1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/IRReader/IRReader.h" 35 #include "llvm/Linker/Linker.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/TargetSelect.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 #include "isl/union_map.h" 43 44 extern "C" { 45 #include "ppcg/cuda.h" 46 #include "ppcg/gpu.h" 47 #include "ppcg/gpu_print.h" 48 #include "ppcg/ppcg.h" 49 #include "ppcg/schedule.h" 50 } 51 52 #include "llvm/Support/Debug.h" 53 54 using namespace polly; 55 using namespace llvm; 56 57 #define DEBUG_TYPE "polly-codegen-ppcg" 58 59 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 60 cl::desc("Dump the computed GPU Schedule"), 61 cl::Hidden, cl::init(false), cl::ZeroOrMore, 62 cl::cat(PollyCategory)); 63 64 static cl::opt<bool> 65 DumpCode("polly-acc-dump-code", 66 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 67 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 68 69 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 70 cl::desc("Dump the kernel LLVM-IR"), 71 cl::Hidden, cl::init(false), cl::ZeroOrMore, 72 cl::cat(PollyCategory)); 73 74 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 75 cl::desc("Dump the kernel assembly code"), 76 cl::Hidden, cl::init(false), cl::ZeroOrMore, 77 cl::cat(PollyCategory)); 78 79 static cl::opt<bool> FastMath("polly-acc-fastmath", 80 cl::desc("Allow unsafe math optimizations"), 81 cl::Hidden, cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 84 cl::desc("Use shared memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 88 cl::desc("Use private memory"), cl::Hidden, 89 cl::init(false), cl::ZeroOrMore, 90 cl::cat(PollyCategory)); 91 92 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 93 cl::desc("Generate Host kernel code assuming" 94 " that all memory has been" 95 " declared as managed memory"), 96 cl::Hidden, cl::init(false), cl::ZeroOrMore, 97 cl::cat(PollyCategory)); 98 99 static cl::opt<bool> 100 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 101 cl::desc("Fail and generate a backtrace if" 102 " verifyModule fails on the GPU " 103 " kernel module."), 104 cl::Hidden, cl::init(false), cl::ZeroOrMore, 105 cl::cat(PollyCategory)); 106 107 static cl::opt<std::string> CUDALibDevice( 108 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 109 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 110 cl::ZeroOrMore, cl::cat(PollyCategory)); 111 112 static cl::opt<std::string> 113 CudaVersion("polly-acc-cuda-version", 114 cl::desc("The CUDA version to compile for"), cl::Hidden, 115 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 116 117 static cl::opt<int> 118 MinCompute("polly-acc-mincompute", 119 cl::desc("Minimal number of compute statements to run on GPU."), 120 cl::Hidden, cl::init(10 * 512 * 512)); 121 122 /// Used to store information PPCG wants for kills. This information is 123 /// used by live range reordering. 124 /// 125 /// @see computeLiveRangeReordering 126 /// @see GPUNodeBuilder::createPPCGScop 127 /// @see GPUNodeBuilder::createPPCGProg 128 struct MustKillsInfo { 129 /// Collection of all kill statements that will be sequenced at the end of 130 /// PPCGScop->schedule. 131 /// 132 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 133 /// which merges schedules in *arbitrary* order. 134 /// (we don't care about the order of the kills anyway). 135 isl::schedule KillsSchedule; 136 /// Map from kill statement instances to scalars that need to be 137 /// killed. 138 /// 139 /// We currently derive kill information for: 140 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 141 /// consequently all be killed. 142 /// 2. Scalar arrays that are not used outside the Scop. This is 143 /// checked by `isScalarUsesContainedInScop`. 144 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 145 isl::union_map TaggedMustKills; 146 147 /// Tagged must kills stripped of the tags. 148 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 149 isl::union_map MustKills; 150 151 MustKillsInfo() : KillsSchedule(nullptr) {} 152 }; 153 154 /// Check if SAI's uses are entirely contained within Scop S. 155 /// If a scalar is used only with a Scop, we are free to kill it, as no data 156 /// can flow in/out of the value any more. 157 /// @see computeMustKillsInfo 158 static bool isScalarUsesContainedInScop(const Scop &S, 159 const ScopArrayInfo *SAI) { 160 assert(SAI->isValueKind() && "this function only deals with scalars." 161 " Dealing with arrays required alias analysis"); 162 163 const Region &R = S.getRegion(); 164 for (User *U : SAI->getBasePtr()->users()) { 165 Instruction *I = dyn_cast<Instruction>(U); 166 assert(I && "invalid user of scop array info"); 167 if (!R.contains(I)) 168 return false; 169 } 170 return true; 171 } 172 173 /// Compute must-kills needed to enable live range reordering with PPCG. 174 /// 175 /// @params S The Scop to compute live range reordering information 176 /// @returns live range reordering information that can be used to setup 177 /// PPCG. 178 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 179 const isl::space ParamSpace(isl::manage(S.getParamSpace())); 180 MustKillsInfo Info; 181 182 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 183 // 1.1 phi nodes in scop. 184 // 1.2 scalars that are only used within the scop 185 SmallVector<isl::id, 4> KillMemIds; 186 for (ScopArrayInfo *SAI : S.arrays()) { 187 if (SAI->isPHIKind() || 188 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 189 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 190 } 191 192 Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace)); 193 Info.MustKills = isl::union_map::empty(isl::space(ParamSpace)); 194 195 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 196 // schedule: 197 // - filter: "[control] -> { }" 198 // So, we choose to not create this to keep the output a little nicer, 199 // at the cost of some code complexity. 200 Info.KillsSchedule = nullptr; 201 202 for (isl::id &ToKillId : KillMemIds) { 203 isl::id KillStmtId = isl::id::alloc( 204 S.getIslCtx(), 205 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 206 207 // NOTE: construction of tagged_must_kill: 208 // 2. We need to construct a map: 209 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 210 // To construct this, we use `isl_map_domain_product` on 2 maps`: 211 // 2a. StmtToScalar: 212 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 213 // 2b. PhantomRefToScalar: 214 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 215 // 216 // Combining these with `isl_map_domain_product` gives us 217 // TaggedMustKill: 218 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 219 220 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 221 isl::map StmtToScalar = isl::map::universe(isl::space(ParamSpace)); 222 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 223 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 224 225 isl::id PhantomRefId = isl::id::alloc( 226 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 227 nullptr); 228 229 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 230 isl::map PhantomRefToScalar = isl::map::universe(isl::space(ParamSpace)); 231 PhantomRefToScalar = 232 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 233 PhantomRefToScalar = 234 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 235 236 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 237 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 238 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 239 240 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 241 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 242 243 // 3. Create the kill schedule of the form: 244 // "[param] -> { Stmt_phantom[] }" 245 // Then add this to Info.KillsSchedule. 246 isl::space KillStmtSpace = ParamSpace; 247 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 248 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 249 250 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 251 if (Info.KillsSchedule) 252 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 253 else 254 Info.KillsSchedule = KillSchedule; 255 } 256 257 return Info; 258 } 259 260 /// Create the ast expressions for a ScopStmt. 261 /// 262 /// This function is a callback for to generate the ast expressions for each 263 /// of the scheduled ScopStmts. 264 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 265 void *StmtT, __isl_take isl_ast_build *Build_C, 266 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 267 isl_id *Id, void *User), 268 void *UserIndex, 269 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 270 void *UserExpr) { 271 272 ScopStmt *Stmt = (ScopStmt *)StmtT; 273 274 if (!Stmt || !Build_C) 275 return NULL; 276 277 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 278 isl::ctx Ctx = Build.get_ctx(); 279 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 280 281 for (MemoryAccess *Acc : *Stmt) { 282 isl::map AddrFunc = Acc->getAddressFunction(); 283 AddrFunc = AddrFunc.intersect_domain(isl::manage(Stmt->getDomain())); 284 285 isl::id RefId = Acc->getId(); 286 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 287 288 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 289 MPA = MPA.coalesce(); 290 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 291 292 isl::ast_expr Access = Build.access_from(MPA); 293 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 294 RefToExpr = RefToExpr.set(RefId, Access); 295 } 296 297 return RefToExpr.release(); 298 } 299 300 /// Given a LLVM Type, compute its size in bytes, 301 static int computeSizeInBytes(const Type *T) { 302 int bytes = T->getPrimitiveSizeInBits() / 8; 303 if (bytes == 0) 304 bytes = T->getScalarSizeInBits() / 8; 305 return bytes; 306 } 307 308 /// Generate code for a GPU specific isl AST. 309 /// 310 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 311 /// generates code for general-purpose AST nodes, with special functionality 312 /// for generating GPU specific user nodes. 313 /// 314 /// @see GPUNodeBuilder::createUser 315 class GPUNodeBuilder : public IslNodeBuilder { 316 public: 317 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 318 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 319 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 320 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 321 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 322 Prog(Prog), Runtime(Runtime), Arch(Arch) { 323 getExprBuilder().setIDToSAI(&IDToSAI); 324 } 325 326 /// Create after-run-time-check initialization code. 327 void initializeAfterRTH(); 328 329 /// Finalize the generated scop. 330 virtual void finalize(); 331 332 /// Track if the full build process was successful. 