1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 55 cl::desc("Dump the kernel LLVM-IR"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 /// Create the ast expressions for a ScopStmt. 60 /// 61 /// This function is a callback for to generate the ast expressions for each 62 /// of the scheduled ScopStmts. 63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 64 void *Stmt, isl_ast_build *Build, 65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 66 isl_id *Id, void *User), 67 void *UserIndex, 68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 69 void *User_expr) { 70 71 // TODO: Implement the AST expression generation. For now we just return a 72 // nullptr to ensure that we do not free uninitialized pointers. 73 74 return nullptr; 75 } 76 77 /// Generate code for a GPU specific isl AST. 78 /// 79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 80 /// generates code for general-prupose AST nodes, with special functionality 81 /// for generating GPU specific user nodes. 82 /// 83 /// @see GPUNodeBuilder::createUser 84 class GPUNodeBuilder : public IslNodeBuilder { 85 public: 86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 88 DominatorTree &DT, Scop &S, gpu_prog *Prog) 89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} 90 91 private: 92 /// A module containing GPU code. 93 /// 94 /// This pointer is only set in case we are currently generating GPU code. 95 std::unique_ptr<Module> GPUModule; 96 97 /// The GPU program we generate code for. 98 gpu_prog *Prog; 99 100 /// Class to free isl_ids. 101 class IslIdDeleter { 102 public: 103 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 104 }; 105 106 /// A set containing all isl_ids allocated in a GPU kernel. 107 /// 108 /// By releasing this set all isl_ids will be freed. 109 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 110 111 /// Create code for user-defined AST nodes. 112 /// 113 /// These AST nodes can be of type: 114 /// 115 /// - ScopStmt: A computational statement (TODO) 116 /// - Kernel: A GPU kernel call (TODO) 117 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 118 /// 119 /// @param UserStmt The ast node to generate code for. 120 virtual void createUser(__isl_take isl_ast_node *UserStmt); 121 122 /// Create GPU kernel. 123 /// 124 /// Code generate the kernel described by @p KernelStmt. 125 /// 126 /// @param KernelStmt The ast node to generate kernel code for. 127 void createKernel(__isl_take isl_ast_node *KernelStmt); 128 129 /// Create kernel function. 130 /// 131 /// Create a kernel function located in a newly created module that can serve 132 /// as target for device code generation. Set the Builder to point to the 133 /// start block of this newly created function. 134 /// 135 /// @param Kernel The kernel to generate code for. 136 void createKernelFunction(ppcg_kernel *Kernel); 137 138 /// Create the declaration of a kernel function. 139 /// 140 /// The kernel function takes as arguments: 141 /// 142 /// - One i8 pointer for each external array reference used in the kernel. 143 /// - Host iterators 144 /// - Parameters (TODO) 145 /// - Other LLVM Value references (TODO) 146 /// 147 /// @param Kernel The kernel to generate the function declaration for. 148 /// @returns The newly declared function. 149 Function *createKernelFunctionDecl(ppcg_kernel *Kernel); 150 151 /// Insert intrinsic functions to obtain thread and block ids. 152 /// 153 /// @param The kernel to generate the intrinsic functions for. 154 void insertKernelIntrinsics(ppcg_kernel *Kernel); 155 156 /// Finalize the generation of the kernel function. 157 /// 158 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 159 /// dump its IR to stderr. 160 void finalizeKernelFunction(); 161 }; 162 163 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 164 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 165 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 166 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 167 isl_id_free(Id); 168 isl_ast_expr_free(StmtExpr); 169 170 const char *Str = isl_id_get_name(Id); 171 if (!strcmp(Str, "kernel")) { 172 createKernel(UserStmt); 173 isl_ast_expr_free(Expr); 174 return; 175 } 176 177 isl_ast_expr_free(Expr); 178 isl_ast_node_free(UserStmt); 179 return; 180 } 181 182 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 183 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 184 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 185 isl_id_free(Id); 186 isl_ast_node_free(KernelStmt); 187 188 assert(Kernel->tree && "Device AST of kernel node is empty"); 189 190 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 191 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 192 193 createKernelFunction(Kernel); 194 195 Builder.SetInsertPoint(&HostInsertPoint); 196 IDToValue = HostIDs; 197 198 finalizeKernelFunction(); 199 } 200 201 /// Compute the DataLayout string for the NVPTX backend. 