1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::Hidden, cl::init(false), cl::ZeroOrMore, 95 cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> 106 CudaVersion("polly-acc-cuda-version", 107 cl::desc("The CUDA version to compile for"), cl::Hidden, 108 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<int> 111 MinCompute("polly-acc-mincompute", 112 cl::desc("Minimal number of compute statements to run on GPU."), 113 cl::Hidden, cl::init(10 * 512 * 512)); 114 115 /// Used to store information PPCG wants for kills. This information is 116 /// used by live range reordering. 117 /// 118 /// @see computeLiveRangeReordering 119 /// @see GPUNodeBuilder::createPPCGScop 120 /// @see GPUNodeBuilder::createPPCGProg 121 struct MustKillsInfo { 122 /// Collection of all kill statements that will be sequenced at the end of 123 /// PPCGScop->schedule. 124 /// 125 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 126 /// which merges schedules in *arbitrary* order. 127 /// (we don't care about the order of the kills anyway). 128 isl::schedule KillsSchedule; 129 /// Map from kill statement instances to scalars that need to be 130 /// killed. 131 /// 132 /// We currently derive kill information for: 133 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 134 /// consequently all be killed. 135 /// 2. Scalar arrays that are not used outside the Scop. This is 136 /// checked by `isScalarUsesContainedInScop`. 137 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 138 isl::union_map TaggedMustKills; 139 140 MustKillsInfo() : KillsSchedule(nullptr), TaggedMustKills(nullptr){}; 141 }; 142 143 /// Check if SAI's uses are entirely contained within Scop S. 144 /// If a scalar is used only with a Scop, we are free to kill it, as no data 145 /// can flow in/out of the value any more. 146 /// @see computeMustKillsInfo 147 static bool isScalarUsesContainedInScop(const Scop &S, 148 const ScopArrayInfo *SAI) { 149 assert(SAI->isValueKind() && "this function only deals with scalars." 150 " Dealing with arrays required alias analysis"); 151 152 const Region &R = S.getRegion(); 153 for (User *U : SAI->getBasePtr()->users()) { 154 Instruction *I = dyn_cast<Instruction>(U); 155 assert(I && "invalid user of scop array info"); 156 if (!R.contains(I)) 157 return false; 158 } 159 return true; 160 } 161 162 /// Compute must-kills needed to enable live range reordering with PPCG. 163 /// 164 /// @params S The Scop to compute live range reordering information 165 /// @returns live range reordering information that can be used to setup 166 /// PPCG. 167 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 168 const isl::space ParamSpace(isl::manage(S.getParamSpace())); 169 MustKillsInfo Info; 170 171 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 172 // 1.1 phi nodes in scop. 173 // 1.2 scalars that are only used within the scop 174 SmallVector<isl::id, 4> KillMemIds; 175 for (ScopArrayInfo *SAI : S.arrays()) { 176 if (SAI->isPHIKind() || 177 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 178 KillMemIds.push_back(isl::manage(SAI->getBasePtrId())); 179 } 180 181 Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace)); 182 183 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 184 // schedule: 185 // - filter: "[control] -> { }" 186 // So, we choose to not create this to keep the output a little nicer, 187 // at the cost of some code complexity. 188 Info.KillsSchedule = nullptr; 189 190 for (isl::id &ToKillId : KillMemIds) { 191 isl::id KillStmtId = isl::id::alloc( 192 S.getIslCtx(), 193 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 194 195 // NOTE: construction of tagged_must_kill: 196 // 2. We need to construct a map: 197 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 198 // To construct this, we use `isl_map_domain_product` on 2 maps`: 199 // 2a. StmtToScalar: 200 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 201 // 2b. PhantomRefToScalar: 202 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 203 // 204 // Combining these with `isl_map_domain_product` gives us 205 // TaggedMustKill: 206 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 207 208 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 209 isl::map StmtToScalar = isl::map::universe(isl::space(ParamSpace)); 210 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 211 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 212 213 isl::id PhantomRefId = isl::id::alloc( 214 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 215 nullptr); 216 217 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 218 isl::map PhantomRefToScalar = isl::map::universe(isl::space(ParamSpace)); 219 PhantomRefToScalar = 220 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 221 PhantomRefToScalar = 222 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 223 224 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 225 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 226 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 227 228 // 3. Create the kill schedule of the form: 229 // "[param] -> { Stmt_phantom[] }" 230 // Then add this to Info.KillsSchedule. 231 isl::space KillStmtSpace = ParamSpace; 232 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 233 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 234 235 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 236 if (Info.KillsSchedule) 237 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 238 else 239 Info.KillsSchedule = KillSchedule; 240 } 241 242 return Info; 243 } 244 245 /// Create the ast expressions for a ScopStmt. 246 /// 247 /// This function is a callback for to generate the ast expressions for each 248 /// of the scheduled ScopStmts. 249 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 250 void *StmtT, isl_ast_build *Build, 251 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 252 isl_id *Id, void *User), 253 void *UserIndex, 254 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 255 void *UserExpr) { 256 257 ScopStmt *Stmt = (ScopStmt *)StmtT; 258 259 isl_ctx *Ctx; 260 261 if (!Stmt || !Build) 262 return NULL; 263 264 Ctx = isl_ast_build_get_ctx(Build); 265 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 266 267 for (MemoryAccess *Acc : *Stmt) { 268 isl_map *AddrFunc = Acc->getAddressFunction(); 269 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 270 isl_id *RefId = Acc->getId(); 271 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 272 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 273 MPA = isl_multi_pw_aff_coalesce(MPA); 274 MPA = FunctionIndex(MPA, RefId, UserIndex); 275 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 276 Access = FunctionExpr(Access, RefId, UserExpr); 277 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 278 } 279 280 return RefToExpr; 281 } 282 283 /// Given a LLVM Type, compute its size in bytes, 284 static int computeSizeInBytes(const Type *T) { 285 int bytes = T->getPrimitiveSizeInBits() / 8; 286 if (bytes == 0) 287 bytes = T->getScalarSizeInBits() / 8; 288 return bytes; 289 } 290 291 /// Generate code for a GPU specific isl AST. 292 /// 293 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 294 /// generates code for general-purpose AST nodes, with special functionality 295 /// for generating GPU specific user nodes. 296 /// 297 /// @see GPUNodeBuilder::createUser 298 class GPUNodeBuilder : public IslNodeBuilder { 299 public: 300 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 301 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 302 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 303 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 304 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 305 Prog(Prog), Runtime(Runtime), Arch(Arch) { 306 getExprBuilder().setIDToSAI(&IDToSAI); 307 } 308 309 /// Create after-run-time-check initialization code. 310 void initializeAfterRTH(); 311 312 /// Finalize the generated scop. 313 virtual void finalize(); 314 315 /// Track if the full build process was successful. 316 /// 317 /// This value is set to false, if throughout the build process an error 318 /// occurred which prevents us from generating valid GPU code. 319 bool BuildSuccessful = true; 320 321 /// The maximal number of loops surrounding a sequential kernel. 322 unsigned DeepestSequential = 0; 323 324 /// The maximal number of loops surrounding a parallel kernel. 325 unsigned DeepestParallel = 0; 326 327 /// Return the name to set for the ptx_kernel. 328 std::string getKernelFuncName(int Kernel_id); 329 330 private: 331 /// A vector of array base pointers for which a new ScopArrayInfo was created. 332 /// 333 /// This vector is used to delete the ScopArrayInfo when it is not needed any 334 /// more. 335 std::vector<Value *> LocalArrays; 336 337 /// A map from ScopArrays to their corresponding device allocations. 338 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 339 340 /// The current GPU context. 341 Value *GPUContext; 342 343 /// The set of isl_ids allocated in the kernel 344 std::vector<isl_id *> KernelIds; 345 346 /// A module containing GPU code. 347 /// 348 /// This pointer is only set in case we are currently generating GPU code. 349 std::unique_ptr<Module> GPUModule; 350 351 /// The GPU program we generate code for. 352 gpu_prog *Prog; 353 354 /// The GPU Runtime implementation to use (OpenCL or CUDA). 355 GPURuntime Runtime; 356 357 /// The GPU Architecture to target. 358 GPUArch Arch; 359 360 /// Class to free isl_ids. 361 class IslIdDeleter { 362 public: 363 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 364 }; 365 366 /// A set containing all isl_ids allocated in a GPU kernel. 367 /// 368 /// By releasing this set all isl_ids will be freed. 369 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 370 371 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 372 373 /// Create code for user-defined AST nodes. 374 /// 375 /// These AST nodes can be of type: 376 /// 377 /// - ScopStmt: A computational statement (TODO) 378 /// - Kernel: A GPU kernel call (TODO) 379 /// - Data-Transfer: A GPU <-> CPU data-transfer 380 /// - In-kernel synchronization 381 /// - In-kernel memory copy statement 382 /// 383 /// @param UserStmt The ast node to generate code for. 384 virtual void createUser(__isl_take isl_ast_node *UserStmt); 385 386 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 387 388 /// Create code for a data transfer statement 389 /// 390 /// @param TransferStmt The data transfer statement. 391 /// @param Direction The direction in which to transfer data. 392 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 393 enum DataDirection Direction); 394 395 /// Find llvm::Values referenced in GPU kernel. 396 /// 397 /// @param Kernel The kernel to scan for llvm::Values 398 /// 399 /// @returns A pair, whose first element contains the set of values 400 /// referenced by the kernel, and whose second element contains the 401 /// set of functions referenced by the kernel. All functions in the 402 /// second set satisfy isValidFunctionInKernel. 403 std::pair<SetVector<Value *>, SetVector<Function *>> 404 getReferencesInKernel(ppcg_kernel *Kernel); 405 406 /// Compute the sizes of the execution grid for a given kernel. 407 /// 408 /// @param Kernel The kernel to compute grid sizes for. 409 /// 410 /// @returns A tuple with grid sizes for X and Y dimension 411 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 412 413 /// Creates a array that can be sent to the kernel on the device using a 414 /// host pointer. This is required for managed memory, when we directly send 415 /// host pointers to the device. 416 /// \note 417 /// This is to be used only with managed memory 418 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 419 ScopArrayInfo *ArrayInfo); 420 421 /// Compute the sizes of the thread blocks for a given kernel. 422 /// 423 /// @param Kernel The kernel to compute thread block sizes for. 424 /// 425 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 426 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 427 428 /// Store a specific kernel launch parameter in the array of kernel launch 429 /// parameters. 430 /// 431 /// @param Parameters The list of parameters in which to store. 432 /// @param Param The kernel launch parameter to store. 433 /// @param Index The index in the parameter list, at which to store the 434 /// parameter. 435 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 436 int Index); 437 438 /// Create kernel launch parameters. 439 /// 440 /// @param Kernel The kernel to create parameters for. 441 /// @param F The kernel function that has been created. 442 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 443 /// 444 /// @returns A stack allocated array with pointers to the parameter 445 /// values that are passed to the kernel. 