333 /// 334 /// This value is set to false, if throughout the build process an error 335 /// occurred which prevents us from generating valid GPU code. 336 bool BuildSuccessful = true; 337 338 /// The maximal number of loops surrounding a sequential kernel. 339 unsigned DeepestSequential = 0; 340 341 /// The maximal number of loops surrounding a parallel kernel. 342 unsigned DeepestParallel = 0; 343 344 /// Return the name to set for the ptx_kernel. 345 std::string getKernelFuncName(int Kernel_id); 346 347 private: 348 /// A vector of array base pointers for which a new ScopArrayInfo was created. 349 /// 350 /// This vector is used to delete the ScopArrayInfo when it is not needed any 351 /// more. 352 std::vector<Value *> LocalArrays; 353 354 /// A map from ScopArrays to their corresponding device allocations. 355 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 356 357 /// The current GPU context. 358 Value *GPUContext; 359 360 /// The set of isl_ids allocated in the kernel 361 std::vector<isl_id *> KernelIds; 362 363 /// A module containing GPU code. 364 /// 365 /// This pointer is only set in case we are currently generating GPU code. 366 std::unique_ptr<Module> GPUModule; 367 368 /// The GPU program we generate code for. 369 gpu_prog *Prog; 370 371 /// The GPU Runtime implementation to use (OpenCL or CUDA). 372 GPURuntime Runtime; 373 374 /// The GPU Architecture to target. 375 GPUArch Arch; 376 377 /// Class to free isl_ids. 378 class IslIdDeleter { 379 public: 380 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 381 }; 382 383 /// A set containing all isl_ids allocated in a GPU kernel. 384 /// 385 /// By releasing this set all isl_ids will be freed. 386 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 387 388 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 389 390 /// Create code for user-defined AST nodes. 391 /// 392 /// These AST nodes can be of type: 393 /// 394 /// - ScopStmt: A computational statement (TODO) 395 /// - Kernel: A GPU kernel call (TODO) 396 /// - Data-Transfer: A GPU <-> CPU data-transfer 397 /// - In-kernel synchronization 398 /// - In-kernel memory copy statement 399 /// 400 /// @param UserStmt The ast node to generate code for. 401 virtual void createUser(__isl_take isl_ast_node *UserStmt); 402 403 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 404 405 /// Create code for a data transfer statement 406 /// 407 /// @param TransferStmt The data transfer statement. 408 /// @param Direction The direction in which to transfer data. 409 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 410 enum DataDirection Direction); 411 412 /// Find llvm::Values referenced in GPU kernel. 413 /// 414 /// @param Kernel The kernel to scan for llvm::Values 415 /// 416 /// @returns A pair, whose first element contains the set of values 417 /// referenced by the kernel, and whose second element contains the 418 /// set of functions referenced by the kernel. All functions in the 419 /// second set satisfy isValidFunctionInKernel. 420 std::pair<SetVector<Value *>, SetVector<Function *>> 421 getReferencesInKernel(ppcg_kernel *Kernel); 422 423 /// Compute the sizes of the execution grid for a given kernel. 424 /// 425 /// @param Kernel The kernel to compute grid sizes for. 426 /// 427 /// @returns A tuple with grid sizes for X and Y dimension 428 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 429 430 /// Creates a array that can be sent to the kernel on the device using a 431 /// host pointer. This is required for managed memory, when we directly send 432 /// host pointers to the device. 433 /// \note 434 /// This is to be used only with managed memory 435 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 436 ScopArrayInfo *ArrayInfo); 437 438 /// Compute the sizes of the thread blocks for a given kernel. 439 /// 440 /// @param Kernel The kernel to compute thread block sizes for. 441 /// 442 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 443 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 444 445 /// Store a specific kernel launch parameter in the array of kernel launch 446 /// parameters. 447 /// 448 /// @param Parameters The list of parameters in which to store. 449 /// @param Param The kernel launch parameter to store. 450 /// @param Index The index in the parameter list, at which to store the 451 /// parameter. 452 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 453 int Index); 454 455 /// Create kernel launch parameters. 456 /// 457 /// @param Kernel The kernel to create parameters for. 458 /// @param F The kernel function that has been created. 459 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 460 /// 461 /// @returns A stack allocated array with pointers to the parameter 462 /// values that are passed to the kernel. 463 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 464 SetVector<Value *> SubtreeValues); 465 466 /// Create declarations for kernel variable. 467 /// 468 /// This includes shared memory declarations. 469 /// 470 /// @param Kernel The kernel definition to create variables for. 471 /// @param FN The function into which to generate the variables. 472 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 473 474 /// Add CUDA annotations to module. 475 /// 476 /// Add a set of CUDA annotations that declares the maximal block dimensions 477 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 478 /// PTX compiler to bound the number of allocated registers to ensure the 479 /// resulting kernel is known to run with up to as many block dimensions 480 /// as specified here. 481 /// 482 /// @param M The module to add the annotations to. 483 /// @param BlockDimX The size of block dimension X. 484 /// @param BlockDimY The size of block dimension Y. 485 /// @param BlockDimZ The size of block dimension Z. 486 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 487 Value *BlockDimZ); 488 489 /// Create GPU kernel. 490 /// 491 /// Code generate the kernel described by @p KernelStmt. 492 /// 493 /// @param KernelStmt The ast node to generate kernel code for. 494 void createKernel(__isl_take isl_ast_node *KernelStmt); 495 496 /// Generate code that computes the size of an array. 497 /// 498 /// @param Array The array for which to compute a size. 499 Value *getArraySize(gpu_array_info *Array); 500 501 /// Generate code to compute the minimal offset at which an array is accessed. 502 /// 503 /// The offset of an array is the minimal array location accessed in a scop. 504 /// 505 /// Example: 506 /// 507 /// for (long i = 0; i < 100; i++) 508 /// A[i + 42] += ... 509 /// 510 /// getArrayOffset(A) results in 42. 511 /// 512 /// @param Array The array for which to compute the offset. 513 /// @returns An llvm::Value that contains the offset of the array. 514 Value *getArrayOffset(gpu_array_info *Array); 515 516 /// Prepare the kernel arguments for kernel code generation 517 /// 518 /// @param Kernel The kernel to generate code for. 519 /// @param FN The function created for the kernel. 520 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 521 522 /// Create kernel function. 523 /// 524 /// Create a kernel function located in a newly created module that can serve 525 /// as target for device code generation. Set the Builder to point to the 526 /// start block of this newly created function. 527 /// 528 /// @param Kernel The kernel to generate code for. 529 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 530 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 531 /// kernel. 532 void createKernelFunction(ppcg_kernel *Kernel, 533 SetVector<Value *> &SubtreeValues, 534 SetVector<Function *> &SubtreeFunctions); 535 536 /// Create the declaration of a kernel function. 537 /// 538 /// The kernel function takes as arguments: 539 /// 540 /// - One i8 pointer for each external array reference used in the kernel. 541 /// - Host iterators 542 /// - Parameters 543 /// - Other LLVM Value references (TODO) 544 /// 545 /// @param Kernel The kernel to generate the function declaration for. 546 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 547 /// 548 /// @returns The newly declared function. 549 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 550 SetVector<Value *> &SubtreeValues); 551 552 /// Insert intrinsic functions to obtain thread and block ids. 553 /// 554 /// @param The kernel to generate the intrinsic functions for. 555 void insertKernelIntrinsics(ppcg_kernel *Kernel); 556 557 /// Insert function calls to retrieve the SPIR group/local ids. 558 /// 559 /// @param The kernel to generate the function calls for. 560 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 561 562 /// Setup the creation of functions referenced by the GPU kernel. 563 /// 564 /// 1. Create new function declarations in GPUModule which are the same as 565 /// SubtreeFunctions. 566 /// 567 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 568 /// old functions (that come from the original module) to new functions 569 /// (that are created within GPUModule). That way, we generate references 570 /// to the correct function (in GPUModule) in BlockGenerator. 571 /// 572 /// @see IslNodeBuilder::ValueMap 573 /// @see BlockGenerator::GlobalMap 574 /// @see BlockGenerator::getNewValue 575 /// @see GPUNodeBuilder::getReferencesInKernel. 576 /// 577 /// @param SubtreeFunctions The set of llvm::Functions referenced by 578 /// this kernel. 579 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 580 581 /// Create a global-to-shared or shared-to-global copy statement. 582 /// 583 /// @param CopyStmt The copy statement to generate code for 584 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 585 586 /// Create code for a ScopStmt called in @p Expr. 587 /// 588 /// @param Expr The expression containing the call. 589 /// @param KernelStmt The kernel statement referenced in the call. 590 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 591 592 /// Create an in-kernel synchronization call. 593 void createKernelSync(); 594 595 /// Create a PTX assembly string for the current GPU kernel. 