1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::Hidden, cl::init(false), cl::ZeroOrMore, 95 cl::cat(PollyCategory)); 96 97 static cl::opt<std::string> 98 CudaVersion("polly-acc-cuda-version", 99 cl::desc("The CUDA version to compile for"), cl::Hidden, 100 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 101 102 static cl::opt<int> 103 MinCompute("polly-acc-mincompute", 104 cl::desc("Minimal number of compute statements to run on GPU."), 105 cl::Hidden, cl::init(10 * 512 * 512)); 106 107 /// Create the ast expressions for a ScopStmt. 108 /// 109 /// This function is a callback for to generate the ast expressions for each 110 /// of the scheduled ScopStmts. 111 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 112 void *StmtT, isl_ast_build *Build, 113 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 114 isl_id *Id, void *User), 115 void *UserIndex, 116 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 117 void *UserExpr) { 118 119 ScopStmt *Stmt = (ScopStmt *)StmtT; 120 121 isl_ctx *Ctx; 122 123 if (!Stmt || !Build) 124 return NULL; 125 126 Ctx = isl_ast_build_get_ctx(Build); 127 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 128 129 for (MemoryAccess *Acc : *Stmt) { 130 isl_map *AddrFunc = Acc->getAddressFunction(); 131 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 132 isl_id *RefId = Acc->getId(); 133 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 134 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 135 MPA = isl_multi_pw_aff_coalesce(MPA); 136 MPA = FunctionIndex(MPA, RefId, UserIndex); 137 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 138 Access = FunctionExpr(Access, RefId, UserExpr); 139 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 140 } 141 142 return RefToExpr; 143 } 144 145 /// Given a LLVM Type, compute its size in bytes, 146 static int computeSizeInBytes(const Type *T) { 147 int bytes = T->getPrimitiveSizeInBits() / 8; 148 if (bytes == 0) 149 bytes = T->getScalarSizeInBits() / 8; 150 return bytes; 151 } 152 153 /// Generate code for a GPU specific isl AST. 154 /// 155 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 156 /// generates code for general-purpose AST nodes, with special functionality 157 /// for generating GPU specific user nodes. 158 /// 159 /// @see GPUNodeBuilder::createUser 160 class GPUNodeBuilder : public IslNodeBuilder { 161 public: 162 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 163 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 164 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 165 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 166 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 167 Prog(Prog), Runtime(Runtime), Arch(Arch) { 168 getExprBuilder().setIDToSAI(&IDToSAI); 169 } 170 171 /// Create after-run-time-check initialization code. 172 void initializeAfterRTH(); 173 174 /// Finalize the generated scop. 175 virtual void finalize(); 176 177 /// Track if the full build process was successful. 178 /// 179 /// This value is set to false, if throughout the build process an error 180 /// occurred which prevents us from generating valid GPU code. 181 bool BuildSuccessful = true; 182 183 /// The maximal number of loops surrounding a sequential kernel. 184 unsigned DeepestSequential = 0; 185 186 /// The maximal number of loops surrounding a parallel kernel. 187 unsigned DeepestParallel = 0; 188 189 private: 190 /// A vector of array base pointers for which a new ScopArrayInfo was created. 191 /// 192 /// This vector is used to delete the ScopArrayInfo when it is not needed any 193 /// more. 194 std::vector<Value *> LocalArrays; 195 196 /// A map from ScopArrays to their corresponding device allocations. 197 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 198 199 /// The current GPU context. 200 Value *GPUContext; 201 202 /// The set of isl_ids allocated in the kernel 203 std::vector<isl_id *> KernelIds; 204 205 /// A module containing GPU code. 206 /// 207 /// This pointer is only set in case we are currently generating GPU code. 208 std::unique_ptr<Module> GPUModule; 209 210 /// The GPU program we generate code for. 211 gpu_prog *Prog; 212 213 /// The GPU Runtime implementation to use (OpenCL or CUDA). 214 GPURuntime Runtime; 215 216 /// The GPU Architecture to target. 217 GPUArch Arch; 218 219 /// Class to free isl_ids. 220 class IslIdDeleter { 221 public: 222 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 223 }; 224 225 /// A set containing all isl_ids allocated in a GPU kernel. 226 /// 227 /// By releasing this set all isl_ids will be freed. 228 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 229 230 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 231 232 /// Create code for user-defined AST nodes. 233 /// 234 /// These AST nodes can be of type: 235 /// 236 /// - ScopStmt: A computational statement (TODO) 237 /// - Kernel: A GPU kernel call (TODO) 238 /// - Data-Transfer: A GPU <-> CPU data-transfer 239 /// - In-kernel synchronization 240 /// - In-kernel memory copy statement 241 /// 242 /// @param UserStmt The ast node to generate code for. 243 virtual void createUser(__isl_take isl_ast_node *UserStmt); 244 245 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 246 247 /// Create code for a data transfer statement 248 /// 249 /// @param TransferStmt The data transfer statement. 250 /// @param Direction The direction in which to transfer data. 251 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 252 enum DataDirection Direction); 253 254 /// Find llvm::Values referenced in GPU kernel. 255 /// 256 /// @param Kernel The kernel to scan for llvm::Values 257 /// 258 /// @returns A pair, whose first element contains the set of values 259 /// referenced by the kernel, and whose second element contains the 260 /// set of functions referenced by the kernel. All functions in the 261 /// second set satisfy isValidFunctionInKernel. 262 std::pair<SetVector<Value *>, SetVector<Function *>> 263 getReferencesInKernel(ppcg_kernel *Kernel); 264 265 /// Compute the sizes of the execution grid for a given kernel. 266 /// 267 /// @param Kernel The kernel to compute grid sizes for. 268 /// 269 /// @returns A tuple with grid sizes for X and Y dimension 270 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 271 272 /// Creates a array that can be sent to the kernel on the device using a 273 /// host pointer. This is required for managed memory, when we directly send 274 /// host pointers to the device. 275 /// \note 276 /// This is to be used only with managed memory 277 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 278 ScopArrayInfo *ArrayInfo); 279 280 /// Compute the sizes of the thread blocks for a given kernel. 281 /// 282 /// @param Kernel The kernel to compute thread block sizes for. 283 /// 284 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 285 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 286 287 /// Store a specific kernel launch parameter in the array of kernel launch 288 /// parameters. 289 /// 290 /// @param Parameters The list of parameters in which to store. 291 /// @param Param The kernel launch parameter to store. 292 /// @param Index The index in the parameter list, at which to store the 293 /// parameter. 294 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 295 int Index); 296 297 /// Create kernel launch parameters. 298 /// 299 /// @param Kernel The kernel to create parameters for. 300 /// @param F The kernel function that has been created. 301 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 302 /// 303 /// @returns A stack allocated array with pointers to the parameter 304 /// values that are passed to the kernel. 305 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 306 SetVector<Value *> SubtreeValues); 307 308 /// Create declarations for kernel variable. 309 /// 310 /// This includes shared memory declarations. 311 /// 312 /// @param Kernel The kernel definition to create variables for. 313 /// @param FN The function into which to generate the variables. 314 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 315 316 /// Add CUDA annotations to module. 317 /// 318 /// Add a set of CUDA annotations that declares the maximal block dimensions 319 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 320 /// PTX compiler to bound the number of allocated registers to ensure the 321 /// resulting kernel is known to run with up to as many block dimensions 322 /// as specified here. 323 /// 324 /// @param M The module to add the annotations to. 325 /// @param BlockDimX The size of block dimension X. 326 /// @param BlockDimY The size of block dimension Y. 327 /// @param BlockDimZ The size of block dimension Z. 328 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 329 Value *BlockDimZ); 330 331 /// Create GPU kernel. 332 /// 333 /// Code generate the kernel described by @p KernelStmt. 334 /// 335 /// @param KernelStmt The ast node to generate kernel code for. 336 void createKernel(__isl_take isl_ast_node *KernelStmt); 337 338 /// Generate code that computes the size of an array. 339 /// 340 /// @param Array The array for which to compute a size. 341 Value *getArraySize(gpu_array_info *Array); 342 343 /// Generate code to compute the minimal offset at which an array is accessed. 344 /// 345 /// The offset of an array is the minimal array location accessed in a scop. 346 /// 347 /// Example: 348 /// 349 /// for (long i = 0; i < 100; i++) 350 /// A[i + 42] += ... 351 /// 352 /// getArrayOffset(A) results in 42. 353 /// 354 /// @param Array The array for which to compute the offset. 355 /// @returns An llvm::Value that contains the offset of the array. 356 Value *getArrayOffset(gpu_array_info *Array); 357 358 /// Prepare the kernel arguments for kernel code generation 359 /// 360 /// @param Kernel The kernel to generate code for. 361 /// @param FN The function created for the kernel. 362 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 363 364 /// Create kernel function. 365 /// 366 /// Create a kernel function located in a newly created module that can serve 367 /// as target for device code generation. Set the Builder to point to the 368 /// start block of this newly created function. 369 /// 370 /// @param Kernel The kernel to generate code for. 371 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 372 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 373 /// kernel. 374 void createKernelFunction(ppcg_kernel *Kernel, 375 SetVector<Value *> &SubtreeValues, 376 SetVector<Function *> &SubtreeFunctions); 377 378 /// Create the declaration of a kernel function. 379 /// 380 /// The kernel function takes as arguments: 381 /// 382 /// - One i8 pointer for each external array reference used in the kernel. 383 /// - Host iterators 384 /// - Parameters 385 /// - Other LLVM Value references (TODO) 386 /// 387 /// @param Kernel The kernel to generate the function declaration for. 388 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 389 /// 390 /// @returns The newly declared function. 391 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 392 SetVector<Value *> &SubtreeValues); 393 394 /// Insert intrinsic functions to obtain thread and block ids. 395 /// 396 /// @param The kernel to generate the intrinsic functions for. 397 void insertKernelIntrinsics(ppcg_kernel *Kernel); 398 399 /// Setup the creation of functions referenced by the GPU kernel. 400 /// 401 /// 1. Create new function declarations in GPUModule which are the same as 402 /// SubtreeFunctions. 403 /// 404 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 405 /// old functions (that come from the original module) to new functions 406 /// (that are created within GPUModule). That way, we generate references 407 /// to the correct function (in GPUModule) in BlockGenerator. 408 /// 409 /// @see IslNodeBuilder::ValueMap 410 /// @see BlockGenerator::GlobalMap 411 /// @see BlockGenerator::getNewValue 412 /// @see GPUNodeBuilder::getReferencesInKernel. 