446 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 447 SetVector<Value *> SubtreeValues); 448 449 /// Create declarations for kernel variable. 450 /// 451 /// This includes shared memory declarations. 452 /// 453 /// @param Kernel The kernel definition to create variables for. 454 /// @param FN The function into which to generate the variables. 455 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 456 457 /// Add CUDA annotations to module. 458 /// 459 /// Add a set of CUDA annotations that declares the maximal block dimensions 460 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 461 /// PTX compiler to bound the number of allocated registers to ensure the 462 /// resulting kernel is known to run with up to as many block dimensions 463 /// as specified here. 464 /// 465 /// @param M The module to add the annotations to. 466 /// @param BlockDimX The size of block dimension X. 467 /// @param BlockDimY The size of block dimension Y. 468 /// @param BlockDimZ The size of block dimension Z. 469 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 470 Value *BlockDimZ); 471 472 /// Create GPU kernel. 473 /// 474 /// Code generate the kernel described by @p KernelStmt. 475 /// 476 /// @param KernelStmt The ast node to generate kernel code for. 477 void createKernel(__isl_take isl_ast_node *KernelStmt); 478 479 /// Generate code that computes the size of an array. 480 /// 481 /// @param Array The array for which to compute a size. 482 Value *getArraySize(gpu_array_info *Array); 483 484 /// Generate code to compute the minimal offset at which an array is accessed. 485 /// 486 /// The offset of an array is the minimal array location accessed in a scop. 487 /// 488 /// Example: 489 /// 490 /// for (long i = 0; i < 100; i++) 491 /// A[i + 42] += ... 492 /// 493 /// getArrayOffset(A) results in 42. 494 /// 495 /// @param Array The array for which to compute the offset. 496 /// @returns An llvm::Value that contains the offset of the array. 497 Value *getArrayOffset(gpu_array_info *Array); 498 499 /// Prepare the kernel arguments for kernel code generation 500 /// 501 /// @param Kernel The kernel to generate code for. 502 /// @param FN The function created for the kernel. 503 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 504 505 /// Create kernel function. 506 /// 507 /// Create a kernel function located in a newly created module that can serve 508 /// as target for device code generation. Set the Builder to point to the 509 /// start block of this newly created function. 510 /// 511 /// @param Kernel The kernel to generate code for. 512 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 513 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 514 /// kernel. 515 void createKernelFunction(ppcg_kernel *Kernel, 516 SetVector<Value *> &SubtreeValues, 517 SetVector<Function *> &SubtreeFunctions); 518 519 /// Create the declaration of a kernel function. 520 /// 521 /// The kernel function takes as arguments: 522 /// 523 /// - One i8 pointer for each external array reference used in the kernel. 524 /// - Host iterators 525 /// - Parameters 526 /// - Other LLVM Value references (TODO) 527 /// 528 /// @param Kernel The kernel to generate the function declaration for. 529 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 530 /// 531 /// @returns The newly declared function. 532 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 533 SetVector<Value *> &SubtreeValues); 534 535 /// Insert intrinsic functions to obtain thread and block ids. 536 /// 537 /// @param The kernel to generate the intrinsic functions for. 538 void insertKernelIntrinsics(ppcg_kernel *Kernel); 539 540 /// Setup the creation of functions referenced by the GPU kernel. 541 /// 542 /// 1. Create new function declarations in GPUModule which are the same as 543 /// SubtreeFunctions. 544 /// 545 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 546 /// old functions (that come from the original module) to new functions 547 /// (that are created within GPUModule). That way, we generate references 548 /// to the correct function (in GPUModule) in BlockGenerator. 549 /// 550 /// @see IslNodeBuilder::ValueMap 551 /// @see BlockGenerator::GlobalMap 552 /// @see BlockGenerator::getNewValue 553 /// @see GPUNodeBuilder::getReferencesInKernel. 554 /// 555 /// @param SubtreeFunctions The set of llvm::Functions referenced by 556 /// this kernel. 557 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 558 559 /// Create a global-to-shared or shared-to-global copy statement. 560 /// 561 /// @param CopyStmt The copy statement to generate code for 562 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 563 564 /// Create code for a ScopStmt called in @p Expr. 565 /// 566 /// @param Expr The expression containing the call. 567 /// @param KernelStmt The kernel statement referenced in the call. 568 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 569 570 /// Create an in-kernel synchronization call. 571 void createKernelSync(); 572 573 /// Create a PTX assembly string for the current GPU kernel. 574 /// 575 /// @returns A string containing the corresponding PTX assembly code. 576 std::string createKernelASM(); 577 578 /// Remove references from the dominator tree to the kernel function @p F. 579 /// 580 /// @param F The function to remove references to. 581 void clearDominators(Function *F); 582 583 /// Remove references from scalar evolution to the kernel function @p F. 584 /// 585 /// @param F The function to remove references to. 586 void clearScalarEvolution(Function *F); 587 588 /// Remove references from loop info to the kernel function @p F. 589 /// 590 /// @param F The function to remove references to. 591 void clearLoops(Function *F); 592 593 /// Finalize the generation of the kernel function. 594 /// 595 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 596 /// dump its IR to stderr. 597 /// 598 /// @returns The Assembly string of the kernel. 599 std::string finalizeKernelFunction(); 600 601 /// Finalize the generation of the kernel arguments. 602 /// 603 /// This function ensures that not-read-only scalars used in a kernel are 604 /// stored back to the global memory location they are backed with before 605 /// the kernel terminates. 606 /// 607 /// @params Kernel The kernel to finalize kernel arguments for. 608 void finalizeKernelArguments(ppcg_kernel *Kernel); 609 610 /// Create code that allocates memory to store arrays on device. 611 void allocateDeviceArrays(); 612 613 /// Free all allocated device arrays. 614 void freeDeviceArrays(); 615 616 /// Create a call to initialize the GPU context. 617 /// 618 /// @returns A pointer to the newly initialized context. 619 Value *createCallInitContext(); 620 621 /// Create a call to get the device pointer for a kernel allocation. 622 /// 623 /// @param Allocation The Polly GPU allocation 624 /// 625 /// @returns The device parameter corresponding to this allocation. 626 Value *createCallGetDevicePtr(Value *Allocation); 627 628 /// Create a call to free the GPU context. 629 /// 630 /// @param Context A pointer to an initialized GPU context. 631 void createCallFreeContext(Value *Context); 632 633 /// Create a call to allocate memory on the device. 634 /// 635 /// @param Size The size of memory to allocate 636 /// 637 /// @returns A pointer that identifies this allocation. 638 Value *createCallAllocateMemoryForDevice(Value *Size); 639 640 /// Create a call to free a device array. 641 /// 642 /// @param Array The device array to free. 643 void createCallFreeDeviceMemory(Value *Array); 644 645 /// Create a call to copy data from host to device. 646 /// 647 /// @param HostPtr A pointer to the host data that should be copied. 648 /// @param DevicePtr A device pointer specifying the location to copy to. 649 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 650 Value *Size); 651 652 /// Create a call to copy data from device to host. 653 /// 654 /// @param DevicePtr A pointer to the device data that should be copied. 655 /// @param HostPtr A host pointer specifying the location to copy to. 656 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 657 Value *Size); 658 659 /// Create a call to synchronize Host & Device. 660 /// \note 661 /// This is to be used only with managed memory. 662 void createCallSynchronizeDevice(); 663 664 /// Create a call to get a kernel from an assembly string. 665 /// 666 /// @param Buffer The string describing the kernel. 667 /// @param Entry The name of the kernel function to call. 668 /// 669 /// @returns A pointer to a kernel object 670 Value *createCallGetKernel(Value *Buffer, Value *Entry); 671 672 /// Create a call to free a GPU kernel. 673 /// 674 /// @param GPUKernel THe kernel to free. 675 void createCallFreeKernel(Value *GPUKernel); 676 677 /// Create a call to launch a GPU kernel. 678 /// 679 /// @param GPUKernel The kernel to launch. 680 /// @param GridDimX The size of the first grid dimension. 681 /// @param GridDimY The size of the second grid dimension. 682 /// @param GridBlockX The size of the first block dimension. 683 /// @param GridBlockY The size of the second block dimension. 684 /// @param GridBlockZ The size of the third block dimension. 685 /// @param Parameters A pointer to an array that contains itself pointers to 686 /// the parameter values passed for each kernel argument. 687 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 688 Value *GridDimY, Value *BlockDimX, 689 Value *BlockDimY, Value *BlockDimZ, 690 Value *Parameters); 691 }; 692 693 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 694 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 695 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 696 } 697 698 void GPUNodeBuilder::initializeAfterRTH() { 699 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 700 &*Builder.GetInsertPoint(), &DT, &LI); 701 NewBB->setName("polly.acc.initialize"); 702 Builder.SetInsertPoint(&NewBB->front()); 703 704 GPUContext = createCallInitContext(); 705 706 if (!ManagedMemory) 707 allocateDeviceArrays(); 708 } 709 710 void GPUNodeBuilder::finalize() { 711 if (!ManagedMemory) 712 freeDeviceArrays(); 713 714 createCallFreeContext(GPUContext); 715 IslNodeBuilder::finalize(); 716 } 717 718 void GPUNodeBuilder::allocateDeviceArrays() { 719 assert(!ManagedMemory && "Managed memory will directly send host pointers " 720 "to the kernel. There is no need for device arrays"); 721 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 722 723 for (int i = 0; i < Prog->n_array; ++i) { 724 gpu_array_info *Array = &Prog->array[i]; 725 auto *ScopArray = (ScopArrayInfo *)Array->user; 726 std::string DevArrayName("p_dev_array_"); 727 DevArrayName.append(Array->name); 728 729 Value *ArraySize = getArraySize(Array); 730 Value *Offset = getArrayOffset(Array); 731 if (Offset) 732 ArraySize = Builder.CreateSub( 733 ArraySize, 734 Builder.CreateMul(Offset, 735 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 736 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 737 DevArray->setName(DevArrayName); 738 DeviceAllocations[ScopArray] = DevArray; 739 } 740 741 isl_ast_build_free(Build); 742 } 743 744 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 745 Value *BlockDimY, Value *BlockDimZ) { 746 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 747 748 for (auto &F : *M) { 749 if (F.getCallingConv() != CallingConv::PTX_Kernel) 750 continue; 751 752 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 753 754 Metadata *Elements[] = { 755 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 756 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 757 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 758 ValueAsMetadata::get(V[2]), 759 }; 760 MDNode *Node = MDNode::get(M->getContext(), Elements); 761 AnnotationNode->addOperand(Node); 762 } 763 } 764 765 void GPUNodeBuilder::freeDeviceArrays() { 766 assert(!ManagedMemory && "Managed memory does not use device arrays"); 767 for (auto &Array : DeviceAllocations) 768 createCallFreeDeviceMemory(Array.second); 769 } 770 771 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 772 const char *Name = "polly_getKernel"; 773 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 774 Function *F = M->getFunction(Name); 775 776 // If F is not available, declare it. 777 if (!F) { 778 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 779 std::vector<Type *> Args; 780 Args.push_back(Builder.getInt8PtrTy()); 781 Args.push_back(Builder.getInt8PtrTy()); 782 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 783 F = Function::Create(Ty, Linkage, Name, M); 784 } 785 786 return Builder.CreateCall(F, {Buffer, Entry}); 787 } 788 789 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 790 const char *Name = "polly_getDevicePtr"; 791 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 792 Function *F = M->getFunction(Name); 793 794 // If F is not available, declare