1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/ISLTools.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/IntrinsicsNVPTX.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/IRReader/IRReader.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Linker/Linker.h" 35 #include "llvm/MC/TargetRegistry.h" 36 #include "llvm/Support/SourceMgr.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/union_map.h" 41 #include <algorithm> 42 43 extern "C" { 44 #include "ppcg/cuda.h" 45 #include "ppcg/gpu.h" 46 #include "ppcg/ppcg.h" 47 } 48 49 #include "llvm/Support/Debug.h" 50 51 using namespace polly; 52 using namespace llvm; 53 54 #define DEBUG_TYPE "polly-codegen-ppcg" 55 56 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 57 cl::desc("Dump the computed GPU Schedule"), 58 cl::Hidden, cl::init(false), cl::ZeroOrMore, 59 cl::cat(PollyCategory)); 60 61 static cl::opt<bool> 62 DumpCode("polly-acc-dump-code", 63 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 64 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 65 66 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 67 cl::desc("Dump the kernel LLVM-IR"), 68 cl::Hidden, cl::init(false), cl::ZeroOrMore, 69 cl::cat(PollyCategory)); 70 71 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 72 cl::desc("Dump the kernel assembly code"), 73 cl::Hidden, cl::init(false), cl::ZeroOrMore, 74 cl::cat(PollyCategory)); 75 76 static cl::opt<bool> FastMath("polly-acc-fastmath", 77 cl::desc("Allow unsafe math optimizations"), 78 cl::Hidden, cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 81 cl::desc("Use shared memory"), cl::Hidden, 82 cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 85 cl::desc("Use private memory"), cl::Hidden, 86 cl::init(false), cl::ZeroOrMore, 87 cl::cat(PollyCategory)); 88 89 bool polly::PollyManagedMemory; 90 static cl::opt<bool, true> 91 XManagedMemory("polly-acc-codegen-managed-memory", 92 cl::desc("Generate Host kernel code assuming" 93 " that all memory has been" 94 " declared as managed memory"), 95 cl::location(PollyManagedMemory), cl::Hidden, 96 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 97 98 static cl::opt<bool> 99 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 100 cl::desc("Fail and generate a backtrace if" 101 " verifyModule fails on the GPU " 102 " kernel module."), 103 cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::cat(PollyCategory)); 105 106 static cl::opt<std::string> CUDALibDevice( 107 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 108 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 109 cl::ZeroOrMore, cl::cat(PollyCategory)); 110 111 static cl::opt<std::string> 112 CudaVersion("polly-acc-cuda-version", 113 cl::desc("The CUDA version to compile for"), cl::Hidden, 114 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 115 116 static cl::opt<int> 117 MinCompute("polly-acc-mincompute", 118 cl::desc("Minimal number of compute statements to run on GPU."), 119 cl::Hidden, cl::init(10 * 512 * 512)); 120 121 GPURuntime polly::GPURuntimeChoice; 122 static cl::opt<GPURuntime, true> XGPURuntimeChoice( 123 "polly-gpu-runtime", cl::desc("The GPU Runtime API to target"), 124 cl::values(clEnumValN(GPURuntime::CUDA, "libcudart", 125 "use the CUDA Runtime API"), 126 clEnumValN(GPURuntime::OpenCL, "libopencl", 127 "use the OpenCL Runtime API")), 128 cl::location(polly::GPURuntimeChoice), cl::init(GPURuntime::CUDA), 129 cl::ZeroOrMore, cl::cat(PollyCategory)); 130 131 GPUArch polly::GPUArchChoice; 132 static cl::opt<GPUArch, true> 133 XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"), 134 cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64", 135 "target NVIDIA 64-bit architecture"), 136 clEnumValN(GPUArch::SPIR32, "spir32", 137 "target SPIR 32-bit architecture"), 138 clEnumValN(GPUArch::SPIR64, "spir64", 139 "target SPIR 64-bit architecture")), 140 cl::location(polly::GPUArchChoice), 141 cl::init(GPUArch::NVPTX64), cl::ZeroOrMore, 142 cl::cat(PollyCategory)); 143 144 extern bool polly::PerfMonitoring; 145 146 /// Return a unique name for a Scop, which is the scop region with the 147 /// function name. 148 std::string getUniqueScopName(const Scop *S) { 149 return "Scop Region: " + S->getNameStr() + 150 " | Function: " + std::string(S->getFunction().getName()); 151 } 152 153 /// Used to store information PPCG wants for kills. This information is 154 /// used by live range reordering. 155 /// 156 /// @see computeLiveRangeReordering 157 /// @see GPUNodeBuilder::createPPCGScop 158 /// @see GPUNodeBuilder::createPPCGProg 159 struct MustKillsInfo { 160 /// Collection of all kill statements that will be sequenced at the end of 161 /// PPCGScop->schedule. 162 /// 163 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 164 /// which merges schedules in *arbitrary* order. 165 /// (we don't care about the order of the kills anyway). 166 isl::schedule KillsSchedule; 167 /// Map from kill statement instances to scalars that need to be 168 /// killed. 169 /// 170 /// We currently derive kill information for: 171 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 172 /// consequently all be killed. 173 /// 2. Scalar arrays that are not used outside the Scop. This is 174 /// checked by `isScalarUsesContainedInScop`. 175 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 176 isl::union_map TaggedMustKills; 177 178 /// Tagged must kills stripped of the tags. 179 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 180 isl::union_map MustKills; 181 182 MustKillsInfo() : KillsSchedule() {} 183 }; 184 185 /// Check if SAI's uses are entirely contained within Scop S. 186 /// If a scalar is used only with a Scop, we are free to kill it, as no data 187 /// can flow in/out of the value any more. 188 /// @see computeMustKillsInfo 189 static bool isScalarUsesContainedInScop(const Scop &S, 190 const ScopArrayInfo *SAI) { 191 assert(SAI->isValueKind() && "this function only deals with scalars." 192 " Dealing with arrays required alias analysis"); 193 194 const Region &R = S.getRegion(); 195 for (User *U : SAI->getBasePtr()->users()) { 196 Instruction *I = dyn_cast<Instruction>(U); 197 assert(I && "invalid user of scop array info"); 198 if (!R.contains(I)) 199 return false; 200 } 201 return true; 202 } 203 204 /// Compute must-kills needed to enable live range reordering with PPCG. 205 /// 206 /// @params S The Scop to compute live range reordering information 207 /// @returns live range reordering information that can be used to setup 208 /// PPCG. 209 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 210 const isl::space ParamSpace = S.getParamSpace(); 211 MustKillsInfo Info; 212 213 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 214 // 1.1 phi nodes in scop. 215 // 1.2 scalars that are only used within the scop 216 SmallVector<isl::id, 4> KillMemIds; 217 for (ScopArrayInfo *SAI : S.arrays()) { 218 if (SAI->isPHIKind() || 219 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 220 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 221 } 222 223 Info.TaggedMustKills = isl::union_map::empty(ParamSpace.ctx()); 224 Info.MustKills = isl::union_map::empty(ParamSpace.ctx()); 225 226 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 227 // schedule: 228 // - filter: "[control] -> { }" 229 // So, we choose to not create this to keep the output a little nicer, 230 // at the cost of some code complexity. 231 Info.KillsSchedule = {}; 232 233 for (isl::id &ToKillId : KillMemIds) { 234 isl::id KillStmtId = isl::id::alloc( 235 S.getIslCtx(), 236 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 237 238 // NOTE: construction of tagged_must_kill: 239 // 2. We need to construct a map: 240 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 241 // To construct this, we use `isl_map_domain_product` on 2 maps`: 242 // 2a. StmtToScalar: 243 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 244 // 2b. PhantomRefToScalar: 245 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 246 // 247 // Combining these with `isl_map_domain_product` gives us 248 // TaggedMustKill: 249 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 250 251 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 252 isl::map StmtToScalar = isl::map::universe(ParamSpace); 253 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 254 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 255 256 isl::id PhantomRefId = isl::id::alloc( 257 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 258 nullptr); 259 260 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 261 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 262 PhantomRefToScalar = 263 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 264 PhantomRefToScalar = 265 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 266 267 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 268 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 269 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 270 271 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 272 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 273 274 // 3. Create the kill schedule of the form: 275 // "[param] -> { Stmt_phantom[] }" 276 // Then add this to Info.KillsSchedule. 277 isl::space KillStmtSpace = ParamSpace; 278 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 279 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 280 281 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 282 if (!Info.KillsSchedule.is_null()) 283 Info.KillsSchedule = isl::manage( 284 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 285 else 286 Info.KillsSchedule = KillSchedule; 287 } 288 289 return Info; 290 } 291 292 /// Create the ast expressions for a ScopStmt. 293 /// 294 /// This function is a callback for to generate the ast expressions for each 295 /// of the scheduled ScopStmts. 296 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 297 void *StmtT, __isl_take isl_ast_build *Build_C, 298 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 299 isl_id *Id, void *User), 300 void *UserIndex, 301 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 302 void *UserExpr) { 303 304 ScopStmt *Stmt = (ScopStmt *)StmtT; 305 306 if (!Stmt || !Build_C) 307 return NULL; 308 309 isl::ast_build Build = isl::manage_copy(Build_C); 310 isl::ctx Ctx = Build.ctx(); 311 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 312 313 Stmt->setAstBuild(Build); 314 315 for (MemoryAccess *Acc : *Stmt) { 316 isl::map AddrFunc = Acc->getAddressFunction(); 317 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 318 319 isl::id RefId = Acc->getId(); 320 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 321 322 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 323 MPA = MPA.coalesce(); 324 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 325 326 isl::ast_expr Access = Build.access_from(MPA); 327 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 328 RefToExpr = RefToExpr.set(RefId, Access); 329 } 330 331 return RefToExpr.release(); 332 } 333 334 /// Given a LLVM Type, compute its size in bytes, 335 static int computeSizeInBytes(const Type *T) { 336 int bytes = T->getPrimitiveSizeInBits() / 8; 337 if (bytes == 0) 338 bytes = T->getScalarSizeInBits() / 8; 339 return bytes; 340 } 341 342 /// Generate code for a GPU specific isl AST. 343 /// 344 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 345 /// generates code for general-purpose AST nodes, with special functionality 346 /// for generating GPU specific user nodes. 347 /// 348 /// @see GPUNodeBuilder::createUser 349 class GPUNodeBuilder : public IslNodeBuilder { 350 public: 351 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 352 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 353 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 354 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 355 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 356 Prog(Prog), Runtime(Runtime), Arch(Arch) { 357 getExprBuilder().setIDToSAI(&IDToSAI); 358 } 359 360 /// Create after-run-time-check initialization code. 361 void initializeAfterRTH(); 362 363 /// Finalize the generated scop. 364 void finalize() override; 365 366 /// Track if the full build process was successful. 367 /// 368 /// This value is set to false, if throughout the build process an error 369 /// occurred which prevents us from generating valid GPU code. 370 bool BuildSuccessful = true; 371 372 /// The maximal number of loops surrounding a sequential kernel. 373 unsigned DeepestSequential = 0; 374 375 /// The maximal number of loops surrounding a parallel kernel. 376 unsigned DeepestParallel = 0; 377 378 /// Return the name to set for the ptx_kernel. 379 std::string getKernelFuncName(int Kernel_id); 380 381 private: 382 /// A vector of array base pointers for which a new ScopArrayInfo was created. 383 /// 384 /// This vector is used to delete the ScopArrayInfo when it is not needed any 385 /// more. 386 std::vector<Value *> LocalArrays; 387 388 /// A map from ScopArrays to their corresponding device allocations. 389 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 390 391 /// The current GPU context. 392 Value *GPUContext; 393 394 /// The set of isl_ids allocated in the kernel 395 std::vector<isl_id *> KernelIds; 396 397 /// A module containing GPU code. 398 /// 399 /// This pointer is only set in case we are currently generating GPU code. 400 std::unique_ptr<Module> GPUModule; 401 402 /// The GPU program we generate code for. 403 gpu_prog *Prog; 404 405 /// The GPU Runtime implementation to use (OpenCL or CUDA). 406 GPURuntime Runtime; 407 408 /// The GPU Architecture to target. 409 GPUArch Arch; 410 411 /// Class to free isl_ids. 412 class IslIdDeleter { 413 public: 414 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 415 }; 416 417 /// A set containing all isl_ids allocated in a GPU kernel. 418 /// 419 /// By releasing this set all isl_ids will be freed. 420 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 421 422 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 423 424 /// Create code for user-defined AST nodes. 425 /// 426 /// These AST nodes can be of type: 427 /// 428 /// - ScopStmt: A computational statement (TODO) 429 /// - Kernel: A GPU kernel call (TODO) 430 /// - Data-Transfer: A GPU <-> CPU data-transfer 431 /// - In-kernel synchronization 432 /// - In-kernel memory copy statement 433 /// 434 /// @param UserStmt The ast node to generate code for. 435 void createUser(__isl_take isl_ast_node *UserStmt) override; 436 437 void createFor(__isl_take isl_ast_node *Node) override; 438 439 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 440 441 /// Create code for a data transfer statement 442 /// 443 /// @param TransferStmt The data transfer statement. 444 /// @param Direction The direction in which to transfer data. 445 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 446 enum DataDirection Direction); 447 448 /// Find llvm::Values referenced in GPU kernel. 449 /// 450 /// @param Kernel The kernel to scan for llvm::Values 451 /// 452 /// @returns A tuple, whose: 453 /// - First element contains the set of values referenced by the 454 /// kernel 455 /// - Second element contains the set of functions referenced by the 456 /// kernel. All functions in the set satisfy 457 /// `isValidFunctionInKernel`. 458 /// - Third element contains loops that have induction variables 459 /// which are used in the kernel, *and* these loops are *neither* 460 /// in the scop, nor do they immediately surroung the Scop. 461 /// See [Code generation of induction variables of loops outside 462 /// Scops] 463 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 464 isl::space> 465 getReferencesInKernel(ppcg_kernel *Kernel); 466 467 /// Compute the sizes of the execution grid for a given kernel. 468 /// 469 /// @param Kernel The kernel to compute grid sizes for. 470 /// 471 /// @returns A tuple with grid sizes for X and Y dimension 472 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 473 474 /// Get the managed array pointer for sending host pointers to the device. 