596 /// 597 /// @returns A string containing the corresponding PTX assembly code. 598 std::string createKernelASM(); 599 600 /// Remove references from the dominator tree to the kernel function @p F. 601 /// 602 /// @param F The function to remove references to. 603 void clearDominators(Function *F); 604 605 /// Remove references from scalar evolution to the kernel function @p F. 606 /// 607 /// @param F The function to remove references to. 608 void clearScalarEvolution(Function *F); 609 610 /// Remove references from loop info to the kernel function @p F. 611 /// 612 /// @param F The function to remove references to. 613 void clearLoops(Function *F); 614 615 /// Check if the scop requires to be linked with CUDA's libdevice. 616 bool requiresCUDALibDevice(); 617 618 /// Link with the NVIDIA libdevice library (if needed and available). 619 void addCUDALibDevice(); 620 621 /// Finalize the generation of the kernel function. 622 /// 623 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 624 /// dump its IR to stderr. 625 /// 626 /// @returns The Assembly string of the kernel. 627 std::string finalizeKernelFunction(); 628 629 /// Finalize the generation of the kernel arguments. 630 /// 631 /// This function ensures that not-read-only scalars used in a kernel are 632 /// stored back to the global memory location they are backed with before 633 /// the kernel terminates. 634 /// 635 /// @params Kernel The kernel to finalize kernel arguments for. 636 void finalizeKernelArguments(ppcg_kernel *Kernel); 637 638 /// Create code that allocates memory to store arrays on device. 639 void allocateDeviceArrays(); 640 641 /// Free all allocated device arrays. 642 void freeDeviceArrays(); 643 644 /// Create a call to initialize the GPU context. 645 /// 646 /// @returns A pointer to the newly initialized context. 647 Value *createCallInitContext(); 648 649 /// Create a call to get the device pointer for a kernel allocation. 650 /// 651 /// @param Allocation The Polly GPU allocation 652 /// 653 /// @returns The device parameter corresponding to this allocation. 654 Value *createCallGetDevicePtr(Value *Allocation); 655 656 /// Create a call to free the GPU context. 657 /// 658 /// @param Context A pointer to an initialized GPU context. 659 void createCallFreeContext(Value *Context); 660 661 /// Create a call to allocate memory on the device. 662 /// 663 /// @param Size The size of memory to allocate 664 /// 665 /// @returns A pointer that identifies this allocation. 666 Value *createCallAllocateMemoryForDevice(Value *Size); 667 668 /// Create a call to free a device array. 669 /// 670 /// @param Array The device array to free. 671 void createCallFreeDeviceMemory(Value *Array); 672 673 /// Create a call to copy data from host to device. 674 /// 675 /// @param HostPtr A pointer to the host data that should be copied. 676 /// @param DevicePtr A device pointer specifying the location to copy to. 677 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 678 Value *Size); 679 680 /// Create a call to copy data from device to host. 681 /// 682 /// @param DevicePtr A pointer to the device data that should be copied. 683 /// @param HostPtr A host pointer specifying the location to copy to. 684 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 685 Value *Size); 686 687 /// Create a call to synchronize Host & Device. 688 /// \note 689 /// This is to be used only with managed memory. 690 void createCallSynchronizeDevice(); 691 692 /// Create a call to get a kernel from an assembly string. 693 /// 694 /// @param Buffer The string describing the kernel. 695 /// @param Entry The name of the kernel function to call. 696 /// 697 /// @returns A pointer to a kernel object 698 Value *createCallGetKernel(Value *Buffer, Value *Entry); 699 700 /// Create a call to free a GPU kernel. 701 /// 702 /// @param GPUKernel THe kernel to free. 703 void createCallFreeKernel(Value *GPUKernel); 704 705 /// Create a call to launch a GPU kernel. 706 /// 707 /// @param GPUKernel The kernel to launch. 708 /// @param GridDimX The size of the first grid dimension. 709 /// @param GridDimY The size of the second grid dimension. 710 /// @param GridBlockX The size of the first block dimension. 711 /// @param GridBlockY The size of the second block dimension. 712 /// @param GridBlockZ The size of the third block dimension. 713 /// @param Parameters A pointer to an array that contains itself pointers to 714 /// the parameter values passed for each kernel argument. 715 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 716 Value *GridDimY, Value *BlockDimX, 717 Value *BlockDimY, Value *BlockDimZ, 718 Value *Parameters); 719 }; 720 721 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 722 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 723 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 724 } 725 726 void GPUNodeBuilder::initializeAfterRTH() { 727 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 728 &*Builder.GetInsertPoint(), &DT, &LI); 729 NewBB->setName("polly.acc.initialize"); 730 Builder.SetInsertPoint(&NewBB->front()); 731 732 GPUContext = createCallInitContext(); 733 734 if (!ManagedMemory) 735 allocateDeviceArrays(); 736 } 737 738 void GPUNodeBuilder::finalize() { 739 if (!ManagedMemory) 740 freeDeviceArrays(); 741 742 createCallFreeContext(GPUContext); 743 IslNodeBuilder::finalize(); 744 } 745 746 void GPUNodeBuilder::allocateDeviceArrays() { 747 assert(!ManagedMemory && "Managed memory will directly send host pointers " 748 "to the kernel. There is no need for device arrays"); 749 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 750 751 for (int i = 0; i < Prog->n_array; ++i) { 752 gpu_array_info *Array = &Prog->array[i]; 753 auto *ScopArray = (ScopArrayInfo *)Array->user; 754 std::string DevArrayName("p_dev_array_"); 755 DevArrayName.append(Array->name); 756 757 Value *ArraySize = getArraySize(Array); 758 Value *Offset = getArrayOffset(Array); 759 if (Offset) 760 ArraySize = Builder.CreateSub( 761 ArraySize, 762 Builder.CreateMul(Offset, 763 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 764 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 765 DevArray->setName(DevArrayName); 766 DeviceAllocations[ScopArray] = DevArray; 767 } 768 769 isl_ast_build_free(Build); 770 } 771 772 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 773 Value *BlockDimY, Value *BlockDimZ) { 774 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 775 776 for (auto &F : *M) { 777 if (F.getCallingConv() != CallingConv::PTX_Kernel) 778 continue; 779 780 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 781 782 Metadata *Elements[] = { 783 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 784 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 785 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 786 ValueAsMetadata::get(V[2]), 787 }; 788 MDNode *Node = MDNode::get(M->getContext(), Elements); 789 AnnotationNode->addOperand(Node); 790 } 791 } 792 793 void GPUNodeBuilder::freeDeviceArrays() { 794 assert(!ManagedMemory && "Managed memory does not use device arrays"); 795 for (auto &Array : DeviceAllocations) 796 createCallFreeDeviceMemory(Array.second); 797 } 798 799 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 800 const char *Name = "polly_getKernel"; 801 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 802 Function *F = M->getFunction(Name); 803 804 // If F is not available, declare it. 805 if (!F) { 806 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 807 std::vector<Type *> Args; 808 Args.push_back(Builder.getInt8PtrTy()); 809 Args.push_back(Builder.getInt8PtrTy()); 810 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 811 F = Function::Create(Ty, Linkage, Name, M); 812 } 813 814 return Builder.CreateCall(F, {Buffer, Entry}); 815 } 816 817 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 818 const char *Name = "polly_getDevicePtr"; 819 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 820 Function *F = M->getFunction(Name); 821 822 // If F is not available, declare it. 823 if (!F) { 824 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 825 std::vector<Type *> Args; 826 Args.push_back(Builder.getInt8PtrTy()); 827 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 828 F = Function::Create(Ty, Linkage, Name, M); 829 } 830 831 return Builder.CreateCall(F, {Allocation}); 832 } 833 834 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 835 Value *GridDimY, Value *BlockDimX, 836 Value *BlockDimY, Value *BlockDimZ, 837 Value *Parameters) { 838 const char *Name = "polly_launchKernel"; 839 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 840 Function *F = M->getFunction(Name); 841 842 // If F is not available, declare it. 843 if (!F) { 844 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 845 std::vector<Type *> Args; 846 Args.push_back(Builder.getInt8PtrTy()); 847 Args.push_back(Builder.getInt32Ty()); 848 Args.push_back(Builder.getInt32Ty()); 849 Args.push_back(Builder.getInt32Ty()); 850 Args.push_back(Builder.getInt32Ty()); 851 Args.push_back(Builder.getInt32Ty()); 852 Args.push_back(Builder.getInt8PtrTy()); 853 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 854 F = Function::Create(Ty, Linkage, Name, M); 855 } 856 857 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 858 BlockDimZ, Parameters}); 859 } 860 861 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 862 const char *Name = "polly_freeKernel"; 863 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 864 Function *F = M->getFunction(Name); 865 866 // If F is not available, declare it. 867 if (!F) { 868 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 869 std::vector<Type *> Args; 870 Args.push_back(Builder.getInt8PtrTy()); 871 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 872 F = Function::Create(Ty, Linkage, Name, M); 873 } 874 875 Builder.CreateCall(F, {GPUKernel}); 876 } 877 878 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 879 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 880 "for device"); 881 const char *Name = "polly_freeDeviceMemory"; 882 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 883 Function *F = M->getFunction(Name); 884 885 // If F is not available, declare it. 886 if (!F) { 887 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 888 std::vector<Type *> Args; 889 Args.push_back(Builder.getInt8PtrTy()); 890 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 891 F = Function::Create(Ty, Linkage, Name, M); 892 } 893 894 Builder.CreateCall(F, {Array}); 895 } 896 897 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 898 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 899 "for device"); 900 const char *Name = "polly_allocateMemoryForDevice"; 901 