it. 795 if (!F) { 796 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 797 std::vector<Type *> Args; 798 Args.push_back(Builder.getInt8PtrTy()); 799 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 800 F = Function::Create(Ty, Linkage, Name, M); 801 } 802 803 return Builder.CreateCall(F, {Allocation}); 804 } 805 806 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 807 Value *GridDimY, Value *BlockDimX, 808 Value *BlockDimY, Value *BlockDimZ, 809 Value *Parameters) { 810 const char *Name = "polly_launchKernel"; 811 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 812 Function *F = M->getFunction(Name); 813 814 // If F is not available, declare it. 815 if (!F) { 816 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 817 std::vector<Type *> Args; 818 Args.push_back(Builder.getInt8PtrTy()); 819 Args.push_back(Builder.getInt32Ty()); 820 Args.push_back(Builder.getInt32Ty()); 821 Args.push_back(Builder.getInt32Ty()); 822 Args.push_back(Builder.getInt32Ty()); 823 Args.push_back(Builder.getInt32Ty()); 824 Args.push_back(Builder.getInt8PtrTy()); 825 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 826 F = Function::Create(Ty, Linkage, Name, M); 827 } 828 829 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 830 BlockDimZ, Parameters}); 831 } 832 833 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 834 const char *Name = "polly_freeKernel"; 835 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 836 Function *F = M->getFunction(Name); 837 838 // If F is not available, declare it. 839 if (!F) { 840 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 841 std::vector<Type *> Args; 842 Args.push_back(Builder.getInt8PtrTy()); 843 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 844 F = Function::Create(Ty, Linkage, Name, M); 845 } 846 847 Builder.CreateCall(F, {GPUKernel}); 848 } 849 850 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 851 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 852 "for device"); 853 const char *Name = "polly_freeDeviceMemory"; 854 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 855 Function *F = M->getFunction(Name); 856 857 // If F is not available, declare it. 858 if (!F) { 859 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 860 std::vector<Type *> Args; 861 Args.push_back(Builder.getInt8PtrTy()); 862 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 863 F = Function::Create(Ty, Linkage, Name, M); 864 } 865 866 Builder.CreateCall(F, {Array}); 867 } 868 869 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 870 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 871 "for device"); 872 const char *Name = "polly_allocateMemoryForDevice"; 873 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 874 Function *F = M->getFunction(Name); 875 876 // If F is not available, declare it. 877 if (!F) { 878 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 879 std::vector<Type *> Args; 880 Args.push_back(Builder.getInt64Ty()); 881 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 882 F = Function::Create(Ty, Linkage, Name, M); 883 } 884 885 return Builder.CreateCall(F, {Size}); 886 } 887 888 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 889 Value *DeviceData, 890 Value *Size) { 891 assert(!ManagedMemory && "Managed memory does not transfer memory between " 892 "device and host"); 893 const char *Name = "polly_copyFromHostToDevice"; 894 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 895 Function *F = M->getFunction(Name); 896 897 // If F is not available, declare it. 898 if (!F) { 899 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 900 std::vector<Type *> Args; 901 Args.push_back(Builder.getInt8PtrTy()); 902 Args.push_back(Builder.getInt8PtrTy()); 903 Args.push_back(Builder.getInt64Ty()); 904 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 905 F = Function::Create(Ty, Linkage, Name, M); 906 } 907 908 Builder.CreateCall(F, {HostData, DeviceData, Size}); 909 } 910 911 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 912 Value *HostData, 913 Value *Size) { 914 assert(!ManagedMemory && "Managed memory does not transfer memory between " 915 "device and host"); 916 const char *Name = "polly_copyFromDeviceToHost"; 917 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 918 Function *F = M->getFunction(Name); 919 920 // If F is not available, declare it. 921 if (!F) { 922 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 923 std::vector<Type *> Args; 924 Args.push_back(Builder.getInt8PtrTy()); 925 Args.push_back(Builder.getInt8PtrTy()); 926 Args.push_back(Builder.getInt64Ty()); 927 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 928 F = Function::Create(Ty, Linkage, Name, M); 929 } 930 931 Builder.CreateCall(F, {DeviceData, HostData, Size}); 932 } 933 934 void GPUNodeBuilder::createCallSynchronizeDevice() { 935 assert(ManagedMemory && "explicit synchronization is only necessary for " 936 "managed memory"); 937 const char *Name = "polly_synchronizeDevice"; 938 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 939 Function *F = M->getFunction(Name); 940 941 // If F is not available, declare it. 942 if (!F) { 943 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 944 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 945 F = Function::Create(Ty, Linkage, Name, M); 946 } 947 948 Builder.CreateCall(F); 949 } 950 951 Value *GPUNodeBuilder::createCallInitContext() { 952 const char *Name; 953 954 switch (Runtime) { 955 case GPURuntime::CUDA: 956 Name = "polly_initContextCUDA"; 957 break; 958 case GPURuntime::OpenCL: 959 Name = "polly_initContextCL"; 960 break; 961 } 962 963 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 964 Function *F = M->getFunction(Name); 965 966 // If F is not available, declare it. 967 if (!F) { 968 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 969 std::vector<Type *> Args; 970 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 971 F = Function::Create(Ty, Linkage, Name, M); 972 } 973 974 return Builder.CreateCall(F, {}); 975 } 976 977 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 978 const char *Name = "polly_freeContext"; 979 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 980 Function *F = M->getFunction(Name); 981 982 // If F is not available, declare it. 983 if (!F) { 984 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 985 std::vector<Type *> Args; 986 Args.push_back(Builder.getInt8PtrTy()); 987 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 988 F = Function::Create(Ty, Linkage, Name, M); 989 } 990 991 Builder.CreateCall(F, {Context}); 992 } 993 994 /// Check if one string is a prefix of another. 995 /// 996 /// @param String The string in which to look for the prefix. 997 /// @param Prefix The prefix to look for. 998 static bool isPrefix(std::string String, std::string Prefix) { 999 return String.find(Prefix) == 0; 1000 } 1001 1002 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1003 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 1004 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1005 1006 if (!gpu_array_is_scalar(Array)) { 1007 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 1008 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 1009 1010 for (unsigned int i = 1; i < Array->n_index; i++) { 1011 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 1012 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1013 Res = isl_ast_expr_mul(Res, Expr); 1014 } 1015 1016 Value *NumElements = ExprBuilder.create(Res); 1017 if (NumElements->getType() != ArraySize->getType()) 1018 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1019 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1020 } 1021 isl_ast_build_free(Build); 1022 return ArraySize; 1023 } 1024 1025 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1026 if (gpu_array_is_scalar(Array)) 1027 return nullptr; 1028 1029 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 1030 1031 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 1032 1033 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 1034 1035 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 1036 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 1037 1038 if (isl_set_is_subset(Min, ZeroSet)) { 1039 isl_set_free(Min); 1040 isl_set_free(ZeroSet); 1041 isl_ast_build_free(Build); 1042 return nullptr; 1043 } 1044 isl_set_free(ZeroSet); 1045 1046 isl_ast_expr *Result = 1047 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 1048 1049 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 1050 if (i > 0) { 1051 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i - 1]); 1052 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1053 Result = isl_ast_expr_mul(Result, BExpr); 1054 } 1055 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 1056 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 1057 Result = isl_ast_expr_add(Result, MExpr); 1058 } 1059 1060 Value *ResultValue = ExprBuilder.create(Result); 1061 isl_set_free(Min); 1062 isl_ast_build_free(Build); 1063 1064 return ResultValue; 1065 } 1066 1067 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 1068 ScopArrayInfo *ArrayInfo) { 1069 1070 assert(ManagedMemory && "Only used when you wish to get a host " 1071 "pointer for sending data to the kernel, " 1072 "with managed memory"); 1073 std::map<ScopArrayInfo *, Value *>::iterator it; 1074 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 1075 return it->second; 1076 } else { 1077 Value *HostPtr; 1078 1079 if (gpu_array_is_scalar(Array)) 1080 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 1081 else 1082 HostPtr = ArrayInfo->getBasePtr(); 1083 1084 Value *Offset = getArrayOffset(Array); 1085 if (Offset) { 1086 HostPtr = Builder.CreatePointerCast( 1087 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 1088 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1089 } 1090 1091 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1092 DeviceAllocations[ArrayInfo] = HostPtr; 1093 return HostPtr; 1094 } 1095 } 1096 1097 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1098 enum DataDirection Direction) { 1099 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1100 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1101 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1102 isl_id *Id = isl_ast_expr_get_id(Arg); 1103 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1104 auto ScopArray = (ScopArrayInfo *)(Array->user); 1105 1106 Value *Size = getArraySize(Array); 1107 Value *Offset = getArrayOffset(Array); 1108 Value *DevPtr = DeviceAllocations[ScopArray]; 1109 1110 Value *HostPtr; 1111 1112 if (gpu_array_is_scalar(Array)) 1113 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1114 else 1115 HostPtr = ScopArray->getBasePtr(); 1116 1117 if (Offset) { 1118 HostPtr = Builder.CreatePointerCast( 1119 HostPtr, ScopArray->getElementType()->getPointerTo()); 1120 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1121 } 1122 1123 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1124 1125 if (Offset) { 1126 Size = Builder.CreateSub( 1127 Size, Builder.CreateMul( 1128 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1129 } 1130 1131 if (Direction == HOST_TO_DEVICE) 1132 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1133 else 1134 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1135 1136 isl_id_free(Id); 1137 isl_ast_expr_free(Arg); 1138 isl_ast_expr_free(Expr); 1139 isl_ast_node_free(TransferStmt); 1140 } 1141 1142 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1143 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1144 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1145 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1146 isl_id_free(Id); 1147 isl_ast_expr_free(StmtExpr); 1148 1149 const char *Str = isl_id_get_name(Id); 1150 if (!strcmp(Str, "kernel")) { 1151 createKernel(UserStmt); 1152 isl_ast_expr_free(Expr); 1153 return; 1154 } 1155 1156 if (isPrefix(Str, "to_device")) { 1157 if (!ManagedMemory) 1158 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1159 else 1160 isl_ast_node_free(UserStmt); 1161 1162 isl_ast_expr_free(Expr); 1163 return; 1164 } 1165 1166 if (isPrefix(Str, "from_device")) { 1167 if (!ManagedMemory) { 1168 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1169 } else { 1170 createCallSynchronizeDevice(); 1171 isl_ast_node_free(UserStmt); 1172 } 1173 isl_ast_expr_free(Expr); 1174 return; 1175 } 1176 1177 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1178 struct ppcg_kernel_stmt *KernelStmt = 1179 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1180 isl_id_free(Anno); 1181 1182 switch (KernelStmt->type) { 1183 case ppcg_kernel_domain: 1184 createScopStmt(Expr, KernelStmt); 1185 isl_ast_node_free(UserStmt); 1186 return; 1187 case ppcg_kernel_copy: 1188 createKernelCopy(KernelStmt); 1189 isl_ast_expr_free(Expr); 1190 