1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/Utils.h"
17 #include "polly/DependenceInfo.h"
18 #include "polly/LinkAllPasses.h"
19 #include "polly/Options.h"
20 #include "polly/ScopInfo.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 
27 #include "isl/union_map.h"
28 
29 extern "C" {
30 #include "ppcg/cuda.h"
31 #include "ppcg/gpu.h"
32 #include "ppcg/gpu_print.h"
33 #include "ppcg/ppcg.h"
34 #include "ppcg/schedule.h"
35 }
36 
37 #include "llvm/Support/Debug.h"
38 
39 using namespace polly;
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "polly-codegen-ppcg"
43 
44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
45                                   cl::desc("Dump the computed GPU Schedule"),
46                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
47                                   cl::cat(PollyCategory));
48 
49 static cl::opt<bool>
50     DumpCode("polly-acc-dump-code",
51              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
52              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
53 
54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
55                                   cl::desc("Dump the kernel LLVM-IR"),
56                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
57                                   cl::cat(PollyCategory));
58 
59 /// Create the ast expressions for a ScopStmt.
60 ///
61 /// This function is a callback for to generate the ast expressions for each
62 /// of the scheduled ScopStmts.
63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
64     void *Stmt, isl_ast_build *Build,
65     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
66                                        isl_id *Id, void *User),
67     void *UserIndex,
68     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
69     void *User_expr) {
70 
71   // TODO: Implement the AST expression generation. For now we just return a
72   // nullptr to ensure that we do not free uninitialized pointers.
73 
74   return nullptr;
75 }
76 
77 /// Generate code for a GPU specific isl AST.
78 ///
79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
80 /// generates code for general-prupose AST nodes, with special functionality
81 /// for generating GPU specific user nodes.
82 ///
83 /// @see GPUNodeBuilder::createUser
84 class GPUNodeBuilder : public IslNodeBuilder {
85 public:
86   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P,
87                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
88                  DominatorTree &DT, Scop &S, gpu_prog *Prog)
89       : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {}
90 
91 private:
92   /// A module containing GPU code.
93   ///
94   /// This pointer is only set in case we are currently generating GPU code.
95   std::unique_ptr<Module> GPUModule;
96 
97   /// The GPU program we generate code for.
98   gpu_prog *Prog;
99 
100   /// Class to free isl_ids.
101   class IslIdDeleter {
102   public:
103     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
104   };
105 
106   /// A set containing all isl_ids allocated in a GPU kernel.
107   ///
108   /// By releasing this set all isl_ids will be freed.
109   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
110 
111   /// Create code for user-defined AST nodes.
112   ///
113   /// These AST nodes can be of type:
114   ///
115   ///   - ScopStmt:      A computational statement (TODO)
116   ///   - Kernel:        A GPU kernel call (TODO)
117   ///   - Data-Transfer: A GPU <-> CPU data-transfer (TODO)
118   ///
119   /// @param UserStmt The ast node to generate code for.
120   virtual void createUser(__isl_take isl_ast_node *UserStmt);
121 
122   /// Create GPU kernel.
123   ///
124   /// Code generate the kernel described by @p KernelStmt.
125   ///
126   /// @param KernelStmt The ast node to generate kernel code for.
127   void createKernel(__isl_take isl_ast_node *KernelStmt);
128 
129   /// Create kernel function.
130   ///
131   /// Create a kernel function located in a newly created module that can serve
132   /// as target for device code generation. Set the Builder to point to the
133   /// start block of this newly created function.
134   ///
135   /// @param Kernel The kernel to generate code for.
136   void createKernelFunction(ppcg_kernel *Kernel);
137 
138   /// Create the declaration of a kernel function.
139   ///
140   /// The kernel function takes as arguments:
141   ///
142   ///   - One i8 pointer for each external array reference used in the kernel.
143   ///   - Host iterators
144   ///   - Parameters (TODO)
145   ///   - Other LLVM Value references (TODO)
146   ///
147   /// @param Kernel The kernel to generate the function declaration for.
148   /// @returns The newly declared function.