202 /// 203 /// @param is64Bit Are we looking for a 64 bit architecture? 204 static std::string computeNVPTXDataLayout(bool is64Bit) { 205 std::string Ret = "e"; 206 207 if (!is64Bit) 208 Ret += "-p:32:32"; 209 210 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 211 212 return Ret; 213 } 214 215 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { 216 std::vector<Type *> Args; 217 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 218 219 for (long i = 0; i < Prog->n_array; i++) { 220 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 221 continue; 222 223 Args.push_back(Builder.getInt8PtrTy()); 224 } 225 226 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 227 228 for (long i = 0; i < NumHostIters; i++) 229 Args.push_back(Builder.getInt64Ty()); 230 231 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 232 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 233 GPUModule.get()); 234 FN->setCallingConv(CallingConv::PTX_Kernel); 235 236 auto Arg = FN->arg_begin(); 237 for (long i = 0; i < Kernel->n_array; i++) { 238 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 239 continue; 240 241 Arg->setName(Prog->array[i].name); 242 Arg++; 243 } 244 245 for (long i = 0; i < NumHostIters; i++) { 246 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 247 Arg->setName(isl_id_get_name(Id)); 248 IDToValue[Id] = &*Arg; 249 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 250 Arg++; 251 } 252 253 return FN; 254 } 255 256 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 257 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 258 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 259 260 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 261 Intrinsic::nvvm_read_ptx_sreg_tid_y, 262 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 263 264 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 265 std::string Name = isl_id_get_name(Id); 266 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 267 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 268 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 269 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 270 IDToValue[Id] = Val; 271 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 272 }; 273 274 for (int i = 0; i < Kernel->n_grid; ++i) { 275 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 276 addId(Id, IntrinsicsBID[i]); 277 } 278 279 for (int i = 0; i < Kernel->n_block; ++i) { 280 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 281 addId(Id, IntrinsicsTID[i]); 282 } 283 } 284 285 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { 286 287 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 288 GPUModule.reset(new Module(Identifier, Builder.getContext())); 289 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 290 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 291 292 Function *FN = createKernelFunctionDecl(Kernel); 293 294 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 295 296 Builder.SetInsertPoint(EntryBlock); 297 Builder.CreateRetVoid(); 298 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 299 300 insertKernelIntrinsics(Kernel); 301 } 302 303 void GPUNodeBuilder::finalizeKernelFunction() { 304 305 if (DumpKernelIR) 306 outs() << *GPUModule << "\n"; 307 308 GPUModule.release(); 309 KernelIDs.clear(); 310 } 311 312 namespace { 313 class PPCGCodeGeneration : public ScopPass { 314 public: 315 static char ID; 316 317 /// The scop that is currently processed. 318 Scop *S; 319 320 LoopInfo *LI; 321 DominatorTree *DT; 322 ScalarEvolution *SE; 323 const DataLayout *DL; 324 RegionInfo *RI; 325 326 PPCGCodeGeneration() : ScopPass(ID) {} 327 328 /// Construct compilation options for PPCG. 329 /// 330 /// @returns The compilation options. 