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 902 Function *F = M->getFunction(Name); 903 904 // If F is not available, declare it. 905 if (!F) { 906 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 907 std::vector<Type *> Args; 908 Args.push_back(Builder.getInt64Ty()); 909 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 910 F = Function::Create(Ty, Linkage, Name, M); 911 } 912 913 return Builder.CreateCall(F, {Size}); 914 } 915 916 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 917 Value *DeviceData, 918 Value *Size) { 919 assert(!ManagedMemory && "Managed memory does not transfer memory between " 920 "device and host"); 921 const char *Name = "polly_copyFromHostToDevice"; 922 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 923 Function *F = M->getFunction(Name); 924 925 // If F is not available, declare it. 926 if (!F) { 927 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 928 std::vector<Type *> Args; 929 Args.push_back(Builder.getInt8PtrTy()); 930 Args.push_back(Builder.getInt8PtrTy()); 931 Args.push_back(Builder.getInt64Ty()); 932 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 933 F = Function::Create(Ty, Linkage, Name, M); 934 } 935 936 Builder.CreateCall(F, {HostData, DeviceData, Size}); 937 } 938 939 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 940 Value *HostData, 941 Value *Size) { 942 assert(!ManagedMemory && "Managed memory does not transfer memory between " 943 "device and host"); 944 const char *Name = "polly_copyFromDeviceToHost"; 945 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 946 Function *F = M->getFunction(Name); 947 948 // If F is not available, declare it. 949 if (!F) { 950 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 951 std::vector<Type *> Args; 952 Args.push_back(Builder.getInt8PtrTy()); 953 Args.push_back(Builder.getInt8PtrTy()); 954 Args.push_back(Builder.getInt64Ty()); 955 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 956 F = Function::Create(Ty, Linkage, Name, M); 957 } 958 959 Builder.CreateCall(F, {DeviceData, HostData, Size}); 960 } 961 962 void GPUNodeBuilder::createCallSynchronizeDevice() { 963 assert(ManagedMemory && "explicit synchronization is only necessary for " 964 "managed memory"); 965 const char *Name = "polly_synchronizeDevice"; 966 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 967 Function *F = M->getFunction(Name); 968 969 // If F is not available, declare it. 970 if (!F) { 971 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 972 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 973 F = Function::Create(Ty, Linkage, Name, M); 974 } 975 976 Builder.CreateCall(F); 977 } 978 979 Value *GPUNodeBuilder::createCallInitContext() { 980 const char *Name; 981 982 switch (Runtime) { 983 case GPURuntime::CUDA: 984 Name = "polly_initContextCUDA"; 985 break; 986 case GPURuntime::OpenCL: 987 Name = "polly_initContextCL"; 988 break; 989 } 990 991 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 992 Function *F = M->getFunction(Name); 993 994 // If F is not available, declare it. 995 if (!F) { 996 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 997 std::vector<Type *> Args; 998 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 999 F = Function::Create(Ty, Linkage, Name, M); 1000 } 1001 1002 return Builder.CreateCall(F, {}); 1003 } 1004 1005 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1006 const char *Name = "polly_freeContext"; 1007 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1008 Function *F = M->getFunction(Name); 1009 1010 // If F is not available, declare it. 1011 if (!F) { 1012 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1013 std::vector<Type *> Args; 1014 Args.push_back(Builder.getInt8PtrTy()); 1015 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1016 F = Function::Create(Ty, Linkage, Name, M); 1017 } 1018 1019 Builder.CreateCall(F, {Context}); 1020 } 1021 1022 /// Check if one string is a prefix of another. 1023 /// 1024 /// @param String The string in which to look for the prefix. 1025 /// @param Prefix The prefix to look for. 1026 static bool isPrefix(std::string String, std::string Prefix) { 1027 return String.find(Prefix) == 0; 1028 } 1029 1030 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1031 isl::ast_build Build = 1032 isl::ast_build::from_context(isl::manage(S.getContext())); 1033 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1034 1035 if (!gpu_array_is_scalar(Array)) { 1036 isl::multi_pw_aff ArrayBound = 1037 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1038 1039 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1040 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1041 1042 for (unsigned int i = 1; i < Array->n_index; i++) { 1043 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1044 isl::ast_expr Expr = Build.expr_from(Bound_I); 1045 Res = Res.mul(Expr); 1046 } 1047 1048 Value *NumElements = ExprBuilder.create(Res.release()); 1049 if (NumElements->getType() != ArraySize->getType()) 1050 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1051 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1052 } 1053 return ArraySize; 1054 } 1055 1056 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1057 if (gpu_array_is_scalar(Array)) 1058 return nullptr; 1059 1060 isl::ast_build Build = 1061 isl::ast_build::from_context(isl::manage(S.getContext())); 1062 1063 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1064 1065 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1066 1067 for (long i = 0; i < Min.dim(isl::dim::set); i++) 1068 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1069 1070 if (Min.is_subset(ZeroSet)) { 1071 return nullptr; 1072 } 1073 1074 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1075 1076 for (long i = 0; i < Min.dim(isl::dim::set); i++) { 1077 if (i > 0) { 1078 isl::pw_aff Bound_I = 1079 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1080 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1081 Result = Result.mul(BExpr); 1082 } 1083 isl::pw_aff DimMin = Min.dim_min(i); 1084 isl::ast_expr MExpr = Build.expr_from(DimMin); 1085 Result = Result.add(MExpr); 1086 } 1087 1088 return ExprBuilder.create(Result.release()); 1089 } 1090 1091 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 1092 ScopArrayInfo *ArrayInfo) { 1093 1094 assert(ManagedMemory && "Only used when you wish to get a host " 1095 "pointer for sending data to the kernel, " 1096 "with managed memory"); 1097 std::map<ScopArrayInfo *, Value *>::iterator it; 1098 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 1099 return it->second; 1100 } else { 1101 Value *HostPtr; 1102 1103 if (gpu_array_is_scalar(Array)) 1104 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 1105 else 1106 HostPtr = ArrayInfo->getBasePtr(); 1107 HostPtr = getLatestValue(HostPtr); 1108 1109 Value *Offset = getArrayOffset(Array); 1110 if (Offset) { 1111 HostPtr = Builder.CreatePointerCast( 1112 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 1113 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1114 } 1115 1116 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1117 DeviceAllocations[ArrayInfo] = HostPtr; 1118 return HostPtr; 1119 } 1120 } 1121 1122 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1123 enum DataDirection Direction) { 1124 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1125 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1126 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1127 isl_id *Id = isl_ast_expr_get_id(Arg); 1128 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1129 auto ScopArray = (ScopArrayInfo *)(Array->user); 1130 1131 Value *Size = getArraySize(Array); 1132 Value *Offset = getArrayOffset(Array); 1133 Value *DevPtr = DeviceAllocations[ScopArray]; 1134 1135 Value *HostPtr; 1136 1137 if (gpu_array_is_scalar(Array)) 1138 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1139 else 1140 HostPtr = ScopArray->getBasePtr(); 1141 HostPtr = getLatestValue(HostPtr); 1142 1143 if (Offset) { 1144 HostPtr = Builder.CreatePointerCast( 1145 HostPtr, ScopArray->getElementType()->getPointerTo()); 1146 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1147 } 1148 1149 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1150 1151 if (Offset) { 1152 Size = Builder.CreateSub( 1153 Size, Builder.CreateMul( 1154 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1155 } 1156 1157 if (Direction == HOST_TO_DEVICE) 1158 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1159 else 1160 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1161 1162 isl_id_free(Id); 1163 isl_ast_expr_free(Arg); 1164 isl_ast_expr_free(Expr); 1165 isl_ast_node_free(TransferStmt); 1166 } 1167 1168 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1169 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1170 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1171 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1172 isl_id_free(Id); 1173 isl_ast_expr_free(StmtExpr); 1174 1175 const char *Str = isl_id_get_name(Id); 1176 if (!strcmp(Str, "kernel")) { 1177 createKernel(UserStmt); 1178 isl_ast_expr_free(Expr); 1179 return; 1180 } 1181 if (!strcmp(Str, "init_device")) { 1182 initializeAfterRTH(); 1183 isl_ast_node_free(UserStmt); 1184 isl_ast_expr_free(Expr); 1185 return; 1186 } 1187 if (!strcmp(Str, "clear_device")) { 1188 finalize(); 1189 isl_ast_node_free(UserStmt); 1190 isl_ast_expr_free(Expr); 1191 return; 1192 } 1193 if (isPrefix(Str, "to_device")) { 1194 if (!ManagedMemory) 1195 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1196 else 1197 isl_ast_node_free(UserStmt); 1198 1199 isl_ast_expr_free(Expr); 1200 return; 1201 } 1202 1203 if (isPrefix(Str, "from_device")) { 1204 if (!ManagedMemory) { 1205 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1206 } else { 1207 createCallSynchronizeDevice(); 1208 isl_ast_node_free(UserStmt); 1209 } 1210 isl_ast_expr_free(Expr); 1211 return; 1212 } 1213 1214 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1215 struct ppcg_kernel_stmt *KernelStmt = 1216 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1217 isl_id_free(Anno); 1218 1219 switch (KernelStmt->type) { 1220 case ppcg_kernel_domain: 1221 createScopStmt(Expr, KernelStmt); 1222 isl_ast_node_free(UserStmt); 1223 return; 1224 case ppcg_kernel_copy: 1225 createKernelCopy(KernelStmt); 1226 isl_ast_expr_free(Expr); 1227 isl_ast_node_free(UserStmt); 1228 return; 1229 case ppcg_kernel_sync: 1230 createKernelSync(); 1231 isl_ast_expr_free(Expr); 1232 