isl_ast_node_free(UserStmt); 1191 return; 1192 case ppcg_kernel_sync: 1193 createKernelSync(); 1194 isl_ast_expr_free(Expr); 1195 isl_ast_node_free(UserStmt); 1196 return; 1197 } 1198 1199 isl_ast_expr_free(Expr); 1200 isl_ast_node_free(UserStmt); 1201 return; 1202 } 1203 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1204 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1205 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1206 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1207 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1208 Index = isl_ast_expr_address_of(Index); 1209 Value *GlobalAddr = ExprBuilder.create(Index); 1210 1211 if (KernelStmt->u.c.read) { 1212 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1213 Builder.CreateStore(Load, LocalAddr); 1214 } else { 1215 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1216 Builder.CreateStore(Load, GlobalAddr); 1217 } 1218 } 1219 1220 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1221 ppcg_kernel_stmt *KernelStmt) { 1222 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1223 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1224 1225 LoopToScevMapT LTS; 1226 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1227 1228 createSubstitutions(Expr, Stmt, LTS); 1229 1230 if (Stmt->isBlockStmt()) 1231 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1232 else 1233 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1234 } 1235 1236 void GPUNodeBuilder::createKernelSync() { 1237 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1238 1239 Function *Sync; 1240 1241 switch (Arch) { 1242 case GPUArch::NVPTX64: 1243 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1244 break; 1245 } 1246 1247 Builder.CreateCall(Sync, {}); 1248 } 1249 1250 /// Collect llvm::Values referenced from @p Node 1251 /// 1252 /// This function only applies to isl_ast_nodes that are user_nodes referring 1253 /// to a ScopStmt. All other node types are ignore. 1254 /// 1255 /// @param Node The node to collect references for. 1256 /// @param User A user pointer used as storage for the data that is collected. 1257 /// 1258 /// @returns isl_bool_true if data could be collected successfully. 1259 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1260 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1261 return isl_bool_true; 1262 1263 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1264 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1265 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1266 const char *Str = isl_id_get_name(Id); 1267 isl_id_free(Id); 1268 isl_ast_expr_free(StmtExpr); 1269 isl_ast_expr_free(Expr); 1270 1271 if (!isPrefix(Str, "Stmt")) 1272 return isl_bool_true; 1273 1274 Id = isl_ast_node_get_annotation(Node); 1275 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1276 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1277 isl_id_free(Id); 1278 1279 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1280 1281 return isl_bool_true; 1282 } 1283 1284 /// Check if F is a function that we can code-generate in a GPU kernel. 1285 static bool isValidFunctionInKernel(llvm::Function *F) { 1286 assert(F && "F is an invalid pointer"); 1287 // We string compare against the name of the function to allow 1288 // all variants of the intrinsic "llvm.sqrt.*" 1289 return F->isIntrinsic() && F->getName().startswith("llvm.sqrt"); 1290 } 1291 1292 /// Do not take `Function` as a subtree value. 1293 /// 1294 /// We try to take the reference of all subtree values and pass them along 1295 /// to the kernel from the host. Taking an address of any function and 1296 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1297 /// `Function`s. 1298 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1299 1300 /// Return `Function`s from `RawSubtreeValues`. 1301 static SetVector<Function *> 1302 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues) { 1303 SetVector<Function *> SubtreeFunctions; 1304 for (Value *It : RawSubtreeValues) { 1305 Function *F = dyn_cast<Function>(It); 1306 if (F) { 1307 assert(isValidFunctionInKernel(F) && "Code should have bailed out by " 1308 "this point if an invalid function " 1309 "were present in a kernel."); 1310 SubtreeFunctions.insert(F); 1311 } 1312 } 1313 return SubtreeFunctions; 1314 } 1315 1316 std::pair<SetVector<Value *>, SetVector<Function *>> 1317 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1318 SetVector<Value *> SubtreeValues; 1319 SetVector<const SCEV *> SCEVs; 1320 SetVector<const Loop *> Loops; 1321 SubtreeReferences References = { 1322 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1323 1324 for (const auto &I : IDToValue) 1325 SubtreeValues.insert(I.second); 1326 1327 isl_ast_node_foreach_descendant_top_down( 1328 Kernel->tree, collectReferencesInGPUStmt, &References); 1329 1330 for (const SCEV *Expr : SCEVs) 1331 findValues(Expr, SE, SubtreeValues); 1332 1333 for (auto &SAI : S.arrays()) 1334 SubtreeValues.remove(SAI->getBasePtr()); 1335 1336 isl_space *Space = S.getParamSpace(); 1337 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1338 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1339 assert(IDToValue.count(Id)); 1340 Value *Val = IDToValue[Id]; 1341 SubtreeValues.remove(Val); 1342 isl_id_free(Id); 1343 } 1344 isl_space_free(Space); 1345 1346 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1347 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1348 assert(IDToValue.count(Id)); 1349 Value *Val = IDToValue[Id]; 1350 SubtreeValues.remove(Val); 1351 isl_id_free(Id); 1352 } 1353 1354 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1355 // SubtreeValues. This is important, because we should not lose any 1356 // SubtreeValues in the process of constructing the 1357 // "ValidSubtree{Values, Functions} sets. Nor should the set 1358 // ValidSubtree{Values, Functions} have any common element. 1359 auto ValidSubtreeValuesIt = 1360 make_filter_range(SubtreeValues, isValidSubtreeValue); 1361 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1362 ValidSubtreeValuesIt.end()); 1363 SetVector<Function *> ValidSubtreeFunctions( 1364 getFunctionsFromRawSubtreeValues(SubtreeValues)); 1365 1366 // @see IslNodeBuilder::getReferencesInSubtree 1367 SetVector<Value *> ReplacedValues; 1368 for (Value *V : ValidSubtreeValues) { 1369 auto It = ValueMap.find(V); 1370 if (It == ValueMap.end()) 1371 ReplacedValues.insert(V); 1372 else 1373 ReplacedValues.insert(It->second); 1374 } 1375 return std::make_pair(ReplacedValues, ValidSubtreeFunctions); 1376 } 1377 1378 void GPUNodeBuilder::clearDominators(Function *F) { 1379 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1380 std::vector<BasicBlock *> Nodes; 1381 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1382 Nodes.push_back(I->getBlock()); 1383 1384 for (BasicBlock *BB : Nodes) 1385 DT.eraseNode(BB); 1386 } 1387 1388 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1389 for (BasicBlock &BB : *F) { 1390 Loop *L = LI.getLoopFor(&BB); 1391 if (L) 1392 SE.forgetLoop(L); 1393 } 1394 } 1395 1396 void GPUNodeBuilder::clearLoops(Function *F) { 1397 for (BasicBlock &BB : *F) { 1398 Loop *L = LI.getLoopFor(&BB); 1399 if (L) 1400 SE.forgetLoop(L); 1401 LI.removeBlock(&BB); 1402 } 1403 } 1404 1405 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1406 std::vector<Value *> Sizes; 1407 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1408 1409 for (long i = 0; i < Kernel->n_grid; i++) { 1410 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1411 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1412 Value *Res = ExprBuilder.create(GridSize); 1413 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1414 Sizes.push_back(Res); 1415 } 1416 isl_ast_build_free(Context); 1417 1418 for (long i = Kernel->n_grid; i < 3; i++) 1419 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1420 1421 return std::make_tuple(Sizes[0], Sizes[1]); 1422 } 1423 1424 std::tuple<Value *, Value *, Value *> 1425 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1426 std::vector<Value *> Sizes; 1427 1428 for (long i = 0; i < Kernel->n_block; i++) { 1429 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1430 Sizes.push_back(Res); 1431 } 1432 1433 for (long i = Kernel->n_block; i < 3; i++) 1434 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1435 1436 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1437 } 1438 1439 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1440 Instruction *Param, int Index) { 1441 Value *Slot = Builder.CreateGEP( 1442 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1443 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1444 Builder.CreateStore(ParamTyped, Slot); 1445 } 1446 1447 Value * 1448 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1449 SetVector<Value *> SubtreeValues) { 1450 const int NumArgs = F->arg_size(); 1451 std::vector<int> ArgSizes(NumArgs); 1452 1453 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1454 1455 BasicBlock *EntryBlock = 1456 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1457 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1458 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1459 Instruction *Parameters = new AllocaInst( 1460 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1461 1462 int Index = 0; 1463 for (long i = 0; i < Prog->n_array; i++) { 1464 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1465 continue; 1466 1467 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1468 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1469 1470 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1471 1472 Value *DevArray = nullptr; 1473 if (ManagedMemory) { 1474 DevArray = getOrCreateManagedDeviceArray( 1475 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1476 } else { 1477 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1478 DevArray = createCallGetDevicePtr(DevArray); 1479 } 1480 assert(DevArray != nullptr && "Array to be offloaded to device not " 1481 "initialized"); 1482 Value *Offset = getArrayOffset(&Prog->array[i]); 1483 1484 if (Offset) { 1485 DevArray = Builder.CreatePointerCast( 1486 DevArray, SAI->getElementType()->getPointerTo()); 1487 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1488 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1489 } 1490 Value *Slot = Builder.CreateGEP( 1491 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1492 1493 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1494 Value *ValPtr = nullptr; 1495 if (ManagedMemory) 1496 ValPtr = DevArray; 1497 else 1498 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1499 1500 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1501 " to be stored into Parameters"); 1502 Value *ValPtrCast = 1503 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1504 Builder.CreateStore(ValPtrCast, Slot); 1505 } else { 1506 Instruction *Param = 1507 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1508 Launch + "_param_" + std::to_string(Index), 1509 EntryBlock->getTerminator()); 1510 Builder.CreateStore(DevArray, Param); 1511 Value *ParamTyped = 1512 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1513 Builder.CreateStore(ParamTyped, Slot); 1514 } 1515 Index++; 1516 } 1517 1518 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1519 1520 for (long i = 0; i < NumHostIters; i++) { 1521 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1522 Value *Val = IDToValue[Id]; 1523 isl_id_free(Id); 1524 1525 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1526 1527 Instruction *Param = 1528 new AllocaInst(Val->getType(), AddressSpace, 1529 Launch + "_param_" + std::to_string(Index), 1530 EntryBlock->getTerminator()); 1531 Builder.CreateStore(Val, Param); 1532 insertStoreParameter(Parameters, Param, Index); 1533 Index++; 1534 } 1535 1536 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1537 1538 for (long i = 0; i < NumVars; i++) { 1539 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1540 Value *Val = IDToValue[Id]; 1541 if (ValueMap.count(Val)) 1542 Val = ValueMap[Val]; 1543 isl_id_free(Id); 1544 1545 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1546 1547 Instruction *Param = 1548 new AllocaInst(Val->getType(), AddressSpace, 1549 Launch + "_param_" + std::to_string(Index), 1550 EntryBlock->getTerminator()); 1551 Builder.CreateStore(Val, Param); 1552 insertStoreParameter(Parameters, Param, Index); 1553 Index++; 1554 } 1555 1556 for (auto Val : SubtreeValues) { 1557 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1558 1559 Instruction *Param = 1560 new AllocaInst(Val->getType(), AddressSpace, 1561 Launch + "_param_" + std::to_string(Index), 1562 EntryBlock->getTerminator()); 1563 Builder.CreateStore(Val, Param); 1564 insertStoreParameter(Parameters, Param, Index); 1565 Index++; 1566 } 1567 1568 for (int i = 0; i < NumArgs; i++) { 1569 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1570 