331 ppcg_options *createPPCGOptions() { 332 auto DebugOptions = 333 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 334 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 335 336 DebugOptions->dump_schedule_constraints = false; 337 DebugOptions->dump_schedule = false; 338 DebugOptions->dump_final_schedule = false; 339 DebugOptions->dump_sizes = false; 340 341 Options->debug = DebugOptions; 342 343 Options->reschedule = true; 344 Options->scale_tile_loops = false; 345 Options->wrap = false; 346 347 Options->non_negative_parameters = false; 348 Options->ctx = nullptr; 349 Options->sizes = nullptr; 350 351 Options->tile_size = 32; 352 353 Options->use_private_memory = false; 354 Options->use_shared_memory = false; 355 Options->max_shared_memory = 0; 356 357 Options->target = PPCG_TARGET_CUDA; 358 Options->openmp = false; 359 Options->linearize_device_arrays = true; 360 Options->live_range_reordering = false; 361 362 Options->opencl_compiler_options = nullptr; 363 Options->opencl_use_gpu = false; 364 Options->opencl_n_include_file = 0; 365 Options->opencl_include_files = nullptr; 366 Options->opencl_print_kernel_types = false; 367 Options->opencl_embed_kernel_code = false; 368 369 Options->save_schedule_file = nullptr; 370 Options->load_schedule_file = nullptr; 371 372 return Options; 373 } 374 375 /// Get a tagged access relation containing all accesses of type @p AccessTy. 376 /// 377 /// Instead of a normal access of the form: 378 /// 379 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 380 /// 381 /// a tagged access has the form 382 /// 383 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 384 /// 385 /// where 'id' is an additional space that references the memory access that 386 /// triggered the access. 387 /// 388 /// @param AccessTy The type of the memory accesses to collect. 389 /// 390 /// @return The relation describing all tagged memory accesses. 391 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 392 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 393 394 for (auto &Stmt : *S) 395 for (auto &Acc : Stmt) 396 if (Acc->getType() == AccessTy) { 397 isl_map *Relation = Acc->getAccessRelation(); 398 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 399 400 isl_space *Space = isl_map_get_space(Relation); 401 Space = isl_space_range(Space); 402 Space = isl_space_from_range(Space); 403 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 404 isl_map *Universe = isl_map_universe(Space); 405 Relation = isl_map_domain_product(Relation, Universe); 406 Accesses = isl_union_map_add_map(Accesses, Relation); 407 } 408 409 return Accesses; 410 } 411 412 /// Get the set of all read accesses, tagged with the access id. 413 /// 414 /// @see getTaggedAccesses 415 isl_union_map *getTaggedReads() { 416 return getTaggedAccesses(MemoryAccess::READ); 417 } 418 419 /// Get the set of all may (and must) accesses, tagged with the access id. 420 /// 421 /// @see getTaggedAccesses 422 isl_union_map *getTaggedMayWrites() { 423 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 424 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 425 } 426 427 /// Get the set of all must accesses, tagged with the access id. 428 /// 429 /// @see getTaggedAccesses 430 isl_union_map *getTaggedMustWrites() { 431 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 432 } 433 434 /// Collect parameter and array names as isl_ids. 435 /// 436 /// To reason about the different parameters and arrays used, ppcg requires 437 /// a list of all isl_ids in use. As PPCG traditionally performs 438 /// source-to-source compilation each of these isl_ids is mapped to the 439 /// expression that represents it. As we do not have a corresponding 440 /// expression in Polly, we just map each id to a 'zero' expression to match 441 /// the data format that ppcg expects. 442 /// 443 /// @returns Retun a map from collected ids to 'zero' ast expressions. 444 __isl_give isl_id_to_ast_expr *getNames() { 445 auto *Names = isl_id_to_ast_expr_alloc( 446 S->getIslCtx(), 447 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 448 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 449 auto *Space = S->getParamSpace(); 450 451 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 452 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 453 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 454 } 455 456 for (auto &Array : S->arrays()) { 457 auto Id = Array.second->getBasePtrId(); 458 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 459 } 460 461 isl_space_free(Space); 462 isl_ast_expr_free(Zero); 463 464 return Names; 465 } 466 467 /// Create a new PPCG scop from the current scop. 468 /// 469 /// The PPCG scop is initialized with data from the current polly::Scop. From 470 /// this initial data, the data-dependences in the PPCG scop are initialized. 