// a tagged access has the form 1450 /// 1451 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1452 /// 1453 /// where 'id' is an additional space that references the memory access that 1454 /// triggered the access. 1455 /// 1456 /// @param AccessTy The type of the memory accesses to collect. 1457 /// 1458 /// @return The relation describing all tagged memory accesses. 1459 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1460 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1461 1462 for (auto &Stmt : *S) 1463 for (auto &Acc : Stmt) 1464 if (Acc->getType() == AccessTy) { 1465 isl_map *Relation = Acc->getAccessRelation(); 1466 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1467 1468 isl_space *Space = isl_map_get_space(Relation); 1469 Space = isl_space_range(Space); 1470 Space = isl_space_from_range(Space); 1471 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1472 isl_map *Universe = isl_map_universe(Space); 1473 Relation = isl_map_domain_product(Relation, Universe); 1474 Accesses = isl_union_map_add_map(Accesses, Relation); 1475 } 1476 1477 return Accesses; 1478 } 1479 1480 /// Get the set of all read accesses, tagged with the access id. 1481 /// 1482 /// @see getTaggedAccesses 1483 isl_union_map *getTaggedReads() { 1484 return getTaggedAccesses(MemoryAccess::READ); 1485 } 1486 1487 /// Get the set of all may (and must) accesses, tagged with the access id. 1488 /// 1489 /// @see getTaggedAccesses 1490 isl_union_map *getTaggedMayWrites() { 1491 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1492 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1493 } 1494 1495 /// Get the set of all must accesses, tagged with the access id. 1496 /// 1497 /// @see getTaggedAccesses 1498 isl_union_map *getTaggedMustWrites() { 1499 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1500 } 1501 1502 /// Collect parameter and array names as isl_ids. 1503 /// 1504 /// To reason about the different parameters and arrays used, ppcg requires 1505 /// a list of all isl_ids in use. As PPCG traditionally performs 1506 /// source-to-source compilation each of these isl_ids is mapped to the 1507 /// expression that represents it. As we do not have a corresponding 1508 /// expression in Polly, we just map each id to a 'zero' expression to match 1509 /// the data format that ppcg expects. 1510 /// 1511 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1512 __isl_give isl_id_to_ast_expr *getNames() { 1513 auto *Names = isl_id_to_ast_expr_alloc( 1514 S->getIslCtx(), 1515 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1516 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1517 auto *Space = S->getParamSpace(); 1518 1519 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1520 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1521 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1522 } 1523 1524 for (auto &Array : S->arrays()) { 1525 auto Id = Array->getBasePtrId(); 1526 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1527 } 1528 1529 isl_space_free(Space); 1530 isl_ast_expr_free(Zero); 1531 1532 return Names; 1533 } 1534 1535 /// Create a new PPCG scop from the current scop. 1536 /// 1537 /// The PPCG scop is initialized with data from the current polly::Scop. From 1538 /// this initial data, the data-dependences in the PPCG scop are initialized. 1539 /// We do not use Polly's dependence analysis for now, to ensure we match 1540 /// the PPCG default behaviour more closely. 1541 /// 1542 /// @returns A new ppcg scop. 1543 ppcg_scop *createPPCGScop() { 1544 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1545 1546 PPCGScop->options = createPPCGOptions(); 1547 1548 PPCGScop->start = 0; 1549 PPCGScop->end = 0; 1550 1551 PPCGScop->context = S->getContext(); 1552 PPCGScop->domain = S->getDomains(); 1553 PPCGScop->call = nullptr; 1554 PPCGScop->tagged_reads = getTaggedReads(); 1555 PPCGScop->reads = S->getReads(); 1556 PPCGScop->live_in = nullptr; 1557 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1558 PPCGScop->may_writes = S->getWrites(); 1559 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1560 PPCGScop->must_writes = S->getMustWrites(); 1561 PPCGScop->live_out = nullptr; 1562 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1563 PPCGScop->tagger = nullptr; 1564 1565 PPCGScop->independence = nullptr; 1566 PPCGScop->dep_flow = nullptr; 1567 PPCGScop->tagged_dep_flow = nullptr; 1568 PPCGScop->dep_false = nullptr; 1569 PPCGScop->dep_forced = nullptr; 1570 PPCGScop->dep_order = nullptr; 1571 PPCGScop->tagged_dep_order = nullptr; 1572 1573 PPCGScop->schedule = S->getScheduleTree(); 1574 PPCGScop->names = getNames(); 1575 1576 PPCGScop->pet = nullptr; 1577 1578 compute_tagger(PPCGScop); 1579 compute_dependences(PPCGScop); 1580 1581 return PPCGScop; 1582 } 1583 1584 /// Collect the array acesses in a statement. 