475 /// \note 476 /// This is to be used only with managed memory 477 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 478 479 /// Compute the sizes of the thread blocks for a given kernel. 480 /// 481 /// @param Kernel The kernel to compute thread block sizes for. 482 /// 483 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 484 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 485 486 /// Store a specific kernel launch parameter in the array of kernel launch 487 /// parameters. 488 /// 489 /// @param ArrayTy Array type of \p Parameters. 490 /// @param Parameters The list of parameters in which to store. 491 /// @param Param The kernel launch parameter to store. 492 /// @param Index The index in the parameter list, at which to store the 493 /// parameter. 494 void insertStoreParameter(Type *ArrayTy, Instruction *Parameters, 495 Instruction *Param, int Index); 496 497 /// Create kernel launch parameters. 498 /// 499 /// @param Kernel The kernel to create parameters for. 500 /// @param F The kernel function that has been created. 501 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 502 /// 503 /// @returns A stack allocated array with pointers to the parameter 504 /// values that are passed to the kernel. 505 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 506 SetVector<Value *> SubtreeValues); 507 508 /// Create declarations for kernel variable. 509 /// 510 /// This includes shared memory declarations. 511 /// 512 /// @param Kernel The kernel definition to create variables for. 513 /// @param FN The function into which to generate the variables. 514 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 515 516 /// Add CUDA annotations to module. 517 /// 518 /// Add a set of CUDA annotations that declares the maximal block dimensions 519 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 520 /// PTX compiler to bound the number of allocated registers to ensure the 521 /// resulting kernel is known to run with up to as many block dimensions 522 /// as specified here. 523 /// 524 /// @param M The module to add the annotations to. 525 /// @param BlockDimX The size of block dimension X. 526 /// @param BlockDimY The size of block dimension Y. 527 /// @param BlockDimZ The size of block dimension Z. 528 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 529 Value *BlockDimZ); 530 531 /// Create GPU kernel. 532 /// 533 /// Code generate the kernel described by @p KernelStmt. 534 /// 535 /// @param KernelStmt The ast node to generate kernel code for. 536 void createKernel(__isl_take isl_ast_node *KernelStmt); 537 538 /// Generate code that computes the size of an array. 539 /// 540 /// @param Array The array for which to compute a size. 541 Value *getArraySize(gpu_array_info *Array); 542 543 /// Generate code to compute the minimal offset at which an array is accessed. 544 /// 545 /// The offset of an array is the minimal array location accessed in a scop. 546 /// 547 /// Example: 548 /// 549 /// for (long i = 0; i < 100; i++) 550 /// A[i + 42] += ... 551 /// 552 /// getArrayOffset(A) results in 42. 553 /// 554 /// @param Array The array for which to compute the offset. 555 /// @returns An llvm::Value that contains the offset of the array. 556 Value *getArrayOffset(gpu_array_info *Array); 557 558 /// Prepare the kernel arguments for kernel code generation 559 /// 560 /// @param Kernel The kernel to generate code for. 561 /// @param FN The function created for the kernel. 562 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 563 564 /// Create kernel function. 565 /// 566 /// Create a kernel function located in a newly created module that can serve 567 /// as target for device code generation. Set the Builder to point to the 568 /// start block of this newly created function. 569 /// 570 /// @param Kernel The kernel to generate code for. 571 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 572 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 573 /// kernel. 574 void createKernelFunction(ppcg_kernel *Kernel, 575 SetVector<Value *> &SubtreeValues, 576 SetVector<Function *> &SubtreeFunctions); 577 578 /// Create the declaration of a kernel function. 579 /// 580 /// The kernel function takes as arguments: 581 /// 582 /// - One i8 pointer for each external array reference used in the kernel. 583 /// - Host iterators 584 /// - Parameters 585 /// - Other LLVM Value references (TODO) 586 /// 587 /// @param Kernel The kernel to generate the function declaration for. 588 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 589 /// 590 /// @returns The newly declared function. 591 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 592 SetVector<Value *> &SubtreeValues); 593 594 /// Insert intrinsic functions to obtain thread and block ids. 595 /// 596 /// @param The kernel to generate the intrinsic functions for. 597 void insertKernelIntrinsics(ppcg_kernel *Kernel); 598 599 /// Insert function calls to retrieve the SPIR group/local ids. 600 /// 601 /// @param Kernel The kernel to generate the function calls for. 602 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 603 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 604 605 /// Setup the creation of functions referenced by the GPU kernel. 606 /// 607 /// 1. Create new function declarations in GPUModule which are the same as 608 /// SubtreeFunctions. 609 /// 610 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 611 /// old functions (that come from the original module) to new functions 612 /// (that are created within GPUModule). That way, we generate references 613 /// to the correct function (in GPUModule) in BlockGenerator. 614 /// 615 /// @see IslNodeBuilder::ValueMap 616 /// @see BlockGenerator::GlobalMap 617 /// @see BlockGenerator::getNewValue 618 /// @see GPUNodeBuilder::getReferencesInKernel. 619 /// 620 /// @param SubtreeFunctions The set of llvm::Functions referenced by 621 /// this kernel. 622 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 623 624 /// Create a global-to-shared or shared-to-global copy statement. 625 /// 626 /// @param CopyStmt The copy statement to generate code for 627 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 628 629 /// Create code for a ScopStmt called in @p Expr. 630 /// 631 /// @param Expr The expression containing the call. 632 /// @param KernelStmt The kernel statement referenced in the call. 633 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 634 635 /// Create an in-kernel synchronization call. 636 void createKernelSync(); 637 638 /// Create a PTX assembly string for the current GPU kernel. 639 /// 640 /// @returns A string containing the corresponding PTX assembly code. 641 std::string createKernelASM(); 642 643 /// Remove references from the dominator tree to the kernel function @p F. 644 /// 645 /// @param F The function to remove references to. 646 void clearDominators(Function *F); 647 648 /// Remove references from scalar evolution to the kernel function @p F. 649 /// 650 /// @param F The function to remove references to. 651 void clearScalarEvolution(Function *F); 652 653 /// Remove references from loop info to the kernel function @p F. 654 /// 655 /// @param F The function to remove references to. 656 void clearLoops(Function *F); 657 658 /// Check if the scop requires to be linked with CUDA's libdevice. 659 bool requiresCUDALibDevice(); 660 661 /// Link with the NVIDIA libdevice library (if needed and available). 662 void addCUDALibDevice(); 663 664 /// Finalize the generation of the kernel function. 665 /// 666 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 667 /// dump its IR to stderr. 668 /// 669 /// @returns The Assembly string of the kernel. 670 std::string finalizeKernelFunction(); 671 672 /// Finalize the generation of the kernel arguments. 673 /// 674 /// This function ensures that not-read-only scalars used in a kernel are 675 /// stored back to the global memory location they are backed with before 676 /// the kernel terminates. 677 /// 678 /// @params Kernel The kernel to finalize kernel arguments for. 679 void finalizeKernelArguments(ppcg_kernel *Kernel); 680 681 /// Create code that allocates memory to store arrays on device. 682 void allocateDeviceArrays(); 683 684 /// Create code to prepare the managed device pointers. 685 void prepareManagedDeviceArrays(); 686 687 /// Free all allocated device arrays. 688 void freeDeviceArrays(); 689 690 /// Create a call to initialize the GPU context. 691 /// 692 /// @returns A pointer to the newly initialized context. 693 Value *createCallInitContext(); 694 695 /// Create a call to get the device pointer for a kernel allocation. 696 /// 697 /// @param Allocation The Polly GPU allocation 698 /// 699 /// @returns The device parameter corresponding to this allocation. 700 Value *createCallGetDevicePtr(Value *Allocation); 701 702 /// Create a call to free the GPU context. 703 /// 704 /// @param Context A pointer to an initialized GPU context. 705 void createCallFreeContext(Value *Context); 706 707 /// Create a call to allocate memory on the device. 708 /// 709 /// @param Size The size of memory to allocate 710 /// 711 /// @returns A pointer that identifies this allocation. 712 Value *createCallAllocateMemoryForDevice(Value *Size); 713 714 /// Create a call to free a device array. 715 /// 716 /// @param Array The device array to free. 717 void createCallFreeDeviceMemory(Value *Array); 718 719 /// Create a call to copy data from host to device. 720 /// 721 /// @param HostPtr A pointer to the host data that should be copied. 722 /// @param DevicePtr A device pointer specifying the location to copy to. 723 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 724 Value *Size); 725 726 /// Create a call to copy data from device to host. 727 /// 728 /// @param DevicePtr A pointer to the device data that should be copied. 729 /// @param HostPtr A host pointer specifying the location to copy to. 730 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 731 Value *Size); 732 733 /// Create a call to synchronize Host & Device. 734 /// \note 735 /// This is to be used only with managed memory. 736 void createCallSynchronizeDevice(); 737 738 /// Create a call to get a kernel from an assembly string. 739 /// 740 /// @param Buffer The string describing the kernel. 741 /// @param Entry The name of the kernel function to call. 742 /// 743 /// @returns A pointer to a kernel object 744 Value *createCallGetKernel(Value *Buffer, Value *Entry); 745 746 /// Create a call to free a GPU kernel. 747 /// 748 /// @param GPUKernel THe kernel to free. 749 void createCallFreeKernel(Value *GPUKernel); 750 751 /// Create a call to launch a GPU kernel. 752 /// 753 /// @param GPUKernel The kernel to launch. 754 /// @param GridDimX The size of the first grid dimension. 755 /// @param GridDimY The size of the second grid dimension. 756 /// @param GridBlockX The size of the first block dimension. 757 /// @param GridBlockY The size of the second block dimension. 758 /// @param GridBlockZ The size of the third block dimension. 759 /// @param Parameters A pointer to an array that contains itself pointers to 760 /// the parameter values passed for each kernel argument. 761 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 762 Value *GridDimY, Value *BlockDimX, 763 Value *BlockDimY, Value *BlockDimZ, 764 Value *Parameters); 765 }; 766 767 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 768 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 769 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 770 } 771 772 void GPUNodeBuilder::initializeAfterRTH() { 773 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 774 &*Builder.GetInsertPoint(), &DT, &LI); 775 NewBB->setName("polly.acc.initialize"); 776 Builder.SetInsertPoint(&NewBB->front()); 777 778 GPUContext = createCallInitContext(); 779 780 if (!PollyManagedMemory) 781 allocateDeviceArrays(); 782 else 783 prepareManagedDeviceArrays(); 784 } 785 786 void GPUNodeBuilder::finalize() { 787 if (!PollyManagedMemory) 788 freeDeviceArrays(); 789 790 createCallFreeContext(GPUContext); 791 IslNodeBuilder::finalize(); 792 } 793 794 void GPUNodeBuilder::allocateDeviceArrays() { 795 assert(!PollyManagedMemory && 796 "Managed memory will directly send host pointers " 797 "to the kernel. There is no need for device arrays"); 798 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 799 800 for (int i = 0; i < Prog->n_array; ++i) { 801 gpu_array_info *Array = &Prog->array[i]; 802 auto *ScopArray = (ScopArrayInfo *)Array->user; 803 std::string DevArrayName("p_dev_array_"); 804 DevArrayName.append(Array->name); 805 806 Value *ArraySize = getArraySize(Array); 807 Value *Offset = getArrayOffset(Array); 808 if (Offset) 809 ArraySize = Builder.CreateSub( 810 ArraySize, 811 Builder.CreateMul(Offset, 812 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 813 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 814 // It makes no sense to have an array of size 0. The CUDA API will 815 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 816 // choose to be defensive and catch this at the compile phase. It is 817 // most likely that we are doing something wrong with size computation. 818 if (SizeSCEV->isZero()) { 819 errs() << getUniqueScopName(&S) 820 << " has computed array size 0: " << *ArraySize 821 << " | for array: " << *(ScopArray->getBasePtr()) 822 << ". This is illegal, exiting.\n"; 823 report_fatal_error("array size was computed to be 0"); 824 } 825 826 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 827 DevArray->setName(DevArrayName); 828 DeviceAllocations[ScopArray] = DevArray; 829 } 830 831 isl_ast_build_free(Build); 832 } 833 834 void GPUNodeBuilder::prepareManagedDeviceArrays() { 835 assert(PollyManagedMemory && 836 "Device array most only be prepared in managed-memory mode"); 837 for (int i = 0; i < Prog->n_array; ++i) { 838 gpu_array_info *Array = &Prog->array[i]; 839 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 840 Value *HostPtr; 841 842 if (gpu_array_is_scalar(Array)) 843 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 844 else 845 HostPtr = ScopArray->getBasePtr(); 846 HostPtr = getLatestValue(HostPtr); 847 848 Value *Offset = getArrayOffset(Array); 849 if (Offset) { 850 HostPtr = Builder.CreatePointerCast( 851 HostPtr, ScopArray->getElementType()->getPointerTo()); 852 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset); 853 } 854 855 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 856 DeviceAllocations[ScopArray] = HostPtr; 857 } 858 } 859 860 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 861 Value *BlockDimY, Value *BlockDimZ) { 862 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 863 864 for (auto &F : *M) { 865 if (F.getCallingConv() != CallingConv::PTX_Kernel) 866 continue; 867 868 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 869 870 Metadata *Elements[] = { 871 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 872 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 873 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 874 ValueAsMetadata::get(V[2]), 875 }; 876 MDNode *Node = MDNode::get(M->getContext(), Elements); 877 AnnotationNode->addOperand(Node); 878 } 879 } 880 881 void GPUNodeBuilder::freeDeviceArrays() { 882 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 883 for (auto &Array : DeviceAllocations) 884 createCallFreeDeviceMemory(Array.second); 885 } 886 887 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 888 const char *Name = "polly_getKernel"; 889 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 890 Function *F = M->getFunction(Name); 891 892 // If F is not available, declare it. 893 if (!F) { 894 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 895 std::vector<Type *> Args; 896 Args.push_back(Builder.getInt8PtrTy()); 897 Args.push_back(Builder.getInt8PtrTy()); 898 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 899 F = Function::Create(Ty, Linkage, Name, M); 900 } 901 902 return