471 /// We do not use Polly's dependence analysis for now, to ensure we match 472 /// the PPCG default behaviour more closely. 473 /// 474 /// @returns A new ppcg scop. 475 ppcg_scop *createPPCGScop() { 476 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 477 478 PPCGScop->options = createPPCGOptions(); 479 480 PPCGScop->start = 0; 481 PPCGScop->end = 0; 482 483 PPCGScop->context = S->getContext(); 484 PPCGScop->domain = S->getDomains(); 485 PPCGScop->call = nullptr; 486 PPCGScop->tagged_reads = getTaggedReads(); 487 PPCGScop->reads = S->getReads(); 488 PPCGScop->live_in = nullptr; 489 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 490 PPCGScop->may_writes = S->getWrites(); 491 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 492 PPCGScop->must_writes = S->getMustWrites(); 493 PPCGScop->live_out = nullptr; 494 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 495 PPCGScop->tagger = nullptr; 496 497 PPCGScop->independence = nullptr; 498 PPCGScop->dep_flow = nullptr; 499 PPCGScop->tagged_dep_flow = nullptr; 500 PPCGScop->dep_false = nullptr; 501 PPCGScop->dep_forced = nullptr; 502 PPCGScop->dep_order = nullptr; 503 PPCGScop->tagged_dep_order = nullptr; 504 505 PPCGScop->schedule = S->getScheduleTree(); 506 PPCGScop->names = getNames(); 507 508 PPCGScop->pet = nullptr; 509 510 compute_tagger(PPCGScop); 511 compute_dependences(PPCGScop); 512 513 return PPCGScop; 514 } 515 516 /// Collect the array acesses in a statement. 517 /// 518 /// @param Stmt The statement for which to collect the accesses. 519 /// 520 /// @returns A list of array accesses. 521 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 522 gpu_stmt_access *Accesses = nullptr; 523 524 for (MemoryAccess *Acc : Stmt) { 525 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 526 Access->read = Acc->isRead(); 527 Access->write = Acc->isWrite(); 528 Access->access = Acc->getAccessRelation(); 529 isl_space *Space = isl_map_get_space(Access->access); 530 Space = isl_space_range(Space); 531 Space = isl_space_from_range(Space); 532 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 533 isl_map *Universe = isl_map_universe(Space); 534 Access->tagged_access = 535 isl_map_domain_product(Acc->getAccessRelation(), Universe); 536 Access->exact_write = Acc->isWrite(); 537 Access->ref_id = Acc->getId(); 538 Access->next = Accesses; 539 Accesses = Access; 540 } 541 542 return Accesses; 543 } 544 545 /// Collect the list of GPU statements. 546 /// 547 /// Each statement has an id, a pointer to the underlying data structure, 548 /// as well as a list with all memory accesses. 549 /// 550 /// TODO: Initialize the list of memory accesses. 551 /// 552 /// @returns A linked-list of statements. 553 gpu_stmt *getStatements() { 554 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 555 std::distance(S->begin(), S->end())); 556 557 int i = 0; 558 for (auto &Stmt : *S) { 559 gpu_stmt *GPUStmt = &Stmts[i]; 560 561 GPUStmt->id = Stmt.getDomainId(); 562 563 // We use the pet stmt pointer to keep track of the Polly statements. 564 GPUStmt->stmt = (pet_stmt *)&Stmt; 565 GPUStmt->accesses = getStmtAccesses(Stmt); 566 i++; 567 } 568 569 return Stmts; 570 } 571 572 /// Derive the extent of an array. 573 /// 574 /// The extent of an array is defined by the set of memory locations for 575 /// which a memory access in the iteration domain exists. 576 /// 577 /// @param Array The array to derive the extent for. 578 /// 579 /// @returns An isl_set describing the extent of the array. 580 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 581 isl_union_map *Accesses = S->getAccesses(); 582 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 583 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 584 isl_set *AccessSet = 585 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 586 isl_union_set_free(AccessUSet); 587 588 return AccessSet; 589 } 590 591 /// Derive the bounds of an array. 592 /// 593 /// For the first dimension we derive the bound of the array from the extent 594 /// of this dimension. For inner dimensions we obtain their size directly from 595 /// ScopArrayInfo. 596 /// 597 /// @param PPCGArray The array to compute bounds for. 598 /// @param Array The polly array from which to take the information. 