1585 /// 1586 /// @param Stmt The statement for which to collect the accesses. 1587 /// 1588 /// @returns A list of array accesses. 1589 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1590 gpu_stmt_access *Accesses = nullptr; 1591 1592 for (MemoryAccess *Acc : Stmt) { 1593 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1594 Access->read = Acc->isRead(); 1595 Access->write = Acc->isWrite(); 1596 Access->access = Acc->getAccessRelation(); 1597 isl_space *Space = isl_map_get_space(Access->access); 1598 Space = isl_space_range(Space); 1599 Space = isl_space_from_range(Space); 1600 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1601 isl_map *Universe = isl_map_universe(Space); 1602 Access->tagged_access = 1603 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1604 Access->exact_write = !Acc->isMayWrite(); 1605 Access->ref_id = Acc->getId(); 1606 Access->next = Accesses; 1607 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 1608 Accesses = Access; 1609 } 1610 1611 return Accesses; 1612 } 1613 1614 /// Collect the list of GPU statements. 1615 /// 1616 /// Each statement has an id, a pointer to the underlying data structure, 1617 /// as well as a list with all memory accesses. 1618 /// 1619 /// TODO: Initialize the list of memory accesses. 1620 /// 1621 /// @returns A linked-list of statements. 1622 gpu_stmt *getStatements() { 1623 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1624 std::distance(S->begin(), S->end())); 1625 1626 int i = 0; 1627 for (auto &Stmt : *S) { 1628 gpu_stmt *GPUStmt = &Stmts[i]; 1629 1630 GPUStmt->id = Stmt.getDomainId(); 1631 1632 // We use the pet stmt pointer to keep track of the Polly statements. 1633 GPUStmt->stmt = (pet_stmt *)&Stmt; 1634 GPUStmt->accesses = getStmtAccesses(Stmt); 1635 i++; 1636 } 1637 1638 return Stmts; 1639 } 1640 1641 /// Derive the extent of an array. 1642 /// 1643 /// The extent of an array is defined by the set of memory locations for 1644 /// which a memory access in the iteration domain exists. 1645 /// 1646 /// @param Array The array to derive the extent for. 1647 /// 1648 /// @returns An isl_set describing the extent of the array. 1649 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1650 isl_union_map *Accesses = S->getAccesses(); 1651 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1652 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1653 isl_set *AccessSet = 1654 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1655 isl_union_set_free(AccessUSet); 1656 1657 return AccessSet; 1658 } 1659 1660 /// Derive the bounds of an array. 1661 /// 1662 /// For the first dimension we derive the bound of the array from the extent 1663 /// of this dimension. For inner dimensions we obtain their size directly from 1664 /// ScopArrayInfo. 1665 /// 1666 /// @param PPCGArray The array to compute bounds for. 1667 /// @param Array The polly array from which to take the information. 1668 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1669 if (PPCGArray.n_index > 0) { 1670 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1671 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1672 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1673 isl_set_free(Dom); 1674 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1675 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 1676 isl_aff *One = isl_aff_zero_on_domain(LS); 1677 One = isl_aff_add_constant_si(One, 1); 1678 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1679 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1680 PPCGArray.bound[0] = Bound; 1681 } 1682 1683 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1684 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1685 auto LS = isl_pw_aff_get_domain_space(Bound); 1686 auto Aff = isl_multi_aff_zero(LS); 1687 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1688 PPCGArray.bound[i] = Bound; 1689 } 1690 } 1691 1692 /// Create the arrays for @p PPCGProg. 