149   Function *createKernelFunctionDecl(ppcg_kernel *Kernel);
150 
151   /// Insert intrinsic functions to obtain thread and block ids.
152   ///
153   /// @param The kernel to generate the intrinsic functions for.
154   void insertKernelIntrinsics(ppcg_kernel *Kernel);
155 
156   /// Finalize the generation of the kernel function.
157   ///
158   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
159   /// dump its IR to stderr.
160   void finalizeKernelFunction();
161 };
162 
163 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
164   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
165   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
166   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
167   isl_id_free(Id);
168   isl_ast_expr_free(StmtExpr);
169 
170   const char *Str = isl_id_get_name(Id);
171   if (!strcmp(Str, "kernel")) {
172     createKernel(UserStmt);
173     isl_ast_expr_free(Expr);
174     return;
175   }
176 
177   isl_ast_expr_free(Expr);
178   isl_ast_node_free(UserStmt);
179   return;
180 }
181 
182 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
183   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
184   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
185   isl_id_free(Id);
186   isl_ast_node_free(KernelStmt);
187 
188   assert(Kernel->tree && "Device AST of kernel node is empty");
189 
190   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
191   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
192 
193   createKernelFunction(Kernel);
194 
195   Builder.SetInsertPoint(&HostInsertPoint);
196   IDToValue = HostIDs;
197 
198   finalizeKernelFunction();
199 }
200 
201 /// Compute the DataLayout string for the NVPTX backend.
202 ///
203 /// @param is64Bit Are we looking for a 64 bit architecture?
204 static std::string computeNVPTXDataLayout(bool is64Bit) {
205   std::string Ret = "e";
206 
207   if (!is64Bit)
208     Ret += "-p:32:32";
209 
210   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
211 
212   return Ret;
213 }
214 
215 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) {
216   std::vector<Type *> Args;
217   std::string Identifier = "kernel_" + std::to_string(Kernel->id);
218 
219   for (long i = 0; i < Prog->n_array; i++) {
220     if (!ppcg_kernel_requires_array_argument(Kernel, i))
221       continue;
222 
223     Args.push_back(Builder.getInt8PtrTy());
224   }
225 
226   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
227 
228   for (long i = 0; i < NumHostIters; i++)
229     Args.push_back(Builder.getInt64Ty());
230 
231   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
232   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
233                               GPUModule.get());
234   FN->setCallingConv(CallingConv::PTX_Kernel);
235 
236   auto Arg = FN->arg_begin();
237   for (long i = 0; i < Kernel->n_array; i++) {
238     if (!ppcg_kernel_requires_array_argument(Kernel, i))
239       continue;
240 
241     Arg->setName(Prog->array[i].name);
242     Arg++;
243   }
244 
245   for (long i = 0; i < NumHostIters; i++) {
246     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
247     Arg->setName(isl_id_get_name(Id));
248     IDToValue[Id] = &*Arg;
249     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
250     Arg++;
251   }
252 
253   return FN;
254 }
255 
256 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
257   Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x,
258                                    Intrinsic::nvvm_read_ptx_sreg_ctaid_y};
259 
260   Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x,
261                                    Intrinsic::nvvm_read_ptx_sreg_tid_y,
262                                    Intrinsic::nvvm_read_ptx_sreg_tid_z};
263 
264   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
265     std::string Name = isl_id_get_name(Id);
266     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
267     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
268     Value *Val = Builder.CreateCall(IntrinsicFn, {});
269     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
270     IDToValue[Id] = Val;
271     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
272   };
273 
274   for (int i = 0; i < Kernel->n_grid; ++i) {
275     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
276     addId(Id, IntrinsicsBID[i]);
277   }
278 
279   for (int i = 0; i < Kernel->n_block; ++i) {
280     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
281     addId(Id, IntrinsicsTID[i]);
282   }
283 }
284 
285 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) {
286 
287   std::string Identifier = "kernel_" + std::to_string(Kernel->id);
288   GPUModule.reset(new Module(Identifier, Builder.getContext()));
289   GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
290   GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
291 
292   Function *FN = createKernelFunctionDecl(Kernel);
293 
294   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
295 
296   Builder.SetInsertPoint(EntryBlock);
297   Builder.CreateRetVoid();
298   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
299 
300   insertKernelIntrinsics(Kernel);
301 }
302 
303 void GPUNodeBuilder::finalizeKernelFunction() {
304 
305   if (DumpKernelIR)
306     outs() << *GPUModule << "\n";
307 
308   GPUModule.release();
309   KernelIDs.clear();
310 }
311 
312 namespace {
313 class PPCGCodeGeneration : public ScopPass {
314 public:
315   static char ID;
316 
317   /// The scop that is currently processed.