isl_ast_node_free(UserStmt); 1233 return; 1234 } 1235 1236 isl_ast_expr_free(Expr); 1237 isl_ast_node_free(UserStmt); 1238 return; 1239 } 1240 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1241 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1242 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1243 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1244 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1245 Index = isl_ast_expr_address_of(Index); 1246 Value *GlobalAddr = ExprBuilder.create(Index); 1247 1248 if (KernelStmt->u.c.read) { 1249 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1250 Builder.CreateStore(Load, LocalAddr); 1251 } else { 1252 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1253 Builder.CreateStore(Load, GlobalAddr); 1254 } 1255 } 1256 1257 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1258 ppcg_kernel_stmt *KernelStmt) { 1259 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1260 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1261 1262 LoopToScevMapT LTS; 1263 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1264 1265 createSubstitutions(Expr, Stmt, LTS); 1266 1267 if (Stmt->isBlockStmt()) 1268 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1269 else 1270 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1271 } 1272 1273 void GPUNodeBuilder::createKernelSync() { 1274 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1275 const char *SpirName = "__gen_ocl_barrier_global"; 1276 1277 Function *Sync; 1278 1279 switch (Arch) { 1280 case GPUArch::SPIR64: 1281 case GPUArch::SPIR32: 1282 Sync = M->getFunction(SpirName); 1283 1284 // If Sync is not available, declare it. 1285 if (!Sync) { 1286 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1287 std::vector<Type *> Args; 1288 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1289 Sync = Function::Create(Ty, Linkage, SpirName, M); 1290 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1291 } 1292 break; 1293 case GPUArch::NVPTX64: 1294 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1295 break; 1296 } 1297 1298 Builder.CreateCall(Sync, {}); 1299 } 1300 1301 /// Collect llvm::Values referenced from @p Node 1302 /// 1303 /// This function only applies to isl_ast_nodes that are user_nodes referring 1304 /// to a ScopStmt. All other node types are ignore. 1305 /// 1306 /// @param Node The node to collect references for. 1307 /// @param User A user pointer used as storage for the data that is collected. 1308 /// 1309 /// @returns isl_bool_true if data could be collected successfully. 1310 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1311 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1312 return isl_bool_true; 1313 1314 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1315 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1316 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1317 const char *Str = isl_id_get_name(Id); 1318 isl_id_free(Id); 1319 isl_ast_expr_free(StmtExpr); 1320 isl_ast_expr_free(Expr); 1321 1322 if (!isPrefix(Str, "Stmt")) 1323 return isl_bool_true; 1324 1325 Id = isl_ast_node_get_annotation(Node); 1326 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1327 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1328 isl_id_free(Id); 1329 1330 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1331 1332 return isl_bool_true; 1333 } 1334 1335 /// A list of functions that are available in NVIDIA's libdevice. 1336 const std::set<std::string> CUDALibDeviceFunctions = { 1337 "exp", "expf", "expl", "cos", "cosf", 1338 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"}; 1339 1340 /// Return the corresponding CUDA libdevice function name for @p F. 1341 /// 1342 /// Return "" if we are not compiling for CUDA. 1343 std::string getCUDALibDeviceFuntion(Function *F) { 1344 if (CUDALibDeviceFunctions.count(F->getName())) 1345 return std::string("__nv_") + std::string(F->getName()); 1346 1347 return ""; 1348 } 1349 1350 /// Check if F is a function that we can code-generate in a GPU kernel. 1351 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1352 assert(F && "F is an invalid pointer"); 1353 // We string compare against the name of the function to allow 1354 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1355 // "llvm.copysign". 1356 const StringRef Name = F->getName(); 1357 1358 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1359 return true; 1360 1361 return F->isIntrinsic() && 1362 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1363 Name.startswith("llvm.copysign")); 1364 } 1365 1366 /// Do not take `Function` as a subtree value. 1367 /// 1368 /// We try to take the reference of all subtree values and pass them along 1369 /// to the kernel from the host. Taking an address of any function and 1370 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1371 /// `Function`s. 1372 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1373 1374 /// Return `Function`s from `RawSubtreeValues`. 1375 static SetVector<Function *> 1376 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1377 bool AllowCUDALibDevice) { 1378 SetVector<Function *> SubtreeFunctions; 1379 for (Value *It : RawSubtreeValues) { 1380 Function *F = dyn_cast<Function>(It); 1381 if (F) { 1382 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1383 "Code should have bailed out by " 1384 "this point if an invalid function " 1385 "were present in a kernel."); 1386 SubtreeFunctions.insert(F); 1387 } 1388 } 1389 return SubtreeFunctions; 1390 } 1391 1392 std::pair<SetVector<Value *>, SetVector<Function *>> 1393 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1394 SetVector<Value *> SubtreeValues; 1395 SetVector<const SCEV *> SCEVs; 1396 SetVector<const Loop *> Loops; 1397 SubtreeReferences References = { 1398 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1399 1400 for (const auto &I : IDToValue) 1401 SubtreeValues.insert(I.second); 1402 1403 isl_ast_node_foreach_descendant_top_down( 1404 Kernel->tree, collectReferencesInGPUStmt, &References); 1405 1406 for (const SCEV *Expr : SCEVs) 1407 findValues(Expr, SE, SubtreeValues); 1408 1409 for (auto &SAI : S.arrays()) 1410 SubtreeValues.remove(SAI->getBasePtr()); 1411 1412 isl_space *Space = S.getParamSpace(); 1413 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1414 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1415 assert(IDToValue.count(Id)); 1416 Value *Val = IDToValue[Id]; 1417 SubtreeValues.remove(Val); 1418 isl_id_free(Id); 1419 } 1420 isl_space_free(Space); 1421 1422 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1423 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1424 assert(IDToValue.count(Id)); 1425 Value *Val = IDToValue[Id]; 1426 SubtreeValues.remove(Val); 1427 isl_id_free(Id); 1428 } 1429 1430 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1431 // SubtreeValues. This is important, because we should not lose any 1432 // SubtreeValues in the process of constructing the 1433 // "ValidSubtree{Values, Functions} sets. Nor should the set 1434 // ValidSubtree{Values, Functions} have any common element. 1435 auto ValidSubtreeValuesIt = 1436 make_filter_range(SubtreeValues, isValidSubtreeValue); 1437 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1438 ValidSubtreeValuesIt.end()); 1439 1440 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1441 1442 SetVector<Function *> ValidSubtreeFunctions( 1443 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1444 1445 // @see IslNodeBuilder::getReferencesInSubtree 1446 SetVector<Value *> ReplacedValues; 1447 for (Value *V : ValidSubtreeValues) { 1448 auto It = ValueMap.find(V); 1449 if (It == ValueMap.end()) 1450 ReplacedValues.insert(V); 1451 else 1452 ReplacedValues.insert(It->second); 1453 } 1454 return std::make_pair(ReplacedValues, ValidSubtreeFunctions); 1455 } 1456 1457 void GPUNodeBuilder::clearDominators(Function *F) { 1458 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1459 std::vector<BasicBlock *> Nodes; 1460 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1461 Nodes.push_back(I->getBlock()); 1462 1463 for (BasicBlock *BB : Nodes) 1464 DT.eraseNode(BB); 1465 } 1466 1467 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1468 for (BasicBlock &BB : *F) { 1469 Loop *L = LI.getLoopFor(&BB); 1470 if (L) 1471 SE.forgetLoop(L); 1472 } 1473 } 1474 1475 void GPUNodeBuilder::clearLoops(Function *F) { 1476 for (BasicBlock &BB : *F) { 1477 Loop *L = LI.getLoopFor(&BB); 1478 if (L) 1479 SE.forgetLoop(L); 1480 LI.removeBlock(&BB); 1481 } 1482 } 1483 1484 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1485 std::vector<Value *> Sizes; 1486 isl::ast_build Context = 1487 isl::ast_build::from_context(isl::manage(S.getContext())); 1488 1489 isl::multi_pw_aff GridSizePwAffs = 1490 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1491 for (long i = 0; i < Kernel->n_grid; i++) { 1492 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1493 isl::ast_expr GridSize = Context.expr_from(Size); 1494 Value *Res = ExprBuilder.create(GridSize.release()); 1495 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1496 Sizes.push_back(Res); 1497 } 1498 1499 for (long i = Kernel->n_grid; i < 3; i++) 1500 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1501 1502 return std::make_tuple(Sizes[0], Sizes[1]); 1503 } 1504 1505 std::tuple<Value *, Value *, Value *> 1506 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1507 std::vector<Value *> Sizes; 1508 1509 for (long i = 0; i < Kernel->n_block; i++) { 1510 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1511 Sizes.push_back(Res); 1512 } 1513 1514 for (long i = Kernel->n_block; i < 3; i++) 1515 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1516 1517 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1518 } 1519 1520 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1521 Instruction *Param, int Index) { 1522 Value *Slot = Builder.CreateGEP( 1523 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1524 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1525 Builder.CreateStore(ParamTyped, Slot); 1526 } 1527 1528 Value * 1529 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1530 SetVector<Value *> SubtreeValues) { 1531 const int NumArgs = F->arg_size(); 1532 std::vector<int> ArgSizes(NumArgs); 1533 1534 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1535 1536 BasicBlock *EntryBlock = 1537 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1538 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1539 