Builder.CreateCall(F, {Buffer, Entry}); 903 } 904 905 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 906 const char *Name = "polly_getDevicePtr"; 907 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 908 Function *F = M->getFunction(Name); 909 910 // If F is not available, declare it. 911 if (!F) { 912 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 913 std::vector<Type *> Args; 914 Args.push_back(Builder.getInt8PtrTy()); 915 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 916 F = Function::Create(Ty, Linkage, Name, M); 917 } 918 919 return Builder.CreateCall(F, {Allocation}); 920 } 921 922 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 923 Value *GridDimY, Value *BlockDimX, 924 Value *BlockDimY, Value *BlockDimZ, 925 Value *Parameters) { 926 const char *Name = "polly_launchKernel"; 927 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 928 Function *F = M->getFunction(Name); 929 930 // If F is not available, declare it. 931 if (!F) { 932 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 933 std::vector<Type *> Args; 934 Args.push_back(Builder.getInt8PtrTy()); 935 Args.push_back(Builder.getInt32Ty()); 936 Args.push_back(Builder.getInt32Ty()); 937 Args.push_back(Builder.getInt32Ty()); 938 Args.push_back(Builder.getInt32Ty()); 939 Args.push_back(Builder.getInt32Ty()); 940 Args.push_back(Builder.getInt8PtrTy()); 941 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 942 F = Function::Create(Ty, Linkage, Name, M); 943 } 944 945 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 946 BlockDimZ, Parameters}); 947 } 948 949 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 950 const char *Name = "polly_freeKernel"; 951 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 952 Function *F = M->getFunction(Name); 953 954 // If F is not available, declare it. 955 if (!F) { 956 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 957 std::vector<Type *> Args; 958 Args.push_back(Builder.getInt8PtrTy()); 959 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 960 F = Function::Create(Ty, Linkage, Name, M); 961 } 962 963 Builder.CreateCall(F, {GPUKernel}); 964 } 965 966 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 967 assert(!PollyManagedMemory && 968 "Managed memory does not allocate or free memory " 969 "for device"); 970 const char *Name = "polly_freeDeviceMemory"; 971 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 972 Function *F = M->getFunction(Name); 973 974 // If F is not available, declare it. 975 if (!F) { 976 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 977 std::vector<Type *> Args; 978 Args.push_back(Builder.getInt8PtrTy()); 979 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 980 F = Function::Create(Ty, Linkage, Name, M); 981 } 982 983 Builder.CreateCall(F, {Array}); 984 } 985 986 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 987 assert(!PollyManagedMemory && 988 "Managed memory does not allocate or free memory " 989 "for device"); 990 const char *Name = "polly_allocateMemoryForDevice"; 991 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 992 Function *F = M->getFunction(Name); 993 994 // If F is not available, declare it. 995 if (!F) { 996 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 997 std::vector<Type *> Args; 998 Args.push_back(Builder.getInt64Ty()); 999 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1000 F = Function::Create(Ty, Linkage, Name, M); 1001 } 1002 1003 return Builder.CreateCall(F, {Size}); 1004 } 1005 1006 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 1007 Value *DeviceData, 1008 Value *Size) { 1009 assert(!PollyManagedMemory && 1010 "Managed memory does not transfer memory between " 1011 "device and host"); 1012 const char *Name = "polly_copyFromHostToDevice"; 1013 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1014 Function *F = M->getFunction(Name); 1015 1016 // If F is not available, declare it. 1017 if (!F) { 1018 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1019 std::vector<Type *> Args; 1020 Args.push_back(Builder.getInt8PtrTy()); 1021 Args.push_back(Builder.getInt8PtrTy()); 1022 Args.push_back(Builder.getInt64Ty()); 1023 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1024 F = Function::Create(Ty, Linkage, Name, M); 1025 } 1026 1027 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1028 } 1029 1030 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1031 Value *HostData, 1032 Value *Size) { 1033 assert(!PollyManagedMemory && 1034 "Managed memory does not transfer memory between " 1035 "device and host"); 1036 const char *Name = "polly_copyFromDeviceToHost"; 1037 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1038 Function *F = M->getFunction(Name); 1039 1040 // If F is not available, declare it. 1041 if (!F) { 1042 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1043 std::vector<Type *> Args; 1044 Args.push_back(Builder.getInt8PtrTy()); 1045 Args.push_back(Builder.getInt8PtrTy()); 1046 Args.push_back(Builder.getInt64Ty()); 1047 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1048 F = Function::Create(Ty, Linkage, Name, M); 1049 } 1050 1051 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1052 } 1053 1054 void GPUNodeBuilder::createCallSynchronizeDevice() { 1055 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1056 "managed memory"); 1057 const char *Name = "polly_synchronizeDevice"; 1058 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1059 Function *F = M->getFunction(Name); 1060 1061 // If F is not available, declare it. 1062 if (!F) { 1063 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1064 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1065 F = Function::Create(Ty, Linkage, Name, M); 1066 } 1067 1068 Builder.CreateCall(F); 1069 } 1070 1071 Value *GPUNodeBuilder::createCallInitContext() { 1072 const char *Name; 1073 1074 switch (Runtime) { 1075 case GPURuntime::CUDA: 1076 Name = "polly_initContextCUDA"; 1077 break; 1078 case GPURuntime::OpenCL: 1079 Name = "polly_initContextCL"; 1080 break; 1081 } 1082 1083 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1084 Function *F = M->getFunction(Name); 1085 1086 // If F is not available, declare it. 1087 if (!F) { 1088 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1089 std::vector<Type *> Args; 1090 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1091 F = Function::Create(Ty, Linkage, Name, M); 1092 } 1093 1094 return Builder.CreateCall(F, {}); 1095 } 1096 1097 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1098 const char *Name = "polly_freeContext"; 1099 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1100 Function *F = M->getFunction(Name); 1101 1102 // If F is not available, declare it. 1103 if (!F) { 1104 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1105 std::vector<Type *> Args; 1106 Args.push_back(Builder.getInt8PtrTy()); 1107 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1108 F = Function::Create(Ty, Linkage, Name, M); 1109 } 1110 1111 Builder.CreateCall(F, {Context}); 1112 } 1113 1114 /// Check if one string is a prefix of another. 1115 /// 1116 /// @param String The string in which to look for the prefix. 1117 /// @param Prefix The prefix to look for. 1118 static bool isPrefix(std::string String, std::string Prefix) { 1119 return String.find(Prefix) == 0; 1120 } 1121 1122 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1123 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1124 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1125 1126 if (!gpu_array_is_scalar(Array)) { 1127 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1128 1129 isl::pw_aff OffsetDimZero = ArrayBound.at(0); 1130 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1131 1132 for (unsigned int i = 1; i < Array->n_index; i++) { 1133 isl::pw_aff Bound_I = ArrayBound.at(i); 1134 isl::ast_expr Expr = Build.expr_from(Bound_I); 1135 Res = Res.mul(Expr); 1136 } 1137 1138 Value *NumElements = ExprBuilder.create(Res.release()); 1139 if (NumElements->getType() != ArraySize->getType()) 1140 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1141 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1142 } 1143 return ArraySize; 1144 } 1145 1146 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1147 if (gpu_array_is_scalar(Array)) 1148 return nullptr; 1149 1150 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1151 1152 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1153 1154 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1155 1156 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) 1157 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1158 1159 if (Min.is_subset(ZeroSet)) { 1160 return nullptr; 1161 } 1162 1163 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.ctx(), 0)); 1164 1165 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) { 1166 if (i > 0) { 1167 isl::pw_aff Bound_I = 1168 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1169 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1170 Result = Result.mul(BExpr); 1171 } 1172 isl::pw_aff DimMin = Min.dim_min(i); 1173 isl::ast_expr MExpr = Build.expr_from(DimMin); 1174 Result = Result.add(MExpr); 1175 } 1176 1177 return ExprBuilder.create(Result.release()); 1178 } 1179 1180 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1181 ScopArrayInfo *ArrayInfo) { 1182 assert(PollyManagedMemory && "Only used when you wish to get a host " 1183 "pointer for sending data to the kernel, " 1184 "with managed memory"); 1185 std::map<ScopArrayInfo *, Value *>::iterator it; 1186 it = DeviceAllocations.find(ArrayInfo); 1187 assert(it != DeviceAllocations.end() && 1188 "Device array expected to be available"); 1189 return it->second; 1190 } 1191 1192 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1193 enum DataDirection Direction) { 1194 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1195 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1196 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1197 isl_id *Id = isl_ast_expr_get_id(Arg); 1198 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1199 auto ScopArray = (ScopArrayInfo *)(Array->user); 1200 1201 Value *Size = getArraySize(Array); 1202 Value *Offset = getArrayOffset(Array); 1203 Value *DevPtr = DeviceAllocations[ScopArray]; 1204 1205 Value *HostPtr; 1206 1207 if (gpu_array_is_scalar(Array)) 1208 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1209 else 1210 HostPtr = ScopArray->getBasePtr(); 1211 HostPtr = getLatestValue(HostPtr); 1212 1213 if (Offset) { 1214 HostPtr = Builder.CreatePointerCast( 1215 HostPtr, ScopArray->getElementType()->getPointerTo()); 1216 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset); 1217 } 1218 1219 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1220 1221 if (Offset) { 1222 Size = Builder.CreateSub( 1223 Size, Builder.CreateMul( 1224 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1225 } 1226 1227 if (Direction == HOST_TO_DEVICE) 1228 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1229 else 1230 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1231 1232 isl_id_free(Id); 1233 isl_ast_expr_free(Arg); 1234 isl_ast_expr_free(Expr); 1235 isl_ast_node_free(TransferStmt); 1236 } 1237 1238 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1239 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1240 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1241 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1242 isl_id_free(Id); 1243 isl_ast_expr_free(StmtExpr); 1244 1245 const char *Str = isl_id_get_name(Id); 1246 if (!strcmp(Str, "kernel")) { 1247 createKernel(UserStmt); 1248 if (PollyManagedMemory) 1249 createCallSynchronizeDevice(); 1250 isl_ast_expr_free(Expr); 1251 return; 1252 } 1253 if (!strcmp(Str, "init_device")) { 1254 initializeAfterRTH(); 1255 isl_ast_node_free(UserStmt); 1256 isl_ast_expr_free(Expr); 1257 return; 1258 } 1259 if (!strcmp(Str, "clear_device")) { 1260 finalize(); 1261 isl_ast_node_free(UserStmt); 1262 isl_ast_expr_free(Expr); 1263 return; 1264 } 1265 if (isPrefix(Str, "to_device")) { 1266 if (!PollyManagedMemory) 1267 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1268 else 1269 isl_ast_node_free(UserStmt); 1270 1271 isl_ast_expr_free(Expr); 1272 return; 1273 } 1274 1275 if (isPrefix(Str, "from_device")) { 1276 if (!PollyManagedMemory) { 1277 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1278 } else { 1279 isl_ast_node_free(UserStmt); 1280 } 1281 isl_ast_expr_free(Expr); 1282 return; 1283 } 1284 1285 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1286 struct ppcg_kernel_stmt *KernelStmt = 1287 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1288 isl_id_free(Anno); 1289 1290 switch (KernelStmt->type) { 1291 case ppcg_kernel_domain: 1292 createScopStmt(Expr, KernelStmt); 1293 isl_ast_node_free(UserStmt); 1294 return; 1295 case ppcg_kernel_copy: 1296 createKernelCopy(KernelStmt); 1297 isl_ast_expr_free(Expr); 1298 isl_ast_node_free(UserStmt); 1299 return; 1300 case ppcg_kernel_sync: 1301 createKernelSync(); 1302 isl_ast_expr_free(Expr); 1303 isl_ast_node_free(UserStmt); 1304 return; 1305 } 1306 1307 isl_ast_expr_free(Expr); 1308 isl_ast_node_free(UserStmt); 1309 } 1310 1311 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1312 createForSequential(isl::manage(Node).as<isl::ast_node_for>(), false); 1313 } 1314 1315 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1316 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1317 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1318 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1319 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1320 Index = isl_ast_expr_address_of(Index); 1321 Value *GlobalAddr = ExprBuilder.create(Index); 1322 Type *IndexTy = GlobalAddr->getType()->getPointerElementType(); 1323 1324 if (KernelStmt->u.c.read) { 1325 LoadInst *Load = Builder.CreateLoad(IndexTy, GlobalAddr, "shared.read"); 1326 Builder.CreateStore(Load, LocalAddr); 1327 } else { 1328 LoadInst *Load = Builder.CreateLoad(IndexTy, LocalAddr, "shared.write"); 1329 Builder.CreateStore(Load, GlobalAddr); 1330 } 1331 } 1332 1333 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1334 ppcg_kernel_stmt *KernelStmt) { 1335 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1336 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1337 1338 LoopToScevMapT LTS; 1339 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1340 1341 createSubstitutions(Expr, Stmt, LTS); 1342 1343 if (Stmt->isBlockStmt()) 1344 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1345 else 1346 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1347 } 1348 1349 void GPUNodeBuilder::createKernelSync() { 1350 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1351 const char *SpirName = "__gen_ocl_barrier_global"; 1352 1353 Function *Sync; 1354 1355 switch (Arch) { 1356 case GPUArch::SPIR64: 1357 case GPUArch::SPIR32: 1358 Sync = M->getFunction(SpirName); 1359 1360 // If Sync is not available, declare it. 1361 if (!Sync) { 1362 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1363 std::vector<Type *> Args; 1364 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1365 Sync = Function::Create(Ty, Linkage, SpirName, M); 1366 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1367 } 1368 break; 1369 case GPUArch::NVPTX64: 1370 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1371 break; 1372 } 1373 1374 Builder.CreateCall(Sync, {}); 1375 } 1376 1377 /// Collect llvm::Values referenced from @p Node 1378 /// 1379 /// This function only applies to isl_ast_nodes that are user_nodes referring 1380 /// to a ScopStmt. All other node types are ignore. 1381 /// 1382 /// @param Node The node to collect references for. 1383 /// @param User A user pointer used as storage for the data that is collected. 1384 /// 1385 /// @returns isl_bool_true if data could be collected successfully. 