318   Scop *S;
319 
320   LoopInfo *LI;
321   DominatorTree *DT;
322   ScalarEvolution *SE;
323   const DataLayout *DL;
324   RegionInfo *RI;
325 
326   PPCGCodeGeneration() : ScopPass(ID) {}
327 
328   /// Construct compilation options for PPCG.
329   ///
330   /// @returns The compilation options.
331   ppcg_options *createPPCGOptions() {
332     auto DebugOptions =
333         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
334     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
335 
336     DebugOptions->dump_schedule_constraints = false;
337     DebugOptions->dump_schedule = false;
338     DebugOptions->dump_final_schedule = false;
339     DebugOptions->dump_sizes = false;
340 
341     Options->debug = DebugOptions;
342 
343     Options->reschedule = true;
344     Options->scale_tile_loops = false;
345     Options->wrap = false;
346 
347     Options->non_negative_parameters = false;
348     Options->ctx = nullptr;
349     Options->sizes = nullptr;
350 
351     Options->tile_size = 32;
352 
353     Options->use_private_memory = false;
354     Options->use_shared_memory = false;
355     Options->max_shared_memory = 0;
356 
357     Options->target = PPCG_TARGET_CUDA;
358     Options->openmp = false;
359     Options->linearize_device_arrays = true;
360     Options->live_range_reordering = false;
361 
362     Options->opencl_compiler_options = nullptr;
363     Options->opencl_use_gpu = false;
364     Options->opencl_n_include_file = 0;
365     Options->opencl_include_files = nullptr;
366     Options->opencl_print_kernel_types = false;
367     Options->opencl_embed_kernel_code = false;
368 
369     Options->save_schedule_file = nullptr;
370     Options->load_schedule_file = nullptr;
371 
372     return Options;
373   }
374 
375   /// Get a tagged access relation containing all accesses of type @p AccessTy.
376   ///
377   /// Instead of a normal access of the form:
378   ///
379   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
380   ///
381   /// a tagged access has the form
382   ///
383   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
384   ///
385   /// where 'id' is an additional space that references the memory access that
386   /// triggered the access.
387   ///
388   /// @param AccessTy The type of the memory accesses to collect.
389   ///
390   /// @return The relation describing all tagged memory accesses.
391   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
392     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace());
393 
394     for (auto &Stmt : *S)
395       for (auto &Acc : Stmt)
396         if (Acc->getType() == AccessTy) {
397           isl_map *Relation = Acc->getAccessRelation();
398           Relation = isl_map_intersect_domain(Relation, Stmt.getDomain());
399 
400           isl_space *Space = isl_map_get_space(Relation);
401           Space = isl_space_range(Space);
402           Space = isl_space_from_range(Space);
403           Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
404           isl_map *Universe = isl_map_universe(Space);
405           Relation = isl_map_domain_product(Relation, Universe);
406           Accesses = isl_union_map_add_map(Accesses, Relation);
407         }
408 
409     return Accesses;
410   }
411 
412   /// Get the set of all read accesses, tagged with the access id.
413   ///
414   /// @see getTaggedAccesses
415   isl_union_map *getTaggedReads() {
416     return getTaggedAccesses(MemoryAccess::READ);
417   }
418 
419   /// Get the set of all may (and must) accesses, tagged with the access id.