413 /// 414 /// @param SubtreeFunctions The set of llvm::Functions referenced by 415 /// this kernel. 416 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 417 418 /// Create a global-to-shared or shared-to-global copy statement. 419 /// 420 /// @param CopyStmt The copy statement to generate code for 421 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 422 423 /// Create code for a ScopStmt called in @p Expr. 424 /// 425 /// @param Expr The expression containing the call. 426 /// @param KernelStmt The kernel statement referenced in the call. 427 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 428 429 /// Create an in-kernel synchronization call. 430 void createKernelSync(); 431 432 /// Create a PTX assembly string for the current GPU kernel. 433 /// 434 /// @returns A string containing the corresponding PTX assembly code. 435 std::string createKernelASM(); 436 437 /// Remove references from the dominator tree to the kernel function @p F. 438 /// 439 /// @param F The function to remove references to. 440 void clearDominators(Function *F); 441 442 /// Remove references from scalar evolution to the kernel function @p F. 443 /// 444 /// @param F The function to remove references to. 445 void clearScalarEvolution(Function *F); 446 447 /// Remove references from loop info to the kernel function @p F. 448 /// 449 /// @param F The function to remove references to. 450 void clearLoops(Function *F); 451 452 /// Finalize the generation of the kernel function. 453 /// 454 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 455 /// dump its IR to stderr. 456 /// 457 /// @returns The Assembly string of the kernel. 458 std::string finalizeKernelFunction(); 459 460 /// Finalize the generation of the kernel arguments. 461 /// 462 /// This function ensures that not-read-only scalars used in a kernel are 463 /// stored back to the global memory location they are backed with before 464 /// the kernel terminates. 465 /// 466 /// @params Kernel The kernel to finalize kernel arguments for. 467 void finalizeKernelArguments(ppcg_kernel *Kernel); 468 469 /// Create code that allocates memory to store arrays on device. 470 void allocateDeviceArrays(); 471 472 /// Free all allocated device arrays. 473 void freeDeviceArrays(); 474 475 /// Create a call to initialize the GPU context. 476 /// 477 /// @returns A pointer to the newly initialized context. 478 Value *createCallInitContext(); 479 480 /// Create a call to get the device pointer for a kernel allocation. 481 /// 482 /// @param Allocation The Polly GPU allocation 483 /// 484 /// @returns The device parameter corresponding to this allocation. 485 Value *createCallGetDevicePtr(Value *Allocation); 486 487 /// Create a call to free the GPU context. 488 /// 489 /// @param Context A pointer to an initialized GPU context. 490 void createCallFreeContext(Value *Context); 491 492 /// Create a call to allocate memory on the device. 493 /// 494 /// @param Size The size of memory to allocate 495 /// 496 /// @returns A pointer that identifies this allocation. 497 Value *createCallAllocateMemoryForDevice(Value *Size); 498 499 /// Create a call to free a device array. 500 /// 501 /// @param Array The device array to free. 502 void createCallFreeDeviceMemory(Value *Array); 503 504 /// Create a call to copy data from host to device. 505 /// 506 /// @param HostPtr A pointer to the host data that should be copied. 507 /// @param DevicePtr A device pointer specifying the location to copy to. 508 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 509 Value *Size); 510 511 /// Create a call to copy data from device to host. 512 /// 513 /// @param DevicePtr A pointer to the device data that should be copied. 514 /// @param HostPtr A host pointer specifying the location to copy to. 515 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 516 Value *Size); 517 518 /// Create a call to synchronize Host & Device. 519 /// \note 520 /// This is to be used only with managed memory. 521 void createCallSynchronizeDevice(); 522 523 /// Create a call to get a kernel from an assembly string. 524 /// 525 /// @param Buffer The string describing the kernel. 526 /// @param Entry The name of the kernel function to call. 527 /// 528 /// @returns A pointer to a kernel object 529 Value *createCallGetKernel(Value *Buffer, Value *Entry); 530 531 /// Create a call to free a GPU kernel. 532 /// 533 /// @param GPUKernel THe kernel to free. 534 void createCallFreeKernel(Value *GPUKernel); 535 536 /// Create a call to launch a GPU kernel. 537 /// 538 /// @param GPUKernel The kernel to launch. 539 /// @param GridDimX The size of the first grid dimension. 540 /// @param GridDimY The size of the second grid dimension. 541 /// @param GridBlockX The size of the first block dimension. 542 /// @param GridBlockY The size of the second block dimension. 543 /// @param GridBlockZ The size of the third block dimension. 544 /// @param Parameters A pointer to an array that contains itself pointers to 545 /// the parameter values passed for each kernel argument. 546 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 547 Value *GridDimY, Value *BlockDimX, 548 Value *BlockDimY, Value *BlockDimZ, 549 Value *Parameters); 550 }; 551 552 void GPUNodeBuilder::initializeAfterRTH() { 553 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 554 &*Builder.GetInsertPoint(), &DT, &LI); 555 NewBB->setName("polly.acc.initialize"); 556 Builder.SetInsertPoint(&NewBB->front()); 557 558 GPUContext = createCallInitContext(); 559 560 if (!ManagedMemory) 561 allocateDeviceArrays(); 562 } 563 564 void GPUNodeBuilder::finalize() { 565 if (!ManagedMemory) 566 freeDeviceArrays(); 567 568 createCallFreeContext(GPUContext); 569 IslNodeBuilder::finalize(); 570 } 571 572 void GPUNodeBuilder::allocateDeviceArrays() { 573 assert(!ManagedMemory && "Managed memory will directly send host pointers " 574 "to the kernel. There is no need for device arrays"); 575 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 576 577 for (int i = 0; i < Prog->n_array; ++i) { 578 gpu_array_info *Array = &Prog->array[i]; 579 auto *ScopArray = (ScopArrayInfo *)Array->user; 580 std::string DevArrayName("p_dev_array_"); 581 DevArrayName.append(Array->name); 582 583 Value *ArraySize = getArraySize(Array); 584 Value *Offset = getArrayOffset(Array); 585 if (Offset) 586 ArraySize = Builder.CreateSub( 587 ArraySize, 588 Builder.CreateMul(Offset, 589 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 590 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 591 DevArray->setName(DevArrayName); 592 DeviceAllocations[ScopArray] = DevArray; 593 } 594 595 isl_ast_build_free(Build); 596 } 597 598 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 599 Value *BlockDimY, Value *BlockDimZ) { 600 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 601 602 for (auto &F : *M) { 603 if (F.getCallingConv() != CallingConv::PTX_Kernel) 604 continue; 605 606 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 607 608 Metadata *Elements[] = { 609 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 610 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 611 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 612 ValueAsMetadata::get(V[2]), 613 }; 614 MDNode *Node = MDNode::get(M->getContext(), Elements); 615 AnnotationNode->addOperand(Node); 616 } 617 } 618 619 void GPUNodeBuilder::freeDeviceArrays() { 620 assert(!ManagedMemory && "Managed memory does not use device arrays"); 621 for (auto &Array : DeviceAllocations) 622 createCallFreeDeviceMemory(Array.second); 623 } 624 625 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 626 const char *Name = "polly_getKernel"; 627 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 628 Function *F = M->getFunction(Name); 629 630 // If F is not available, declare it. 631 if (!F) { 632 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 633 std::vector<Type *> Args; 634 Args.push_back(Builder.getInt8PtrTy()); 635 Args.push_back(Builder.getInt8PtrTy()); 636 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 637 F = Function::Create(Ty, Linkage, Name, M); 638 } 639 640 return Builder.CreateCall(F, {Buffer, Entry}); 641 } 642 643 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 644 const char *Name = "polly_getDevicePtr"; 645 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 646 Function *F = M->getFunction(Name); 647 648 // If F is not available, declare it. 649 if (!F) { 650 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 651 std::vector<Type *> Args; 652 Args.push_back(Builder.getInt8PtrTy()); 653 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 654 F = Function::Create(Ty, Linkage, Name, M); 655 } 656 657 return Builder.CreateCall(F, {Allocation}); 658 } 659 660 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 661 Value *GridDimY, Value *BlockDimX, 662 Value *BlockDimY, Value *BlockDimZ, 663 Value *Parameters) { 664 const char *Name = "polly_launchKernel"; 665 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 666 Function *F = M->getFunction(Name); 667 668 // If F is not available, declare it. 669 if (!F) { 670 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 671 std::vector<Type *> Args; 672 Args.push_back(Builder.getInt8PtrTy()); 673 Args.push_back(Builder.getInt32Ty()); 674 Args.push_back(Builder.getInt32Ty()); 675 Args.push_back(Builder.getInt32Ty()); 676 Args.push_back(Builder.getInt32Ty()); 677 Args.push_back(Builder.getInt32Ty()); 678 Args.push_back(Builder.getInt8PtrTy()); 679 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 680 F = Function::Create(Ty, Linkage, Name, M); 681 } 682 683 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 684 BlockDimZ, Parameters}); 685 } 686 687 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 688 const char *Name = "polly_freeKernel"; 689 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 690 Function *F = M->getFunction(Name); 691 692 // If F is not available, declare it. 693 if (!F) { 694 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 695 std::vector<Type *> Args; 696 Args.push_back(Builder.getInt8PtrTy()); 697 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 698 F = Function::Create(Ty, Linkage, Name, M); 699 } 700 701 Builder.CreateCall(F, {GPUKernel}); 702 } 703 704 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 705 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 706 "for device"); 707 const char *Name = "polly_freeDeviceMemory"; 708 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 709 Function *F = M->getFunction(Name); 710 711 // If F is not available, declare it. 712 if (!F) { 713 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 714 std::vector<Type *> Args; 715 Args.push_back(Builder.getInt8PtrTy()); 716 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 717 F = Function::Create(Ty, Linkage, Name, M); 718 } 719 720 Builder.CreateCall(F, {Array}); 721 } 722 723 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 724 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 725 "for device"); 726 const char *Name = "polly_allocateMemoryForDevice"; 727 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 728 Function *F = M->getFunction(Name); 729 730 // If F is not available, declare it. 731 if (!F) { 732 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 733 std::vector<Type *> Args; 734 Args.push_back(Builder.getInt64Ty()); 735 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 736 F = Function::Create(Ty, Linkage, Name, M); 737 } 738 739 return Builder.CreateCall(F, {Size}); 740 } 741 742 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 743 Value *DeviceData, 744 Value *Size) { 745 assert(!ManagedMemory && "Managed memory does not transfer memory between " 746 "device and host"); 747 const char *Name = "polly_copyFromHostToDevice"; 748 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 749 Function *F = M->getFunction(Name); 750 751 // If F is not available, declare it. 752 if (!F) { 753 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 