599 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 600 if (PPCGArray.n_index > 0) { 601 isl_set *Dom = isl_set_copy(PPCGArray.extent); 602 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 603 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 604 isl_set_free(Dom); 605 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 606 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 607 isl_aff *One = isl_aff_zero_on_domain(LS); 608 One = isl_aff_add_constant_si(One, 1); 609 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 610 Bound = isl_pw_aff_gist(Bound, S->getContext()); 611 PPCGArray.bound[0] = Bound; 612 } 613 614 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 615 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 616 auto LS = isl_pw_aff_get_domain_space(Bound); 617 auto Aff = isl_multi_aff_zero(LS); 618 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 619 PPCGArray.bound[i] = Bound; 620 } 621 } 622 623 /// Create the arrays for @p PPCGProg. 624 /// 625 /// @param PPCGProg The program to compute the arrays for. 626 void createArrays(gpu_prog *PPCGProg) { 627 int i = 0; 628 for (auto &Element : S->arrays()) { 629 ScopArrayInfo *Array = Element.second.get(); 630 631 std::string TypeName; 632 raw_string_ostream OS(TypeName); 633 634 OS << *Array->getElementType(); 635 TypeName = OS.str(); 636 637 gpu_array_info &PPCGArray = PPCGProg->array[i]; 638 639 PPCGArray.space = Array->getSpace(); 640 PPCGArray.type = strdup(TypeName.c_str()); 641 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 642 PPCGArray.name = strdup(Array->getName().c_str()); 643 PPCGArray.extent = nullptr; 644 PPCGArray.n_index = Array->getNumberOfDimensions(); 645 PPCGArray.bound = 646 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 647 PPCGArray.extent = getExtent(Array); 648 PPCGArray.n_ref = 0; 649 PPCGArray.refs = nullptr; 650 PPCGArray.accessed = true; 651 PPCGArray.read_only_scalar = false; 652 PPCGArray.has_compound_element = false; 653 PPCGArray.local = false; 654 PPCGArray.declare_local = false; 655 PPCGArray.global = false; 656 PPCGArray.linearize = false; 657 PPCGArray.dep_order = nullptr; 658 659 setArrayBounds(PPCGArray, Array); 660 i++; 661 662 collect_references(PPCGProg, &PPCGArray); 663 } 664 } 665 666 /// Create an identity map between the arrays in the scop. 667 /// 668 /// @returns An identity map between the arrays in the scop. 669 isl_union_map *getArrayIdentity() { 670 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 671 672 for (auto &Item : S->arrays()) { 673 ScopArrayInfo *Array = Item.second.get(); 674 isl_space *Space = Array->getSpace(); 675 Space = isl_space_map_from_set(Space); 676 isl_map *Identity = isl_map_identity(Space); 677 Maps = isl_union_map_add_map(Maps, Identity); 678 } 679 680 return Maps; 681 } 682 683 /// Create a default-initialized PPCG GPU program. 684 /// 685 /// @returns A new gpu grogram description. 686 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 687 688 if (!PPCGScop) 689 return nullptr; 690 691 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 692 693 PPCGProg->ctx = S->getIslCtx(); 694 PPCGProg->scop = PPCGScop; 695 PPCGProg->context = isl_set_copy(PPCGScop->context); 696 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 697 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 698 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 699 PPCGProg->tagged_must_kill = 700 isl_union_map_copy(PPCGScop->tagged_must_kills); 701 PPCGProg->to_inner = getArrayIdentity(); 702 PPCGProg->to_outer = getArrayIdentity(); 703 PPCGProg->may_persist = compute_may_persist(PPCGProg); 704 PPCGProg->any_to_outer = nullptr; 705 PPCGProg->array_order = nullptr; 706 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 707 PPCGProg->stmts = getStatements(); 708 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 709 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 710 PPCGProg->n_array); 711 712 createArrays(PPCGProg); 713 714 return PPCGProg; 715 } 716 717 struct PrintGPUUserData { 718 struct cuda_info *CudaInfo; 719 struct gpu_prog *PPCGProg; 720 std::vector<ppcg_kernel *> Kernels; 721 }; 722 723 /// Print a user statement node in the host code. 724 /// 725 /// We use ppcg's printing facilities to print the actual statement and 726 /// additionally build up a list of all kernels that are encountered in the 727 /// host ast. 728 /// 729 /// @param P The printer to print to 730 /// @param Options The printing options to use 731 /// @param Node The node to print 732 /// @param User A user pointer to carry additional data. This pointer is 733 /// expected to be of type PrintGPUUserData. 734 /// 735 /// @returns A printer to which the output has been printed. 