1386 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1387 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1388 return isl_bool_true; 1389 1390 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1391 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1392 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1393 const char *Str = isl_id_get_name(Id); 1394 isl_id_free(Id); 1395 isl_ast_expr_free(StmtExpr); 1396 isl_ast_expr_free(Expr); 1397 1398 if (!isPrefix(Str, "Stmt")) 1399 return isl_bool_true; 1400 1401 Id = isl_ast_node_get_annotation(Node); 1402 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1403 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1404 isl_id_free(Id); 1405 1406 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1407 1408 return isl_bool_true; 1409 } 1410 1411 /// A list of functions that are available in NVIDIA's libdevice. 1412 const std::set<std::string> CUDALibDeviceFunctions = { 1413 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1414 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1415 1416 // A map from intrinsics to their corresponding libdevice functions. 1417 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1418 {"llvm.exp.f64", "exp"}, 1419 {"llvm.exp.f32", "expf"}, 1420 {"llvm.powi.f64.i32", "powi"}, 1421 {"llvm.powi.f32.i32", "powif"}}; 1422 1423 /// Return the corresponding CUDA libdevice function name @p Name. 1424 /// Note that this function will try to convert instrinsics in the list 1425 /// IntrinsicToLibdeviceFunc into libdevice functions. 1426 /// This is because some intrinsics such as `exp` 1427 /// are not supported by the NVPTX backend. 1428 /// If this restriction of the backend is lifted, we should refactor our code 1429 /// so that we use intrinsics whenever possible. 1430 /// 1431 /// Return "" if we are not compiling for CUDA. 1432 std::string getCUDALibDeviceFuntion(StringRef NameRef) { 1433 std::string Name = NameRef.str(); 1434 auto It = IntrinsicToLibdeviceFunc.find(Name); 1435 if (It != IntrinsicToLibdeviceFunc.end()) 1436 return getCUDALibDeviceFuntion(It->second); 1437 1438 if (CUDALibDeviceFunctions.count(Name)) 1439 return ("__nv_" + Name); 1440 1441 return ""; 1442 } 1443 1444 /// Check if F is a function that we can code-generate in a GPU kernel. 1445 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1446 assert(F && "F is an invalid pointer"); 1447 // We string compare against the name of the function to allow 1448 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1449 // "llvm.copysign". 1450 const StringRef Name = F->getName(); 1451 1452 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1453 return true; 1454 1455 return F->isIntrinsic() && 1456 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1457 Name.startswith("llvm.copysign")); 1458 } 1459 1460 /// Do not take `Function` as a subtree value. 1461 /// 1462 /// We try to take the reference of all subtree values and pass them along 1463 /// to the kernel from the host. Taking an address of any function and 1464 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1465 /// `Function`s. 1466 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1467 1468 /// Return `Function`s from `RawSubtreeValues`. 1469 static SetVector<Function *> 1470 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1471 bool AllowCUDALibDevice) { 1472 SetVector<Function *> SubtreeFunctions; 1473 for (Value *It : RawSubtreeValues) { 1474 Function *F = dyn_cast<Function>(It); 1475 if (F) { 1476 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1477 "Code should have bailed out by " 1478 "this point if an invalid function " 1479 "were present in a kernel."); 1480 SubtreeFunctions.insert(F); 1481 } 1482 } 1483 return SubtreeFunctions; 1484 } 1485 1486 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1487 isl::space> 1488 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1489 SetVector<Value *> SubtreeValues; 1490 SetVector<const SCEV *> SCEVs; 1491 SetVector<const Loop *> Loops; 1492 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1493 SubtreeReferences References = { 1494 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1495 &ParamSpace}; 1496 1497 for (const auto &I : IDToValue) 1498 SubtreeValues.insert(I.second); 1499 1500 // NOTE: this is populated in IslNodeBuilder::addParameters 1501 // See [Code generation of induction variables of loops outside Scops]. 1502 for (const auto &I : OutsideLoopIterations) 1503 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1504 1505 isl_ast_node_foreach_descendant_top_down( 1506 Kernel->tree, collectReferencesInGPUStmt, &References); 1507 1508 for (const SCEV *Expr : SCEVs) { 1509 findValues(Expr, SE, SubtreeValues); 1510 findLoops(Expr, Loops); 1511 } 1512 1513 Loops.remove_if([this](const Loop *L) { 1514 return S.contains(L) || L->contains(S.getEntry()); 1515 }); 1516 1517 for (auto &SAI : S.arrays()) 1518 SubtreeValues.remove(SAI->getBasePtr()); 1519 1520 isl_space *Space = S.getParamSpace().release(); 1521 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1522 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1523 assert(IDToValue.count(Id)); 1524 Value *Val = IDToValue[Id]; 1525 SubtreeValues.remove(Val); 1526 isl_id_free(Id); 1527 } 1528 isl_space_free(Space); 1529 1530 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1531 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1532 assert(IDToValue.count(Id)); 1533 Value *Val = IDToValue[Id]; 1534 SubtreeValues.remove(Val); 1535 isl_id_free(Id); 1536 } 1537 1538 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1539 // SubtreeValues. This is important, because we should not lose any 1540 // SubtreeValues in the process of constructing the 1541 // "ValidSubtree{Values, Functions} sets. Nor should the set 1542 // ValidSubtree{Values, Functions} have any common element. 1543 auto ValidSubtreeValuesIt = 1544 make_filter_range(SubtreeValues, isValidSubtreeValue); 1545 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1546 ValidSubtreeValuesIt.end()); 1547 1548 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1549 1550 SetVector<Function *> ValidSubtreeFunctions( 1551 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1552 1553 // @see IslNodeBuilder::getReferencesInSubtree 1554 SetVector<Value *> ReplacedValues; 1555 for (Value *V : ValidSubtreeValues) { 1556 auto It = ValueMap.find(V); 1557 if (It == ValueMap.end()) 1558 ReplacedValues.insert(V); 1559 else 1560 ReplacedValues.insert(It->second); 1561 } 1562 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1563 ParamSpace); 1564 } 1565 1566 void GPUNodeBuilder::clearDominators(Function *F) { 1567 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1568 std::vector<BasicBlock *> Nodes; 1569 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1570 Nodes.push_back(I->getBlock()); 1571 1572 for (BasicBlock *BB : Nodes) 1573 DT.eraseNode(BB); 1574 } 1575 1576 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1577 for (BasicBlock &BB : *F) { 1578 Loop *L = LI.getLoopFor(&BB); 1579 if (L) 1580 SE.forgetLoop(L); 1581 } 1582 } 1583 1584 void GPUNodeBuilder::clearLoops(Function *F) { 1585 SmallSet<Loop *, 1> WorkList; 1586 for (BasicBlock &BB : *F) { 1587 Loop *L = LI.getLoopFor(&BB); 1588 if (L) 1589 WorkList.insert(L); 1590 } 1591 for (auto *L : WorkList) 1592 LI.erase(L); 1593 } 1594 1595 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1596 std::vector<Value *> Sizes; 1597 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1598 1599 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1600 for (long i = 0; i < Kernel->n_grid; i++) { 1601 isl::pw_aff Size = GridSizePwAffs.at(i); 1602 isl::ast_expr GridSize = Context.expr_from(Size); 1603 Value *Res = ExprBuilder.create(GridSize.release()); 1604 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1605 Sizes.push_back(Res); 1606 } 1607 1608 for (long i = Kernel->n_grid; i < 3; i++) 1609 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1610 1611 return std::make_tuple(Sizes[0], Sizes[1]); 1612 } 1613 1614 std::tuple<Value *, Value *, Value *> 1615 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1616 std::vector<Value *> Sizes; 1617 1618 for (long i = 0; i < Kernel->n_block; i++) { 1619 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1620 Sizes.push_back(Res); 1621 } 1622 1623 for (long i = Kernel->n_block; i < 3; i++) 1624 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1625 1626 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1627 } 1628 1629 void GPUNodeBuilder::insertStoreParameter(Type *ArrayTy, 1630 Instruction *Parameters, 1631 Instruction *Param, int Index) { 1632 Value *Slot = Builder.CreateGEP( 1633 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1634 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1635 Builder.CreateStore(ParamTyped, Slot); 1636 } 1637 1638 Value * 1639 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1640 SetVector<Value *> SubtreeValues) { 1641 const int NumArgs = F->arg_size(); 1642 std::vector<int> ArgSizes(NumArgs); 1643 1644 // If we are using the OpenCL Runtime, we need to add the kernel argument 1645 // sizes to the end of the launch-parameter list, so OpenCL can determine 1646 // how big the respective kernel arguments are. 1647 // Here we need to reserve adequate space for that. 1648 Type *ArrayTy; 1649 if (Runtime == GPURuntime::OpenCL) 1650 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1651 else 1652 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1653 1654 BasicBlock *EntryBlock = 1655 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1656 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1657 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1658 Instruction *Parameters = new AllocaInst( 1659 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1660 1661 int Index = 0; 1662 for (long i = 0; i < Prog->n_array; i++) { 1663 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1664 continue; 1665 1666 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1667 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1668 1669 if (Runtime == GPURuntime::OpenCL) 1670 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1671 1672 Value *DevArray = nullptr; 1673 if (PollyManagedMemory) { 1674 DevArray = getManagedDeviceArray(&Prog->array[i], 1675 const_cast<ScopArrayInfo *>(SAI)); 1676 } else { 1677 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1678 DevArray = createCallGetDevicePtr(DevArray); 1679 } 1680 assert(DevArray != nullptr && "Array to be offloaded to device not " 1681 "initialized"); 1682 Value *Offset = getArrayOffset(&Prog->array[i]); 1683 1684 if (Offset) { 1685 DevArray = Builder.CreatePointerCast( 1686 DevArray, SAI->getElementType()->getPointerTo()); 1687 DevArray = Builder.CreateGEP(SAI->getElementType(), DevArray, 1688 Builder.CreateNeg(Offset)); 1689 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1690 } 1691 Value *Slot = Builder.CreateGEP( 1692 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1693 1694 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1695 Value *ValPtr = nullptr; 1696 if (PollyManagedMemory) 1697 ValPtr = DevArray; 1698 else 1699 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1700 1701 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1702 " to be stored into Parameters"); 1703 Value *ValPtrCast = 1704 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1705 Builder.CreateStore(ValPtrCast, Slot); 1706 } else { 1707 Instruction *Param = 1708 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1709 Launch + "_param_" + std::to_string(Index), 1710 EntryBlock->getTerminator()); 1711 Builder.CreateStore(DevArray, Param); 1712 Value *ParamTyped = 1713 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1714 Builder.CreateStore(ParamTyped, Slot); 1715 } 1716 Index++; 1717 } 1718 1719 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1720 1721 for (long i = 0; i < NumHostIters; i++) { 1722 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1723 Value *Val = IDToValue[Id]; 1724 isl_id_free(Id); 1725 1726 if (Runtime == GPURuntime::OpenCL) 1727 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1728 1729 Instruction *Param = 1730 new AllocaInst(Val->getType(), AddressSpace, 1731 Launch + "_param_" + std::to_string(Index), 1732 EntryBlock->getTerminator()); 1733 Builder.CreateStore(Val, Param); 1734 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1735 Index++; 1736 } 1737 1738 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1739 1740 for (long i = 0; i < NumVars; i++) { 1741 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1742 Value *Val = IDToValue[Id]; 1743 if (ValueMap.count(Val)) 1744 Val = ValueMap[Val]; 1745 isl_id_free(Id); 1746 1747 if (Runtime == GPURuntime::OpenCL) 1748 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1749 1750 Instruction *Param = 1751 new AllocaInst(Val->getType(), AddressSpace, 1752 Launch + "_param_" + std::to_string(Index), 1753 EntryBlock->getTerminator()); 1754 Builder.CreateStore(Val, Param); 1755 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1756 Index++; 1757 } 1758 1759 for (auto Val : SubtreeValues) { 1760 if (Runtime == GPURuntime::OpenCL) 1761 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1762 1763 Instruction *Param = 1764 new AllocaInst(Val->getType(), AddressSpace, 1765 Launch + "_param_" + std::to_string(Index), 1766 EntryBlock->getTerminator()); 1767 Builder.CreateStore(Val, Param); 1768 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1769 Index++; 1770 } 1771 1772 if (Runtime == GPURuntime::OpenCL) { 1773 for (int i = 0; i < NumArgs; i++) { 1774 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1775 Instruction *Param = 1776 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1777 Launch + "_param_size_" + std::to_string(i), 1778 EntryBlock->getTerminator()); 1779 Builder.CreateStore(Val, Param); 1780 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1781 Index++; 1782 } 1783 } 1784 1785 auto Location = EntryBlock->getTerminator(); 1786 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1787 Launch + "_params_i8ptr", Location); 1788 } 1789 1790 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1791 SetVector<Function *> SubtreeFunctions) { 1792 for (auto Fn : SubtreeFunctions) { 1793 const std::string ClonedFnName = Fn->getName().str(); 1794 Function *Clone = GPUModule->getFunction(ClonedFnName); 1795 if (!Clone) 1796 Clone = 1797 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1798 ClonedFnName, GPUModule.get()); 1799 assert(Clone && "Expected cloned function to be initialized."); 1800 assert(ValueMap.find(Fn) == ValueMap.end() && 1801 "Fn already present in ValueMap"); 1802 ValueMap[Fn] = Clone; 1803 } 1804 } 1805 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1806 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1807 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1808 isl_id_free(Id); 1809 isl_ast_node_free(KernelStmt); 1810 1811 if (Kernel->n_grid > 1) 1812 DeepestParallel = std::max( 1813 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1814 else 1815 DeepestSequential = std::max( 1816 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1817 1818 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1819 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1820 1821 SetVector<Value *> SubtreeValues; 1822 SetVector<Function *> SubtreeFunctions; 1823 SetVector<const Loop *> Loops; 1824 isl::space ParamSpace; 1825 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1826 getReferencesInKernel(Kernel); 1827 1828 // Add parameters that appear only in the access function to the kernel 1829 // space. This is important to make sure that all isl_ids are passed as 1830 // parameters to the kernel, even though we may not have all parameters 1831 // in the context to improve compile time. 1832 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1833 1834 assert(Kernel->tree && "Device AST of kernel node is empty"); 1835 1836 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1837 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1838 ValueMapT HostValueMap = ValueMap; 1839 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1840 ScalarMap.clear(); 1841 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1842 EscapeMap.clear(); 1843 1844 // Create for all loops we depend on values that contain the current loop 1845 // iteration. These values are necessary to generate code for SCEVs that 1846 // depend on such loops. As a result we need to pass them to the subfunction. 