754 std::vector<Type *> Args; 755 Args.push_back(Builder.getInt8PtrTy()); 756 Args.push_back(Builder.getInt8PtrTy()); 757 Args.push_back(Builder.getInt64Ty()); 758 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 759 F = Function::Create(Ty, Linkage, Name, M); 760 } 761 762 Builder.CreateCall(F, {HostData, DeviceData, Size}); 763 } 764 765 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 766 Value *HostData, 767 Value *Size) { 768 assert(!ManagedMemory && "Managed memory does not transfer memory between " 769 "device and host"); 770 const char *Name = "polly_copyFromDeviceToHost"; 771 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 772 Function *F = M->getFunction(Name); 773 774 // If F is not available, declare it. 775 if (!F) { 776 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 777 std::vector<Type *> Args; 778 Args.push_back(Builder.getInt8PtrTy()); 779 Args.push_back(Builder.getInt8PtrTy()); 780 Args.push_back(Builder.getInt64Ty()); 781 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 782 F = Function::Create(Ty, Linkage, Name, M); 783 } 784 785 Builder.CreateCall(F, {DeviceData, HostData, Size}); 786 } 787 788 void GPUNodeBuilder::createCallSynchronizeDevice() { 789 assert(ManagedMemory && "explicit synchronization is only necessary for " 790 "managed memory"); 791 const char *Name = "polly_synchronizeDevice"; 792 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 793 Function *F = M->getFunction(Name); 794 795 // If F is not available, declare it. 796 if (!F) { 797 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 798 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 799 F = Function::Create(Ty, Linkage, Name, M); 800 } 801 802 Builder.CreateCall(F); 803 } 804 805 Value *GPUNodeBuilder::createCallInitContext() { 806 const char *Name; 807 808 switch (Runtime) { 809 case GPURuntime::CUDA: 810 Name = "polly_initContextCUDA"; 811 break; 812 case GPURuntime::OpenCL: 813 Name = "polly_initContextCL"; 814 break; 815 } 816 817 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 818 Function *F = M->getFunction(Name); 819 820 // If F is not available, declare it. 821 if (!F) { 822 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 823 std::vector<Type *> Args; 824 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 825 F = Function::Create(Ty, Linkage, Name, M); 826 } 827 828 return Builder.CreateCall(F, {}); 829 } 830 831 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 832 const char *Name = "polly_freeContext"; 833 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 834 Function *F = M->getFunction(Name); 835 836 // If F is not available, declare it. 837 if (!F) { 838 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 839 std::vector<Type *> Args; 840 Args.push_back(Builder.getInt8PtrTy()); 841 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 842 F = Function::Create(Ty, Linkage, Name, M); 843 } 844 845 Builder.CreateCall(F, {Context}); 846 } 847 848 /// Check if one string is a prefix of another. 849 /// 850 /// @param String The string in which to look for the prefix. 851 /// @param Prefix The prefix to look for. 852 static bool isPrefix(std::string String, std::string Prefix) { 853 return String.find(Prefix) == 0; 854 } 855 856 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 857 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 858 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 859 860 if (!gpu_array_is_scalar(Array)) { 861 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 862 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 863 864 for (unsigned int i = 1; i < Array->n_index; i++) { 865 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 866 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 867 Res = isl_ast_expr_mul(Res, Expr); 868 } 869 870 Value *NumElements = ExprBuilder.create(Res); 871 if (NumElements->getType() != ArraySize->getType()) 872 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 873 ArraySize = Builder.CreateMul(ArraySize, NumElements); 874 } 875 isl_ast_build_free(Build); 876 return ArraySize; 877 } 878 879 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 880 if (gpu_array_is_scalar(Array)) 881 return nullptr; 882 883 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 884 885 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 886 887 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 888 889 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 890 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 891 892 if (isl_set_is_subset(Min, ZeroSet)) { 893 isl_set_free(Min); 894 isl_set_free(ZeroSet); 895 isl_ast_build_free(Build); 896 return nullptr; 897 } 898 isl_set_free(ZeroSet); 899 900 isl_ast_expr *Result = 901 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 902 903 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 904 if (i > 0) { 905 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i - 1]); 906 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 907 Result = isl_ast_expr_mul(Result, BExpr); 908 } 909 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 910 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 911 Result = isl_ast_expr_add(Result, MExpr); 912 } 913 914 Value *ResultValue = ExprBuilder.create(Result); 915 isl_set_free(Min); 916 isl_ast_build_free(Build); 917 918 return ResultValue; 919 } 920 921 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 922 ScopArrayInfo *ArrayInfo) { 923 924 assert(ManagedMemory && "Only used when you wish to get a host " 925 "pointer for sending data to the kernel, " 926 "with managed memory"); 927 std::map<ScopArrayInfo *, Value *>::iterator it; 928 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 929 return it->second; 930 } else { 931 Value *HostPtr; 932 933 if (gpu_array_is_scalar(Array)) 934 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 935 else 936 HostPtr = ArrayInfo->getBasePtr(); 937 938 Value *Offset = getArrayOffset(Array); 939 if (Offset) { 940 HostPtr = Builder.CreatePointerCast( 941 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 942 HostPtr = Builder.CreateGEP(HostPtr, Offset); 943 } 944 945 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 946 DeviceAllocations[ArrayInfo] = HostPtr; 947 return HostPtr; 948 } 949 } 950 951 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 952 enum DataDirection Direction) { 953 assert(!ManagedMemory && "Managed memory needs no data transfers"); 954 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 955 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 956 isl_id *Id = isl_ast_expr_get_id(Arg); 957 auto Array = (gpu_array_info *)isl_id_get_user(Id); 958 auto ScopArray = (ScopArrayInfo *)(Array->user); 959 960 Value *Size = getArraySize(Array); 961 Value *Offset = getArrayOffset(Array); 962 Value *DevPtr = DeviceAllocations[ScopArray]; 963 964 Value *HostPtr; 965 966 if (gpu_array_is_scalar(Array)) 967 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 968 else 969 HostPtr = ScopArray->getBasePtr(); 970 971 if (Offset) { 972 HostPtr = Builder.CreatePointerCast( 973 HostPtr, ScopArray->getElementType()->getPointerTo()); 974 HostPtr = Builder.CreateGEP(HostPtr, Offset); 975 } 976 977 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 978 979 if (Offset) { 980 Size = Builder.CreateSub( 981 Size, Builder.CreateMul( 982 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 983 } 984 985 if (Direction == HOST_TO_DEVICE) 986 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 987 else 988 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 989 990 isl_id_free(Id); 991 isl_ast_expr_free(Arg); 992 isl_ast_expr_free(Expr); 993 isl_ast_node_free(TransferStmt); 994 } 995 996 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 997 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 998 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 999 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1000 isl_id_free(Id); 1001 isl_ast_expr_free(StmtExpr); 1002 1003 const char *Str = isl_id_get_name(Id); 1004 if (!strcmp(Str, "kernel")) { 1005 createKernel(UserStmt); 1006 isl_ast_expr_free(Expr); 1007 return; 1008 } 1009 1010 if (isPrefix(Str, "to_device")) { 1011 if (!ManagedMemory) 1012 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1013 else 1014 isl_ast_node_free(UserStmt); 1015 1016 isl_ast_expr_free(Expr); 1017 return; 1018 } 1019 1020 if (isPrefix(Str, "from_device")) { 1021 if (!ManagedMemory) { 1022 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1023 } else { 1024 createCallSynchronizeDevice(); 1025 isl_ast_node_free(UserStmt); 1026 } 1027 isl_ast_expr_free(Expr); 1028 return; 1029 } 1030 1031 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1032 struct ppcg_kernel_stmt *KernelStmt = 1033 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1034 isl_id_free(Anno); 1035 1036 switch (KernelStmt->type) { 1037 case ppcg_kernel_domain: 1038 createScopStmt(Expr, KernelStmt); 1039 isl_ast_node_free(UserStmt); 1040 return; 1041 case ppcg_kernel_copy: 1042 createKernelCopy(KernelStmt); 1043 isl_ast_expr_free(Expr); 1044 isl_ast_node_free(UserStmt); 1045 return; 1046 case ppcg_kernel_sync: 1047 createKernelSync(); 1048 isl_ast_expr_free(Expr); 1049 isl_ast_node_free(UserStmt); 1050 return; 1051 } 1052 1053 isl_ast_expr_free(Expr); 1054 isl_ast_node_free(UserStmt); 1055 return; 1056 } 1057 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1058 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1059 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1060 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1061 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1062 Index = isl_ast_expr_address_of(Index); 1063 Value *GlobalAddr = ExprBuilder.create(Index); 1064 1065 if (KernelStmt->u.c.read) { 1066 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1067 Builder.CreateStore(Load, LocalAddr); 1068 } else { 1069 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1070 Builder.CreateStore(Load, GlobalAddr); 1071 } 1072 } 1073 1074 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1075 ppcg_kernel_stmt *KernelStmt) { 1076 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1077 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1078 1079 LoopToScevMapT LTS; 1080 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1081 1082 createSubstitutions(Expr, Stmt, LTS); 1083 1084 if (Stmt->isBlockStmt()) 1085 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1086 else 1087 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1088 } 1089 1090 void GPUNodeBuilder::createKernelSync() { 1091 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1092 1093 Function *Sync; 1094 1095 switch (Arch) { 1096 case GPUArch::NVPTX64: 1097 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1098 break; 1099 } 1100 1101 Builder.CreateCall(Sync, {}); 1102 } 1103 1104 /// Collect llvm::Values referenced from @p Node 1105 /// 1106 /// This function only applies to isl_ast_nodes that are user_nodes referring 1107 /// to a ScopStmt. All other node types are ignore. 1108 /// 1109 /// @param Node The node to collect references for. 1110 /// @param User A user pointer used as storage for the data that is collected. 1111 /// 1112 /// @returns isl_bool_true if data could be collected successfully. 1113 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1114 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1115 return isl_bool_true; 1116 1117 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1118 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1119 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1120 const char *Str = isl_id_get_name(Id); 1121 isl_id_free(Id); 1122 isl_ast_expr_free(StmtExpr); 1123 isl_ast_expr_free(Expr); 1124 1125 if (!isPrefix(Str, "Stmt")) 1126 return isl_bool_true; 1127 1128 Id = isl_ast_node_get_annotation(Node); 1129 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1130 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1131 isl_id_free(Id); 1132 1133 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1134 1135 return isl_bool_true; 1136 } 1137 1138 /// Check if F is a function that we can code-generate in a GPU kernel. 