1693 /// 1694 /// @param PPCGProg The program to compute the arrays for. 1695 void createArrays(gpu_prog *PPCGProg) { 1696 int i = 0; 1697 for (auto &Array : S->arrays()) { 1698 std::string TypeName; 1699 raw_string_ostream OS(TypeName); 1700 1701 OS << *Array->getElementType(); 1702 TypeName = OS.str(); 1703 1704 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1705 1706 PPCGArray.space = Array->getSpace(); 1707 PPCGArray.type = strdup(TypeName.c_str()); 1708 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1709 PPCGArray.name = strdup(Array->getName().c_str()); 1710 PPCGArray.extent = nullptr; 1711 PPCGArray.n_index = Array->getNumberOfDimensions(); 1712 PPCGArray.bound = 1713 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1714 PPCGArray.extent = getExtent(Array); 1715 PPCGArray.n_ref = 0; 1716 PPCGArray.refs = nullptr; 1717 PPCGArray.accessed = true; 1718 PPCGArray.read_only_scalar = false; 1719 PPCGArray.has_compound_element = false; 1720 PPCGArray.local = false; 1721 PPCGArray.declare_local = false; 1722 PPCGArray.global = false; 1723 PPCGArray.linearize = false; 1724 PPCGArray.dep_order = nullptr; 1725 PPCGArray.user = Array; 1726 1727 setArrayBounds(PPCGArray, Array); 1728 i++; 1729 1730 collect_references(PPCGProg, &PPCGArray); 1731 } 1732 } 1733 1734 /// Create an identity map between the arrays in the scop. 1735 /// 1736 /// @returns An identity map between the arrays in the scop. 1737 isl_union_map *getArrayIdentity() { 1738 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1739 1740 for (auto &Array : S->arrays()) { 1741 isl_space *Space = Array->getSpace(); 1742 Space = isl_space_map_from_set(Space); 1743 isl_map *Identity = isl_map_identity(Space); 1744 Maps = isl_union_map_add_map(Maps, Identity); 1745 } 1746 1747 return Maps; 1748 } 1749 1750 /// Create a default-initialized PPCG GPU program. 1751 /// 1752 /// @returns A new gpu grogram description. 1753 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1754 1755 if (!PPCGScop) 1756 return nullptr; 1757 1758 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1759 1760 PPCGProg->ctx = S->getIslCtx(); 1761 PPCGProg->scop = PPCGScop; 1762 PPCGProg->context = isl_set_copy(PPCGScop->context); 1763 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1764 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1765 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1766 PPCGProg->tagged_must_kill = 1767 isl_union_map_copy(PPCGScop->tagged_must_kills); 1768 PPCGProg->to_inner = getArrayIdentity(); 1769 PPCGProg->to_outer = getArrayIdentity(); 1770 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1771 PPCGProg->any_to_outer = nullptr; 1772 PPCGProg->array_order = nullptr; 1773 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1774 PPCGProg->stmts = getStatements(); 1775 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1776 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1777 PPCGProg->n_array); 1778 1779 createArrays(PPCGProg); 1780 1781 return PPCGProg; 1782 } 1783 1784 struct PrintGPUUserData { 1785 struct cuda_info *CudaInfo; 1786 struct gpu_prog *PPCGProg; 1787 std::vector<ppcg_kernel *> Kernels; 1788 }; 1789 1790 /// Print a user statement node in the host code. 1791 /// 1792 /// We use ppcg's printing facilities to print the actual statement and 1793 /// additionally build up a list of all kernels that are encountered in the 1794 /// host ast. 1795 /// 1796 /// @param P The printer to print to 1797 /// @param Options The printing options to use 1798 /// @param Node The node to print 1799 /// @param User A user pointer to carry additional data. This pointer is 1800 /// expected to be of type PrintGPUUserData. 1801 /// 1802 /// @returns A printer to which the output has been printed. 1803 static __isl_give isl_printer * 1804 printHostUser(__isl_take isl_printer *P, 1805 __isl_take isl_ast_print_options *Options, 1806 __isl_take isl_ast_node *Node, void *User) { 1807 auto Data = (struct PrintGPUUserData *)User; 1808 auto Id = isl_ast_node_get_annotation(Node); 1809 1810 if (Id) { 1811 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1812 1813 // If this is a user statement, format it ourselves as ppcg would 1814 // otherwise try to call pet functionality that is not available in 1815 // Polly. 