1847 for (const Loop *L : Loops) { 1848 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1849 SE.getUnknown(Builder.getInt64(1)), 1850 L, SCEV::FlagAnyWrap); 1851 Value *V = generateSCEV(OuterLIV); 1852 OutsideLoopIterations[L] = SE.getUnknown(V); 1853 SubtreeValues.insert(V); 1854 } 1855 1856 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1857 setupKernelSubtreeFunctions(SubtreeFunctions); 1858 1859 create(isl_ast_node_copy(Kernel->tree)); 1860 1861 finalizeKernelArguments(Kernel); 1862 Function *F = Builder.GetInsertBlock()->getParent(); 1863 if (Arch == GPUArch::NVPTX64) 1864 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1865 clearDominators(F); 1866 clearScalarEvolution(F); 1867 clearLoops(F); 1868 1869 IDToValue = HostIDs; 1870 1871 ValueMap = std::move(HostValueMap); 1872 ScalarMap = std::move(HostScalarMap); 1873 EscapeMap = std::move(HostEscapeMap); 1874 IDToSAI.clear(); 1875 Annotator.resetAlternativeAliasBases(); 1876 for (auto &BasePtr : LocalArrays) 1877 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1878 LocalArrays.clear(); 1879 1880 std::string ASMString = finalizeKernelFunction(); 1881 Builder.SetInsertPoint(&HostInsertPoint); 1882 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1883 1884 std::string Name = getKernelFuncName(Kernel->id); 1885 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1886 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1887 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1888 1889 Value *GridDimX, *GridDimY; 1890 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1891 1892 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1893 BlockDimZ, Parameters); 1894 createCallFreeKernel(GPUKernel); 1895 1896 for (auto Id : KernelIds) 1897 isl_id_free(Id); 1898 1899 KernelIds.clear(); 1900 } 1901 1902 /// Compute the DataLayout string for the NVPTX backend. 1903 /// 1904 /// @param is64Bit Are we looking for a 64 bit architecture? 1905 static std::string computeNVPTXDataLayout(bool is64Bit) { 1906 std::string Ret = ""; 1907 1908 if (!is64Bit) { 1909 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1910 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1911 "64-v128:128:128-n16:32:64"; 1912 } else { 1913 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1914 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1915 "64-v128:128:128-n16:32:64"; 1916 } 1917 1918 return Ret; 1919 } 1920 1921 /// Compute the DataLayout string for a SPIR kernel. 1922 /// 1923 /// @param is64Bit Are we looking for a 64 bit architecture? 1924 static std::string computeSPIRDataLayout(bool is64Bit) { 1925 std::string Ret = ""; 1926 1927 if (!is64Bit) { 1928 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1929 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1930 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1931 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1932 } else { 1933 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1934 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1935 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1936 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1937 } 1938 1939 return Ret; 1940 } 1941 1942 Function * 1943 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1944 SetVector<Value *> &SubtreeValues) { 1945 std::vector<Type *> Args; 1946 std::string Identifier = getKernelFuncName(Kernel->id); 1947 1948 std::vector<Metadata *> MemoryType; 1949 1950 for (long i = 0; i < Prog->n_array; i++) { 1951 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1952 continue; 1953 1954 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1955 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1956 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1957 Args.push_back(SAI->getElementType()); 1958 MemoryType.push_back( 1959 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1960 } else { 1961 static const int UseGlobalMemory = 1; 1962 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1963 MemoryType.push_back( 1964 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1965 } 1966 } 1967 1968 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1969 1970 for (long i = 0; i < NumHostIters; i++) { 1971 Args.push_back(Builder.getInt64Ty()); 1972 MemoryType.push_back( 1973 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1974 } 1975 1976 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1977 1978 for (long i = 0; i < NumVars; i++) { 1979 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1980 Value *Val = IDToValue[Id]; 1981 isl_id_free(Id); 1982 Args.push_back(Val->getType()); 1983 MemoryType.push_back( 1984 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1985 } 1986 1987 for (auto *V : SubtreeValues) { 1988 Args.push_back(V->getType()); 1989 MemoryType.push_back( 1990 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1991 } 1992 1993 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1994 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1995 GPUModule.get()); 1996 1997 std::vector<Metadata *> EmptyStrings; 1998 1999 for (unsigned int i = 0; i < MemoryType.size(); i++) { 2000 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 2001 } 2002 2003 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 2004 FN->setMetadata("kernel_arg_addr_space", 2005 MDNode::get(FN->getContext(), MemoryType)); 2006 FN->setMetadata("kernel_arg_name", 2007 MDNode::get(FN->getContext(), EmptyStrings)); 2008 FN->setMetadata("kernel_arg_access_qual", 2009 MDNode::get(FN->getContext(), EmptyStrings)); 2010 FN->setMetadata("kernel_arg_type", 2011 MDNode::get(FN->getContext(), EmptyStrings)); 2012 FN->setMetadata("kernel_arg_type_qual", 2013 MDNode::get(FN->getContext(), EmptyStrings)); 2014 FN->setMetadata("kernel_arg_base_type", 2015 MDNode::get(FN->getContext(), EmptyStrings)); 2016 } 2017 2018 switch (Arch) { 2019 case GPUArch::NVPTX64: 2020 FN->setCallingConv(CallingConv::PTX_Kernel); 2021 break; 2022 case GPUArch::SPIR32: 2023 case GPUArch::SPIR64: 2024 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2025 break; 2026 } 2027 2028 auto Arg = FN->arg_begin(); 2029 for (long i = 0; i < Kernel->n_array; i++) { 2030 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2031 continue; 2032 2033 Arg->setName(Kernel->array[i].array->name); 2034 2035 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2036 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2037 Type *EleTy = SAI->getElementType(); 2038 Value *Val = &*Arg; 2039 SmallVector<const SCEV *, 4> Sizes; 2040 isl_ast_build *Build = 2041 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2042 Sizes.push_back(nullptr); 2043 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2044 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2045 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2046 auto V = ExprBuilder.create(DimSize); 2047 Sizes.push_back(SE.getSCEV(V)); 2048 } 2049 const ScopArrayInfo *SAIRep = 2050 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2051 LocalArrays.push_back(Val); 2052 2053 isl_ast_build_free(Build); 2054 KernelIds.push_back(Id); 2055 IDToSAI[Id] = SAIRep; 2056 Arg++; 2057 } 2058 2059 for (long i = 0; i < NumHostIters; i++) { 2060 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2061 Arg->setName(isl_id_get_name(Id)); 2062 IDToValue[Id] = &*Arg; 2063 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2064 Arg++; 2065 } 2066 2067 for (long i = 0; i < NumVars; i++) { 2068 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2069 Arg->setName(isl_id_get_name(Id)); 2070 Value *Val = IDToValue[Id]; 2071 ValueMap[Val] = &*Arg; 2072 IDToValue[Id] = &*Arg; 2073 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2074 Arg++; 2075 } 2076 2077 for (auto *V : SubtreeValues) { 2078 Arg->setName(V->getName()); 2079 ValueMap[V] = &*Arg; 2080 Arg++; 2081 } 2082 2083 return FN; 2084 } 2085 2086 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2087 Intrinsic::ID IntrinsicsBID[2]; 2088 Intrinsic::ID IntrinsicsTID[3]; 2089 2090 switch (Arch) { 2091 case GPUArch::SPIR64: 2092 case GPUArch::SPIR32: 2093 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2094 case GPUArch::NVPTX64: 2095 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2096 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2097 2098 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2099 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2100 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2101 break; 2102 } 2103 2104 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2105 std::string Name = isl_id_get_name(Id); 2106 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2107 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2108 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2109 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2110 IDToValue[Id] = Val; 2111 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2112 }; 2113 2114 for (int i = 0; i < Kernel->n_grid; ++i) { 2115 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2116 addId(Id, IntrinsicsBID[i]); 2117 } 2118 2119 for (int i = 0; i < Kernel->n_block; ++i) { 2120 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2121 addId(Id, IntrinsicsTID[i]); 2122 } 2123 } 2124 2125 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2126 bool SizeTypeIs64bit) { 2127 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2128 "__gen_ocl_get_group_id1", 2129 "__gen_ocl_get_group_id2"}; 2130 2131 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2132 "__gen_ocl_get_local_id1", 2133 "__gen_ocl_get_local_id2"}; 2134 IntegerType *SizeT = 2135 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2136 2137 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2138 IntegerType *SizeT) mutable { 2139 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2140 Function *FN = M->getFunction(Name); 2141 2142 // If FN is not available, declare it. 2143 if (!FN) { 2144 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2145 std::vector<Type *> Args; 2146 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2147 FN = Function::Create(Ty, Linkage, Name, M); 2148 FN->setCallingConv(CallingConv::SPIR_FUNC); 2149 } 2150 2151 Value *Val = Builder.CreateCall(FN, {}); 2152 if (SizeT == Builder.getInt32Ty()) 2153 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2154 IDToValue[Id] = Val; 2155 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2156 }; 2157 2158 for (int i = 0; i < Kernel->n_grid; ++i) 2159 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2160 2161 for (int i = 0; i < Kernel->n_block; ++i) 2162 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2163 } 2164 2165 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2166 auto Arg = FN->arg_begin(); 2167 for (long i = 0; i < Kernel->n_array; i++) { 2168 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2169 continue; 2170 2171 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2172 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2173 isl_id_free(Id); 2174 2175 if (SAI->getNumberOfDimensions() > 0) { 2176 Arg++; 2177 continue; 2178 } 2179 2180 Value *Val = &*Arg; 2181 2182 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2183 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2184 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2185 Val = Builder.CreateLoad(SAI->getElementType(), TypedArgPtr); 2186 } 2187 2188 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2189 Builder.CreateStore(Val, Alloca); 2190 2191 Arg++; 2192 } 2193 } 2194 2195 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2196 auto *FN = Builder.GetInsertBlock()->getParent(); 2197 auto Arg = FN->arg_begin(); 2198 2199 bool StoredScalar = false; 2200 for (long i = 0; i < Kernel->n_array; i++) { 2201 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2202 continue; 2203 2204 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2205 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2206 isl_id_free(Id); 2207 2208 if (SAI->getNumberOfDimensions() > 0) { 2209 Arg++; 2210 continue; 2211 } 2212 2213 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2214 Arg++; 2215 continue; 2216 } 2217 2218 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2219 Value *ArgPtr = &*Arg; 2220 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2221 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2222 Value *Val = Builder.CreateLoad(SAI->getElementType(), Alloca); 2223 Builder.CreateStore(Val, TypedArgPtr); 2224 StoredScalar = true; 2225 2226 Arg++; 2227 } 2228 2229 if (StoredScalar) { 2230 /// In case more than one thread contains scalar stores, the generated 2231 /// code might be incorrect, if we only store at the end of the kernel. 2232 /// To support this case we need to store these scalars back at each 2233 /// memory store or at least before each kernel barrier. 2234 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2235 BuildSuccessful = 0; 2236 LLVM_DEBUG( 2237 dbgs() << getUniqueScopName(&S) 2238 << " has a store to a scalar value that" 2239 " would be undefined to run in parallel. Bailing out.\n";); 2240 } 2241 } 2242 } 2243 2244 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2245 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2246 2247 for (int i = 0; i < Kernel->n_var; ++i) { 2248 struct ppcg_kernel_var &Var = Kernel->var[i]; 2249 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2250 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2251 2252 Type *ArrayTy = EleTy; 2253 SmallVector<const SCEV *, 4> Sizes; 2254 2255 Sizes.push_back(nullptr); 2256 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2257 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2258 long Bound = isl_val_get_num_si(Val); 2259 isl_val_free(Val); 2260 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2261 } 2262 2263 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2264 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2265 long Bound = isl_val_get_num_si(Val); 2266 isl_val_free(Val); 2267 ArrayTy = ArrayType::get(ArrayTy, Bound); 2268 } 2269 2270 const ScopArrayInfo *SAI; 2271 Value *Allocation; 2272 if (Var.type == ppcg_access_shared) { 2273 auto GlobalVar = new GlobalVariable( 2274 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2275 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2276 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); 2277 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2278 2279 Allocation = GlobalVar; 2280 } else if (Var.type == ppcg_access_private) { 2281 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2282 } else { 2283 llvm_unreachable("unknown variable type"); 2284 } 2285 SAI = 2286 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2287 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2288 IDToValue[Id] = Allocation; 2289 LocalArrays.push_back(Allocation); 2290 KernelIds.push_back(Id); 2291 IDToSAI[Id] = SAI; 2292 } 2293 } 2294 2295 void GPUNodeBuilder::createKernelFunction( 2296 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2297 SetVector<Function *> &SubtreeFunctions) { 2298 std::string Identifier = getKernelFuncName(Kernel->id); 2299 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2300 2301 switch (Arch) { 2302 case GPUArch::NVPTX64: 2303 if (Runtime == GPURuntime::CUDA) 2304 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2305 else if (Runtime == GPURuntime::OpenCL) 2306 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2307 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2308 break; 2309 case GPUArch::SPIR32: 2310 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2311 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2312 