420   ///
421   /// @see getTaggedAccesses
422   isl_union_map *getTaggedMayWrites() {
423     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
424                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
425   }
426 
427   /// Get the set of all must accesses, tagged with the access id.
428   ///
429   /// @see getTaggedAccesses
430   isl_union_map *getTaggedMustWrites() {
431     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
432   }
433 
434   /// Collect parameter and array names as isl_ids.
435   ///
436   /// To reason about the different parameters and arrays used, ppcg requires
437   /// a list of all isl_ids in use. As PPCG traditionally performs
438   /// source-to-source compilation each of these isl_ids is mapped to the
439   /// expression that represents it. As we do not have a corresponding
440   /// expression in Polly, we just map each id to a 'zero' expression to match
441   /// the data format that ppcg expects.
442   ///
443   /// @returns Retun a map from collected ids to 'zero' ast expressions.
444   __isl_give isl_id_to_ast_expr *getNames() {
445     auto *Names = isl_id_to_ast_expr_alloc(
446         S->getIslCtx(),
447         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
448     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
449     auto *Space = S->getParamSpace();
450 
451     for (int I = 0, E = S->getNumParams(); I < E; ++I) {
452       isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I);
453       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
454     }
455 
456     for (auto &Array : S->arrays()) {
457       auto Id = Array.second->getBasePtrId();
458       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
459     }
460 
461     isl_space_free(Space);
462     isl_ast_expr_free(Zero);
463 
464     return Names;
465   }
466 
467   /// Create a new PPCG scop from the current scop.
468   ///
469   /// The PPCG scop is initialized with data from the current polly::Scop. From
470   /// this initial data, the data-dependences in the PPCG scop are initialized.
471   /// We do not use Polly's dependence analysis for now, to ensure we match
472   /// the PPCG default behaviour more closely.
473   ///
474   /// @returns A new ppcg scop.
475   ppcg_scop *createPPCGScop() {
476     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
477 
478     PPCGScop->options = createPPCGOptions();
479 
480     PPCGScop->start = 0;
481     PPCGScop->end = 0;
482 
483     PPCGScop->context = S->getContext();
484     PPCGScop->domain = S->getDomains();
485     PPCGScop->call = nullptr;
486     PPCGScop->tagged_reads = getTaggedReads();
487     PPCGScop->reads = S->getReads();
488     PPCGScop->live_in = nullptr;
489     PPCGScop->tagged_may_writes = getTaggedMayWrites();
490     PPCGScop->may_writes = S->getWrites();
491     PPCGScop->tagged_must_writes = getTaggedMustWrites();
492     PPCGScop->must_writes = S->getMustWrites();
493     PPCGScop->live_out = nullptr;
494     PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace());
495     PPCGScop->tagger = nullptr;
496 
497     PPCGScop->independence = nullptr;
498     PPCGScop->dep_flow = nullptr;
499     PPCGScop->tagged_dep_flow = nullptr;
500     PPCGScop->dep_false = nullptr;
501     PPCGScop->dep_forced = nullptr;
502     PPCGScop->dep_order = nullptr;
503     PPCGScop->tagged_dep_order = nullptr;
504 
505     PPCGScop->schedule = S->getScheduleTree();
506     PPCGScop->names = getNames();
507 
508     PPCGScop->pet = nullptr;
509 
510     compute_tagger(PPCGScop);
511     compute_dependences(PPCGScop);
512 
513     return PPCGScop;
514   }
515 
516   /// Collect the array acesses in a statement.
517   ///
518   /// @param Stmt The statement for which to collect the accesses.
519   ///
520   /// @returns A list of array accesses.
521   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
522     gpu_stmt_access *Accesses = nullptr;
523 
524     for (MemoryAccess *Acc : Stmt) {
525       auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
526       Access->read = Acc->isRead();
527       Access->write = Acc->isWrite();
528       Access->access = Acc->getAccessRelation();
529       isl_space *Space = isl_map_get_space(Access->access);
530       Space = isl_space_range(Space);
531       Space = isl_space_from_range(Space);
532       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
533       isl_map *Universe = isl_map_universe(Space);
534       Access->tagged_access =
535           isl_map_domain_product(Acc->getAccessRelation(), Universe);
536       Access->exact_write = Acc->isWrite();
537       Access->ref_id = Acc->getId();
538       Access->next = Accesses;
539       Accesses = Access;
540     }
541 
542     return Accesses;
543   }
544 
545   /// Collect the list of GPU statements.