1816 if (IsUser) { 1817 P = isl_printer_start_line(P); 1818 P = isl_printer_print_ast_node(P, Node); 1819 P = isl_printer_end_line(P); 1820 isl_id_free(Id); 1821 isl_ast_print_options_free(Options); 1822 return P; 1823 } 1824 1825 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1826 isl_id_free(Id); 1827 Data->Kernels.push_back(Kernel); 1828 } 1829 1830 return print_host_user(P, Options, Node, User); 1831 } 1832 1833 /// Print C code corresponding to the control flow in @p Kernel. 1834 /// 1835 /// @param Kernel The kernel to print 1836 void printKernel(ppcg_kernel *Kernel) { 1837 auto *P = isl_printer_to_str(S->getIslCtx()); 1838 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1839 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1840 P = isl_ast_node_print(Kernel->tree, P, Options); 1841 char *String = isl_printer_get_str(P); 1842 printf("%s\n", String); 1843 free(String); 1844 isl_printer_free(P); 1845 } 1846 1847 /// Print C code corresponding to the GPU code described by @p Tree. 1848 /// 1849 /// @param Tree An AST describing GPU code 1850 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1851 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1852 auto *P = isl_printer_to_str(S->getIslCtx()); 1853 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1854 1855 PrintGPUUserData Data; 1856 Data.PPCGProg = PPCGProg; 1857 1858 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1859 Options = 1860 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1861 P = isl_ast_node_print(Tree, P, Options); 1862 char *String = isl_printer_get_str(P); 1863 printf("# host\n"); 1864 printf("%s\n", String); 1865 free(String); 1866 isl_printer_free(P); 1867 1868 for (auto Kernel : Data.Kernels) { 1869 printf("# kernel%d\n", Kernel->id); 1870 printKernel(Kernel); 1871 } 1872 } 1873 1874 // Generate a GPU program using PPCG. 1875 // 1876 // GPU mapping consists of multiple steps: 1877 // 1878 // 1) Compute new schedule for the program. 1879 // 2) Map schedule to GPU (TODO) 1880 // 3) Generate code for new schedule (TODO) 1881 // 1882 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1883 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1884 // strategy directly from this pass. 1885 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1886 1887 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1888 1889 PPCGGen->ctx = S->getIslCtx(); 1890 PPCGGen->options = PPCGScop->options; 1891 PPCGGen->print = nullptr; 1892 PPCGGen->print_user = nullptr; 1893 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1894 PPCGGen->prog = PPCGProg; 1895 PPCGGen->tree = nullptr; 1896 PPCGGen->types.n = 0; 1897 PPCGGen->types.name = nullptr; 1898 PPCGGen->sizes = nullptr; 1899 PPCGGen->used_sizes = nullptr; 1900 PPCGGen->kernel_id = 0; 1901 1902 // Set scheduling strategy to same strategy PPCG is using. 1903 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1904 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1905 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1906 1907 isl_schedule *Schedule = get_schedule(PPCGGen); 1908 1909 int has_permutable = has_any_permutable_node(Schedule); 1910 1911 if (!has_permutable || has_permutable < 0) { 1912 Schedule = isl_schedule_free(Schedule); 1913 } else { 1914 Schedule = map_to_device(PPCGGen, Schedule); 1915 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1916 } 1917 1918 if (DumpSchedule) { 1919 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1920 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1921 P = isl_printer_print_str(P, "Schedule\n"); 1922 P = isl_printer_print_str(P, "========\n"); 1923 if (Schedule) 1924 P = isl_printer_print_schedule(P, Schedule); 1925 else 1926 P = isl_printer_print_str(P, "No schedule found\n"); 1927 1928 printf("%s\n", isl_printer_get_str(P)); 1929 isl_printer_free(P); 1930 } 1931 1932 if (DumpCode) { 1933 printf("Code\n"); 1934 printf("====\n"); 1935 if (PPCGGen->tree) 1936 printGPUTree(PPCGGen->tree, PPCGProg); 1937 else 1938 printf("No code generated\n"); 1939 } 1940 1941 isl_schedule_free(Schedule); 1942 1943 return PPCGGen; 1944 } 1945 1946 /// Free gpu_gen structure. 1947 /// 1948 /// @param PPCGGen The ppcg_gen object to free. 1949 void freePPCGGen(gpu_gen *PPCGGen) { 1950 isl_ast_node_free(PPCGGen->tree); 1951 isl_union_map_free(PPCGGen->sizes); 1952 isl_union_map_free(PPCGGen->used_sizes); 1953 free(PPCGGen); 1954 } 1955 1956 /// Free the options in the ppcg scop structure. 1957 /// 1958 /// ppcg is not freeing these options for us. To avoid leaks we do this 1959 /// ourselves. 