Instruction *Param = 1571 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1572 Launch + "_param_size_" + std::to_string(i), 1573 EntryBlock->getTerminator()); 1574 Builder.CreateStore(Val, Param); 1575 insertStoreParameter(Parameters, Param, Index); 1576 Index++; 1577 } 1578 1579 auto Location = EntryBlock->getTerminator(); 1580 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1581 Launch + "_params_i8ptr", Location); 1582 } 1583 1584 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1585 SetVector<Function *> SubtreeFunctions) { 1586 for (auto Fn : SubtreeFunctions) { 1587 const std::string ClonedFnName = Fn->getName(); 1588 Function *Clone = GPUModule->getFunction(ClonedFnName); 1589 if (!Clone) 1590 Clone = 1591 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1592 ClonedFnName, GPUModule.get()); 1593 assert(Clone && "Expected cloned function to be initialized."); 1594 assert(ValueMap.find(Fn) == ValueMap.end() && 1595 "Fn already present in ValueMap"); 1596 ValueMap[Fn] = Clone; 1597 } 1598 } 1599 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1600 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1601 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1602 isl_id_free(Id); 1603 isl_ast_node_free(KernelStmt); 1604 1605 if (Kernel->n_grid > 1) 1606 DeepestParallel = 1607 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1608 else 1609 DeepestSequential = 1610 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1611 1612 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1613 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1614 1615 SetVector<Value *> SubtreeValues; 1616 SetVector<Function *> SubtreeFunctions; 1617 std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel); 1618 1619 assert(Kernel->tree && "Device AST of kernel node is empty"); 1620 1621 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1622 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1623 ValueMapT HostValueMap = ValueMap; 1624 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1625 ScalarMap.clear(); 1626 1627 SetVector<const Loop *> Loops; 1628 1629 // Create for all loops we depend on values that contain the current loop 1630 // iteration. These values are necessary to generate code for SCEVs that 1631 // depend on such loops. As a result we need to pass them to the subfunction. 1632 for (const Loop *L : Loops) { 1633 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1634 SE.getUnknown(Builder.getInt64(1)), 1635 L, SCEV::FlagAnyWrap); 1636 Value *V = generateSCEV(OuterLIV); 1637 OutsideLoopIterations[L] = SE.getUnknown(V); 1638 SubtreeValues.insert(V); 1639 } 1640 1641 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1642 setupKernelSubtreeFunctions(SubtreeFunctions); 1643 1644 create(isl_ast_node_copy(Kernel->tree)); 1645 1646 finalizeKernelArguments(Kernel); 1647 Function *F = Builder.GetInsertBlock()->getParent(); 1648 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1649 clearDominators(F); 1650 clearScalarEvolution(F); 1651 clearLoops(F); 1652 1653 IDToValue = HostIDs; 1654 1655 ValueMap = std::move(HostValueMap); 1656 ScalarMap = std::move(HostScalarMap); 1657 EscapeMap.clear(); 1658 IDToSAI.clear(); 1659 Annotator.resetAlternativeAliasBases(); 1660 for (auto &BasePtr : LocalArrays) 1661 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1662 LocalArrays.clear(); 1663 1664 std::string ASMString = finalizeKernelFunction(); 1665 Builder.SetInsertPoint(&HostInsertPoint); 1666 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1667 1668 std::string Name = getKernelFuncName(Kernel->id); 1669 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1670 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1671 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1672 1673 Value *GridDimX, *GridDimY; 1674 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1675 1676 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1677 BlockDimZ, Parameters); 1678 createCallFreeKernel(GPUKernel); 1679 1680 for (auto Id : KernelIds) 1681 isl_id_free(Id); 1682 1683 KernelIds.clear(); 1684 } 1685 1686 /// Compute the DataLayout string for the NVPTX backend. 1687 /// 1688 /// @param is64Bit Are we looking for a 64 bit architecture? 1689 static std::string computeNVPTXDataLayout(bool is64Bit) { 1690 std::string Ret = ""; 1691 1692 if (!is64Bit) { 1693 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1694 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1695 "64-v128:128:128-n16:32:64"; 1696 } else { 1697 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1698 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1699 "64-v128:128:128-n16:32:64"; 1700 } 1701 1702 return Ret; 1703 } 1704 1705 Function * 1706 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1707 SetVector<Value *> &SubtreeValues) { 1708 std::vector<Type *> Args; 1709 std::string Identifier = getKernelFuncName(Kernel->id); 1710 1711 for (long i = 0; i < Prog->n_array; i++) { 1712 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1713 continue; 1714 1715 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1716 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1717 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1718 Args.push_back(SAI->getElementType()); 1719 } else { 1720 static const int UseGlobalMemory = 1; 1721 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1722 } 1723 } 1724 1725 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1726 1727 for (long i = 0; i < NumHostIters; i++) 1728 Args.push_back(Builder.getInt64Ty()); 1729 1730 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1731 1732 for (long i = 0; i < NumVars; i++) { 1733 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1734 Value *Val = IDToValue[Id]; 1735 isl_id_free(Id); 1736 Args.push_back(Val->getType()); 1737 } 1738 1739 for (auto *V : SubtreeValues) 1740 Args.push_back(V->getType()); 1741 1742 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1743 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1744 GPUModule.get()); 1745 1746 switch (Arch) { 1747 case GPUArch::NVPTX64: 1748 FN->setCallingConv(CallingConv::PTX_Kernel); 1749 break; 1750 } 1751 1752 auto Arg = FN->arg_begin(); 1753 for (long i = 0; i < Kernel->n_array; i++) { 1754 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1755 continue; 1756 1757 Arg->setName(Kernel->array[i].array->name); 1758 1759 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1760 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1761 Type *EleTy = SAI->getElementType(); 1762 Value *Val = &*Arg; 1763 SmallVector<const SCEV *, 4> Sizes; 1764 isl_ast_build *Build = 1765 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1766 Sizes.push_back(nullptr); 1767 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1768 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1769 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1770 auto V = ExprBuilder.create(DimSize); 1771 Sizes.push_back(SE.getSCEV(V)); 1772 } 1773 const ScopArrayInfo *SAIRep = 1774 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1775 LocalArrays.push_back(Val); 1776 1777 isl_ast_build_free(Build); 1778 KernelIds.push_back(Id); 1779 IDToSAI[Id] = SAIRep; 1780 Arg++; 1781 } 1782 1783 for (long i = 0; i < NumHostIters; i++) { 1784 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1785 Arg->setName(isl_id_get_name(Id)); 1786 IDToValue[Id] = &*Arg; 1787 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1788 Arg++; 1789 } 1790 1791 for (long i = 0; i < NumVars; i++) { 1792 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1793 Arg->setName(isl_id_get_name(Id)); 1794 Value *Val = IDToValue[Id]; 1795 ValueMap[Val] = &*Arg; 1796 IDToValue[Id] = &*Arg; 1797 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1798 Arg++; 1799 } 1800 1801 for (auto *V : SubtreeValues) { 1802 Arg->setName(V->getName()); 1803 ValueMap[V] = &*Arg; 1804 Arg++; 1805 } 1806 1807 return FN; 1808 } 1809 1810 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1811 Intrinsic::ID IntrinsicsBID[2]; 1812 Intrinsic::ID IntrinsicsTID[3]; 1813 1814 switch (Arch) { 1815 case GPUArch::NVPTX64: 1816 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1817 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1818 1819 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1820 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1821 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1822 break; 1823 } 1824 1825 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1826 std::string Name = isl_id_get_name(Id); 1827 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1828 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1829 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1830 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1831 IDToValue[Id] = Val; 1832 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1833 }; 1834 1835 for (int i = 0; i < Kernel->n_grid; ++i) { 1836 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1837 addId(Id, IntrinsicsBID[i]); 1838 } 1839 1840 for (int i = 0; i < Kernel->n_block; ++i) { 1841 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1842 addId(Id, IntrinsicsTID[i]); 1843 } 1844 } 1845 1846 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1847 auto Arg = FN->arg_begin(); 1848 for (long i = 0; i < Kernel->n_array; i++) { 1849 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1850 continue; 1851 1852 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1853 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1854 isl_id_free(Id); 1855 1856 if (SAI->getNumberOfDimensions() > 0) { 1857 Arg++; 1858 continue; 1859 } 1860 1861 Value *Val = &*Arg; 1862 1863 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1864 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1865 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1866 Val = Builder.CreateLoad(TypedArgPtr); 1867 } 1868 1869 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1870 Builder.CreateStore(Val, Alloca); 1871 1872 Arg++; 1873 } 1874 } 1875 1876 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1877 auto *FN = Builder.GetInsertBlock()->getParent(); 1878 auto Arg = FN->arg_begin(); 1879 1880 bool StoredScalar = false; 1881 for (long i = 0; i < Kernel->n_array; i++) { 1882 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1883 continue; 1884 1885 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1886 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1887 isl_id_free(Id); 1888 1889 if (SAI->getNumberOfDimensions() > 0) { 1890 Arg++; 1891 continue; 1892 } 1893 1894 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1895 Arg++; 1896 continue; 1897 } 1898 1899 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1900 Value *ArgPtr = &*Arg; 1901 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1902 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1903 Value *Val = Builder.CreateLoad(Alloca); 1904 Builder.CreateStore(Val, TypedArgPtr); 1905 StoredScalar = true; 1906 1907 Arg++; 1908 } 1909 1910 if (StoredScalar) 1911 /// In case more than one thread contains scalar stores, the generated 1912 /// code might be incorrect, if we only store at the end of the kernel. 1913 /// To support this case we need to store these scalars back at each 1914 /// memory store or at least before each kernel barrier. 