break; 2313 case GPUArch::SPIR64: 2314 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2315 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2316 break; 2317 } 2318 2319 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2320 2321 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2322 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2323 2324 DT.addNewBlock(EntryBlock, PrevBlock); 2325 2326 Builder.SetInsertPoint(EntryBlock); 2327 Builder.CreateRetVoid(); 2328 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2329 2330 ScopDetection::markFunctionAsInvalid(FN); 2331 2332 prepareKernelArguments(Kernel, FN); 2333 createKernelVariables(Kernel, FN); 2334 2335 switch (Arch) { 2336 case GPUArch::NVPTX64: 2337 insertKernelIntrinsics(Kernel); 2338 break; 2339 case GPUArch::SPIR32: 2340 insertKernelCallsSPIR(Kernel, false); 2341 break; 2342 case GPUArch::SPIR64: 2343 insertKernelCallsSPIR(Kernel, true); 2344 break; 2345 } 2346 } 2347 2348 std::string GPUNodeBuilder::createKernelASM() { 2349 llvm::Triple GPUTriple; 2350 2351 switch (Arch) { 2352 case GPUArch::NVPTX64: 2353 switch (Runtime) { 2354 case GPURuntime::CUDA: 2355 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2356 break; 2357 case GPURuntime::OpenCL: 2358 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2359 break; 2360 } 2361 break; 2362 case GPUArch::SPIR64: 2363 case GPUArch::SPIR32: 2364 std::string SPIRAssembly; 2365 raw_string_ostream IROstream(SPIRAssembly); 2366 IROstream << *GPUModule; 2367 IROstream.flush(); 2368 return SPIRAssembly; 2369 } 2370 2371 std::string ErrMsg; 2372 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2373 2374 if (!GPUTarget) { 2375 errs() << ErrMsg << "\n"; 2376 return ""; 2377 } 2378 2379 TargetOptions Options; 2380 Options.UnsafeFPMath = FastMath; 2381 2382 std::string subtarget; 2383 2384 switch (Arch) { 2385 case GPUArch::NVPTX64: 2386 subtarget = CudaVersion; 2387 break; 2388 case GPUArch::SPIR32: 2389 case GPUArch::SPIR64: 2390 llvm_unreachable("No subtarget for SPIR architecture"); 2391 } 2392 2393 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2394 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2395 2396 SmallString<0> ASMString; 2397 raw_svector_ostream ASMStream(ASMString); 2398 llvm::legacy::PassManager PM; 2399 2400 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2401 2402 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, 2403 true /* verify */)) { 2404 errs() << "The target does not support generation of this file type!\n"; 2405 return ""; 2406 } 2407 2408 PM.run(*GPUModule); 2409 2410 return ASMStream.str().str(); 2411 } 2412 2413 bool GPUNodeBuilder::requiresCUDALibDevice() { 2414 bool RequiresLibDevice = false; 2415 for (Function &F : GPUModule->functions()) { 2416 if (!F.isDeclaration()) 2417 continue; 2418 2419 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2420 if (CUDALibDeviceFunc.length() != 0) { 2421 // We need to handle the case where a module looks like this: 2422 // @expf(..) 2423 // @llvm.exp.f64(..) 2424 // Both of these functions would be renamed to `__nv_expf`. 2425 // 2426 // So, we must first check for the existence of the libdevice function. 2427 // If this exists, we replace our current function with it. 2428 // 2429 // If it does not exist, we rename the current function to the 2430 // libdevice functiono name. 2431 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2432 F.replaceAllUsesWith(Replacement); 2433 else 2434 F.setName(CUDALibDeviceFunc); 2435 RequiresLibDevice = true; 2436 } 2437 } 2438 2439 return RequiresLibDevice; 2440 } 2441 2442 void GPUNodeBuilder::addCUDALibDevice() { 2443 if (Arch != GPUArch::NVPTX64) 2444 return; 2445 2446 if (requiresCUDALibDevice()) { 2447 SMDiagnostic Error; 2448 2449 errs() << CUDALibDevice << "\n"; 2450 auto LibDeviceModule = 2451 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2452 2453 if (!LibDeviceModule) { 2454 BuildSuccessful = false; 2455 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2456 "kernel generation. Please set -polly-acc-libdevice " 2457 "accordingly.\n"); 2458 return; 2459 } 2460 2461 Linker L(*GPUModule); 2462 2463 // Set an nvptx64 target triple to avoid linker warnings. The original 2464 // triple of the libdevice files are nvptx-unknown-unknown. 2465 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2466 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2467 } 2468 } 2469 2470 std::string GPUNodeBuilder::finalizeKernelFunction() { 2471 2472 if (verifyModule(*GPUModule)) { 2473 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2474 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2475 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2476 verifyModule(*GPUModule, &dbgs());); 2477 2478 if (FailOnVerifyModuleFailure) 2479 llvm_unreachable("VerifyModule failed."); 2480 2481 BuildSuccessful = false; 2482 return ""; 2483 } 2484 2485 addCUDALibDevice(); 2486 2487 if (DumpKernelIR) 2488 outs() << *GPUModule << "\n"; 2489 2490 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2491 // Optimize module. 2492 llvm::legacy::PassManager OptPasses; 2493 PassManagerBuilder PassBuilder; 2494 PassBuilder.OptLevel = 3; 2495 PassBuilder.SizeLevel = 0; 2496 PassBuilder.populateModulePassManager(OptPasses); 2497 OptPasses.run(*GPUModule); 2498 } 2499 2500 std::string Assembly = createKernelASM(); 2501 2502 if (DumpKernelASM) 2503 outs() << Assembly << "\n"; 2504 2505 GPUModule.release(); 2506 KernelIDs.clear(); 2507 2508 return Assembly; 2509 } 2510 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2511 /// @param PwAffs The list of piecewise affine functions to create an 2512 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2513 /// all the isl_pw_aff are used up by this function. 2514 /// 2515 /// @returns The `isl_pw_aff_list`. 2516 __isl_give isl_pw_aff_list * 2517 createPwAffList(isl_ctx *Context, 2518 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2519 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2520 2521 for (unsigned i = 0; i < PwAffs.size(); i++) { 2522 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2523 } 2524 return List; 2525 } 2526 2527 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2528 /// 2529 /// We loop over all `pw_aff` and align all of their spaces together to 2530 /// create a common space for all the `pw_aff`. This common space is the 2531 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2532 /// with the given `SeedSpace`. 2533 /// @param PwAffs The list of piecewise affine functions we want to align. 2534 /// This is an rvalue reference because the entire vector is 2535 /// used up by the end of the operation. 2536 /// @param SeedSpace The space to start the alignment process with. 2537 /// @returns A std::pair, whose first element is the aligned space, 2538 /// whose second element is the vector of aligned piecewise 2539 /// affines. 2540 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2541 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2542 __isl_take isl_space *SeedSpace) { 2543 assert(SeedSpace && "Invalid seed space given."); 2544 2545 isl_space *AlignSpace = SeedSpace; 2546 for (isl_pw_aff *PwAff : PwAffs) { 2547 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2548 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2549 } 2550 std::vector<isl_pw_aff *> AdjustedPwAffs; 2551 2552 for (unsigned i = 0; i < PwAffs.size(); i++) { 2553 isl_pw_aff *Adjusted = PwAffs[i]; 2554 assert(Adjusted && "Invalid pw_aff given."); 2555 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2556 AdjustedPwAffs.push_back(Adjusted); 2557 } 2558 return std::make_pair(AlignSpace, AdjustedPwAffs); 2559 } 2560 2561 namespace { 2562 class PPCGCodeGeneration : public ScopPass { 2563 public: 2564 static char ID; 2565 2566 GPURuntime Runtime = GPURuntime::CUDA; 2567 2568 GPUArch Architecture = GPUArch::NVPTX64; 2569 2570 /// The scop that is currently processed. 2571 Scop *S; 2572 2573 LoopInfo *LI; 2574 DominatorTree *DT; 2575 ScalarEvolution *SE; 2576 const DataLayout *DL; 2577 RegionInfo *RI; 2578 2579 PPCGCodeGeneration() : ScopPass(ID) { 2580 // Apply defaults. 2581 Runtime = GPURuntimeChoice; 2582 Architecture = GPUArchChoice; 2583 } 2584 2585 /// Construct compilation options for PPCG. 2586 /// 2587 /// @returns The compilation options. 2588 ppcg_options *createPPCGOptions() { 2589 auto DebugOptions = 2590 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2591 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2592 2593 DebugOptions->dump_schedule_constraints = false; 2594 DebugOptions->dump_schedule = false; 2595 DebugOptions->dump_final_schedule = false; 2596 DebugOptions->dump_sizes = false; 2597 DebugOptions->verbose = false; 2598 2599 Options->debug = DebugOptions; 2600 2601 Options->group_chains = false; 2602 Options->reschedule = true; 2603 Options->scale_tile_loops = false; 2604 Options->wrap = false; 2605 2606 Options->non_negative_parameters = false; 2607 Options->ctx = nullptr; 2608 Options->sizes = nullptr; 2609 2610 Options->tile = true; 2611 Options->tile_size = 32; 2612 2613 Options->isolate_full_tiles = false; 2614 2615 Options->use_private_memory = PrivateMemory; 2616 Options->use_shared_memory = SharedMemory; 2617 Options->max_shared_memory = 48 * 1024; 2618 2619 Options->target = PPCG_TARGET_CUDA; 2620 Options->openmp = false; 2621 Options->linearize_device_arrays = true; 2622 Options->allow_gnu_extensions = false; 2623 2624 Options->unroll_copy_shared = false; 2625 Options->unroll_gpu_tile = false; 2626 Options->live_range_reordering = true; 2627 2628 Options->live_range_reordering = true; 2629 Options->hybrid = false; 2630 Options->opencl_compiler_options = nullptr; 2631 Options->opencl_use_gpu = false; 2632 Options->opencl_n_include_file = 0; 2633 Options->opencl_include_files = nullptr; 2634 Options->opencl_print_kernel_types = false; 2635 Options->opencl_embed_kernel_code = false; 2636 2637 Options->save_schedule_file = nullptr; 2638 Options->load_schedule_file = nullptr; 2639 2640 return Options; 2641 } 2642 2643 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2644 /// 2645 /// Instead of a normal access of the form: 2646 /// 2647 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2648 /// 2649 /// a tagged access has the form 2650 /// 2651 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2652 /// 2653 /// where 'id' is an additional space that references the memory access that 2654 /// triggered the access. 2655 /// 2656 /// @param AccessTy The type of the memory accesses to collect. 2657 /// 2658 /// @return The relation describing all tagged memory accesses. 2659 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2660 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2661 2662 for (auto &Stmt : *S) 2663 for (auto &Acc : Stmt) 2664 if (Acc->getType() == AccessTy) { 2665 isl_map *Relation = Acc->getAccessRelation().release(); 2666 Relation = 2667 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2668 2669 isl_space *Space = isl_map_get_space(Relation); 2670 Space = isl_space_range(Space); 2671 Space = isl_space_from_range(Space); 2672 Space = 2673 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2674 isl_map *Universe = isl_map_universe(Space); 2675 Relation = isl_map_domain_product(Relation, Universe); 2676 Accesses = isl_union_map_add_map(Accesses, Relation); 2677 } 2678 2679 return Accesses; 2680 } 2681 2682 /// Get the set of all read accesses, tagged with the access id. 2683 /// 2684 /// @see getTaggedAccesses 2685 isl_union_map *getTaggedReads() { 2686 return getTaggedAccesses(MemoryAccess::READ); 2687 } 2688 2689 /// Get the set of all may (and must) accesses, tagged with the access id. 2690 /// 2691 /// @see getTaggedAccesses 2692 isl_union_map *getTaggedMayWrites() { 2693 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2694 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2695 } 2696 2697 /// Get the set of all must accesses, tagged with the access id. 2698 /// 2699 /// @see getTaggedAccesses 2700 isl_union_map *getTaggedMustWrites() { 2701 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2702 } 2703 2704 /// Collect parameter and array names as isl_ids. 2705 /// 2706 /// To reason about the different parameters and arrays used, ppcg requires 2707 /// a list of all isl_ids in use. As PPCG traditionally performs 2708 /// source-to-source compilation each of these isl_ids is mapped to the 2709 /// expression that represents it. As we do not have a corresponding 2710 /// expression in Polly, we just map each id to a 'zero' expression to match 2711 /// the data format that ppcg expects. 2712 /// 2713 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2714 __isl_give isl_id_to_ast_expr *getNames() { 2715 auto *Names = isl_id_to_ast_expr_alloc( 2716 S->getIslCtx().get(), 2717 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2718 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2719 2720 for (const SCEV *P : S->parameters()) { 2721 isl_id *Id = S->getIdForParam(P).release(); 2722 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2723 } 2724 2725 for (auto &Array : S->arrays()) { 2726 auto Id = Array->getBasePtrId().release(); 2727 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2728 } 2729 2730 isl_ast_expr_free(Zero); 2731 2732 return Names; 2733 } 2734 2735 /// Create a new PPCG scop from the current scop. 2736 /// 2737 /// The PPCG scop is initialized with data from the current polly::Scop. From 2738 /// this initial data, the data-dependences in the PPCG scop are initialized. 2739 /// We do not use Polly's dependence analysis for now, to ensure we match 2740 /// the PPCG default behaviour more closely. 2741 /// 2742 /// @returns A new ppcg scop. 2743 ppcg_scop *createPPCGScop() { 2744 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2745 2746 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2747 2748 PPCGScop->options = createPPCGOptions(); 2749 // enable live range reordering 2750 PPCGScop->options->live_range_reordering = 1; 2751 2752 PPCGScop->start = 0; 2753 PPCGScop->end = 0; 2754 2755 PPCGScop->context = S->getContext().release(); 2756 PPCGScop->domain = S->getDomains().release(); 2757 // TODO: investigate this further. PPCG calls collect_call_domains. 2758 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2759 PPCGScop->tagged_reads = getTaggedReads(); 2760 PPCGScop->reads = S->getReads().release(); 2761 PPCGScop->live_in = nullptr; 2762 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2763 PPCGScop->may_writes = S->getWrites().release(); 2764 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2765 PPCGScop->must_writes = S->getMustWrites().release(); 2766 PPCGScop->live_out = nullptr; 2767 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2768 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2769 2770 PPCGScop->tagger = nullptr; 2771 PPCGScop->independence = 2772 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2773 PPCGScop->dep_flow = nullptr; 2774 PPCGScop->tagged_dep_flow = nullptr; 2775 PPCGScop->dep_false = nullptr; 2776 PPCGScop->dep_forced = nullptr; 2777 PPCGScop->dep_order = nullptr; 2778 PPCGScop->tagged_dep_order = nullptr; 2779 2780 PPCGScop->schedule = S->getScheduleTree().release(); 2781 // If we have something non-trivial to kill, add it to the schedule 2782 if (KillsInfo.KillsSchedule.get()) 2783 PPCGScop->schedule = isl_schedule_sequence( 2784 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2785 2786 PPCGScop->names = getNames(); 2787 PPCGScop->pet = nullptr; 2788 2789 compute_tagger(PPCGScop); 2790 compute_dependences(PPCGScop); 2791 eliminate_dead_code(PPCGScop); 2792 2793 return PPCGScop; 2794 } 2795 2796 /// Collect the array accesses in a statement. 2797 /// 2798 /// @param Stmt The statement for which to collect the accesses. 2799 /// 2800 /// @returns A list of array accesses. 