1960 /// 1961 /// @param PPCGScop The scop referencing the options to free. 1962 void freeOptions(ppcg_scop *PPCGScop) { 1963 free(PPCGScop->options->debug); 1964 PPCGScop->options->debug = nullptr; 1965 free(PPCGScop->options); 1966 PPCGScop->options = nullptr; 1967 } 1968 1969 /// Generate code for a given GPU AST described by @p Root. 1970 /// 1971 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1972 /// @param Prog The GPU Program to generate code for. 1973 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1974 ScopAnnotator Annotator; 1975 Annotator.buildAliasScopes(*S); 1976 1977 Region *R = &S->getRegion(); 1978 1979 simplifyRegion(R, DT, LI, RI); 1980 1981 BasicBlock *EnteringBB = R->getEnteringBlock(); 1982 1983 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1984 1985 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1986 Prog); 1987 1988 // Only build the run-time condition and parameters _after_ having 1989 // introduced the conditional branch. This is important as the conditional 1990 // branch will guard the original scop from new induction variables that 1991 // the SCEVExpander may introduce while code generating the parameters and 1992 // which may introduce scalar dependences that prevent us from correctly 1993 // code generating this scop. 1994 BasicBlock *StartBlock = 1995 executeScopConditionally(*S, this, Builder.getTrue()); 1996 1997 // TODO: Handle LICM 1998 // TODO: Verify run-time checks 1999 auto SplitBlock = StartBlock->getSinglePredecessor(); 2000 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2001 NodeBuilder.addParameters(S->getContext()); 2002 Builder.SetInsertPoint(&*StartBlock->begin()); 2003 2004 NodeBuilder.initializeAfterRTH(); 2005 NodeBuilder.create(Root); 2006 NodeBuilder.finalize(); 2007 } 2008 2009 bool runOnScop(Scop &CurrentScop) override { 2010 S = &CurrentScop; 2011 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2012 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2013 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2014 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 2015 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2016 2017 // We currently do not support scops with invariant loads. 2018 if (S->hasInvariantAccesses()) 2019 return false; 2020 2021 auto PPCGScop = createPPCGScop(); 2022 auto PPCGProg = createPPCGProg(PPCGScop); 2023 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2024 2025 if (PPCGGen->tree) 2026 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2027 2028 freeOptions(PPCGScop); 2029 freePPCGGen(PPCGGen); 2030 gpu_prog_free(PPCGProg); 2031 ppcg_scop_free(PPCGScop); 2032 2033 return true; 2034 } 2035 2036 void printScop(raw_ostream &, Scop &) const override {} 2037 2038 void getAnalysisUsage(AnalysisUsage &AU) const override { 2039 AU.addRequired<DominatorTreeWrapperPass>(); 2040 AU.addRequired<RegionInfoPass>(); 2041 AU.addRequired<ScalarEvolutionWrapperPass>(); 2042 AU.addRequired<ScopDetection>(); 2043 AU.addRequired<ScopInfoRegionPass>(); 2044 AU.addRequired<LoopInfoWrapperPass>(); 2045 2046 AU.addPreserved<AAResultsWrapperPass>(); 2047 AU.addPreserved<BasicAAWrapperPass>(); 2048 AU.addPreserved<LoopInfoWrapperPass>(); 2049 AU.addPreserved<DominatorTreeWrapperPass>(); 2050 AU.addPreserved<GlobalsAAWrapperPass>(); 2051 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2052 AU.addPreserved<ScopDetection>(); 2053 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2054 AU.addPreserved<SCEVAAWrapperPass>(); 2055 2056 // FIXME: We do not yet add regions for the newly generated code to the 2057 // region tree. 2058 AU.addPreserved<RegionInfoPass>(); 2059 AU.addPreserved<ScopInfoRegionPass>(); 2060 } 2061 }; 2062 } 2063 2064 char PPCGCodeGeneration::ID = 1; 2065 2066 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 2067 2068 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 2069 "Polly - Apply PPCG translation to SCOP", false, false) 2070 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2071 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 2072 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 2073 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 2074 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 2075 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 2076 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 2077 "Polly - Apply PPCG translation to SCOP", false, false) 2078