1139 static bool isValidFunctionInKernel(llvm::Function *F) { 1140 assert(F && "F is an invalid pointer"); 1141 // We string compare against the name of the function to allow 1142 // all variants of the intrinsic "llvm.sqrt.*" 1143 return F->isIntrinsic() && F->getName().startswith("llvm.sqrt"); 1144 } 1145 1146 /// Do not take `Function` as a subtree value. 1147 /// 1148 /// We try to take the reference of all subtree values and pass them along 1149 /// to the kernel from the host. Taking an address of any function and 1150 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1151 /// `Function`s. 1152 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1153 1154 /// Return `Function`s from `RawSubtreeValues`. 1155 static SetVector<Function *> 1156 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues) { 1157 SetVector<Function *> SubtreeFunctions; 1158 for (Value *It : RawSubtreeValues) { 1159 Function *F = dyn_cast<Function>(It); 1160 if (F) { 1161 assert(isValidFunctionInKernel(F) && "Code should have bailed out by " 1162 "this point if an invalid function " 1163 "were present in a kernel."); 1164 SubtreeFunctions.insert(F); 1165 } 1166 } 1167 return SubtreeFunctions; 1168 } 1169 1170 std::pair<SetVector<Value *>, SetVector<Function *>> 1171 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1172 SetVector<Value *> SubtreeValues; 1173 SetVector<const SCEV *> SCEVs; 1174 SetVector<const Loop *> Loops; 1175 SubtreeReferences References = { 1176 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1177 1178 for (const auto &I : IDToValue) 1179 SubtreeValues.insert(I.second); 1180 1181 isl_ast_node_foreach_descendant_top_down( 1182 Kernel->tree, collectReferencesInGPUStmt, &References); 1183 1184 for (const SCEV *Expr : SCEVs) 1185 findValues(Expr, SE, SubtreeValues); 1186 1187 for (auto &SAI : S.arrays()) 1188 SubtreeValues.remove(SAI->getBasePtr()); 1189 1190 isl_space *Space = S.getParamSpace(); 1191 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1192 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1193 assert(IDToValue.count(Id)); 1194 Value *Val = IDToValue[Id]; 1195 SubtreeValues.remove(Val); 1196 isl_id_free(Id); 1197 } 1198 isl_space_free(Space); 1199 1200 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1201 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1202 assert(IDToValue.count(Id)); 1203 Value *Val = IDToValue[Id]; 1204 SubtreeValues.remove(Val); 1205 isl_id_free(Id); 1206 } 1207 1208 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1209 // SubtreeValues. This is important, because we should not lose any 1210 // SubtreeValues in the process of constructing the 1211 // "ValidSubtree{Values, Functions} sets. Nor should the set 1212 // ValidSubtree{Values, Functions} have any common element. 1213 auto ValidSubtreeValuesIt = 1214 make_filter_range(SubtreeValues, isValidSubtreeValue); 1215 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1216 ValidSubtreeValuesIt.end()); 1217 SetVector<Function *> ValidSubtreeFunctions( 1218 getFunctionsFromRawSubtreeValues(SubtreeValues)); 1219 1220 return std::make_pair(ValidSubtreeValues, ValidSubtreeFunctions); 1221 } 1222 1223 void GPUNodeBuilder::clearDominators(Function *F) { 1224 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1225 std::vector<BasicBlock *> Nodes; 1226 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1227 Nodes.push_back(I->getBlock()); 1228 1229 for (BasicBlock *BB : Nodes) 1230 DT.eraseNode(BB); 1231 } 1232 1233 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1234 for (BasicBlock &BB : *F) { 1235 Loop *L = LI.getLoopFor(&BB); 1236 if (L) 1237 SE.forgetLoop(L); 1238 } 1239 } 1240 1241 void GPUNodeBuilder::clearLoops(Function *F) { 1242 for (BasicBlock &BB : *F) { 1243 Loop *L = LI.getLoopFor(&BB); 1244 if (L) 1245 SE.forgetLoop(L); 1246 LI.removeBlock(&BB); 1247 } 1248 } 1249 1250 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1251 std::vector<Value *> Sizes; 1252 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1253 1254 for (long i = 0; i < Kernel->n_grid; i++) { 1255 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1256 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1257 Value *Res = ExprBuilder.create(GridSize); 1258 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1259 Sizes.push_back(Res); 1260 } 1261 isl_ast_build_free(Context); 1262 1263 for (long i = Kernel->n_grid; i < 3; i++) 1264 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1265 1266 return std::make_tuple(Sizes[0], Sizes[1]); 1267 } 1268 1269 std::tuple<Value *, Value *, Value *> 1270 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1271 std::vector<Value *> Sizes; 1272 1273 for (long i = 0; i < Kernel->n_block; i++) { 1274 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1275 Sizes.push_back(Res); 1276 } 1277 1278 for (long i = Kernel->n_block; i < 3; i++) 1279 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1280 1281 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1282 } 1283 1284 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1285 Instruction *Param, int Index) { 1286 Value *Slot = Builder.CreateGEP( 1287 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1288 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1289 Builder.CreateStore(ParamTyped, Slot); 1290 } 1291 1292 Value * 1293 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1294 SetVector<Value *> SubtreeValues) { 1295 const int NumArgs = F->arg_size(); 1296 std::vector<int> ArgSizes(NumArgs); 1297 1298 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1299 1300 BasicBlock *EntryBlock = 1301 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1302 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1303 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1304 Instruction *Parameters = new AllocaInst( 1305 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1306 1307 int Index = 0; 1308 for (long i = 0; i < Prog->n_array; i++) { 1309 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1310 continue; 1311 1312 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1313 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1314 1315 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1316 1317 Value *DevArray = nullptr; 1318 if (ManagedMemory) { 1319 DevArray = getOrCreateManagedDeviceArray( 1320 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1321 } else { 1322 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1323 DevArray = createCallGetDevicePtr(DevArray); 1324 } 1325 assert(DevArray != nullptr && "Array to be offloaded to device not " 1326 "initialized"); 1327 Value *Offset = getArrayOffset(&Prog->array[i]); 1328 1329 if (Offset) { 1330 DevArray = Builder.CreatePointerCast( 1331 DevArray, SAI->getElementType()->getPointerTo()); 1332 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1333 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1334 } 1335 Value *Slot = Builder.CreateGEP( 1336 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1337 1338 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1339 Value *ValPtr = nullptr; 1340 if (ManagedMemory) 1341 ValPtr = DevArray; 1342 else 1343 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1344 1345 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1346 " to be stored into Parameters"); 1347 Value *ValPtrCast = 1348 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1349 Builder.CreateStore(ValPtrCast, Slot); 1350 } else { 1351 Instruction *Param = 1352 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1353 Launch + "_param_" + std::to_string(Index), 1354 EntryBlock->getTerminator()); 1355 Builder.CreateStore(DevArray, Param); 1356 Value *ParamTyped = 1357 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1358 Builder.CreateStore(ParamTyped, Slot); 1359 } 1360 Index++; 1361 } 1362 1363 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1364 1365 for (long i = 0; i < NumHostIters; i++) { 1366 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1367 Value *Val = IDToValue[Id]; 1368 isl_id_free(Id); 1369 1370 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1371 1372 Instruction *Param = 1373 new AllocaInst(Val->getType(), AddressSpace, 1374 Launch + "_param_" + std::to_string(Index), 1375 EntryBlock->getTerminator()); 1376 Builder.CreateStore(Val, Param); 1377 insertStoreParameter(Parameters, Param, Index); 1378 Index++; 1379 } 1380 1381 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1382 1383 for (long i = 0; i < NumVars; i++) { 1384 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1385 Value *Val = IDToValue[Id]; 1386 isl_id_free(Id); 1387 1388 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1389 1390 Instruction *Param = 1391 new AllocaInst(Val->getType(), AddressSpace, 1392 Launch + "_param_" + std::to_string(Index), 1393 EntryBlock->getTerminator()); 1394 Builder.CreateStore(Val, Param); 1395 insertStoreParameter(Parameters, Param, Index); 1396 Index++; 1397 } 1398 1399 for (auto Val : SubtreeValues) { 1400 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1401 1402 Instruction *Param = 1403 new AllocaInst(Val->getType(), AddressSpace, 1404 Launch + "_param_" + std::to_string(Index), 1405 EntryBlock->getTerminator()); 1406 Builder.CreateStore(Val, Param); 1407 insertStoreParameter(Parameters, Param, Index); 1408 Index++; 1409 } 1410 1411 for (int i = 0; i < NumArgs; i++) { 1412 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1413 Instruction *Param = 1414 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1415 Launch + "_param_size_" + std::to_string(i), 1416 EntryBlock->getTerminator()); 1417 Builder.CreateStore(Val, Param); 1418 insertStoreParameter(Parameters, Param, Index); 1419 Index++; 1420 } 1421 1422 auto Location = EntryBlock->getTerminator(); 1423 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1424 Launch + "_params_i8ptr", Location); 1425 } 1426 1427 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1428 SetVector<Function *> SubtreeFunctions) { 1429 for (auto Fn : SubtreeFunctions) { 1430 const std::string ClonedFnName = Fn->getName(); 1431 Function *Clone = GPUModule->getFunction(ClonedFnName); 1432 if (!Clone) 1433 Clone = 1434 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1435 ClonedFnName, GPUModule.get()); 1436 assert(Clone && "Expected cloned function to be initialized."); 1437 assert(ValueMap.find(Fn) == ValueMap.end() && 1438 "Fn already present in ValueMap"); 1439 ValueMap[Fn] = Clone; 1440 } 1441 } 1442 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1443 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1444 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1445 isl_id_free(Id); 1446 isl_ast_node_free(KernelStmt); 1447 1448 if (Kernel->n_grid > 1) 1449 DeepestParallel = 1450 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1451 else 1452 DeepestSequential = 1453 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1454 1455 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1456 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1457 1458 SetVector<Value *> SubtreeValues; 1459 SetVector<Function *> SubtreeFunctions; 1460 std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel); 1461 1462 assert(Kernel->tree && "Device AST of kernel node is empty"); 1463 1464 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1465 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1466 ValueMapT HostValueMap = ValueMap; 1467 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1468 ScalarMap.clear(); 1469 1470 SetVector<const Loop *> Loops; 1471 1472 // Create for all loops we depend on values that contain the current loop 1473 // iteration. These values are necessary to generate code for SCEVs that 1474 // depend on such loops. As a result we need to pass them to the subfunction. 