2801 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2802 gpu_stmt_access *Accesses = nullptr; 2803 2804 for (MemoryAccess *Acc : Stmt) { 2805 auto Access = 2806 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2807 Access->read = Acc->isRead(); 2808 Access->write = Acc->isWrite(); 2809 Access->access = Acc->getAccessRelation().release(); 2810 isl_space *Space = isl_map_get_space(Access->access); 2811 Space = isl_space_range(Space); 2812 Space = isl_space_from_range(Space); 2813 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2814 isl_map *Universe = isl_map_universe(Space); 2815 Access->tagged_access = 2816 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2817 Access->exact_write = !Acc->isMayWrite(); 2818 Access->ref_id = Acc->getId().release(); 2819 Access->next = Accesses; 2820 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2821 // TODO: Also mark one-element accesses to arrays as fixed-element. 2822 Access->fixed_element = 2823 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2824 Accesses = Access; 2825 } 2826 2827 return Accesses; 2828 } 2829 2830 /// Collect the list of GPU statements. 2831 /// 2832 /// Each statement has an id, a pointer to the underlying data structure, 2833 /// as well as a list with all memory accesses. 2834 /// 2835 /// TODO: Initialize the list of memory accesses. 2836 /// 2837 /// @returns A linked-list of statements. 2838 gpu_stmt *getStatements() { 2839 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2840 std::distance(S->begin(), S->end())); 2841 2842 int i = 0; 2843 for (auto &Stmt : *S) { 2844 gpu_stmt *GPUStmt = &Stmts[i]; 2845 2846 GPUStmt->id = Stmt.getDomainId().release(); 2847 2848 // We use the pet stmt pointer to keep track of the Polly statements. 2849 GPUStmt->stmt = (pet_stmt *)&Stmt; 2850 GPUStmt->accesses = getStmtAccesses(Stmt); 2851 i++; 2852 } 2853 2854 return Stmts; 2855 } 2856 2857 /// Derive the extent of an array. 2858 /// 2859 /// The extent of an array is the set of elements that are within the 2860 /// accessed array. For the inner dimensions, the extent constraints are 2861 /// 0 and the size of the corresponding array dimension. For the first 2862 /// (outermost) dimension, the extent constraints are the minimal and maximal 2863 /// subscript value for the first dimension. 2864 /// 2865 /// @param Array The array to derive the extent for. 2866 /// 2867 /// @returns An isl_set describing the extent of the array. 2868 isl::set getExtent(ScopArrayInfo *Array) { 2869 unsigned NumDims = Array->getNumberOfDimensions(); 2870 2871 if (Array->getNumberOfDimensions() == 0) 2872 return isl::set::universe(Array->getSpace()); 2873 2874 isl::union_map Accesses = S->getAccesses(Array); 2875 isl::union_set AccessUSet = Accesses.range(); 2876 AccessUSet = AccessUSet.coalesce(); 2877 AccessUSet = AccessUSet.detect_equalities(); 2878 AccessUSet = AccessUSet.coalesce(); 2879 2880 if (AccessUSet.is_empty()) 2881 return isl::set::empty(Array->getSpace()); 2882 2883 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2884 2885 isl::local_space LS = isl::local_space(Array->getSpace()); 2886 2887 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2888 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2889 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2890 OuterMin = OuterMin.add_dims(isl::dim::in, 2891 unsignedFromIslSize(Val.dim(isl::dim::in))); 2892 OuterMax = OuterMax.add_dims(isl::dim::in, 2893 unsignedFromIslSize(Val.dim(isl::dim::in))); 2894 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2895 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2896 2897 isl::set Extent = isl::set::universe(Array->getSpace()); 2898 2899 Extent = Extent.intersect(OuterMin.le_set(Val)); 2900 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2901 2902 for (unsigned i = 1; i < NumDims; ++i) 2903 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2904 2905 for (unsigned i = 0; i < NumDims; ++i) { 2906 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2907 2908 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2909 // Fortran array will we have a legitimate dimension. 2910 if (PwAff.is_null()) { 2911 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2912 continue; 2913 } 2914 2915 isl::pw_aff Val = isl::aff::var_on_domain( 2916 isl::local_space(Array->getSpace()), isl::dim::set, i); 2917 PwAff = PwAff.add_dims(isl::dim::in, 2918 unsignedFromIslSize(Val.dim(isl::dim::in))); 2919 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2920 isl::set Set = PwAff.gt_set(Val); 2921 Extent = Set.intersect(Extent); 2922 } 2923 2924 return Extent; 2925 } 2926 2927 /// Derive the bounds of an array. 2928 /// 2929 /// For the first dimension we derive the bound of the array from the extent 2930 /// of this dimension. For inner dimensions we obtain their size directly from 2931 /// ScopArrayInfo. 2932 /// 2933 /// @param PPCGArray The array to compute bounds for. 2934 /// @param Array The polly array from which to take the information. 2935 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2936 std::vector<isl_pw_aff *> Bounds; 2937 2938 if (PPCGArray.n_index > 0) { 2939 if (isl_set_is_empty(PPCGArray.extent)) { 2940 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2941 isl_local_space *LS = isl_local_space_from_space( 2942 isl_space_params(isl_set_get_space(Dom))); 2943 isl_set_free(Dom); 2944 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2945 Bounds.push_back(Zero); 2946 } else { 2947 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2948 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2949 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2950 isl_set_free(Dom); 2951 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2952 isl_local_space *LS = 2953 isl_local_space_from_space(isl_set_get_space(Dom)); 2954 isl_aff *One = isl_aff_zero_on_domain(LS); 2955 One = isl_aff_add_constant_si(One, 1); 2956 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2957 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2958 Bounds.push_back(Bound); 2959 } 2960 } 2961 2962 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2963 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2964 auto LS = isl_pw_aff_get_domain_space(Bound); 2965 auto Aff = isl_multi_aff_zero(LS); 2966 2967 // We need types to work out, which is why we perform this weird dance 2968 // with `Aff` and `Bound`. Consider this example: 2969 2970 // LS: [p] -> { [] } 2971 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2972 // This `~` is used to denote a "null space" (which is different from 2973 // a *zero dimensional* space), which is something that ISL does not 2974 // show you when pretty printing. 2975 2976 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2977 // space, not a "null space" which does not exist at all. 2978 2979 // When we pullback (precompose) `Bound` with `Zero`, we get: 2980 // Bound . Zero = 2981 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2982 // [p] -> { ~ -> [(10p)] } = 2983 // [p] -> [(10p)] (as ISL pretty prints it) 2984 // Bound Pullback: [p] -> { [(10p)] } 2985 2986 // We want this kind of an expression for Bound, without a 2987 // zero dimensional input, but with a "null space" input for the types 2988 // to work out later on, as far as I (Siddharth Bhat) understand. 2989 // I was unable to find a reference to this in the ISL manual. 2990 // References: Tobias Grosser. 2991 2992 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2993 Bounds.push_back(Bound); 2994 } 2995 2996 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2997 /// to have the same parameter dimensions. So, we need to align them to an 2998 /// appropriate space. 2999 /// Scop::Context is _not_ an appropriate space, because when we have 3000 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 3001 /// contain all parameter dimensions. 3002 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 3003 isl_space *SeedAlignSpace = S->getParamSpace().release(); 3004 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 3005 3006 isl_space *AlignSpace = nullptr; 3007 std::vector<isl_pw_aff *> AlignedBounds; 3008 std::tie(AlignSpace, AlignedBounds) = 3009 alignPwAffs(std::move(Bounds), SeedAlignSpace); 3010 3011 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 3012 3013 isl_pw_aff_list *BoundsList = 3014 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 3015 3016 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 3017 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 3018 3019 assert(BoundsSpace && "Unable to access space of array."); 3020 assert(BoundsList && "Unable to access list of bounds."); 3021 3022 PPCGArray.bound = 3023 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 3024 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 3025 } 3026 3027 /// Create the arrays for @p PPCGProg. 3028 /// 3029 /// @param PPCGProg The program to compute the arrays for. 3030 void createArrays(gpu_prog *PPCGProg, 3031 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 3032 int i = 0; 3033 for (auto &Array : ValidSAIs) { 3034 std::string TypeName; 3035 raw_string_ostream OS(TypeName); 3036 3037 OS << *Array->getElementType(); 3038 TypeName = OS.str(); 3039 3040 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3041 3042 PPCGArray.space = Array->getSpace().release(); 3043 PPCGArray.type = strdup(TypeName.c_str()); 3044 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3045 PPCGArray.name = strdup(Array->getName().c_str()); 3046 PPCGArray.extent = nullptr; 3047 PPCGArray.n_index = Array->getNumberOfDimensions(); 3048 PPCGArray.extent = getExtent(Array).release(); 3049 PPCGArray.n_ref = 0; 3050 PPCGArray.refs = nullptr; 3051 PPCGArray.accessed = true; 3052 PPCGArray.read_only_scalar = 3053 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3054 PPCGArray.has_compound_element = false; 3055 PPCGArray.local = false; 3056 PPCGArray.declare_local = false; 3057 PPCGArray.global = false; 3058 PPCGArray.linearize = false; 3059 PPCGArray.dep_order = nullptr; 3060 PPCGArray.user = Array; 3061 3062 PPCGArray.bound = nullptr; 3063 setArrayBounds(PPCGArray, Array); 3064 i++; 3065 3066 collect_references(PPCGProg, &PPCGArray); 3067 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3068 } 3069 } 3070 3071 /// Create an identity map between the arrays in the scop. 3072 /// 3073 /// @returns An identity map between the arrays in the scop. 3074 isl_union_map *getArrayIdentity() { 3075 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3076 3077 for (auto &Array : S->arrays()) { 3078 isl_space *Space = Array->getSpace().release(); 3079 Space = isl_space_map_from_set(Space); 3080 isl_map *Identity = isl_map_identity(Space); 3081 Maps = isl_union_map_add_map(Maps, Identity); 3082 } 3083 3084 return Maps; 3085 } 3086 3087 /// Create a default-initialized PPCG GPU program. 3088 /// 3089 /// @returns A new gpu program description. 3090 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3091 3092 if (!PPCGScop) 3093 return nullptr; 3094 3095 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3096 3097 PPCGProg->ctx = S->getIslCtx().get(); 3098 PPCGProg->scop = PPCGScop; 3099 PPCGProg->context = isl_set_copy(PPCGScop->context); 3100 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3101 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3102 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3103 PPCGProg->tagged_must_kill = 3104 isl_union_map_copy(PPCGScop->tagged_must_kills); 3105 PPCGProg->to_inner = getArrayIdentity(); 3106 PPCGProg->to_outer = getArrayIdentity(); 3107 // TODO: verify that this assignment is correct. 3108 PPCGProg->any_to_outer = nullptr; 3109 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3110 PPCGProg->stmts = getStatements(); 3111 3112 // Only consider arrays that have a non-empty extent. 3113 // Otherwise, this will cause us to consider the following kinds of 3114 // empty arrays: 3115 // 1. Invariant loads that are represented by SAI objects. 3116 // 2. Arrays with statically known zero size. 3117 auto ValidSAIsRange = 3118 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3119 return !getExtent(SAI).is_empty(); 3120 }); 3121 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3122 ValidSAIsRange.end()); 3123 3124 PPCGProg->n_array = 3125 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3126 PPCGProg->array = isl_calloc_array( 3127 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3128 3129 createArrays(PPCGProg, ValidSAIs); 3130 3131 PPCGProg->array_order = nullptr; 3132 collect_order_dependences(PPCGProg); 3133 3134 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3135 return PPCGProg; 3136 } 3137 3138 struct PrintGPUUserData { 3139 struct cuda_info *CudaInfo; 3140 struct gpu_prog *PPCGProg; 3141 std::vector<ppcg_kernel *> Kernels; 3142 }; 3143 3144 /// Print a user statement node in the host code. 3145 /// 3146 /// We use ppcg's printing facilities to print the actual statement and 3147 /// additionally build up a list of all kernels that are encountered in the 3148 /// host ast. 3149 /// 3150 /// @param P The printer to print to 3151 /// @param Options The printing options to use 3152 /// @param Node The node to print 3153 /// @param User A user pointer to carry additional data. This pointer is 3154 /// expected to be of type PrintGPUUserData. 3155 /// 3156 /// @returns A printer to which the output has been printed. 3157 static __isl_give isl_printer * 3158 printHostUser(__isl_take isl_printer *P, 3159 __isl_take isl_ast_print_options *Options, 3160 __isl_take isl_ast_node *Node, void *User) { 3161 auto Data = (struct PrintGPUUserData *)User; 3162 auto Id = isl_ast_node_get_annotation(Node); 3163 3164 if (Id) { 3165 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3166 3167 // If this is a user statement, format it ourselves as ppcg would 3168 // otherwise try to call pet functionality that is not available in 3169 // Polly. 3170 if (IsUser) { 3171 P = isl_printer_start_line(P); 3172 P = isl_printer_print_ast_node(P, Node); 3173 P = isl_printer_end_line(P); 3174 isl_id_free(Id); 3175 isl_ast_print_options_free(Options); 3176 return P; 3177 } 3178 3179 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3180 isl_id_free(Id); 3181 Data->Kernels.push_back(Kernel); 3182 } 3183 3184 return print_host_user(P, Options, Node, User); 3185 } 3186 3187 /// Print C code corresponding to the control flow in @p Kernel. 3188 /// 3189 /// @param Kernel The kernel to print 3190 void printKernel(ppcg_kernel *Kernel) { 3191 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3192 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3193 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3194 P = isl_ast_node_print(Kernel->tree, P, Options); 3195 char *String = isl_printer_get_str(P); 3196 outs() << String << "\n"; 3197 free(String); 3198 isl_printer_free(P); 3199 } 3200 3201 /// Print C code corresponding to the GPU code described by @p Tree. 3202 /// 3203 /// @param Tree An AST describing GPU code 3204 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3205 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3206 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3207 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3208 3209 PrintGPUUserData Data; 3210 Data.PPCGProg = PPCGProg; 3211 3212 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3213 Options = 3214 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3215 P = isl_ast_node_print(Tree, P, Options); 3216 char *String = isl_printer_get_str(P); 3217 outs() << "# host\n"; 3218 outs() << String << "\n"; 3219 free(String); 3220 isl_printer_free(P); 3221 3222 for (auto Kernel : Data.Kernels) { 3223 outs() << "# kernel" << Kernel->id << "\n"; 3224 printKernel(Kernel); 3225 } 3226 } 3227 3228 // Generate a GPU program using PPCG. 3229 // 3230 // GPU mapping consists of multiple steps: 3231 // 3232 // 1) Compute new schedule for the program. 