546   ///
547   /// Each statement has an id, a pointer to the underlying data structure,
548   /// as well as a list with all memory accesses.
549   ///
550   /// TODO: Initialize the list of memory accesses.
551   ///
552   /// @returns A linked-list of statements.
553   gpu_stmt *getStatements() {
554     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
555                                        std::distance(S->begin(), S->end()));
556 
557     int i = 0;
558     for (auto &Stmt : *S) {
559       gpu_stmt *GPUStmt = &Stmts[i];
560 
561       GPUStmt->id = Stmt.getDomainId();
562 
563       // We use the pet stmt pointer to keep track of the Polly statements.
564       GPUStmt->stmt = (pet_stmt *)&Stmt;
565       GPUStmt->accesses = getStmtAccesses(Stmt);
566       i++;
567     }
568 
569     return Stmts;
570   }
571 
572   /// Derive the extent of an array.
573   ///
574   /// The extent of an array is defined by the set of memory locations for
575   /// which a memory access in the iteration domain exists.
576   ///
577   /// @param Array The array to derive the extent for.
578   ///
579   /// @returns An isl_set describing the extent of the array.
580   __isl_give isl_set *getExtent(ScopArrayInfo *Array) {
581     isl_union_map *Accesses = S->getAccesses();
582     Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains());
583     isl_union_set *AccessUSet = isl_union_map_range(Accesses);
584     isl_set *AccessSet =
585         isl_union_set_extract_set(AccessUSet, Array->getSpace());
586     isl_union_set_free(AccessUSet);
587 
588     return AccessSet;
589   }
590 
591   /// Derive the bounds of an array.
592   ///
593   /// For the first dimension we derive the bound of the array from the extent
594   /// of this dimension. For inner dimensions we obtain their size directly from
595   /// ScopArrayInfo.
596   ///
597   /// @param PPCGArray The array to compute bounds for.
598   /// @param Array The polly array from which to take the information.
599   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
600     if (PPCGArray.n_index > 0) {
601       isl_set *Dom = isl_set_copy(PPCGArray.extent);
602       Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
603       isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
604       isl_set_free(Dom);
605       Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
606       isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom));
607       isl_aff *One = isl_aff_zero_on_domain(LS);
608       One = isl_aff_add_constant_si(One, 1);
609       Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
610       Bound = isl_pw_aff_gist(Bound, S->getContext());
611       PPCGArray.bound[0] = Bound;
612     }
613 
614     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
615       isl_pw_aff *Bound = Array->getDimensionSizePw(i);
616       auto LS = isl_pw_aff_get_domain_space(Bound);
617       auto Aff = isl_multi_aff_zero(LS);
618       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
619       PPCGArray.bound[i] = Bound;
620     }
621   }
622 
623   /// Create the arrays for @p PPCGProg.
624   ///
625   /// @param PPCGProg The program to compute the arrays for.
626   void createArrays(gpu_prog *PPCGProg) {
627     int i = 0;
628     for (auto &Element : S->arrays()) {
629       ScopArrayInfo *Array = Element.second.get();
630 
631       std::string TypeName;
632       raw_string_ostream OS(TypeName);
633 
634       OS << *Array->getElementType();
635       TypeName = OS.str();
636 
637       gpu_array_info &PPCGArray = PPCGProg->array[i];
638 
639       PPCGArray.space = Array->getSpace();
640       PPCGArray.type = strdup(TypeName.c_str());
641       PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8;
642       PPCGArray.name = strdup(Array->getName().c_str());
643       PPCGArray.extent = nullptr;
644       PPCGArray.n_index = Array->getNumberOfDimensions();
645       PPCGArray.bound =
646           isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index);
647       PPCGArray.extent = getExtent(Array);
648       PPCGArray.n_ref = 0;
649       PPCGArray.refs = nullptr;
650       PPCGArray.accessed = true;
651       PPCGArray.read_only_scalar = false;
652       PPCGArray.has_compound_element = false;
653       PPCGArray.local = false;
654       PPCGArray.declare_local = false;
655       PPCGArray.global = false;
656       PPCGArray.linearize = false;
657       PPCGArray.dep_order = nullptr;
658 
659       setArrayBounds(PPCGArray, Array);
660       i++;
661 
662       collect_references(PPCGProg, &PPCGArray);
663     }
664   }
665 
666   /// Create an identity map between the arrays in the scop.