1475 for (const Loop *L : Loops) { 1476 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1477 SE.getUnknown(Builder.getInt64(1)), 1478 L, SCEV::FlagAnyWrap); 1479 Value *V = generateSCEV(OuterLIV); 1480 OutsideLoopIterations[L] = SE.getUnknown(V); 1481 SubtreeValues.insert(V); 1482 } 1483 1484 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1485 setupKernelSubtreeFunctions(SubtreeFunctions); 1486 1487 create(isl_ast_node_copy(Kernel->tree)); 1488 1489 finalizeKernelArguments(Kernel); 1490 Function *F = Builder.GetInsertBlock()->getParent(); 1491 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1492 clearDominators(F); 1493 clearScalarEvolution(F); 1494 clearLoops(F); 1495 1496 IDToValue = HostIDs; 1497 1498 ValueMap = std::move(HostValueMap); 1499 ScalarMap = std::move(HostScalarMap); 1500 EscapeMap.clear(); 1501 IDToSAI.clear(); 1502 Annotator.resetAlternativeAliasBases(); 1503 for (auto &BasePtr : LocalArrays) 1504 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1505 LocalArrays.clear(); 1506 1507 std::string ASMString = finalizeKernelFunction(); 1508 Builder.SetInsertPoint(&HostInsertPoint); 1509 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1510 1511 std::string Name = "kernel_" + std::to_string(Kernel->id); 1512 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1513 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1514 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1515 1516 Value *GridDimX, *GridDimY; 1517 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1518 1519 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1520 BlockDimZ, Parameters); 1521 createCallFreeKernel(GPUKernel); 1522 1523 for (auto Id : KernelIds) 1524 isl_id_free(Id); 1525 1526 KernelIds.clear(); 1527 } 1528 1529 /// Compute the DataLayout string for the NVPTX backend. 1530 /// 1531 /// @param is64Bit Are we looking for a 64 bit architecture? 1532 static std::string computeNVPTXDataLayout(bool is64Bit) { 1533 std::string Ret = ""; 1534 1535 if (!is64Bit) { 1536 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1537 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1538 "64-v128:128:128-n16:32:64"; 1539 } else { 1540 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1541 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1542 "64-v128:128:128-n16:32:64"; 1543 } 1544 1545 return Ret; 1546 } 1547 1548 Function * 1549 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1550 SetVector<Value *> &SubtreeValues) { 1551 std::vector<Type *> Args; 1552 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1553 1554 for (long i = 0; i < Prog->n_array; i++) { 1555 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1556 continue; 1557 1558 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1559 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1560 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1561 Args.push_back(SAI->getElementType()); 1562 } else { 1563 static const int UseGlobalMemory = 1; 1564 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1565 } 1566 } 1567 1568 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1569 1570 for (long i = 0; i < NumHostIters; i++) 1571 Args.push_back(Builder.getInt64Ty()); 1572 1573 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1574 1575 for (long i = 0; i < NumVars; i++) { 1576 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1577 Value *Val = IDToValue[Id]; 1578 isl_id_free(Id); 1579 Args.push_back(Val->getType()); 1580 } 1581 1582 for (auto *V : SubtreeValues) 1583 Args.push_back(V->getType()); 1584 1585 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1586 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1587 GPUModule.get()); 1588 1589 switch (Arch) { 1590 case GPUArch::NVPTX64: 1591 FN->setCallingConv(CallingConv::PTX_Kernel); 1592 break; 1593 } 1594 1595 auto Arg = FN->arg_begin(); 1596 for (long i = 0; i < Kernel->n_array; i++) { 1597 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1598 continue; 1599 1600 Arg->setName(Kernel->array[i].array->name); 1601 1602 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1603 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1604 Type *EleTy = SAI->getElementType(); 1605 Value *Val = &*Arg; 1606 SmallVector<const SCEV *, 4> Sizes; 1607 isl_ast_build *Build = 1608 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1609 Sizes.push_back(nullptr); 1610 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1611 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1612 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1613 auto V = ExprBuilder.create(DimSize); 1614 Sizes.push_back(SE.getSCEV(V)); 1615 } 1616 const ScopArrayInfo *SAIRep = 1617 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1618 LocalArrays.push_back(Val); 1619 1620 isl_ast_build_free(Build); 1621 KernelIds.push_back(Id); 1622 IDToSAI[Id] = SAIRep; 1623 Arg++; 1624 } 1625 1626 for (long i = 0; i < NumHostIters; i++) { 1627 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1628 Arg->setName(isl_id_get_name(Id)); 1629 IDToValue[Id] = &*Arg; 1630 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1631 Arg++; 1632 } 1633 1634 for (long i = 0; i < NumVars; i++) { 1635 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1636 Arg->setName(isl_id_get_name(Id)); 1637 Value *Val = IDToValue[Id]; 1638 ValueMap[Val] = &*Arg; 1639 IDToValue[Id] = &*Arg; 1640 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1641 Arg++; 1642 } 1643 1644 for (auto *V : SubtreeValues) { 1645 Arg->setName(V->getName()); 1646 ValueMap[V] = &*Arg; 1647 Arg++; 1648 } 1649 1650 return FN; 1651 } 1652 1653 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1654 Intrinsic::ID IntrinsicsBID[2]; 1655 Intrinsic::ID IntrinsicsTID[3]; 1656 1657 switch (Arch) { 1658 case GPUArch::NVPTX64: 1659 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1660 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1661 1662 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1663 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1664 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1665 break; 1666 } 1667 1668 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1669 std::string Name = isl_id_get_name(Id); 1670 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1671 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1672 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1673 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1674 IDToValue[Id] = Val; 1675 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1676 }; 1677 1678 for (int i = 0; i < Kernel->n_grid; ++i) { 1679 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1680 addId(Id, IntrinsicsBID[i]); 1681 } 1682 1683 for (int i = 0; i < Kernel->n_block; ++i) { 1684 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1685 addId(Id, IntrinsicsTID[i]); 1686 } 1687 } 1688 1689 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1690 auto Arg = FN->arg_begin(); 1691 for (long i = 0; i < Kernel->n_array; i++) { 1692 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1693 continue; 1694 1695 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1696 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1697 isl_id_free(Id); 1698 1699 if (SAI->getNumberOfDimensions() > 0) { 1700 Arg++; 1701 continue; 1702 } 1703 1704 Value *Val = &*Arg; 1705 1706 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1707 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1708 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1709 Val = Builder.CreateLoad(TypedArgPtr); 1710 } 1711 1712 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1713 Builder.CreateStore(Val, Alloca); 1714 1715 Arg++; 1716 } 1717 } 1718 1719 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1720 auto *FN = Builder.GetInsertBlock()->getParent(); 1721 auto Arg = FN->arg_begin(); 1722 1723 bool StoredScalar = false; 1724 for (long i = 0; i < Kernel->n_array; i++) { 1725 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1726 continue; 1727 1728 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1729 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1730 isl_id_free(Id); 1731 1732 if (SAI->getNumberOfDimensions() > 0) { 1733 Arg++; 1734 continue; 1735 } 1736 1737 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1738 Arg++; 1739 continue; 1740 } 1741 1742 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1743 Value *ArgPtr = &*Arg; 1744 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1745 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1746 Value *Val = Builder.CreateLoad(Alloca); 1747 Builder.CreateStore(Val, TypedArgPtr); 1748 StoredScalar = true; 1749 1750 Arg++; 1751 } 1752 1753 if (StoredScalar) 1754 /// In case more than one thread contains scalar stores, the generated 1755 /// code might be incorrect, if we only store at the end of the kernel. 1756 /// To support this case we need to store these scalars back at each 1757 /// memory store or at least before each kernel barrier. 1758 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1759 BuildSuccessful = 0; 1760 } 1761 1762 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1763 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1764 1765 for (int i = 0; i < Kernel->n_var; ++i) { 1766 struct ppcg_kernel_var &Var = Kernel->var[i]; 1767 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1768 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1769 1770 Type *ArrayTy = EleTy; 1771 SmallVector<const SCEV *, 4> Sizes; 1772 1773 Sizes.push_back(nullptr); 1774 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1775 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1776 long Bound = isl_val_get_num_si(Val); 1777 isl_val_free(Val); 1778 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1779 } 1780 1781 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1782 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1783 long Bound = isl_val_get_num_si(Val); 1784 isl_val_free(Val); 1785 ArrayTy = ArrayType::get(ArrayTy, Bound); 1786 } 1787 1788 const ScopArrayInfo *SAI; 1789 Value *Allocation; 1790 if (Var.type == ppcg_access_shared) { 1791 auto GlobalVar = new GlobalVariable( 1792 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1793 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1794 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1795 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1796 1797 Allocation = GlobalVar; 1798 } else if (Var.type == ppcg_access_private) { 1799 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1800 } else { 1801 llvm_unreachable("unknown variable type"); 1802 } 1803 SAI = 1804 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1805 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1806 IDToValue[Id] = Allocation; 1807 LocalArrays.push_back(Allocation); 1808 KernelIds.push_back(Id); 1809 IDToSAI[Id] = SAI; 1810 } 1811 } 1812 1813 void GPUNodeBuilder::createKernelFunction( 1814 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 1815 SetVector<Function *> &SubtreeFunctions) { 1816 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1817 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1818 1819 switch (Arch) { 1820 case GPUArch::NVPTX64: 1821 if (Runtime == GPURuntime::CUDA) 1822 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1823 else if (Runtime == GPURuntime::OpenCL) 1824 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 1825 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1826 break; 1827 } 1828 1829 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1830 1831 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1832 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1833 1834 DT.addNewBlock(EntryBlock, PrevBlock); 1835 1836 Builder.SetInsertPoint(EntryBlock); 1837 Builder.CreateRetVoid(); 1838 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1839 1840 ScopDetection::markFunctionAsInvalid(FN); 1841 1842 prepareKernelArguments(Kernel, FN); 1843 createKernelVariables(Kernel, FN); 1844 insertKernelIntrinsics(Kernel); 1845 } 1846 1847 std::string GPUNodeBuilder::createKernelASM() { 1848 llvm::Triple GPUTriple; 1849 1850 switch (Arch) { 1851 case GPUArch::NVPTX64: 1852 switch (Runtime) { 1853 case GPURuntime::CUDA: 1854 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 1855 break; 1856 case GPURuntime::OpenCL: 1857 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 1858 break; 1859 } 1860 break; 1861 } 1862 1863 std::string ErrMsg; 1864 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1865 1866 if (!GPUTarget) { 1867 errs() << ErrMsg << "\n"; 1868 return ""; 1869 } 1870 1871 TargetOptions Options; 1872 Options.UnsafeFPMath = FastMath; 1873 1874 std::string subtarget; 1875 1876 switch (Arch) { 1877 case GPUArch::NVPTX64: 1878 subtarget = CudaVersion; 1879 break; 1880 } 1881 1882 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 1883 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 1884 1885 SmallString<0> ASMString; 1886 raw_svector_ostream ASMStream(ASMString); 1887 llvm::legacy::PassManager PM; 1888 1889 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1890 1891 if (TargetM->addPassesToEmitFile( 1892 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1893 errs() << "The target does not support generation of this file type!