1915 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1916 BuildSuccessful = 0; 1917 } 1918 1919 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1920 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1921 1922 for (int i = 0; i < Kernel->n_var; ++i) { 1923 struct ppcg_kernel_var &Var = Kernel->var[i]; 1924 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1925 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1926 1927 Type *ArrayTy = EleTy; 1928 SmallVector<const SCEV *, 4> Sizes; 1929 1930 Sizes.push_back(nullptr); 1931 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1932 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1933 long Bound = isl_val_get_num_si(Val); 1934 isl_val_free(Val); 1935 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1936 } 1937 1938 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1939 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1940 long Bound = isl_val_get_num_si(Val); 1941 isl_val_free(Val); 1942 ArrayTy = ArrayType::get(ArrayTy, Bound); 1943 } 1944 1945 const ScopArrayInfo *SAI; 1946 Value *Allocation; 1947 if (Var.type == ppcg_access_shared) { 1948 auto GlobalVar = new GlobalVariable( 1949 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1950 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1951 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1952 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1953 1954 Allocation = GlobalVar; 1955 } else if (Var.type == ppcg_access_private) { 1956 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1957 } else { 1958 llvm_unreachable("unknown variable type"); 1959 } 1960 SAI = 1961 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1962 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1963 IDToValue[Id] = Allocation; 1964 LocalArrays.push_back(Allocation); 1965 KernelIds.push_back(Id); 1966 IDToSAI[Id] = SAI; 1967 } 1968 } 1969 1970 void GPUNodeBuilder::createKernelFunction( 1971 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 1972 SetVector<Function *> &SubtreeFunctions) { 1973 std::string Identifier = getKernelFuncName(Kernel->id); 1974 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1975 1976 switch (Arch) { 1977 case GPUArch::NVPTX64: 1978 if (Runtime == GPURuntime::CUDA) 1979 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1980 else if (Runtime == GPURuntime::OpenCL) 1981 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 1982 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1983 break; 1984 } 1985 1986 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1987 1988 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1989 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1990 1991 DT.addNewBlock(EntryBlock, PrevBlock); 1992 1993 Builder.SetInsertPoint(EntryBlock); 1994 Builder.CreateRetVoid(); 1995 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1996 1997 ScopDetection::markFunctionAsInvalid(FN); 1998 1999 prepareKernelArguments(Kernel, FN); 2000 createKernelVariables(Kernel, FN); 2001 insertKernelIntrinsics(Kernel); 2002 } 2003 2004 std::string GPUNodeBuilder::createKernelASM() { 2005 llvm::Triple GPUTriple; 2006 2007 switch (Arch) { 2008 case GPUArch::NVPTX64: 2009 switch (Runtime) { 2010 case GPURuntime::CUDA: 2011 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2012 break; 2013 case GPURuntime::OpenCL: 2014 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2015 break; 2016 } 2017 break; 2018 } 2019 2020 std::string ErrMsg; 2021 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2022 2023 if (!GPUTarget) { 2024 errs() << ErrMsg << "\n"; 2025 return ""; 2026 } 2027 2028 TargetOptions Options; 2029 Options.UnsafeFPMath = FastMath; 2030 2031 std::string subtarget; 2032 2033 switch (Arch) { 2034 case GPUArch::NVPTX64: 2035 subtarget = CudaVersion; 2036 break; 2037 } 2038 2039 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2040 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2041 2042 SmallString<0> ASMString; 2043 raw_svector_ostream ASMStream(ASMString); 2044 llvm::legacy::PassManager PM; 2045 2046 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2047 2048 if (TargetM->addPassesToEmitFile( 2049 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2050 errs() << "The target does not support generation of this file type!\n"; 2051 return ""; 2052 } 2053 2054 PM.run(*GPUModule); 2055 2056 return ASMStream.str(); 2057 } 2058 2059 std::string GPUNodeBuilder::finalizeKernelFunction() { 2060 2061 if (verifyModule(*GPUModule)) { 2062 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2063 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2064 2065 if (FailOnVerifyModuleFailure) 2066 llvm_unreachable("VerifyModule failed."); 2067 2068 BuildSuccessful = false; 2069 return ""; 2070 } 2071 2072 if (DumpKernelIR) 2073 outs() << *GPUModule << "\n"; 2074 2075 // Optimize module. 2076 llvm::legacy::PassManager OptPasses; 2077 PassManagerBuilder PassBuilder; 2078 PassBuilder.OptLevel = 3; 2079 PassBuilder.SizeLevel = 0; 2080 PassBuilder.populateModulePassManager(OptPasses); 2081 OptPasses.run(*GPUModule); 2082 2083 std::string Assembly = createKernelASM(); 2084 2085 if (DumpKernelASM) 2086 outs() << Assembly << "\n"; 2087 2088 GPUModule.release(); 2089 KernelIDs.clear(); 2090 2091 return Assembly; 2092 } 2093 2094 namespace { 2095 class PPCGCodeGeneration : public ScopPass { 2096 public: 2097 static char ID; 2098 2099 GPURuntime Runtime = GPURuntime::CUDA; 2100 2101 GPUArch Architecture = GPUArch::NVPTX64; 2102 2103 /// The scop that is currently processed. 2104 Scop *S; 2105 2106 LoopInfo *LI; 2107 DominatorTree *DT; 2108 ScalarEvolution *SE; 2109 const DataLayout *DL; 2110 RegionInfo *RI; 2111 2112 PPCGCodeGeneration() : ScopPass(ID) {} 2113 2114 /// Construct compilation options for PPCG. 2115 /// 2116 /// @returns The compilation options. 2117 ppcg_options *createPPCGOptions() { 2118 auto DebugOptions = 2119 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2120 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2121 2122 DebugOptions->dump_schedule_constraints = false; 2123 DebugOptions->dump_schedule = false; 2124 DebugOptions->dump_final_schedule = false; 2125 DebugOptions->dump_sizes = false; 2126 DebugOptions->verbose = false; 2127 2128 Options->debug = DebugOptions; 2129 2130 Options->reschedule = true; 2131 Options->scale_tile_loops = false; 2132 Options->wrap = false; 2133 2134 Options->non_negative_parameters = false; 2135 Options->ctx = nullptr; 2136 Options->sizes = nullptr; 2137 2138 Options->tile_size = 32; 2139 2140 Options->use_private_memory = PrivateMemory; 2141 Options->use_shared_memory = SharedMemory; 2142 Options->max_shared_memory = 48 * 1024; 2143 2144 Options->target = PPCG_TARGET_CUDA; 2145 Options->openmp = false; 2146 Options->linearize_device_arrays = true; 2147 Options->live_range_reordering = false; 2148 2149 Options->opencl_compiler_options = nullptr; 2150 Options->opencl_use_gpu = false; 2151 Options->opencl_n_include_file = 0; 2152 Options->opencl_include_files = nullptr; 2153 Options->opencl_print_kernel_types = false; 2154 Options->opencl_embed_kernel_code = false; 2155 2156 Options->save_schedule_file = nullptr; 2157 Options->load_schedule_file = nullptr; 2158 2159 return Options; 2160 } 2161 2162 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2163 /// 2164 /// Instead of a normal access of the form: 2165 /// 2166 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2167 /// 2168 /// a tagged access has the form 2169 /// 2170 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2171 /// 2172 /// where 'id' is an additional space that references the memory access that 2173 /// triggered the access. 2174 /// 2175 /// @param AccessTy The type of the memory accesses to collect. 2176 /// 2177 /// @return The relation describing all tagged memory accesses. 2178 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2179 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2180 2181 for (auto &Stmt : *S) 2182 for (auto &Acc : Stmt) 2183 if (Acc->getType() == AccessTy) { 2184 isl_map *Relation = Acc->getAccessRelation(); 2185 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2186 2187 isl_space *Space = isl_map_get_space(Relation); 2188 Space = isl_space_range(Space); 2189 Space = isl_space_from_range(Space); 2190 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2191 isl_map *Universe = isl_map_universe(Space); 2192 Relation = isl_map_domain_product(Relation, Universe); 2193 Accesses = isl_union_map_add_map(Accesses, Relation); 2194 } 2195 2196 return Accesses; 2197 } 2198 2199 /// Get the set of all read accesses, tagged with the access id. 2200 /// 2201 /// @see getTaggedAccesses 2202 isl_union_map *getTaggedReads() { 2203 return getTaggedAccesses(MemoryAccess::READ); 2204 } 2205 2206 /// Get the set of all may (and must) accesses, tagged with the access id. 2207 /// 2208 /// @see getTaggedAccesses 2209 isl_union_map *getTaggedMayWrites() { 2210 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2211 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2212 } 2213 2214 /// Get the set of all must accesses, tagged with the access id. 2215 /// 2216 /// @see getTaggedAccesses 2217 isl_union_map *getTaggedMustWrites() { 2218 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2219 } 2220 2221 /// Collect parameter and array names as isl_ids. 2222 /// 2223 /// To reason about the different parameters and arrays used, ppcg requires 2224 /// a list of all isl_ids in use. As PPCG traditionally performs 2225 /// source-to-source compilation each of these isl_ids is mapped to the 2226 /// expression that represents it. As we do not have a corresponding 2227 /// expression in Polly, we just map each id to a 'zero' expression to match 2228 /// the data format that ppcg expects. 2229 /// 2230 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2231 __isl_give isl_id_to_ast_expr *getNames() { 2232 auto *Names = isl_id_to_ast_expr_alloc( 2233 S->getIslCtx(), 2234 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2235 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2236 auto *Space = S->getParamSpace(); 2237 2238 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 2239 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 2240 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2241 } 2242 2243 for (auto &Array : S->arrays()) { 2244 auto Id = Array->getBasePtrId(); 2245 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2246 } 2247 2248 isl_space_free(Space); 2249 isl_ast_expr_free(Zero); 2250 2251 return Names; 2252 } 2253 2254 /// Create a new PPCG scop from the current scop. 2255 /// 2256 /// The PPCG scop is initialized with data from the current polly::Scop. From 2257 /// this initial data, the data-dependences in the PPCG scop are initialized. 2258 /// We do not use Polly's dependence analysis for now, to ensure we match 2259 /// the PPCG default behaviour more closely. 2260 /// 2261 /// @returns A new ppcg scop. 2262 ppcg_scop *createPPCGScop() { 2263 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2264 2265 PPCGScop->options = createPPCGOptions(); 2266 // enable live range reordering 2267 PPCGScop->options->live_range_reordering = 1; 2268 2269 PPCGScop->start = 0; 2270 PPCGScop->end = 0; 2271 2272 PPCGScop->context = S->getContext(); 2273 PPCGScop->domain = S->getDomains(); 2274 PPCGScop->call = nullptr; 2275 PPCGScop->tagged_reads = getTaggedReads(); 2276 PPCGScop->reads = S->getReads(); 2277 PPCGScop->live_in = nullptr; 2278 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2279 PPCGScop->may_writes = S->getWrites(); 2280 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2281 PPCGScop->must_writes = S->getMustWrites(); 2282 PPCGScop->live_out = nullptr; 2283 PPCGScop->tagger = nullptr; 2284 PPCGScop->independence = 2285 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2286 PPCGScop->dep_flow = nullptr; 2287 PPCGScop->tagged_dep_flow = nullptr; 2288 PPCGScop->dep_false = nullptr; 2289 PPCGScop->dep_forced = nullptr; 2290 PPCGScop->dep_order = nullptr; 2291 PPCGScop->tagged_dep_order = nullptr; 2292 2293 PPCGScop->schedule = S->getScheduleTree(); 2294 2295 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2296 // If we have something non-trivial to kill, add it to the schedule 2297 if (KillsInfo.KillsSchedule.get()) 2298 PPCGScop->schedule = isl_schedule_sequence( 2299 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2300 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2301 2302 PPCGScop->names = getNames(); 2303 PPCGScop->pet = nullptr; 2304 2305 compute_tagger(PPCGScop); 2306 compute_dependences(PPCGScop); 2307 2308 return PPCGScop; 2309 } 2310 2311 /// Collect the array accesses in a statement. 2312 /// 2313 /// @param Stmt The statement for which to collect the accesses. 2314 /// 2315 /// @returns A list of array accesses. 2316 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2317 gpu_stmt_access *Accesses = nullptr; 2318 2319 for (MemoryAccess *Acc : Stmt) { 2320 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2321 Access->read = Acc->isRead(); 2322 Access->write = Acc->isWrite(); 2323 Access->access = Acc->getAccessRelation(); 2324 isl_space *Space = isl_map_get_space(Access->access); 2325 Space = isl_space_range(Space); 2326 Space = isl_space_from_range(Space); 2327 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2328 isl_map *Universe = isl_map_universe(Space); 2329 Access->tagged_access = 2330 isl_map_domain_product(Acc->getAccessRelation(), Universe); 2331 Access->exact_write = !Acc->isMayWrite(); 2332 Access->ref_id = Acc->getId(); 2333 Access->next = Accesses; 2334 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2335 Accesses = Access; 2336 } 2337 2338 return Accesses; 2339 } 2340 2341 /// Collect the list of GPU statements. 2342 /// 2343 /// Each statement has an id, a pointer to the underlying data structure, 2344 /// as well as a list with all memory accesses. 2345 /// 2346 /// TODO: Initialize the list of memory accesses. 2347 /// 2348 /// @returns A linked-list of statements. 2349 gpu_stmt *getStatements() { 2350 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2351 std::distance(S->begin(), S->end())); 2352 2353 int i = 0; 2354 for (auto &Stmt : *S) { 2355 gpu_stmt *GPUStmt = &Stmts[i]; 2356 2357 GPUStmt->id = Stmt.getDomainId(); 2358 2359 // We use the pet stmt pointer to keep track of the Polly statements. 