667   ///
668   /// @returns An identity map between the arrays in the scop.
669   isl_union_map *getArrayIdentity() {
670     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace());
671 
672     for (auto &Item : S->arrays()) {
673       ScopArrayInfo *Array = Item.second.get();
674       isl_space *Space = Array->getSpace();
675       Space = isl_space_map_from_set(Space);
676       isl_map *Identity = isl_map_identity(Space);
677       Maps = isl_union_map_add_map(Maps, Identity);
678     }
679 
680     return Maps;
681   }
682 
683   /// Create a default-initialized PPCG GPU program.
684   ///
685   /// @returns A new gpu grogram description.
686   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
687 
688     if (!PPCGScop)
689       return nullptr;
690 
691     auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
692 
693     PPCGProg->ctx = S->getIslCtx();
694     PPCGProg->scop = PPCGScop;
695     PPCGProg->context = isl_set_copy(PPCGScop->context);
696     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
697     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
698     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
699     PPCGProg->tagged_must_kill =
700         isl_union_map_copy(PPCGScop->tagged_must_kills);
701     PPCGProg->to_inner = getArrayIdentity();
702     PPCGProg->to_outer = getArrayIdentity();
703     PPCGProg->may_persist = compute_may_persist(PPCGProg);
704     PPCGProg->any_to_outer = nullptr;
705     PPCGProg->array_order = nullptr;
706     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
707     PPCGProg->stmts = getStatements();
708     PPCGProg->n_array = std::distance(S->array_begin(), S->array_end());
709     PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
710                                        PPCGProg->n_array);
711 
712     createArrays(PPCGProg);
713 
714     return PPCGProg;
715   }
716 
717   struct PrintGPUUserData {
718     struct cuda_info *CudaInfo;
719     struct gpu_prog *PPCGProg;
720     std::vector<ppcg_kernel *> Kernels;
721   };
722 
723   /// Print a user statement node in the host code.
724   ///
725   /// We use ppcg's printing facilities to print the actual statement and
726   /// additionally build up a list of all kernels that are encountered in the
727   /// host ast.
728   ///
729   /// @param P The printer to print to
730   /// @param Options The printing options to use
731   /// @param Node The node to print
732   /// @param User A user pointer to carry additional data. This pointer is
733   ///             expected to be of type PrintGPUUserData.
734   ///
735   /// @returns A printer to which the output has been printed.
736   static __isl_give isl_printer *
737   printHostUser(__isl_take isl_printer *P,
738                 __isl_take isl_ast_print_options *Options,
739                 __isl_take isl_ast_node *Node, void *User) {
740     auto Data = (struct PrintGPUUserData *)User;
741     auto Id = isl_ast_node_get_annotation(Node);
742 
743     if (Id) {
744       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
745 
746       // If this is a user statement, format it ourselves as ppcg would
747       // otherwise try to call pet functionality that is not available in
748       // Polly.
749       if (IsUser) {
750         P = isl_printer_start_line(P);
751         P = isl_printer_print_ast_node(P, Node);
752         P = isl_printer_end_line(P);
753         isl_id_free(Id);
754         isl_ast_print_options_free(Options);
755         return P;
756       }
757 
758       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
759       isl_id_free(Id);
760       Data->Kernels.push_back(Kernel);
761     }
762 
763     return print_host_user(P, Options, Node, User);
764   }
765 
766   /// Print C code corresponding to the control flow in @p Kernel.