\n"; 1894 return ""; 1895 } 1896 1897 PM.run(*GPUModule); 1898 1899 return ASMStream.str(); 1900 } 1901 1902 std::string GPUNodeBuilder::finalizeKernelFunction() { 1903 if (verifyModule(*GPUModule)) { 1904 BuildSuccessful = false; 1905 return ""; 1906 } 1907 1908 if (DumpKernelIR) 1909 outs() << *GPUModule << "\n"; 1910 1911 // Optimize module. 1912 llvm::legacy::PassManager OptPasses; 1913 PassManagerBuilder PassBuilder; 1914 PassBuilder.OptLevel = 3; 1915 PassBuilder.SizeLevel = 0; 1916 PassBuilder.populateModulePassManager(OptPasses); 1917 OptPasses.run(*GPUModule); 1918 1919 std::string Assembly = createKernelASM(); 1920 1921 if (DumpKernelASM) 1922 outs() << Assembly << "\n"; 1923 1924 GPUModule.release(); 1925 KernelIDs.clear(); 1926 1927 return Assembly; 1928 } 1929 1930 namespace { 1931 class PPCGCodeGeneration : public ScopPass { 1932 public: 1933 static char ID; 1934 1935 GPURuntime Runtime = GPURuntime::CUDA; 1936 1937 GPUArch Architecture = GPUArch::NVPTX64; 1938 1939 /// The scop that is currently processed. 1940 Scop *S; 1941 1942 LoopInfo *LI; 1943 DominatorTree *DT; 1944 ScalarEvolution *SE; 1945 const DataLayout *DL; 1946 RegionInfo *RI; 1947 1948 PPCGCodeGeneration() : ScopPass(ID) {} 1949 1950 /// Construct compilation options for PPCG. 1951 /// 1952 /// @returns The compilation options. 1953 ppcg_options *createPPCGOptions() { 1954 auto DebugOptions = 1955 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1956 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1957 1958 DebugOptions->dump_schedule_constraints = false; 1959 DebugOptions->dump_schedule = false; 1960 DebugOptions->dump_final_schedule = false; 1961 DebugOptions->dump_sizes = false; 1962 DebugOptions->verbose = false; 1963 1964 Options->debug = DebugOptions; 1965 1966 Options->reschedule = true; 1967 Options->scale_tile_loops = false; 1968 Options->wrap = false; 1969 1970 Options->non_negative_parameters = false; 1971 Options->ctx = nullptr; 1972 Options->sizes = nullptr; 1973 1974 Options->tile_size = 32; 1975 1976 Options->use_private_memory = PrivateMemory; 1977 Options->use_shared_memory = SharedMemory; 1978 Options->max_shared_memory = 48 * 1024; 1979 1980 Options->target = PPCG_TARGET_CUDA; 1981 Options->openmp = false; 1982 Options->linearize_device_arrays = true; 1983 Options->live_range_reordering = false; 1984 1985 Options->opencl_compiler_options = nullptr; 1986 Options->opencl_use_gpu = false; 1987 Options->opencl_n_include_file = 0; 1988 Options->opencl_include_files = nullptr; 1989 Options->opencl_print_kernel_types = false; 1990 Options->opencl_embed_kernel_code = false; 1991 1992 Options->save_schedule_file = nullptr; 1993 Options->load_schedule_file = nullptr; 1994 1995 return Options; 1996 } 1997 1998 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1999 /// 2000 /// Instead of a normal access of the form: 2001 /// 2002 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2003 /// 2004 /// a tagged access has the form 2005 /// 2006 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2007 /// 2008 /// where 'id' is an additional space that references the memory access that 2009 /// triggered the access. 2010 /// 2011 /// @param AccessTy The type of the memory accesses to collect. 2012 /// 2013 /// @return The relation describing all tagged memory accesses. 2014 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2015 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2016 2017 for (auto &Stmt : *S) 2018 for (auto &Acc : Stmt) 2019 if (Acc->getType() == AccessTy) { 2020 isl_map *Relation = Acc->getAccessRelation(); 2021 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2022 2023 isl_space *Space = isl_map_get_space(Relation); 2024 Space = isl_space_range(Space); 2025 Space = isl_space_from_range(Space); 2026 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2027 isl_map *Universe = isl_map_universe(Space); 2028 Relation = isl_map_domain_product(Relation, Universe); 2029 Accesses = isl_union_map_add_map(Accesses, Relation); 2030 } 2031 2032 return Accesses; 2033 } 2034 2035 /// Get the set of all read accesses, tagged with the access id. 2036 /// 2037 /// @see getTaggedAccesses 2038 isl_union_map *getTaggedReads() { 2039 return getTaggedAccesses(MemoryAccess::READ); 2040 } 2041 2042 /// Get the set of all may (and must) accesses, tagged with the access id. 2043 /// 2044 /// @see getTaggedAccesses 2045 isl_union_map *getTaggedMayWrites() { 2046 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2047 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2048 } 2049 2050 /// Get the set of all must accesses, tagged with the access id. 2051 /// 2052 /// @see getTaggedAccesses 2053 isl_union_map *getTaggedMustWrites() { 2054 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2055 } 2056 2057 /// Collect parameter and array names as isl_ids. 2058 /// 2059 /// To reason about the different parameters and arrays used, ppcg requires 2060 /// a list of all isl_ids in use. As PPCG traditionally performs 2061 /// source-to-source compilation each of these isl_ids is mapped to the 2062 /// expression that represents it. As we do not have a corresponding 2063 /// expression in Polly, we just map each id to a 'zero' expression to match 2064 /// the data format that ppcg expects. 2065 /// 2066 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2067 __isl_give isl_id_to_ast_expr *getNames() { 2068 auto *Names = isl_id_to_ast_expr_alloc( 2069 S->getIslCtx(), 2070 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2071 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2072 auto *Space = S->getParamSpace(); 2073 2074 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 2075 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 2076 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2077 } 2078 2079 for (auto &Array : S->arrays()) { 2080 auto Id = Array->getBasePtrId(); 2081 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2082 } 2083 2084 isl_space_free(Space); 2085 isl_ast_expr_free(Zero); 2086 2087 return Names; 2088 } 2089 2090 /// Create a new PPCG scop from the current scop. 2091 /// 2092 /// The PPCG scop is initialized with data from the current polly::Scop. From 2093 /// this initial data, the data-dependences in the PPCG scop are initialized. 2094 /// We do not use Polly's dependence analysis for now, to ensure we match 2095 /// the PPCG default behaviour more closely. 2096 /// 2097 /// @returns A new ppcg scop. 2098 ppcg_scop *createPPCGScop() { 2099 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2100 2101 PPCGScop->options = createPPCGOptions(); 2102 2103 PPCGScop->start = 0; 2104 PPCGScop->end = 0; 2105 2106 PPCGScop->context = S->getContext(); 2107 PPCGScop->domain = S->getDomains(); 2108 PPCGScop->call = nullptr; 2109 PPCGScop->tagged_reads = getTaggedReads(); 2110 PPCGScop->reads = S->getReads(); 2111 PPCGScop->live_in = nullptr; 2112 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2113 PPCGScop->may_writes = S->getWrites(); 2114 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2115 PPCGScop->must_writes = S->getMustWrites(); 2116 PPCGScop->live_out = nullptr; 2117 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 2118 PPCGScop->tagger = nullptr; 2119 2120 PPCGScop->independence = nullptr; 2121 PPCGScop->dep_flow = nullptr; 2122 PPCGScop->tagged_dep_flow = nullptr; 2123 PPCGScop->dep_false = nullptr; 2124 PPCGScop->dep_forced = nullptr; 2125 PPCGScop->dep_order = nullptr; 2126 PPCGScop->tagged_dep_order = nullptr; 2127 2128 PPCGScop->schedule = S->getScheduleTree(); 2129 PPCGScop->names = getNames(); 2130 2131 PPCGScop->pet = nullptr; 2132 2133 compute_tagger(PPCGScop); 2134 compute_dependences(PPCGScop); 2135 2136 return PPCGScop; 2137 } 2138 2139 /// Collect the array accesses in a statement. 2140 /// 2141 /// @param Stmt The statement for which to collect the accesses. 2142 /// 2143 /// @returns A list of array accesses. 2144 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2145 gpu_stmt_access *Accesses = nullptr; 2146 2147 for (MemoryAccess *Acc : Stmt) { 2148 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2149 Access->read = Acc->isRead(); 2150 Access->write = Acc->isWrite(); 2151 Access->access = Acc->getAccessRelation(); 2152 isl_space *Space = isl_map_get_space(Access->access); 2153 Space = isl_space_range(Space); 2154 Space = isl_space_from_range(Space); 2155 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2156 isl_map *Universe = isl_map_universe(Space); 2157 Access->tagged_access = 2158 isl_map_domain_product(Acc->getAccessRelation(), Universe); 2159 Access->exact_write = !Acc->isMayWrite(); 2160 Access->ref_id = Acc->getId(); 2161 Access->next = Accesses; 2162 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2163 Accesses = Access; 2164 } 2165 2166 return Accesses; 2167 } 2168 2169 /// Collect the list of GPU statements. 2170 /// 2171 /// Each statement has an id, a pointer to the underlying data structure, 2172 /// as well as a list with all memory accesses. 2173 /// 2174 /// TODO: Initialize the list of memory accesses. 2175 /// 2176 /// @returns A linked-list of statements. 2177 gpu_stmt *getStatements() { 2178 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2179 std::distance(S->begin(), S->end())); 2180 2181 int i = 0; 2182 for (auto &Stmt : *S) { 2183 gpu_stmt *GPUStmt = &Stmts[i]; 2184 2185 GPUStmt->id = Stmt.getDomainId(); 2186 2187 // We use the pet stmt pointer to keep track of the Polly statements. 2188 GPUStmt->stmt = (pet_stmt *)&Stmt; 2189 GPUStmt->accesses = getStmtAccesses(Stmt); 2190 i++; 2191 } 2192 2193 return Stmts; 2194 } 2195 2196 /// Derive the extent of an array. 2197 /// 2198 /// The extent of an array is the set of elements that are within the 2199 /// accessed array. For the inner dimensions, the extent constraints are 2200 /// 0 and the size of the corresponding array dimension. For the first 2201 /// (outermost) dimension, the extent constraints are the minimal and maximal 2202 /// subscript value for the first dimension. 2203 /// 2204 /// @param Array The array to derive the extent for. 2205 /// 2206 /// @returns An isl_set describing the extent of the array. 