2360 GPUStmt->stmt = (pet_stmt *)&Stmt; 2361 GPUStmt->accesses = getStmtAccesses(Stmt); 2362 i++; 2363 } 2364 2365 return Stmts; 2366 } 2367 2368 /// Derive the extent of an array. 2369 /// 2370 /// The extent of an array is the set of elements that are within the 2371 /// accessed array. For the inner dimensions, the extent constraints are 2372 /// 0 and the size of the corresponding array dimension. For the first 2373 /// (outermost) dimension, the extent constraints are the minimal and maximal 2374 /// subscript value for the first dimension. 2375 /// 2376 /// @param Array The array to derive the extent for. 2377 /// 2378 /// @returns An isl_set describing the extent of the array. 2379 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2380 unsigned NumDims = Array->getNumberOfDimensions(); 2381 isl_union_map *Accesses = S->getAccesses(); 2382 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2383 Accesses = isl_union_map_detect_equalities(Accesses); 2384 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2385 AccessUSet = isl_union_set_coalesce(AccessUSet); 2386 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2387 AccessUSet = isl_union_set_coalesce(AccessUSet); 2388 2389 if (isl_union_set_is_empty(AccessUSet)) { 2390 isl_union_set_free(AccessUSet); 2391 return isl_set_empty(Array->getSpace()); 2392 } 2393 2394 if (Array->getNumberOfDimensions() == 0) { 2395 isl_union_set_free(AccessUSet); 2396 return isl_set_universe(Array->getSpace()); 2397 } 2398 2399 isl_set *AccessSet = 2400 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 2401 2402 isl_union_set_free(AccessUSet); 2403 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 2404 2405 isl_pw_aff *Val = 2406 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2407 2408 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2409 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2410 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2411 isl_pw_aff_dim(Val, isl_dim_in)); 2412 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2413 isl_pw_aff_dim(Val, isl_dim_in)); 2414 OuterMin = 2415 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 2416 OuterMax = 2417 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 2418 2419 isl_set *Extent = isl_set_universe(Array->getSpace()); 2420 2421 Extent = isl_set_intersect( 2422 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2423 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2424 2425 for (unsigned i = 1; i < NumDims; ++i) 2426 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2427 2428 for (unsigned i = 0; i < NumDims; ++i) { 2429 isl_pw_aff *PwAff = 2430 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 2431 2432 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2433 // Fortran array will we have a legitimate dimension. 2434 if (!PwAff) { 2435 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2436 continue; 2437 } 2438 2439 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2440 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 2441 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2442 isl_pw_aff_dim(Val, isl_dim_in)); 2443 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2444 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2445 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2446 Extent = isl_set_intersect(Set, Extent); 2447 } 2448 2449 return Extent; 2450 } 2451 2452 /// Derive the bounds of an array. 2453 /// 2454 /// For the first dimension we derive the bound of the array from the extent 2455 /// of this dimension. For inner dimensions we obtain their size directly from 2456 /// ScopArrayInfo. 2457 /// 2458 /// @param PPCGArray The array to compute bounds for. 2459 /// @param Array The polly array from which to take the information. 2460 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2461 if (PPCGArray.n_index > 0) { 2462 if (isl_set_is_empty(PPCGArray.extent)) { 2463 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2464 isl_local_space *LS = isl_local_space_from_space( 2465 isl_space_params(isl_set_get_space(Dom))); 2466 isl_set_free(Dom); 2467 isl_aff *Zero = isl_aff_zero_on_domain(LS); 2468 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 2469 } else { 2470 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2471 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2472 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2473 isl_set_free(Dom); 2474 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2475 isl_local_space *LS = 2476 isl_local_space_from_space(isl_set_get_space(Dom)); 2477 isl_aff *One = isl_aff_zero_on_domain(LS); 2478 One = isl_aff_add_constant_si(One, 1); 2479 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2480 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2481 PPCGArray.bound[0] = Bound; 2482 } 2483 } 2484 2485 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2486 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2487 auto LS = isl_pw_aff_get_domain_space(Bound); 2488 auto Aff = isl_multi_aff_zero(LS); 2489 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2490 PPCGArray.bound[i] = Bound; 2491 } 2492 } 2493 2494 /// Create the arrays for @p PPCGProg. 2495 /// 2496 /// @param PPCGProg The program to compute the arrays for. 2497 void createArrays(gpu_prog *PPCGProg) { 2498 int i = 0; 2499 for (auto &Array : S->arrays()) { 2500 std::string TypeName; 2501 raw_string_ostream OS(TypeName); 2502 2503 OS << *Array->getElementType(); 2504 TypeName = OS.str(); 2505 2506 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2507 2508 PPCGArray.space = Array->getSpace(); 2509 PPCGArray.type = strdup(TypeName.c_str()); 2510 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2511 PPCGArray.name = strdup(Array->getName().c_str()); 2512 PPCGArray.extent = nullptr; 2513 PPCGArray.n_index = Array->getNumberOfDimensions(); 2514 PPCGArray.bound = 2515 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 2516 PPCGArray.extent = getExtent(Array); 2517 PPCGArray.n_ref = 0; 2518 PPCGArray.refs = nullptr; 2519 PPCGArray.accessed = true; 2520 PPCGArray.read_only_scalar = 2521 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2522 PPCGArray.has_compound_element = false; 2523 PPCGArray.local = false; 2524 PPCGArray.declare_local = false; 2525 PPCGArray.global = false; 2526 PPCGArray.linearize = false; 2527 PPCGArray.dep_order = nullptr; 2528 PPCGArray.user = Array; 2529 2530 setArrayBounds(PPCGArray, Array); 2531 i++; 2532 2533 collect_references(PPCGProg, &PPCGArray); 2534 } 2535 } 2536 2537 /// Create an identity map between the arrays in the scop. 2538 /// 2539 /// @returns An identity map between the arrays in the scop. 2540 isl_union_map *getArrayIdentity() { 2541 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2542 2543 for (auto &Array : S->arrays()) { 2544 isl_space *Space = Array->getSpace(); 2545 Space = isl_space_map_from_set(Space); 2546 isl_map *Identity = isl_map_identity(Space); 2547 Maps = isl_union_map_add_map(Maps, Identity); 2548 } 2549 2550 return Maps; 2551 } 2552 2553 /// Create a default-initialized PPCG GPU program. 2554 /// 2555 /// @returns A new gpu program description. 2556 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2557 2558 if (!PPCGScop) 2559 return nullptr; 2560 2561 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2562 2563 PPCGProg->ctx = S->getIslCtx(); 2564 PPCGProg->scop = PPCGScop; 2565 PPCGProg->context = isl_set_copy(PPCGScop->context); 2566 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2567 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2568 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2569 PPCGProg->tagged_must_kill = 2570 isl_union_map_copy(PPCGScop->tagged_must_kills); 2571 PPCGProg->to_inner = getArrayIdentity(); 2572 PPCGProg->to_outer = getArrayIdentity(); 2573 PPCGProg->any_to_outer = nullptr; 2574 2575 // this needs to be set when live range reordering is enabled. 2576 // NOTE: I believe that is conservatively correct. I'm not sure 2577 // what the semantics of this is. 2578 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2579 PPCGProg->array_order = 2580 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2581 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2582 PPCGProg->stmts = getStatements(); 2583 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2584 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2585 PPCGProg->n_array); 2586 2587 createArrays(PPCGProg); 2588 2589 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2590 return PPCGProg; 2591 } 2592 2593 struct PrintGPUUserData { 2594 struct cuda_info *CudaInfo; 2595 struct gpu_prog *PPCGProg; 2596 std::vector<ppcg_kernel *> Kernels; 2597 }; 2598 2599 /// Print a user statement node in the host code. 2600 /// 2601 /// We use ppcg's printing facilities to print the actual statement and 2602 /// additionally build up a list of all kernels that are encountered in the 2603 /// host ast. 2604 /// 2605 /// @param P The printer to print to 2606 /// @param Options The printing options to use 2607 /// @param Node The node to print 2608 /// @param User A user pointer to carry additional data. This pointer is 2609 /// expected to be of type PrintGPUUserData. 2610 /// 2611 /// @returns A printer to which the output has been printed. 2612 static __isl_give isl_printer * 2613 printHostUser(__isl_take isl_printer *P, 2614 __isl_take isl_ast_print_options *Options, 2615 __isl_take isl_ast_node *Node, void *User) { 2616 auto Data = (struct PrintGPUUserData *)User; 2617 auto Id = isl_ast_node_get_annotation(Node); 2618 2619 if (Id) { 2620 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2621 2622 // If this is a user statement, format it ourselves as ppcg would 2623 // otherwise try to call pet functionality that is not available in 2624 // Polly. 2625 if (IsUser) { 2626 P = isl_printer_start_line(P); 2627 P = isl_printer_print_ast_node(P, Node); 2628 P = isl_printer_end_line(P); 2629 isl_id_free(Id); 2630 isl_ast_print_options_free(Options); 2631 return P; 2632 } 2633 2634 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2635 isl_id_free(Id); 2636 Data->Kernels.push_back(Kernel); 2637 } 2638 2639 return print_host_user(P, Options, Node, User); 2640 } 2641 2642 /// Print C code corresponding to the control flow in @p Kernel. 2643 /// 2644 /// @param Kernel The kernel to print 2645 void printKernel(ppcg_kernel *Kernel) { 2646 auto *P = isl_printer_to_str(S->getIslCtx()); 2647 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2648 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2649 P = isl_ast_node_print(Kernel->tree, P, Options); 2650 char *String = isl_printer_get_str(P); 2651 printf("%s\n", String); 2652 free(String); 2653 isl_printer_free(P); 2654 } 2655 2656 /// Print C code corresponding to the GPU code described by @p Tree. 2657 /// 2658 /// @param Tree An AST describing GPU code 2659 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2660 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2661 auto *P = isl_printer_to_str(S->getIslCtx()); 2662 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2663 2664 PrintGPUUserData Data; 2665 Data.PPCGProg = PPCGProg; 2666 2667 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2668 Options = 2669 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2670 P = isl_ast_node_print(Tree, P, Options); 2671 char *String = isl_printer_get_str(P); 2672 printf("# host\n"); 2673 printf("%s\n", String); 2674 free(String); 2675 isl_printer_free(P); 2676 2677 for (auto Kernel : Data.Kernels) { 2678 printf("# kernel%d\n", Kernel->id); 2679 printKernel(Kernel); 2680 } 2681 } 2682 2683 // Generate a GPU program using PPCG. 2684 // 2685 // GPU mapping consists of multiple steps: 2686 // 2687 // 1) Compute new schedule for the program. 2688 // 2) Map schedule to GPU (TODO) 2689 // 3) Generate code for new schedule (TODO) 2690 // 2691 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2692 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2693 // strategy directly from this pass. 2694 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2695 2696 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2697 2698 PPCGGen->ctx = S->getIslCtx(); 2699 PPCGGen->options = PPCGScop->options; 2700 PPCGGen->print = nullptr; 2701 PPCGGen->print_user = nullptr; 2702 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2703 PPCGGen->prog = PPCGProg; 2704 PPCGGen->tree = nullptr; 2705 PPCGGen->types.n = 0; 2706 PPCGGen->types.name = nullptr; 2707 PPCGGen->sizes = nullptr; 2708 PPCGGen->used_sizes = nullptr; 2709 PPCGGen->kernel_id = 0; 2710 2711 // Set scheduling strategy to same strategy PPCG is using. 