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1540 Instruction *Parameters = new AllocaInst( 1541 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1542 1543 int Index = 0; 1544 for (long i = 0; i < Prog->n_array; i++) { 1545 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1546 continue; 1547 1548 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1549 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1550 1551 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1552 1553 Value *DevArray = nullptr; 1554 if (ManagedMemory) { 1555 DevArray = getOrCreateManagedDeviceArray( 1556 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1557 } else { 1558 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1559 DevArray = createCallGetDevicePtr(DevArray); 1560 } 1561 assert(DevArray != nullptr && "Array to be offloaded to device not " 1562 "initialized"); 1563 Value *Offset = getArrayOffset(&Prog->array[i]); 1564 1565 if (Offset) { 1566 DevArray = Builder.CreatePointerCast( 1567 DevArray, SAI->getElementType()->getPointerTo()); 1568 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1569 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1570 } 1571 Value *Slot = Builder.CreateGEP( 1572 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1573 1574 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1575 Value *ValPtr = nullptr; 1576 if (ManagedMemory) 1577 ValPtr = DevArray; 1578 else 1579 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1580 1581 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1582 " to be stored into Parameters"); 1583 Value *ValPtrCast = 1584 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1585 Builder.CreateStore(ValPtrCast, Slot); 1586 } else { 1587 Instruction *Param = 1588 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1589 Launch + "_param_" + std::to_string(Index), 1590 EntryBlock->getTerminator()); 1591 Builder.CreateStore(DevArray, Param); 1592 Value *ParamTyped = 1593 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1594 Builder.CreateStore(ParamTyped, Slot); 1595 } 1596 Index++; 1597 } 1598 1599 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1600 1601 for (long i = 0; i < NumHostIters; i++) { 1602 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1603 Value *Val = IDToValue[Id]; 1604 isl_id_free(Id); 1605 1606 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1607 1608 Instruction *Param = 1609 new AllocaInst(Val->getType(), AddressSpace, 1610 Launch + "_param_" + std::to_string(Index), 1611 EntryBlock->getTerminator()); 1612 Builder.CreateStore(Val, Param); 1613 insertStoreParameter(Parameters, Param, Index); 1614 Index++; 1615 } 1616 1617 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1618 1619 for (long i = 0; i < NumVars; i++) { 1620 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1621 Value *Val = IDToValue[Id]; 1622 if (ValueMap.count(Val)) 1623 Val = ValueMap[Val]; 1624 isl_id_free(Id); 1625 1626 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1627 1628 Instruction *Param = 1629 new AllocaInst(Val->getType(), AddressSpace, 1630 Launch + "_param_" + std::to_string(Index), 1631 EntryBlock->getTerminator()); 1632 Builder.CreateStore(Val, Param); 1633 insertStoreParameter(Parameters, Param, Index); 1634 Index++; 1635 } 1636 1637 for (auto Val : SubtreeValues) { 1638 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1639 1640 Instruction *Param = 1641 new AllocaInst(Val->getType(), AddressSpace, 1642 Launch + "_param_" + std::to_string(Index), 1643 EntryBlock->getTerminator()); 1644 Builder.CreateStore(Val, Param); 1645 insertStoreParameter(Parameters, Param, Index); 1646 Index++; 1647 } 1648 1649 for (int i = 0; i < NumArgs; i++) { 1650 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1651 Instruction *Param = 1652 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1653 Launch + "_param_size_" + std::to_string(i), 1654 EntryBlock->getTerminator()); 1655 Builder.CreateStore(Val, Param); 1656 insertStoreParameter(Parameters, Param, Index); 1657 Index++; 1658 } 1659 1660 auto Location = EntryBlock->getTerminator(); 1661 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1662 Launch + "_params_i8ptr", Location); 1663 } 1664 1665 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1666 SetVector<Function *> SubtreeFunctions) { 1667 for (auto Fn : SubtreeFunctions) { 1668 const std::string ClonedFnName = Fn->getName(); 1669 Function *Clone = GPUModule->getFunction(ClonedFnName); 1670 if (!Clone) 1671 Clone = 1672 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1673 ClonedFnName, GPUModule.get()); 1674 assert(Clone && "Expected cloned function to be initialized."); 1675 assert(ValueMap.find(Fn) == ValueMap.end() && 1676 "Fn already present in ValueMap"); 1677 ValueMap[Fn] = Clone; 1678 } 1679 } 1680 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1681 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1682 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1683 isl_id_free(Id); 1684 isl_ast_node_free(KernelStmt); 1685 1686 if (Kernel->n_grid > 1) 1687 DeepestParallel = 1688 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1689 else 1690 DeepestSequential = 1691 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1692 1693 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1694 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1695 1696 SetVector<Value *> SubtreeValues; 1697 SetVector<Function *> SubtreeFunctions; 1698 std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel); 1699 1700 assert(Kernel->tree && "Device AST of kernel node is empty"); 1701 1702 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1703 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1704 ValueMapT HostValueMap = ValueMap; 1705 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1706 ScalarMap.clear(); 1707 1708 SetVector<const Loop *> Loops; 1709 1710 // Create for all loops we depend on values that contain the current loop 1711 // iteration. These values are necessary to generate code for SCEVs that 1712 // depend on such loops. As a result we need to pass them to the subfunction. 1713 for (const Loop *L : Loops) { 1714 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1715 SE.getUnknown(Builder.getInt64(1)), 1716 L, SCEV::FlagAnyWrap); 1717 Value *V = generateSCEV(OuterLIV); 1718 OutsideLoopIterations[L] = SE.getUnknown(V); 1719 SubtreeValues.insert(V); 1720 } 1721 1722 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1723 setupKernelSubtreeFunctions(SubtreeFunctions); 1724 1725 create(isl_ast_node_copy(Kernel->tree)); 1726 1727 finalizeKernelArguments(Kernel); 1728 Function *F = Builder.GetInsertBlock()->getParent(); 1729 if (Arch == GPUArch::NVPTX64) 1730 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1731 clearDominators(F); 1732 clearScalarEvolution(F); 1733 clearLoops(F); 1734 1735 IDToValue = HostIDs; 1736 1737 ValueMap = std::move(HostValueMap); 1738 ScalarMap = std::move(HostScalarMap); 1739 EscapeMap.clear(); 1740 IDToSAI.clear(); 1741 Annotator.resetAlternativeAliasBases(); 1742 for (auto &BasePtr : LocalArrays) 1743 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1744 LocalArrays.clear(); 1745 1746 std::string ASMString = finalizeKernelFunction(); 1747 Builder.SetInsertPoint(&HostInsertPoint); 1748 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1749 1750 std::string Name = getKernelFuncName(Kernel->id); 1751 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1752 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1753 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1754 1755 Value *GridDimX, *GridDimY; 1756 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1757 1758 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1759 BlockDimZ, Parameters); 1760 createCallFreeKernel(GPUKernel); 1761 1762 for (auto Id : KernelIds) 1763 isl_id_free(Id); 1764 1765 KernelIds.clear(); 1766 } 1767 1768 /// Compute the DataLayout string for the NVPTX backend. 1769 /// 1770 /// @param is64Bit Are we looking for a 64 bit architecture? 1771 static std::string computeNVPTXDataLayout(bool is64Bit) { 1772 std::string Ret = ""; 1773 1774 if (!is64Bit) { 1775 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1776 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1777 "64-v128:128:128-n16:32:64"; 1778 } else { 1779 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1780 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1781 "64-v128:128:128-n16:32:64"; 1782 } 1783 1784 return Ret; 1785 } 1786 1787 /// Compute the DataLayout string for a SPIR kernel. 1788 /// 1789 /// @param is64Bit Are we looking for a 64 bit architecture? 1790 static std::string computeSPIRDataLayout(bool is64Bit) { 1791 std::string Ret = ""; 1792 1793 if (!is64Bit) { 1794 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1795 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1796 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1797 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1798 } else { 1799 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1800 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1801 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1802 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1803 } 1804 1805 return Ret; 1806 } 1807 1808 Function * 1809 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1810 SetVector<Value *> &SubtreeValues) { 1811 std::vector<Type *> Args; 1812 std::string Identifier = getKernelFuncName(Kernel->id); 1813 1814 std::vector<Metadata *> MemoryType; 1815 1816 for (long i = 0; i < Prog->n_array; i++) { 1817 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1818 continue; 1819 1820 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1821 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1822 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1823 Args.push_back(SAI->getElementType()); 1824 MemoryType.push_back( 1825 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1826 } else { 1827 static const int UseGlobalMemory = 1; 1828 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1829 MemoryType.push_back( 1830 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1831 } 1832 } 1833 1834 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1835 1836 for (long i = 0; i < NumHostIters; i++) { 1837 Args.push_back(Builder.getInt64Ty()); 1838 MemoryType.push_back( 1839 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1840 } 1841 1842 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1843 