2207 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2208 unsigned NumDims = Array->getNumberOfDimensions(); 2209 isl_union_map *Accesses = S->getAccesses(); 2210 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2211 Accesses = isl_union_map_detect_equalities(Accesses); 2212 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2213 AccessUSet = isl_union_set_coalesce(AccessUSet); 2214 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2215 AccessUSet = isl_union_set_coalesce(AccessUSet); 2216 2217 if (isl_union_set_is_empty(AccessUSet)) { 2218 isl_union_set_free(AccessUSet); 2219 return isl_set_empty(Array->getSpace()); 2220 } 2221 2222 if (Array->getNumberOfDimensions() == 0) { 2223 isl_union_set_free(AccessUSet); 2224 return isl_set_universe(Array->getSpace()); 2225 } 2226 2227 isl_set *AccessSet = 2228 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 2229 2230 isl_union_set_free(AccessUSet); 2231 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 2232 2233 isl_pw_aff *Val = 2234 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2235 2236 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2237 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2238 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2239 isl_pw_aff_dim(Val, isl_dim_in)); 2240 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2241 isl_pw_aff_dim(Val, isl_dim_in)); 2242 OuterMin = 2243 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 2244 OuterMax = 2245 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 2246 2247 isl_set *Extent = isl_set_universe(Array->getSpace()); 2248 2249 Extent = isl_set_intersect( 2250 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2251 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2252 2253 for (unsigned i = 1; i < NumDims; ++i) 2254 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2255 2256 for (unsigned i = 0; i < NumDims; ++i) { 2257 isl_pw_aff *PwAff = 2258 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 2259 2260 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2261 // Fortran array will we have a legitimate dimension. 2262 if (!PwAff) { 2263 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2264 continue; 2265 } 2266 2267 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2268 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 2269 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2270 isl_pw_aff_dim(Val, isl_dim_in)); 2271 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2272 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2273 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2274 Extent = isl_set_intersect(Set, Extent); 2275 } 2276 2277 return Extent; 2278 } 2279 2280 /// Derive the bounds of an array. 2281 /// 2282 /// For the first dimension we derive the bound of the array from the extent 2283 /// of this dimension. For inner dimensions we obtain their size directly from 2284 /// ScopArrayInfo. 2285 /// 2286 /// @param PPCGArray The array to compute bounds for. 2287 /// @param Array The polly array from which to take the information. 2288 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2289 if (PPCGArray.n_index > 0) { 2290 if (isl_set_is_empty(PPCGArray.extent)) { 2291 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2292 isl_local_space *LS = isl_local_space_from_space( 2293 isl_space_params(isl_set_get_space(Dom))); 2294 isl_set_free(Dom); 2295 isl_aff *Zero = isl_aff_zero_on_domain(LS); 2296 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 2297 } else { 2298 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2299 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2300 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2301 isl_set_free(Dom); 2302 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2303 isl_local_space *LS = 2304 isl_local_space_from_space(isl_set_get_space(Dom)); 2305 isl_aff *One = isl_aff_zero_on_domain(LS); 2306 One = isl_aff_add_constant_si(One, 1); 2307 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2308 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2309 PPCGArray.bound[0] = Bound; 2310 } 2311 } 2312 2313 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2314 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2315 auto LS = isl_pw_aff_get_domain_space(Bound); 2316 auto Aff = isl_multi_aff_zero(LS); 2317 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2318 PPCGArray.bound[i] = Bound; 2319 } 2320 } 2321 2322 /// Create the arrays for @p PPCGProg. 2323 /// 2324 /// @param PPCGProg The program to compute the arrays for. 2325 void createArrays(gpu_prog *PPCGProg) { 2326 int i = 0; 2327 for (auto &Array : S->arrays()) { 2328 std::string TypeName; 2329 raw_string_ostream OS(TypeName); 2330 2331 OS << *Array->getElementType(); 2332 TypeName = OS.str(); 2333 2334 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2335 2336 PPCGArray.space = Array->getSpace(); 2337 PPCGArray.type = strdup(TypeName.c_str()); 2338 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2339 PPCGArray.name = strdup(Array->getName().c_str()); 2340 PPCGArray.extent = nullptr; 2341 PPCGArray.n_index = Array->getNumberOfDimensions(); 2342 PPCGArray.bound = 2343 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 2344 PPCGArray.extent = getExtent(Array); 2345 PPCGArray.n_ref = 0; 2346 PPCGArray.refs = nullptr; 2347 PPCGArray.accessed = true; 2348 PPCGArray.read_only_scalar = 2349 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2350 PPCGArray.has_compound_element = false; 2351 PPCGArray.local = false; 2352 PPCGArray.declare_local = false; 2353 PPCGArray.global = false; 2354 PPCGArray.linearize = false; 2355 PPCGArray.dep_order = nullptr; 2356 PPCGArray.user = Array; 2357 2358 setArrayBounds(PPCGArray, Array); 2359 i++; 2360 2361 collect_references(PPCGProg, &PPCGArray); 2362 } 2363 } 2364 2365 /// Create an identity map between the arrays in the scop. 2366 /// 2367 /// @returns An identity map between the arrays in the scop. 2368 isl_union_map *getArrayIdentity() { 2369 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2370 2371 for (auto &Array : S->arrays()) { 2372 isl_space *Space = Array->getSpace(); 2373 Space = isl_space_map_from_set(Space); 2374 isl_map *Identity = isl_map_identity(Space); 2375 Maps = isl_union_map_add_map(Maps, Identity); 2376 } 2377 2378 return Maps; 2379 } 2380 2381 /// Create a default-initialized PPCG GPU program. 2382 /// 2383 /// @returns A new gpu program description. 2384 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2385 2386 if (!PPCGScop) 2387 return nullptr; 2388 2389 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2390 2391 PPCGProg->ctx = S->getIslCtx(); 2392 PPCGProg->scop = PPCGScop; 2393 PPCGProg->context = isl_set_copy(PPCGScop->context); 2394 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2395 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2396 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2397 PPCGProg->tagged_must_kill = 2398 isl_union_map_copy(PPCGScop->tagged_must_kills); 2399 PPCGProg->to_inner = getArrayIdentity(); 2400 PPCGProg->to_outer = getArrayIdentity(); 2401 PPCGProg->any_to_outer = nullptr; 2402 PPCGProg->array_order = nullptr; 2403 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2404 PPCGProg->stmts = getStatements(); 2405 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2406 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2407 PPCGProg->n_array); 2408 2409 createArrays(PPCGProg); 2410 2411 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2412 2413 return PPCGProg; 2414 } 2415 2416 struct PrintGPUUserData { 2417 struct cuda_info *CudaInfo; 2418 struct gpu_prog *PPCGProg; 2419 std::vector<ppcg_kernel *> Kernels; 2420 }; 2421 2422 /// Print a user statement node in the host code. 2423 /// 2424 /// We use ppcg's printing facilities to print the actual statement and 2425 /// additionally build up a list of all kernels that are encountered in the 2426 /// host ast. 2427 /// 2428 /// @param P The printer to print to 2429 /// @param Options The printing options to use 2430 /// @param Node The node to print 2431 /// @param User A user pointer to carry additional data. This pointer is 2432 /// expected to be of type PrintGPUUserData. 2433 /// 2434 /// @returns A printer to which the output has been printed. 2435 static __isl_give isl_printer * 2436 printHostUser(__isl_take isl_printer *P, 2437 __isl_take isl_ast_print_options *Options, 2438 __isl_take isl_ast_node *Node, void *User) { 2439 auto Data = (struct PrintGPUUserData *)User; 2440 auto Id = isl_ast_node_get_annotation(Node); 2441 2442 if (Id) { 2443 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2444 2445 // If this is a user statement, format it ourselves as ppcg would 2446 // otherwise try to call pet functionality that is not available in 2447 // Polly. 2448 if (IsUser) { 2449 P = isl_printer_start_line(P); 2450 P = isl_printer_print_ast_node(P, Node); 2451 P = isl_printer_end_line(P); 2452 isl_id_free(Id); 2453 isl_ast_print_options_free(Options); 2454 return P; 2455 } 2456 2457 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2458 isl_id_free(Id); 2459 Data->Kernels.push_back(Kernel); 2460 } 2461 2462 return print_host_user(P, Options, Node, User); 2463 } 2464 2465 /// Print C code corresponding to the control flow in @p Kernel. 2466 /// 2467 /// @param Kernel The kernel to print 2468 void printKernel(ppcg_kernel *Kernel) { 2469 auto *P = isl_printer_to_str(S->getIslCtx()); 2470 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2471 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2472 P = isl_ast_node_print(Kernel->tree, P, Options); 2473 char *String = isl_printer_get_str(P); 2474 printf("%s\n", String); 2475 free(String); 2476 isl_printer_free(P); 2477 } 2478 2479 /// Print C code corresponding to the GPU code described by @p Tree. 2480 /// 2481 /// @param Tree An AST describing GPU code 2482 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2483 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2484 auto *P = isl_printer_to_str(S->getIslCtx()); 2485 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2486 2487 PrintGPUUserData Data; 2488 Data.PPCGProg = PPCGProg; 2489 2490 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2491 Options = 2492 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2493 P = isl_ast_node_print(Tree, P, Options); 2494 char *String = isl_printer_get_str(P); 2495 printf("# host\n"); 2496 printf("%s\n", String); 2497 free(String); 2498 isl_printer_free(P); 2499 2500 for (auto Kernel : Data.Kernels) { 2501 printf("# kernel%d\n", Kernel->id); 2502 printKernel(Kernel); 2503 } 2504 } 2505 2506 // Generate a GPU program using PPCG. 2507 // 2508 // GPU mapping consists of multiple steps: 2509 // 2510 // 1) Compute new schedule for the program. 2511 // 2) Map schedule to GPU (TODO) 2512 // 3) Generate code for new schedule (TODO) 2513 // 2514 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2515 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2516 // strategy directly from this pass. 2517 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2518 2519 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2520 2521 PPCGGen->ctx = S->getIslCtx(); 2522 PPCGGen->options = PPCGScop->options; 2523 PPCGGen->print = nullptr; 2524 PPCGGen->print_user = nullptr; 2525 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2526 PPCGGen->prog = PPCGProg; 2527 PPCGGen->tree = nullptr; 2528 PPCGGen->types.n = 0; 2529 PPCGGen->types.name = nullptr; 2530 PPCGGen->sizes = nullptr; 2531 PPCGGen->used_sizes = nullptr; 2532 PPCGGen->kernel_id = 0; 2533 2534 // Set scheduling strategy to same strategy PPCG is using. 2535 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2536 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2537 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2538 2539 isl_schedule *Schedule = get_schedule(PPCGGen); 2540 2541 int has_permutable = has_any_permutable_node(Schedule); 2542 2543 if (!has_permutable || has_permutable < 0) { 2544 Schedule = isl_schedule_free(Schedule); 2545 } else { 2546 Schedule = map_to_device(PPCGGen, Schedule); 2547 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2548 } 2549 2550 if (DumpSchedule) { 2551 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2552 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2553 P = isl_printer_print_str(P, "Schedule\n"); 2554 P = isl_printer_print_str(P, "========\n"); 2555 if (Schedule) 2556 P = isl_printer_print_schedule(P, Schedule); 2557 else 2558 P = isl_printer_print_str(P, "No schedule found\n"); 2559 2560 printf("%s\n", isl_printer_get_str(P)); 2561 isl_printer_free(P); 2562 } 2563 2564 if (DumpCode) { 2565 printf("Code\n"); 2566 printf("====\n"); 2567 if (PPCGGen->tree) 2568 printGPUTree(PPCGGen->tree, PPCGProg); 2569 else 2570 printf("No code generated\n"); 2571 } 2572 2573 isl_schedule_free(Schedule); 2574 2575 return PPCGGen; 2576 } 2577 2578 /// Free gpu_gen structure. 