2712 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2713 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2714 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2715 2716 isl_schedule *Schedule = get_schedule(PPCGGen); 2717 2718 int has_permutable = has_any_permutable_node(Schedule); 2719 2720 if (!has_permutable || has_permutable < 0) { 2721 Schedule = isl_schedule_free(Schedule); 2722 } else { 2723 Schedule = map_to_device(PPCGGen, Schedule); 2724 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2725 } 2726 2727 if (DumpSchedule) { 2728 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2729 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2730 P = isl_printer_print_str(P, "Schedule\n"); 2731 P = isl_printer_print_str(P, "========\n"); 2732 if (Schedule) 2733 P = isl_printer_print_schedule(P, Schedule); 2734 else 2735 P = isl_printer_print_str(P, "No schedule found\n"); 2736 2737 printf("%s\n", isl_printer_get_str(P)); 2738 isl_printer_free(P); 2739 } 2740 2741 if (DumpCode) { 2742 printf("Code\n"); 2743 printf("====\n"); 2744 if (PPCGGen->tree) 2745 printGPUTree(PPCGGen->tree, PPCGProg); 2746 else 2747 printf("No code generated\n"); 2748 } 2749 2750 isl_schedule_free(Schedule); 2751 2752 return PPCGGen; 2753 } 2754 2755 /// Free gpu_gen structure. 2756 /// 2757 /// @param PPCGGen The ppcg_gen object to free. 2758 void freePPCGGen(gpu_gen *PPCGGen) { 2759 isl_ast_node_free(PPCGGen->tree); 2760 isl_union_map_free(PPCGGen->sizes); 2761 isl_union_map_free(PPCGGen->used_sizes); 2762 free(PPCGGen); 2763 } 2764 2765 /// Free the options in the ppcg scop structure. 2766 /// 2767 /// ppcg is not freeing these options for us. To avoid leaks we do this 2768 /// ourselves. 2769 /// 2770 /// @param PPCGScop The scop referencing the options to free. 2771 void freeOptions(ppcg_scop *PPCGScop) { 2772 free(PPCGScop->options->debug); 2773 PPCGScop->options->debug = nullptr; 2774 free(PPCGScop->options); 2775 PPCGScop->options = nullptr; 2776 } 2777 2778 /// Approximate the number of points in the set. 2779 /// 2780 /// This function returns an ast expression that overapproximates the number 2781 /// of points in an isl set through the rectangular hull surrounding this set. 2782 /// 2783 /// @param Set The set to count. 2784 /// @param Build The isl ast build object to use for creating the ast 2785 /// expression. 2786 /// 2787 /// @returns An approximation of the number of points in the set. 2788 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2789 __isl_keep isl_ast_build *Build) { 2790 2791 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2792 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2793 2794 isl_space *Space = isl_set_get_space(Set); 2795 Space = isl_space_params(Space); 2796 auto *Univ = isl_set_universe(Space); 2797 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2798 2799 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2800 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2801 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2802 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2803 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2804 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2805 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2806 } 2807 2808 isl_set_free(Set); 2809 isl_pw_aff_free(OneAff); 2810 2811 return Expr; 2812 } 2813 2814 /// Approximate a number of dynamic instructions executed by a given 2815 /// statement. 2816 /// 2817 /// @param Stmt The statement for which to compute the number of dynamic 2818 /// instructions. 2819 /// @param Build The isl ast build object to use for creating the ast 2820 /// expression. 2821 /// @returns An approximation of the number of dynamic instructions executed 2822 /// by @p Stmt. 2823 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2824 __isl_keep isl_ast_build *Build) { 2825 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2826 2827 long InstCount = 0; 2828 2829 if (Stmt.isBlockStmt()) { 2830 auto *BB = Stmt.getBasicBlock(); 2831 InstCount = std::distance(BB->begin(), BB->end()); 2832 } else { 2833 auto *R = Stmt.getRegion(); 2834 2835 for (auto *BB : R->blocks()) { 2836 InstCount += std::distance(BB->begin(), BB->end()); 2837 } 2838 } 2839 2840 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2841 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2842 return isl_ast_expr_mul(InstExpr, Iterations); 2843 } 2844 2845 /// Approximate dynamic instructions executed in scop. 2846 /// 2847 /// @param S The scop for which to approximate dynamic instructions. 2848 /// @param Build The isl ast build object to use for creating the ast 2849 /// expression. 2850 /// @returns An approximation of the number of dynamic instructions executed 2851 /// in @p S. 2852 __isl_give isl_ast_expr * 2853 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2854 isl_ast_expr *Instructions; 2855 2856 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2857 Instructions = isl_ast_expr_from_val(Zero); 2858 2859 for (ScopStmt &Stmt : S) { 2860 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2861 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2862 } 2863 return Instructions; 2864 } 2865 2866 /// Create a check that ensures sufficient compute in scop. 2867 /// 2868 /// @param S The scop for which to ensure sufficient compute. 2869 /// @param Build The isl ast build object to use for creating the ast 2870 /// expression. 2871 /// @returns An expression that evaluates to TRUE in case of sufficient 2872 /// compute and to FALSE, otherwise. 2873 __isl_give isl_ast_expr * 2874 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2875 auto Iterations = getNumberOfIterations(S, Build); 2876 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2877 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2878 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2879 } 2880 2881 /// Check if the basic block contains a function we cannot codegen for GPU 2882 /// kernels. 2883 /// 2884 /// If this basic block does something with a `Function` other than calling 2885 /// a function that we support in a kernel, return true. 2886 bool containsInvalidKernelFunctionInBllock(const BasicBlock *BB) { 2887 for (const Instruction &Inst : *BB) { 2888 const CallInst *Call = dyn_cast<CallInst>(&Inst); 2889 if (Call && isValidFunctionInKernel(Call->getCalledFunction())) { 2890 continue; 2891 } 2892 2893 for (Value *SrcVal : Inst.operands()) { 2894 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 2895 if (!p) 2896 continue; 2897 if (isa<FunctionType>(p->getElementType())) 2898 return true; 2899 } 2900 } 2901 return false; 2902 } 2903 2904 /// Return whether the Scop S uses functions in a way that we do not support. 2905 bool containsInvalidKernelFunction(const Scop &S) { 2906 for (auto &Stmt : S) { 2907 if (Stmt.isBlockStmt()) { 2908 if (containsInvalidKernelFunctionInBllock(Stmt.getBasicBlock())) 2909 return true; 2910 } else { 2911 assert(Stmt.isRegionStmt() && 2912 "Stmt was neither block nor region statement"); 2913 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 2914 if (containsInvalidKernelFunctionInBllock(BB)) 2915 return true; 2916 } 2917 } 2918 return false; 2919 } 2920 2921 /// Generate code for a given GPU AST described by @p Root. 2922 /// 2923 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2924 /// @param Prog The GPU Program to generate code for. 2925 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2926 ScopAnnotator Annotator; 2927 Annotator.buildAliasScopes(*S); 2928 2929 Region *R = &S->getRegion(); 2930 2931 simplifyRegion(R, DT, LI, RI); 2932 2933 BasicBlock *EnteringBB = R->getEnteringBlock(); 2934 2935 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2936 2937 // Only build the run-time condition and parameters _after_ having 2938 // introduced the conditional branch. This is important as the conditional 2939 // branch will guard the original scop from new induction variables that 2940 // the SCEVExpander may introduce while code generating the parameters and 2941 // which may introduce scalar dependences that prevent us from correctly 2942 // code generating this scop. 2943 BBPair StartExitBlocks; 2944 BranchInst *CondBr = nullptr; 2945 std::tie(StartExitBlocks, CondBr) = 2946 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 2947 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 2948 2949 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 2950 2951 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 2952 StartBlock, Prog, Runtime, Architecture); 2953 2954 // TODO: Handle LICM 2955 auto SplitBlock = StartBlock->getSinglePredecessor(); 2956 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2957 NodeBuilder.addParameters(S->getContext()); 2958 2959 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2960 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 2961 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 2962 Condition = isl_ast_expr_and(Condition, SufficientCompute); 2963 isl_ast_build_free(Build); 2964 2965 Value *RTC = NodeBuilder.createRTC(Condition); 2966 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2967 2968 Builder.SetInsertPoint(&*StartBlock->begin()); 2969 2970 NodeBuilder.initializeAfterRTH(); 2971 NodeBuilder.preloadInvariantLoads(); 2972 NodeBuilder.create(Root); 2973 NodeBuilder.finalize(); 2974 2975 /// In case a sequential kernel has more surrounding loops as any parallel 2976 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 2977 /// point in running it on a GPU. 2978 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 2979 CondBr->setOperand(0, Builder.getFalse()); 2980 2981 if (!NodeBuilder.BuildSuccessful) 2982 CondBr->setOperand(0, Builder.getFalse()); 2983 } 2984 2985 bool runOnScop(Scop &CurrentScop) override { 2986 S = &CurrentScop; 2987 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2988 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2989 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2990 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 2991 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2992 2993 // We currently do not support functions other than intrinsics inside 2994 // kernels, as code generation will need to offload function calls to the 2995 // kernel. This may lead to a kernel trying to call a function on the host. 2996 // This also allows us to prevent codegen from trying to take the 2997 // address of an intrinsic function to send to the kernel. 2998 if (containsInvalidKernelFunction(CurrentScop)) { 2999 DEBUG( 3000 dbgs() 3001 << "Scop contains function which cannot be materialised in a GPU " 3002 "kernel. Bailing out.\n";); 3003 return false; 3004 } 3005 3006 auto PPCGScop = createPPCGScop(); 3007 auto PPCGProg = createPPCGProg(PPCGScop); 3008 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3009 3010 if (PPCGGen->tree) { 3011 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3012 CurrentScop.markAsToBeSkipped(); 3013 } 3014 3015 freeOptions(PPCGScop); 3016 freePPCGGen(PPCGGen); 3017 gpu_prog_free(PPCGProg); 3018 ppcg_scop_free(PPCGScop); 3019 3020 return true; 3021 } 3022 3023 void printScop(raw_ostream &, Scop &) const override {} 3024 3025 void getAnalysisUsage(AnalysisUsage &AU) const override { 3026 AU.addRequired<DominatorTreeWrapperPass>(); 3027 AU.addRequired<RegionInfoPass>(); 3028 AU.addRequired<ScalarEvolutionWrapperPass>(); 3029 AU.addRequired<ScopDetectionWrapperPass>(); 3030 AU.addRequired<ScopInfoRegionPass>(); 3031 AU.addRequired<LoopInfoWrapperPass>(); 3032 3033 AU.addPreserved<AAResultsWrapperPass>(); 3034 AU.addPreserved<BasicAAWrapperPass>(); 3035 AU.addPreserved<LoopInfoWrapperPass>(); 3036 AU.addPreserved<DominatorTreeWrapperPass>(); 3037 AU.addPreserved<GlobalsAAWrapperPass>(); 3038 AU.addPreserved<ScopDetectionWrapperPass>(); 3039 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3040 AU.addPreserved<SCEVAAWrapperPass>(); 3041 3042 // FIXME: We do not yet add regions for the newly generated code to the 3043 // region tree. 3044 AU.addPreserved<RegionInfoPass>(); 3045 AU.addPreserved<ScopInfoRegionPass>(); 3046 } 3047 }; 3048 } // namespace 3049 3050 char PPCGCodeGeneration::ID = 1; 3051 3052 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3053 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3054 generator->Runtime = Runtime; 3055 generator->Architecture = Arch; 3056 return generator; 3057 } 3058 3059 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3060 "Polly - Apply PPCG translation to SCOP", false, false) 3061 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3063 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3064 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3065 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3066 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3067 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3068 "Polly - Apply PPCG translation to SCOP", false, false) 3069