3233 // 2) Map schedule to GPU (TODO) 3234 // 3) Generate code for new schedule (TODO) 3235 // 3236 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3237 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3238 // strategy directly from this pass. 3239 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3240 3241 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3242 3243 PPCGGen->ctx = S->getIslCtx().get(); 3244 PPCGGen->options = PPCGScop->options; 3245 PPCGGen->print = nullptr; 3246 PPCGGen->print_user = nullptr; 3247 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3248 PPCGGen->prog = PPCGProg; 3249 PPCGGen->tree = nullptr; 3250 PPCGGen->types.n = 0; 3251 PPCGGen->types.name = nullptr; 3252 PPCGGen->sizes = nullptr; 3253 PPCGGen->used_sizes = nullptr; 3254 PPCGGen->kernel_id = 0; 3255 3256 // Set scheduling strategy to same strategy PPCG is using. 3257 isl_options_set_schedule_serialize_sccs(PPCGGen->ctx, false); 3258 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3259 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3260 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3261 3262 isl_schedule *Schedule = get_schedule(PPCGGen); 3263 3264 int has_permutable = has_any_permutable_node(Schedule); 3265 3266 Schedule = 3267 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3268 3269 if (!has_permutable || has_permutable < 0) { 3270 Schedule = isl_schedule_free(Schedule); 3271 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3272 << " does not have permutable bands. Bailing out\n";); 3273 } else { 3274 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3275 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3276 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3277 } 3278 3279 if (DumpSchedule) { 3280 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3281 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3282 P = isl_printer_print_str(P, "Schedule\n"); 3283 P = isl_printer_print_str(P, "========\n"); 3284 if (Schedule) 3285 P = isl_printer_print_schedule(P, Schedule); 3286 else 3287 P = isl_printer_print_str(P, "No schedule found\n"); 3288 3289 outs() << isl_printer_get_str(P) << "\n"; 3290 isl_printer_free(P); 3291 } 3292 3293 if (DumpCode) { 3294 outs() << "Code\n"; 3295 outs() << "====\n"; 3296 if (PPCGGen->tree) 3297 printGPUTree(PPCGGen->tree, PPCGProg); 3298 else 3299 outs() << "No code generated\n"; 3300 } 3301 3302 isl_schedule_free(Schedule); 3303 3304 return PPCGGen; 3305 } 3306 3307 /// Free gpu_gen structure. 3308 /// 3309 /// @param PPCGGen The ppcg_gen object to free. 3310 void freePPCGGen(gpu_gen *PPCGGen) { 3311 isl_ast_node_free(PPCGGen->tree); 3312 isl_union_map_free(PPCGGen->sizes); 3313 isl_union_map_free(PPCGGen->used_sizes); 3314 free(PPCGGen); 3315 } 3316 3317 /// Free the options in the ppcg scop structure. 3318 /// 3319 /// ppcg is not freeing these options for us. To avoid leaks we do this 3320 /// ourselves. 3321 /// 3322 /// @param PPCGScop The scop referencing the options to free. 3323 void freeOptions(ppcg_scop *PPCGScop) { 3324 free(PPCGScop->options->debug); 3325 PPCGScop->options->debug = nullptr; 3326 free(PPCGScop->options); 3327 PPCGScop->options = nullptr; 3328 } 3329 3330 /// Approximate the number of points in the set. 3331 /// 3332 /// This function returns an ast expression that overapproximates the number 3333 /// of points in an isl set through the rectangular hull surrounding this set. 3334 /// 3335 /// @param Set The set to count. 3336 /// @param Build The isl ast build object to use for creating the ast 3337 /// expression. 3338 /// 3339 /// @returns An approximation of the number of points in the set. 3340 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3341 __isl_keep isl_ast_build *Build) { 3342 3343 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3344 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3345 3346 isl_space *Space = isl_set_get_space(Set); 3347 Space = isl_space_params(Space); 3348 auto *Univ = isl_set_universe(Space); 3349 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3350 3351 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3352 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3353 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3354 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3355 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3356 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3357 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3358 } 3359 3360 isl_set_free(Set); 3361 isl_pw_aff_free(OneAff); 3362 3363 return Expr; 3364 } 3365 3366 /// Approximate a number of dynamic instructions executed by a given 3367 /// statement. 3368 /// 3369 /// @param Stmt The statement for which to compute the number of dynamic 3370 /// instructions. 3371 /// @param Build The isl ast build object to use for creating the ast 3372 /// expression. 3373 /// @returns An approximation of the number of dynamic instructions executed 3374 /// by @p Stmt. 3375 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3376 __isl_keep isl_ast_build *Build) { 3377 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3378 3379 long InstCount = 0; 3380 3381 if (Stmt.isBlockStmt()) { 3382 auto *BB = Stmt.getBasicBlock(); 3383 InstCount = std::distance(BB->begin(), BB->end()); 3384 } else { 3385 auto *R = Stmt.getRegion(); 3386 3387 for (auto *BB : R->blocks()) { 3388 InstCount += std::distance(BB->begin(), BB->end()); 3389 } 3390 } 3391 3392 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3393 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3394 return isl_ast_expr_mul(InstExpr, Iterations); 3395 } 3396 3397 /// Approximate dynamic instructions executed in scop. 3398 /// 3399 /// @param S The scop for which to approximate dynamic instructions. 3400 /// @param Build The isl ast build object to use for creating the ast 3401 /// expression. 3402 /// @returns An approximation of the number of dynamic instructions executed 3403 /// in @p S. 3404 __isl_give isl_ast_expr * 3405 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3406 isl_ast_expr *Instructions; 3407 3408 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3409 Instructions = isl_ast_expr_from_val(Zero); 3410 3411 for (ScopStmt &Stmt : S) { 3412 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3413 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3414 } 3415 return Instructions; 3416 } 3417 3418 /// Create a check that ensures sufficient compute in scop. 3419 /// 3420 /// @param S The scop for which to ensure sufficient compute. 3421 /// @param Build The isl ast build object to use for creating the ast 3422 /// expression. 3423 /// @returns An expression that evaluates to TRUE in case of sufficient 3424 /// compute and to FALSE, otherwise. 3425 __isl_give isl_ast_expr * 3426 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3427 auto Iterations = getNumberOfIterations(S, Build); 3428 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3429 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3430 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3431 } 3432 3433 /// Check if the basic block contains a function we cannot codegen for GPU 3434 /// kernels. 3435 /// 3436 /// If this basic block does something with a `Function` other than calling 3437 /// a function that we support in a kernel, return true. 3438 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3439 bool AllowCUDALibDevice) { 3440 for (const Instruction &Inst : *BB) { 3441 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3442 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3443 AllowCUDALibDevice)) 3444 continue; 3445 3446 for (Value *Op : Inst.operands()) 3447 // Look for (<func-type>*) among operands of Inst 3448 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3449 if (isa<FunctionType>(PtrTy->getPointerElementType())) { 3450 LLVM_DEBUG(dbgs() 3451 << Inst << " has illegal use of function in kernel.\n"); 3452 return true; 3453 } 3454 } 3455 } 3456 return false; 3457 } 3458 3459 /// Return whether the Scop S uses functions in a way that we do not support. 3460 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3461 for (auto &Stmt : S) { 3462 if (Stmt.isBlockStmt()) { 3463 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3464 AllowCUDALibDevice)) 3465 return true; 3466 } else { 3467 assert(Stmt.isRegionStmt() && 3468 "Stmt was neither block nor region statement"); 3469 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3470 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3471 return true; 3472 } 3473 } 3474 return false; 3475 } 3476 3477 /// Generate code for a given GPU AST described by @p Root. 3478 /// 3479 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3480 /// @param Prog The GPU Program to generate code for. 3481 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3482 ScopAnnotator Annotator; 3483 Annotator.buildAliasScopes(*S); 3484 3485 Region *R = &S->getRegion(); 3486 3487 simplifyRegion(R, DT, LI, RI); 3488 3489 BasicBlock *EnteringBB = R->getEnteringBlock(); 3490 3491 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 3492 IRInserter(Annotator)); 3493 Builder.SetInsertPoint(EnteringBB->getTerminator()); 3494 3495 // Only build the run-time condition and parameters _after_ having 3496 // introduced the conditional branch. This is important as the conditional 3497 // branch will guard the original scop from new induction variables that 3498 // the SCEVExpander may introduce while code generating the parameters and 3499 // which may introduce scalar dependences that prevent us from correctly 3500 // code generating this scop. 3501 BBPair StartExitBlocks; 3502 BranchInst *CondBr = nullptr; 3503 std::tie(StartExitBlocks, CondBr) = 3504 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3505 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3506 3507 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3508 3509 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3510 StartBlock, Prog, Runtime, Architecture); 3511 3512 // TODO: Handle LICM 3513 auto SplitBlock = StartBlock->getSinglePredecessor(); 3514 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3515 3516 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3517 isl::ast_expr Condition = 3518 IslAst::buildRunCondition(*S, isl::manage_copy(Build)); 3519 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3520 Condition = 3521 isl::manage(isl_ast_expr_and(Condition.release(), SufficientCompute)); 3522 isl_ast_build_free(Build); 3523 3524 // preload invariant loads. Note: This should happen before the RTC 3525 // because the RTC may depend on values that are invariant load hoisted. 3526 if (!NodeBuilder.preloadInvariantLoads()) { 3527 // Patch the introduced branch condition to ensure that we always execute 3528 // the original SCoP. 3529 auto *FalseI1 = Builder.getFalse(); 3530 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3531 SplitBBTerm->setOperand(0, FalseI1); 3532 3533 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3534 S->getFunction().getName() + 3535 " | Scop Region: " + S->getNameStr()); 3536 // adjust the dominator tree accordingly. 3537 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3538 assert(ExitingBlock); 3539 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3540 assert(MergeBlock); 3541 polly::markBlockUnreachable(*StartBlock, Builder); 3542 polly::markBlockUnreachable(*ExitingBlock, Builder); 3543 auto *ExitingBB = S->getExitingBlock(); 3544 assert(ExitingBB); 3545 3546 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3547 DT->eraseNode(ExitingBlock); 3548 isl_ast_node_free(Root); 3549 } else { 3550 3551 if (polly::PerfMonitoring) { 3552 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3553 P.initialize(); 3554 P.insertRegionStart(SplitBlock->getTerminator()); 3555 3556 // TODO: actually think if this is the correct exiting block to place 3557 // the `end` performance marker. Invariant load hoisting changes 3558 // the CFG in a way that I do not precisely understand, so I 3559 // (Siddharth<[email protected]>) should come back to this and 3560 // think about which exiting block to use. 3561 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3562 assert(ExitingBlock); 3563 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3564 P.insertRegionEnd(MergeBlock->getTerminator()); 3565 } 3566 3567 NodeBuilder.addParameters(S->getContext().release()); 3568 Value *RTC = NodeBuilder.createRTC(Condition.release()); 3569 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3570 3571 Builder.SetInsertPoint(&*StartBlock->begin()); 3572 3573 NodeBuilder.create(Root); 3574 } 3575 3576 /// In case a sequential kernel has more surrounding loops as any parallel 3577 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3578 /// point in running it on a GPU. 3579 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3580 CondBr->setOperand(0, Builder.getFalse()); 3581 3582 if (!NodeBuilder.BuildSuccessful) 3583 CondBr->setOperand(0, Builder.getFalse()); 3584 } 3585 3586 bool runOnScop(Scop &CurrentScop) override { 3587 S = &CurrentScop; 3588 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3589 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3590 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3591 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3592 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3593 3594 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3595 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3596 3597 // We currently do not support functions other than intrinsics inside 3598 // kernels, as code generation will need to offload function calls to the 3599 // kernel. This may lead to a kernel trying to call a function on the host. 3600 // This also allows us to prevent codegen from trying to take the 3601 // address of an intrinsic function to send to the kernel. 3602 if (containsInvalidKernelFunction(CurrentScop, 3603 Architecture == GPUArch::NVPTX64)) { 3604 LLVM_DEBUG( 3605 dbgs() << getUniqueScopName(S) 3606 << " contains function which cannot be materialised in a GPU " 3607 "kernel. Bailing out.\n";); 3608 return false; 3609 } 3610 3611 auto PPCGScop = createPPCGScop(); 3612 auto PPCGProg = createPPCGProg(PPCGScop); 3613 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3614 3615 if (PPCGGen->tree) { 3616 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3617 CurrentScop.markAsToBeSkipped(); 3618 } else { 3619 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3620 << " has empty PPCGGen->tree. Bailing out.\n"); 3621 } 3622 3623 freeOptions(PPCGScop); 3624 freePPCGGen(PPCGGen); 3625 gpu_prog_free(PPCGProg); 3626 ppcg_scop_free(PPCGScop); 3627 3628 return true; 3629 } 3630 3631 void printScop(raw_ostream &, Scop &) const override {} 3632 3633 void getAnalysisUsage(AnalysisUsage &AU) const override { 3634 ScopPass::getAnalysisUsage(AU); 3635 3636 AU.addRequired<DominatorTreeWrapperPass>(); 3637 AU.addRequired<RegionInfoPass>(); 3638 AU.addRequired<ScalarEvolutionWrapperPass>(); 3639 AU.addRequired<ScopDetectionWrapperPass>(); 3640 AU.addRequired<ScopInfoRegionPass>(); 3641 AU.addRequired<LoopInfoWrapperPass>(); 3642 3643 // FIXME: We do not yet add regions for the newly generated code to the 3644 // region tree. 3645 } 3646 }; 3647 } // namespace 3648 3649 char PPCGCodeGeneration::ID = 1; 3650 3651 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3652 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3653 generator->Runtime = Runtime; 3654 generator->Architecture = Arch; 3655 return generator; 3656 } 3657 3658 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3659 "Polly - Apply PPCG translation to SCOP", false, false) 3660 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3661 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3662 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3663 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3664 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3665 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3666 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3667 "Polly - Apply PPCG translation to SCOP", false, false) 3668