767   ///
768   /// @param Kernel The kernel to print
769   void printKernel(ppcg_kernel *Kernel) {
770     auto *P = isl_printer_to_str(S->getIslCtx());
771     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
772     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
773     P = isl_ast_node_print(Kernel->tree, P, Options);
774     char *String = isl_printer_get_str(P);
775     printf("%s\n", String);
776     free(String);
777     isl_printer_free(P);
778   }
779 
780   /// Print C code corresponding to the GPU code described by @p Tree.
781   ///
782   /// @param Tree An AST describing GPU code
783   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
784   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
785     auto *P = isl_printer_to_str(S->getIslCtx());
786     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
787 
788     PrintGPUUserData Data;
789     Data.PPCGProg = PPCGProg;
790 
791     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
792     Options =
793         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
794     P = isl_ast_node_print(Tree, P, Options);
795     char *String = isl_printer_get_str(P);
796     printf("# host\n");
797     printf("%s\n", String);
798     free(String);
799     isl_printer_free(P);
800 
801     for (auto Kernel : Data.Kernels) {
802       printf("# kernel%d\n", Kernel->id);
803       printKernel(Kernel);
804     }
805   }
806 
807   // Generate a GPU program using PPCG.
808   //
809   // GPU mapping consists of multiple steps:
810   //
811   //  1) Compute new schedule for the program.
812   //  2) Map schedule to GPU (TODO)
813   //  3) Generate code for new schedule (TODO)
814   //
815   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
816   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
817   // strategy directly from this pass.
818   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
819 
820     auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
821 
822     PPCGGen->ctx = S->getIslCtx();
823     PPCGGen->options = PPCGScop->options;
824     PPCGGen->print = nullptr;
825     PPCGGen->print_user = nullptr;
826     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
827     PPCGGen->prog = PPCGProg;
828     PPCGGen->tree = nullptr;
829     PPCGGen->types.n = 0;
830     PPCGGen->types.name = nullptr;
831     PPCGGen->sizes = nullptr;
832     PPCGGen->used_sizes = nullptr;
833     PPCGGen->kernel_id = 0;
834 
835     // Set scheduling strategy to same strategy PPCG is using.
836     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
837     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
838     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
839 
840     isl_schedule *Schedule = get_schedule(PPCGGen);
841 
842     int has_permutable = has_any_permutable_node(Schedule);
843 
844     if (!has_permutable || has_permutable < 0) {
845       Schedule = isl_schedule_free(Schedule);
846     } else {
847       Schedule = map_to_device(PPCGGen, Schedule);
848       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
849     }
850 
851     if (DumpSchedule) {
852       isl_printer *P = isl_printer_to_str(S->getIslCtx());
853       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
854       P = isl_printer_print_str(P, "Schedule\n");
855       P = isl_printer_print_str(P, "========\n");
856       if (Schedule)
857         P = isl_printer_print_schedule(P, Schedule);
858       else
859         P = isl_printer_print_str(P, "No schedule found\n");
860 
861       printf("%s\n", isl_printer_get_str(P));
862       isl_printer_free(P);
863     }
864 
865     if (DumpCode) {
866       printf("Code\n");
867       printf("====\n");
868       if (PPCGGen->tree)
869         printGPUTree(PPCGGen->tree, PPCGProg);
870       else
871         printf("No code generated\n");
872     }
873 
874     isl_schedule_free(Schedule);
875 
876     return PPCGGen;
877   }
878 
879   /// Free gpu_gen structure.
880   ///
881   /// @param PPCGGen The ppcg_gen object to free.
882   void freePPCGGen(gpu_gen *PPCGGen) {
883     isl_ast_node_free(PPCGGen->tree);
884     isl_union_map_free(PPCGGen->sizes);
885     isl_union_map_free(PPCGGen->used_sizes);
886     free(PPCGGen);
887   }
888 
889   /// Free the options in the ppcg scop structure.
890   ///
891   /// ppcg is not freeing these options for us. To avoid leaks we do this
892   /// ourselves.