1844 for (long i = 0; i < NumVars; i++) { 1845 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1846 Value *Val = IDToValue[Id]; 1847 isl_id_free(Id); 1848 Args.push_back(Val->getType()); 1849 MemoryType.push_back( 1850 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1851 } 1852 1853 for (auto *V : SubtreeValues) { 1854 Args.push_back(V->getType()); 1855 MemoryType.push_back( 1856 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1857 } 1858 1859 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1860 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1861 GPUModule.get()); 1862 1863 std::vector<Metadata *> EmptyStrings; 1864 1865 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1866 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1867 } 1868 1869 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1870 FN->setMetadata("kernel_arg_addr_space", 1871 MDNode::get(FN->getContext(), MemoryType)); 1872 FN->setMetadata("kernel_arg_name", 1873 MDNode::get(FN->getContext(), EmptyStrings)); 1874 FN->setMetadata("kernel_arg_access_qual", 1875 MDNode::get(FN->getContext(), EmptyStrings)); 1876 FN->setMetadata("kernel_arg_type", 1877 MDNode::get(FN->getContext(), EmptyStrings)); 1878 FN->setMetadata("kernel_arg_type_qual", 1879 MDNode::get(FN->getContext(), EmptyStrings)); 1880 FN->setMetadata("kernel_arg_base_type", 1881 MDNode::get(FN->getContext(), EmptyStrings)); 1882 } 1883 1884 switch (Arch) { 1885 case GPUArch::NVPTX64: 1886 FN->setCallingConv(CallingConv::PTX_Kernel); 1887 break; 1888 case GPUArch::SPIR32: 1889 case GPUArch::SPIR64: 1890 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1891 break; 1892 } 1893 1894 auto Arg = FN->arg_begin(); 1895 for (long i = 0; i < Kernel->n_array; i++) { 1896 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1897 continue; 1898 1899 Arg->setName(Kernel->array[i].array->name); 1900 1901 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1902 const ScopArrayInfo *SAI = 1903 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1904 Type *EleTy = SAI->getElementType(); 1905 Value *Val = &*Arg; 1906 SmallVector<const SCEV *, 4> Sizes; 1907 isl_ast_build *Build = 1908 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1909 Sizes.push_back(nullptr); 1910 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1911 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1912 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1913 auto V = ExprBuilder.create(DimSize); 1914 Sizes.push_back(SE.getSCEV(V)); 1915 } 1916 const ScopArrayInfo *SAIRep = 1917 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1918 LocalArrays.push_back(Val); 1919 1920 isl_ast_build_free(Build); 1921 KernelIds.push_back(Id); 1922 IDToSAI[Id] = SAIRep; 1923 Arg++; 1924 } 1925 1926 for (long i = 0; i < NumHostIters; i++) { 1927 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1928 Arg->setName(isl_id_get_name(Id)); 1929 IDToValue[Id] = &*Arg; 1930 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1931 Arg++; 1932 } 1933 1934 for (long i = 0; i < NumVars; i++) { 1935 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1936 Arg->setName(isl_id_get_name(Id)); 1937 Value *Val = IDToValue[Id]; 1938 ValueMap[Val] = &*Arg; 1939 IDToValue[Id] = &*Arg; 1940 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1941 Arg++; 1942 } 1943 1944 for (auto *V : SubtreeValues) { 1945 Arg->setName(V->getName()); 1946 ValueMap[V] = &*Arg; 1947 Arg++; 1948 } 1949 1950 return FN; 1951 } 1952 1953 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1954 Intrinsic::ID IntrinsicsBID[2]; 1955 Intrinsic::ID IntrinsicsTID[3]; 1956 1957 switch (Arch) { 1958 case GPUArch::SPIR64: 1959 case GPUArch::SPIR32: 1960 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 1961 case GPUArch::NVPTX64: 1962 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1963 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1964 1965 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1966 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1967 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1968 break; 1969 } 1970 1971 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1972 std::string Name = isl_id_get_name(Id); 1973 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1974 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1975 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1976 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1977 IDToValue[Id] = Val; 1978 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1979 }; 1980 1981 for (int i = 0; i < Kernel->n_grid; ++i) { 1982 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1983 addId(Id, IntrinsicsBID[i]); 1984 } 1985 1986 for (int i = 0; i < Kernel->n_block; ++i) { 1987 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1988 addId(Id, IntrinsicsTID[i]); 1989 } 1990 } 1991 1992 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 1993 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 1994 "__gen_ocl_get_group_id1", 1995 "__gen_ocl_get_group_id2"}; 1996 1997 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 1998 "__gen_ocl_get_local_id1", 1999 "__gen_ocl_get_local_id2"}; 2000 2001 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2002 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2003 Function *FN = M->getFunction(Name); 2004 2005 // If FN is not available, declare it. 2006 if (!FN) { 2007 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2008 std::vector<Type *> Args; 2009 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2010 FN = Function::Create(Ty, Linkage, Name, M); 2011 FN->setCallingConv(CallingConv::SPIR_FUNC); 2012 } 2013 2014 Value *Val = Builder.CreateCall(FN, {}); 2015 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2016 IDToValue[Id] = Val; 2017 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2018 }; 2019 2020 for (int i = 0; i < Kernel->n_grid; ++i) 2021 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2022 2023 for (int i = 0; i < Kernel->n_block; ++i) 2024 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2025 } 2026 2027 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2028 auto Arg = FN->arg_begin(); 2029 for (long i = 0; i < Kernel->n_array; i++) { 2030 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2031 continue; 2032 2033 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2034 const ScopArrayInfo *SAI = 2035 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2036 isl_id_free(Id); 2037 2038 if (SAI->getNumberOfDimensions() > 0) { 2039 Arg++; 2040 continue; 2041 } 2042 2043 Value *Val = &*Arg; 2044 2045 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2046 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2047 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2048 Val = Builder.CreateLoad(TypedArgPtr); 2049 } 2050 2051 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2052 Builder.CreateStore(Val, Alloca); 2053 2054 Arg++; 2055 } 2056 } 2057 2058 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2059 auto *FN = Builder.GetInsertBlock()->getParent(); 2060 auto Arg = FN->arg_begin(); 2061 2062 bool StoredScalar = false; 2063 for (long i = 0; i < Kernel->n_array; i++) { 2064 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2065 continue; 2066 2067 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2068 const ScopArrayInfo *SAI = 2069 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2070 isl_id_free(Id); 2071 2072 if (SAI->getNumberOfDimensions() > 0) { 2073 Arg++; 2074 continue; 2075 } 2076 2077 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2078 Arg++; 2079 continue; 2080 } 2081 2082 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2083 Value *ArgPtr = &*Arg; 2084 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2085 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2086 Value *Val = Builder.CreateLoad(Alloca); 2087 Builder.CreateStore(Val, TypedArgPtr); 2088 StoredScalar = true; 2089 2090 Arg++; 2091 } 2092 2093 if (StoredScalar) 2094 /// In case more than one thread contains scalar stores, the generated 2095 /// code might be incorrect, if we only store at the end of the kernel. 2096 /// To support this case we need to store these scalars back at each 2097 /// memory store or at least before each kernel barrier. 2098 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 2099 BuildSuccessful = 0; 2100 } 2101 2102 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2103 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2104 2105 for (int i = 0; i < Kernel->n_var; ++i) { 2106 struct ppcg_kernel_var &Var = Kernel->var[i]; 2107 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2108 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2109 2110 Type *ArrayTy = EleTy; 2111 SmallVector<const SCEV *, 4> Sizes; 2112 2113 Sizes.push_back(nullptr); 2114 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2115 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2116 long Bound = isl_val_get_num_si(Val); 2117 isl_val_free(Val); 2118 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2119 } 2120 2121 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2122 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2123 long Bound = isl_val_get_num_si(Val); 2124 isl_val_free(Val); 2125 ArrayTy = ArrayType::get(ArrayTy, Bound); 2126 } 2127 2128 const ScopArrayInfo *SAI; 2129 Value *Allocation; 2130 if (Var.type == ppcg_access_shared) { 2131 auto GlobalVar = new GlobalVariable( 2132 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2133 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2134 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2135 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2136 2137 Allocation = GlobalVar; 2138 } else if (Var.type == ppcg_access_private) { 2139 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2140 } else { 2141 llvm_unreachable("unknown variable type"); 2142 } 2143 SAI = 2144 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2145 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2146 IDToValue[Id] = Allocation; 2147 LocalArrays.push_back(Allocation); 2148 KernelIds.push_back(Id); 2149 IDToSAI[Id] = SAI; 2150 } 2151 } 2152 2153 void GPUNodeBuilder::createKernelFunction( 2154 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2155 SetVector<Function *> &SubtreeFunctions) { 2156 std::string Identifier = getKernelFuncName(Kernel->id); 2157 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2158 2159 switch (Arch) { 2160 case GPUArch::NVPTX64: 