2579 /// 2580 /// @param PPCGGen The ppcg_gen object to free. 2581 void freePPCGGen(gpu_gen *PPCGGen) { 2582 isl_ast_node_free(PPCGGen->tree); 2583 isl_union_map_free(PPCGGen->sizes); 2584 isl_union_map_free(PPCGGen->used_sizes); 2585 free(PPCGGen); 2586 } 2587 2588 /// Free the options in the ppcg scop structure. 2589 /// 2590 /// ppcg is not freeing these options for us. To avoid leaks we do this 2591 /// ourselves. 2592 /// 2593 /// @param PPCGScop The scop referencing the options to free. 2594 void freeOptions(ppcg_scop *PPCGScop) { 2595 free(PPCGScop->options->debug); 2596 PPCGScop->options->debug = nullptr; 2597 free(PPCGScop->options); 2598 PPCGScop->options = nullptr; 2599 } 2600 2601 /// Approximate the number of points in the set. 2602 /// 2603 /// This function returns an ast expression that overapproximates the number 2604 /// of points in an isl set through the rectangular hull surrounding this set. 2605 /// 2606 /// @param Set The set to count. 2607 /// @param Build The isl ast build object to use for creating the ast 2608 /// expression. 2609 /// 2610 /// @returns An approximation of the number of points in the set. 2611 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2612 __isl_keep isl_ast_build *Build) { 2613 2614 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2615 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2616 2617 isl_space *Space = isl_set_get_space(Set); 2618 Space = isl_space_params(Space); 2619 auto *Univ = isl_set_universe(Space); 2620 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2621 2622 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2623 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2624 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2625 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2626 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2627 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2628 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2629 } 2630 2631 isl_set_free(Set); 2632 isl_pw_aff_free(OneAff); 2633 2634 return Expr; 2635 } 2636 2637 /// Approximate a number of dynamic instructions executed by a given 2638 /// statement. 2639 /// 2640 /// @param Stmt The statement for which to compute the number of dynamic 2641 /// instructions. 2642 /// @param Build The isl ast build object to use for creating the ast 2643 /// expression. 2644 /// @returns An approximation of the number of dynamic instructions executed 2645 /// by @p Stmt. 2646 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2647 __isl_keep isl_ast_build *Build) { 2648 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2649 2650 long InstCount = 0; 2651 2652 if (Stmt.isBlockStmt()) { 2653 auto *BB = Stmt.getBasicBlock(); 2654 InstCount = std::distance(BB->begin(), BB->end()); 2655 } else { 2656 auto *R = Stmt.getRegion(); 2657 2658 for (auto *BB : R->blocks()) { 2659 InstCount += std::distance(BB->begin(), BB->end()); 2660 } 2661 } 2662 2663 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2664 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2665 return isl_ast_expr_mul(InstExpr, Iterations); 2666 } 2667 2668 /// Approximate dynamic instructions executed in scop. 2669 /// 2670 /// @param S The scop for which to approximate dynamic instructions. 2671 /// @param Build The isl ast build object to use for creating the ast 2672 /// expression. 2673 /// @returns An approximation of the number of dynamic instructions executed 2674 /// in @p S. 2675 __isl_give isl_ast_expr * 2676 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2677 isl_ast_expr *Instructions; 2678 2679 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2680 Instructions = isl_ast_expr_from_val(Zero); 2681 2682 for (ScopStmt &Stmt : S) { 2683 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2684 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2685 } 2686 return Instructions; 2687 } 2688 2689 /// Create a check that ensures sufficient compute in scop. 2690 /// 2691 /// @param S The scop for which to ensure sufficient compute. 2692 /// @param Build The isl ast build object to use for creating the ast 2693 /// expression. 2694 /// @returns An expression that evaluates to TRUE in case of sufficient 2695 /// compute and to FALSE, otherwise. 2696 __isl_give isl_ast_expr * 2697 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2698 auto Iterations = getNumberOfIterations(S, Build); 2699 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2700 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2701 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2702 } 2703 2704 /// Check if the basic block contains a function we cannot codegen for GPU 2705 /// kernels. 2706 /// 2707 /// If this basic block does something with a `Function` other than calling 2708 /// a function that we support in a kernel, return true. 2709 bool containsInvalidKernelFunctionInBllock(const BasicBlock *BB) { 2710 for (const Instruction &Inst : *BB) { 2711 const CallInst *Call = dyn_cast<CallInst>(&Inst); 2712 if (Call && isValidFunctionInKernel(Call->getCalledFunction())) { 2713 continue; 2714 } 2715 2716 for (Value *SrcVal : Inst.operands()) { 2717 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 2718 if (!p) 2719 continue; 2720 if (isa<FunctionType>(p->getElementType())) 2721 return true; 2722 } 2723 } 2724 return false; 2725 } 2726 2727 /// Return whether the Scop S uses functions in a way that we do not support. 2728 bool containsInvalidKernelFunction(const Scop &S) { 2729 for (auto &Stmt : S) { 2730 if (Stmt.isBlockStmt()) { 2731 if (containsInvalidKernelFunctionInBllock(Stmt.getBasicBlock())) 2732 return true; 2733 } else { 2734 assert(Stmt.isRegionStmt() && 2735 "Stmt was neither block nor region statement"); 2736 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 2737 if (containsInvalidKernelFunctionInBllock(BB)) 2738 return true; 2739 } 2740 } 2741 return false; 2742 } 2743 2744 /// Generate code for a given GPU AST described by @p Root. 2745 /// 2746 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2747 /// @param Prog The GPU Program to generate code for. 2748 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2749 ScopAnnotator Annotator; 2750 Annotator.buildAliasScopes(*S); 2751 2752 Region *R = &S->getRegion(); 2753 2754 simplifyRegion(R, DT, LI, RI); 2755 2756 BasicBlock *EnteringBB = R->getEnteringBlock(); 2757 2758 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2759 2760 // Only build the run-time condition and parameters _after_ having 2761 // introduced the conditional branch. This is important as the conditional 2762 // branch will guard the original scop from new induction variables that 2763 // the SCEVExpander may introduce while code generating the parameters and 2764 // which may introduce scalar dependences that prevent us from correctly 2765 // code generating this scop. 2766 BBPair StartExitBlocks = 2767 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 2768 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 2769 2770 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 2771 StartBlock, Prog, Runtime, Architecture); 2772 2773 // TODO: Handle LICM 2774 auto SplitBlock = StartBlock->getSinglePredecessor(); 2775 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2776 NodeBuilder.addParameters(S->getContext()); 2777 2778 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2779 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 2780 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 2781 Condition = isl_ast_expr_and(Condition, SufficientCompute); 2782 isl_ast_build_free(Build); 2783 2784 Value *RTC = NodeBuilder.createRTC(Condition); 2785 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2786 2787 Builder.SetInsertPoint(&*StartBlock->begin()); 2788 2789 NodeBuilder.initializeAfterRTH(); 2790 NodeBuilder.create(Root); 2791 NodeBuilder.finalize(); 2792 2793 /// In case a sequential kernel has more surrounding loops as any parallel 2794 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 2795 /// point in running it on a GPU. 2796 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 2797 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2798 2799 if (!NodeBuilder.BuildSuccessful) 2800 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2801 } 2802 2803 bool runOnScop(Scop &CurrentScop) override { 2804 S = &CurrentScop; 2805 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2806 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2807 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2808 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 2809 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2810 2811 // We currently do not support functions other than intrinsics inside 2812 // kernels, as code generation will need to offload function calls to the 2813 // kernel. This may lead to a kernel trying to call a function on the host. 2814 // This also allows us to prevent codegen from trying to take the 2815 // address of an intrinsic function to send to the kernel. 2816 if (containsInvalidKernelFunction(CurrentScop)) { 2817 DEBUG( 2818 dbgs() 2819 << "Scop contains function which cannot be materialised in a GPU " 2820 "kernel. Bailing out.\n";); 2821 return false; 2822 } 2823 2824 auto PPCGScop = createPPCGScop(); 2825 auto PPCGProg = createPPCGProg(PPCGScop); 2826 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2827 2828 if (PPCGGen->tree) 2829 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2830 2831 freeOptions(PPCGScop); 2832 freePPCGGen(PPCGGen); 2833 gpu_prog_free(PPCGProg); 2834 ppcg_scop_free(PPCGScop); 2835 2836 return true; 2837 } 2838 2839 void printScop(raw_ostream &, Scop &) const override {} 2840 2841 void getAnalysisUsage(AnalysisUsage &AU) const override { 2842 AU.addRequired<DominatorTreeWrapperPass>(); 2843 AU.addRequired<RegionInfoPass>(); 2844 AU.addRequired<ScalarEvolutionWrapperPass>(); 2845 AU.addRequired<ScopDetectionWrapperPass>(); 2846 AU.addRequired<ScopInfoRegionPass>(); 2847 AU.addRequired<LoopInfoWrapperPass>(); 2848 2849 AU.addPreserved<AAResultsWrapperPass>(); 2850 AU.addPreserved<BasicAAWrapperPass>(); 2851 AU.addPreserved<LoopInfoWrapperPass>(); 2852 AU.addPreserved<DominatorTreeWrapperPass>(); 2853 AU.addPreserved<GlobalsAAWrapperPass>(); 2854 AU.addPreserved<ScopDetectionWrapperPass>(); 2855 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2856 AU.addPreserved<SCEVAAWrapperPass>(); 2857 2858 // FIXME: We do not yet add regions for the newly generated code to the 2859 // region tree. 2860 AU.addPreserved<RegionInfoPass>(); 2861 AU.addPreserved<ScopInfoRegionPass>(); 2862 } 2863 }; 2864 } // namespace 2865 2866 char PPCGCodeGeneration::ID = 1; 2867 2868 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 2869 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 2870 generator->Runtime = Runtime; 2871 generator->Architecture = Arch; 2872 return generator; 2873 } 2874 2875 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 2876 "Polly - Apply PPCG translation to SCOP", false, false) 2877 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2878 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 2879 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 2880 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 2881 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 2882 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 2883 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 2884 "Polly - Apply PPCG translation to SCOP", false, false) 2885