736 static __isl_give isl_printer * 737 printHostUser(__isl_take isl_printer *P, 738 __isl_take isl_ast_print_options *Options, 739 __isl_take isl_ast_node *Node, void *User) { 740 auto Data = (struct PrintGPUUserData *)User; 741 auto Id = isl_ast_node_get_annotation(Node); 742 743 if (Id) { 744 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 745 746 // If this is a user statement, format it ourselves as ppcg would 747 // otherwise try to call pet functionality that is not available in 748 // Polly. 749 if (IsUser) { 750 P = isl_printer_start_line(P); 751 P = isl_printer_print_ast_node(P, Node); 752 P = isl_printer_end_line(P); 753 isl_id_free(Id); 754 isl_ast_print_options_free(Options); 755 return P; 756 } 757 758 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 759 isl_id_free(Id); 760 Data->Kernels.push_back(Kernel); 761 } 762 763 return print_host_user(P, Options, Node, User); 764 } 765 766 /// Print C code corresponding to the control flow in @p Kernel. 767 /// 768 /// @param Kernel The kernel to print 769 void printKernel(ppcg_kernel *Kernel) { 770 auto *P = isl_printer_to_str(S->getIslCtx()); 771 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 772 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 773 P = isl_ast_node_print(Kernel->tree, P, Options); 774 char *String = isl_printer_get_str(P); 775 printf("%s\n", String); 776 free(String); 777 isl_printer_free(P); 778 } 779 780 /// Print C code corresponding to the GPU code described by @p Tree. 781 /// 782 /// @param Tree An AST describing GPU code 783 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 784 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 785 auto *P = isl_printer_to_str(S->getIslCtx()); 786 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 787 788 PrintGPUUserData Data; 789 Data.PPCGProg = PPCGProg; 790 791 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 792 Options = 793 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 794 P = isl_ast_node_print(Tree, P, Options); 795 char *String = isl_printer_get_str(P); 796 printf("# host\n"); 797 printf("%s\n", String); 798 free(String); 799 isl_printer_free(P); 800 801 for (auto Kernel : Data.Kernels) { 802 printf("# kernel%d\n", Kernel->id); 803 printKernel(Kernel); 804 } 805 } 806 807 // Generate a GPU program using PPCG. 808 // 809 // GPU mapping consists of multiple steps: 810 // 811 // 1) Compute new schedule for the program. 812 // 2) Map schedule to GPU (TODO) 813 // 3) Generate code for new schedule (TODO) 814 // 815 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 816 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 817 // strategy directly from this pass. 818 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 819 820 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 821 822 PPCGGen->ctx = S->getIslCtx(); 823 PPCGGen->options = PPCGScop->options; 824 PPCGGen->print = nullptr; 825 PPCGGen->print_user = nullptr; 826 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 827 PPCGGen->prog = PPCGProg; 828 PPCGGen->tree = nullptr; 829 PPCGGen->types.n = 0; 830 PPCGGen->types.name = nullptr; 831 PPCGGen->sizes = nullptr; 832 PPCGGen->used_sizes = nullptr; 833 PPCGGen->kernel_id = 0; 834 835 // Set scheduling strategy to same strategy PPCG is using. 836 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 837 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 838 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 839 840 isl_schedule *Schedule = get_schedule(PPCGGen); 841 842 int has_permutable = has_any_permutable_node(Schedule); 843 844 if (!has_permutable || has_permutable < 0) { 845 Schedule = isl_schedule_free(Schedule); 846 } else { 847 Schedule = map_to_device(PPCGGen, Schedule); 848 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 849 } 850 851 if (DumpSchedule) { 852 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 853 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 854 P = isl_printer_print_str(P, "Schedule\n"); 855 P = isl_printer_print_str(P, "========\n"); 856 if (Schedule) 857 P = isl_printer_print_schedule(P, Schedule); 858 else 859 P = isl_printer_print_str(P, "No schedule found\n"); 860 861 printf("%s\n", isl_printer_get_str(P)); 862 isl_printer_free(P); 863 } 864 865 if (DumpCode) { 866 printf("Code\n"); 867 printf("====\n"); 868 if (PPCGGen->tree) 869 printGPUTree(PPCGGen->tree, PPCGProg); 870 else 871 printf("No code generated\n"); 872 } 873 874 isl_schedule_free(Schedule); 875 876 return PPCGGen; 877 } 878 879 /// Free gpu_gen structure. 