893   ///
894   /// @param PPCGScop The scop referencing the options to free.
895   void freeOptions(ppcg_scop *PPCGScop) {
896     free(PPCGScop->options->debug);
897     PPCGScop->options->debug = nullptr;
898     free(PPCGScop->options);
899     PPCGScop->options = nullptr;
900   }
901 
902   /// Generate code for a given GPU AST described by @p Root.
903   ///
904   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
905   /// @param Prog The GPU Program to generate code for.
906   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
907     ScopAnnotator Annotator;
908     Annotator.buildAliasScopes(*S);
909 
910     Region *R = &S->getRegion();
911 
912     simplifyRegion(R, DT, LI, RI);
913 
914     BasicBlock *EnteringBB = R->getEnteringBlock();
915 
916     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
917 
918     GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S,
919                                Prog);
920 
921     // Only build the run-time condition and parameters _after_ having
922     // introduced the conditional branch. This is important as the conditional
923     // branch will guard the original scop from new induction variables that
924     // the SCEVExpander may introduce while code generating the parameters and
925     // which may introduce scalar dependences that prevent us from correctly
926     // code generating this scop.
927     BasicBlock *StartBlock =
928         executeScopConditionally(*S, this, Builder.getTrue());
929 
930     // TODO: Handle LICM
931     // TODO: Verify run-time checks
932     auto SplitBlock = StartBlock->getSinglePredecessor();
933     Builder.SetInsertPoint(SplitBlock->getTerminator());
934     NodeBuilder.addParameters(S->getContext());
935     Builder.SetInsertPoint(&*StartBlock->begin());
936     NodeBuilder.create(Root);
937     NodeBuilder.finalizeSCoP(*S);
938   }
939 
940   bool runOnScop(Scop &CurrentScop) override {
941     S = &CurrentScop;
942     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
943     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
944     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
945     DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout();
946     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
947 
948     auto PPCGScop = createPPCGScop();
949     auto PPCGProg = createPPCGProg(PPCGScop);
950     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
951 
952     if (PPCGGen->tree)
953       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
954 
955     freeOptions(PPCGScop);
956     freePPCGGen(PPCGGen);
957     gpu_prog_free(PPCGProg);
958     ppcg_scop_free(PPCGScop);
959 
960     return true;
961   }
962 
963   void printScop(raw_ostream &, Scop &) const override {}
964 
965   void getAnalysisUsage(AnalysisUsage &AU) const override {
966     AU.addRequired<DominatorTreeWrapperPass>();
967     AU.addRequired<RegionInfoPass>();
968     AU.addRequired<ScalarEvolutionWrapperPass>();
969     AU.addRequired<ScopDetection>();
970     AU.addRequired<ScopInfoRegionPass>();
971     AU.addRequired<LoopInfoWrapperPass>();
972 
973     AU.addPreserved<AAResultsWrapperPass>();
974     AU.addPreserved<BasicAAWrapperPass>();
975     AU.addPreserved<LoopInfoWrapperPass>();
976     AU.addPreserved<DominatorTreeWrapperPass>();
977     AU.addPreserved<GlobalsAAWrapperPass>();
978     AU.addPreserved<PostDominatorTreeWrapperPass>();
979     AU.addPreserved<ScopDetection>();
980     AU.addPreserved<ScalarEvolutionWrapperPass>();
981     AU.addPreserved<SCEVAAWrapperPass>();
982 
983     // FIXME: We do not yet add regions for the newly generated code to the
984     //        region tree.
985     AU.addPreserved<RegionInfoPass>();
986     AU.addPreserved<ScopInfoRegionPass>();
987   }
988 };
989 }
990 
991 char PPCGCodeGeneration::ID = 1;
992 
993 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); }
994 
995 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
996                       "Polly - Apply PPCG translation to SCOP", false, false)
997 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
998 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
999 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1000 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1001 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1002 INITIALIZE_PASS_DEPENDENCY(ScopDetection);
1003 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
1004                     "Polly - Apply PPCG translation to SCOP", false, false)
1005