880 /// 881 /// @param PPCGGen The ppcg_gen object to free. 882 void freePPCGGen(gpu_gen *PPCGGen) { 883 isl_ast_node_free(PPCGGen->tree); 884 isl_union_map_free(PPCGGen->sizes); 885 isl_union_map_free(PPCGGen->used_sizes); 886 free(PPCGGen); 887 } 888 889 /// Free the options in the ppcg scop structure. 890 /// 891 /// ppcg is not freeing these options for us. To avoid leaks we do this 892 /// ourselves. 893 /// 894 /// @param PPCGScop The scop referencing the options to free. 895 void freeOptions(ppcg_scop *PPCGScop) { 896 free(PPCGScop->options->debug); 897 PPCGScop->options->debug = nullptr; 898 free(PPCGScop->options); 899 PPCGScop->options = nullptr; 900 } 901 902 /// Generate code for a given GPU AST described by @p Root. 903 /// 904 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 905 /// @param Prog The GPU Program to generate code for. 906 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 907 ScopAnnotator Annotator; 908 Annotator.buildAliasScopes(*S); 909 910 Region *R = &S->getRegion(); 911 912 simplifyRegion(R, DT, LI, RI); 913 914 BasicBlock *EnteringBB = R->getEnteringBlock(); 915 916 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 917 918 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 919 Prog); 920 921 // Only build the run-time condition and parameters _after_ having 922 // introduced the conditional branch. This is important as the conditional 923 // branch will guard the original scop from new induction variables that 924 // the SCEVExpander may introduce while code generating the parameters and 925 // which may introduce scalar dependences that prevent us from correctly 926 // code generating this scop. 927 BasicBlock *StartBlock = 928 executeScopConditionally(*S, this, Builder.getTrue()); 929 930 // TODO: Handle LICM 931 // TODO: Verify run-time checks 932 auto SplitBlock = StartBlock->getSinglePredecessor(); 933 Builder.SetInsertPoint(SplitBlock->getTerminator()); 934 NodeBuilder.addParameters(S->getContext()); 935 Builder.SetInsertPoint(&*StartBlock->begin()); 936 NodeBuilder.create(Root); 937 NodeBuilder.finalizeSCoP(*S); 938 } 939 940 bool runOnScop(Scop &CurrentScop) override { 941 S = &CurrentScop; 942 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 943 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 944 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 945 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 946 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 947 948 auto PPCGScop = createPPCGScop(); 949 auto PPCGProg = createPPCGProg(PPCGScop); 950 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 951 952 if (PPCGGen->tree) 953 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 954 955 freeOptions(PPCGScop); 956 freePPCGGen(PPCGGen); 957 gpu_prog_free(PPCGProg); 958 ppcg_scop_free(PPCGScop); 959 960 return true; 961 } 962 963 void printScop(raw_ostream &, Scop &) const override {} 964 965 void getAnalysisUsage(AnalysisUsage &AU) const override { 966 AU.addRequired<DominatorTreeWrapperPass>(); 967 AU.addRequired<RegionInfoPass>(); 968 AU.addRequired<ScalarEvolutionWrapperPass>(); 969 AU.addRequired<ScopDetection>(); 970 AU.addRequired<ScopInfoRegionPass>(); 971 AU.addRequired<LoopInfoWrapperPass>(); 972 973 AU.addPreserved<AAResultsWrapperPass>(); 974 AU.addPreserved<BasicAAWrapperPass>(); 975 AU.addPreserved<LoopInfoWrapperPass>(); 976 AU.addPreserved<DominatorTreeWrapperPass>(); 977 AU.addPreserved<GlobalsAAWrapperPass>(); 978 AU.addPreserved<PostDominatorTreeWrapperPass>(); 979 AU.addPreserved<ScopDetection>(); 980 AU.addPreserved<ScalarEvolutionWrapperPass>(); 981 AU.addPreserved<SCEVAAWrapperPass>(); 982 983 // FIXME: We do not yet add regions for the newly generated code to the 984 // region tree. 985 AU.addPreserved<RegionInfoPass>(); 986 AU.addPreserved<ScopInfoRegionPass>(); 987 } 988 }; 989 } 990 991 char PPCGCodeGeneration::ID = 1; 992 993 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 994 995 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 996 "Polly - Apply PPCG translation to SCOP", false, false) 997 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 998 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 999 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1000 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1001 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1002 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1003 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1004 "Polly - Apply PPCG translation to SCOP", false, false) 1005