2161 if (Runtime == GPURuntime::CUDA) 2162 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2163 else if (Runtime == GPURuntime::OpenCL) 2164 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2165 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2166 break; 2167 case GPUArch::SPIR32: 2168 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2169 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2170 break; 2171 case GPUArch::SPIR64: 2172 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2173 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2174 break; 2175 } 2176 2177 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2178 2179 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2180 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2181 2182 DT.addNewBlock(EntryBlock, PrevBlock); 2183 2184 Builder.SetInsertPoint(EntryBlock); 2185 Builder.CreateRetVoid(); 2186 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2187 2188 ScopDetection::markFunctionAsInvalid(FN); 2189 2190 prepareKernelArguments(Kernel, FN); 2191 createKernelVariables(Kernel, FN); 2192 2193 switch (Arch) { 2194 case GPUArch::NVPTX64: 2195 insertKernelIntrinsics(Kernel); 2196 break; 2197 case GPUArch::SPIR32: 2198 case GPUArch::SPIR64: 2199 insertKernelCallsSPIR(Kernel); 2200 break; 2201 } 2202 } 2203 2204 std::string GPUNodeBuilder::createKernelASM() { 2205 llvm::Triple GPUTriple; 2206 2207 switch (Arch) { 2208 case GPUArch::NVPTX64: 2209 switch (Runtime) { 2210 case GPURuntime::CUDA: 2211 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2212 break; 2213 case GPURuntime::OpenCL: 2214 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2215 break; 2216 } 2217 break; 2218 case GPUArch::SPIR64: 2219 case GPUArch::SPIR32: 2220 std::string SPIRAssembly; 2221 raw_string_ostream IROstream(SPIRAssembly); 2222 IROstream << *GPUModule; 2223 IROstream.flush(); 2224 return SPIRAssembly; 2225 } 2226 2227 std::string ErrMsg; 2228 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2229 2230 if (!GPUTarget) { 2231 errs() << ErrMsg << "\n"; 2232 return ""; 2233 } 2234 2235 TargetOptions Options; 2236 Options.UnsafeFPMath = FastMath; 2237 2238 std::string subtarget; 2239 2240 switch (Arch) { 2241 case GPUArch::NVPTX64: 2242 subtarget = CudaVersion; 2243 break; 2244 case GPUArch::SPIR32: 2245 case GPUArch::SPIR64: 2246 llvm_unreachable("No subtarget for SPIR architecture"); 2247 } 2248 2249 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2250 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2251 2252 SmallString<0> ASMString; 2253 raw_svector_ostream ASMStream(ASMString); 2254 llvm::legacy::PassManager PM; 2255 2256 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2257 2258 if (TargetM->addPassesToEmitFile( 2259 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2260 errs() << "The target does not support generation of this file type!\n"; 2261 return ""; 2262 } 2263 2264 PM.run(*GPUModule); 2265 2266 return ASMStream.str(); 2267 } 2268 2269 bool GPUNodeBuilder::requiresCUDALibDevice() { 2270 for (Function &F : GPUModule->functions()) { 2271 if (!F.isDeclaration()) 2272 continue; 2273 2274 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2275 if (CUDALibDeviceFunc.length() != 0) { 2276 F.setName(CUDALibDeviceFunc); 2277 return true; 2278 } 2279 } 2280 2281 return false; 2282 } 2283 2284 void GPUNodeBuilder::addCUDALibDevice() { 2285 if (Arch != GPUArch::NVPTX64) 2286 return; 2287 2288 if (requiresCUDALibDevice()) { 2289 SMDiagnostic Error; 2290 2291 errs() << CUDALibDevice << "\n"; 2292 auto LibDeviceModule = 2293 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2294 2295 if (!LibDeviceModule) { 2296 BuildSuccessful = false; 2297 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2298 "kernel generation. Please set -polly-acc-libdevice " 2299 "accordingly.\n"); 2300 return; 2301 } 2302 2303 Linker L(*GPUModule); 2304 2305 // Set an nvptx64 target triple to avoid linker warnings. The original 2306 // triple of the libdevice files are nvptx-unknown-unknown. 2307 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2308 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2309 } 2310 } 2311 2312 std::string GPUNodeBuilder::finalizeKernelFunction() { 2313 2314 if (verifyModule(*GPUModule)) { 2315 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2316 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2317 DEBUG(dbgs() << "verifyModule Error:\n"; 2318 verifyModule(*GPUModule, &dbgs());); 2319 2320 if (FailOnVerifyModuleFailure) 2321 llvm_unreachable("VerifyModule failed."); 2322 2323 BuildSuccessful = false; 2324 return ""; 2325 } 2326 2327 addCUDALibDevice(); 2328 2329 if (DumpKernelIR) 2330 outs() << *GPUModule << "\n"; 2331 2332 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2333 // Optimize module. 2334 llvm::legacy::PassManager OptPasses; 2335 PassManagerBuilder PassBuilder; 2336 PassBuilder.OptLevel = 3; 2337 PassBuilder.SizeLevel = 0; 2338 PassBuilder.populateModulePassManager(OptPasses); 2339 OptPasses.run(*GPUModule); 2340 } 2341 2342 std::string Assembly = createKernelASM(); 2343 2344 if (DumpKernelASM) 2345 outs() << Assembly << "\n"; 2346 2347 GPUModule.release(); 2348 KernelIDs.clear(); 2349 2350 return Assembly; 2351 } 2352 2353 namespace { 2354 class PPCGCodeGeneration : public ScopPass { 2355 public: 2356 static char ID; 2357 2358 GPURuntime Runtime = GPURuntime::CUDA; 2359 2360 GPUArch Architecture = GPUArch::NVPTX64; 2361 2362 /// The scop that is currently processed. 2363 Scop *S; 2364 2365 LoopInfo *LI; 2366 DominatorTree *DT; 2367 ScalarEvolution *SE; 2368 const DataLayout *DL; 2369 RegionInfo *RI; 2370 2371 PPCGCodeGeneration() : ScopPass(ID) {} 2372 2373 /// Construct compilation options for PPCG. 2374 /// 2375 /// @returns The compilation options. 2376 ppcg_options *createPPCGOptions() { 2377 auto DebugOptions = 2378 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2379 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2380 2381 DebugOptions->dump_schedule_constraints = false; 2382 DebugOptions->dump_schedule = false; 2383 DebugOptions->dump_final_schedule = false; 2384 DebugOptions->dump_sizes = false; 2385 DebugOptions->verbose = false; 2386 2387 Options->debug = DebugOptions; 2388 2389 Options->group_chains = false; 2390 Options->reschedule = true; 2391 Options->scale_tile_loops = false; 2392 Options->wrap = false; 2393 2394 Options->non_negative_parameters = false; 2395 Options->ctx = nullptr; 2396 Options->sizes = nullptr; 2397 2398 Options->tile = true; 2399 Options->tile_size = 32; 2400 2401 Options->isolate_full_tiles = false; 2402 2403 Options->use_private_memory = PrivateMemory; 2404 Options->use_shared_memory = SharedMemory; 2405 Options->max_shared_memory = 48 * 1024; 2406 2407 Options->target = PPCG_TARGET_CUDA; 2408 Options->openmp = false; 2409 Options->linearize_device_arrays = true; 2410 Options->allow_gnu_extensions = false; 2411 2412 Options->unroll_copy_shared = false; 2413 Options->unroll_gpu_tile = false; 2414 Options->live_range_reordering = true; 2415 2416 Options->live_range_reordering = true; 2417 Options->hybrid = false; 2418 Options->opencl_compiler_options = nullptr; 2419 Options->opencl_use_gpu = false; 2420 Options->opencl_n_include_file = 0; 2421 Options->opencl_include_files = nullptr; 2422 Options->opencl_print_kernel_types = false; 2423 Options->opencl_embed_kernel_code = false; 2424 2425 Options->save_schedule_file = nullptr; 2426 Options->load_schedule_file = nullptr; 2427 2428 return Options; 2429 } 2430 2431 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2432 /// 2433 /// Instead of a normal access of the form: 2434 /// 2435 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2436 /// 2437 /// a tagged access has the form 2438 /// 2439 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2440 /// 2441 /// where 'id' is an additional space that references the memory access that 2442 /// triggered the access. 2443 /// 2444 /// @param AccessTy The type of the memory accesses to collect. 2445 /// 2446 /// @return The relation describing all tagged memory accesses. 2447 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2448 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2449 2450 for (auto &Stmt : *S) 2451 for (auto &Acc : Stmt) 2452 if (Acc->getType() == AccessTy) { 2453 isl_map *Relation = Acc->getAccessRelation().release(); 2454 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2455 2456 isl_space *Space = isl_map_get_space(Relation); 2457 Space = isl_space_range(Space); 2458 Space = isl_space_from_range(Space); 2459 Space = 2460 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2461 isl_map *Universe = isl_map_universe(Space); 2462 Relation = isl_map_domain_product(Relation, Universe); 2463 Accesses = isl_union_map_add_map(Accesses, Relation); 2464 } 2465 2466 return Accesses; 2467 } 2468 2469 /// Get the set of all read accesses, tagged with the access id. 2470 /// 2471 /// @see getTaggedAccesses 2472 isl_union_map *getTaggedReads() { 2473 return getTaggedAccesses(MemoryAccess::READ); 2474 } 2475 2476 /// Get the set of all may (and must) accesses, tagged with the access id. 2477 /// 2478 /// @see getTaggedAccesses 2479 isl_union_map *getTaggedMayWrites() { 2480 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2481 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2482 } 2483 2484 /// Get the set of all must accesses, tagged with the access id. 2485 /// 2486 /// @see getTaggedAccesses 2487 isl_union_map *getTaggedMustWrites() { 2488 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2489 } 2490 2491 /// Collect parameter and array names as isl_ids. 2492 /// 2493 /// To reason about the different parameters and arrays used, ppcg requires 2494 /// a list of all isl_ids in use. As PPCG traditionally performs 2495 /// source-to-source compilation each of these isl_ids is mapped to the 2496 /// expression that represents it. As we do not have a corresponding 2497 /// expression in Polly, we just map each id to a 'zero' expression to match 2498 /// the data format that ppcg expects. 2499 /// 2500 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2501 __isl_give isl_id_to_ast_expr *getNames() { 2502 auto *Names = isl_id_to_ast_expr_alloc( 2503 S->getIslCtx(), 2504 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2505 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2506 2507 for (const SCEV *P : S->parameters()) { 2508 isl_id *Id = S->getIdForParam(P); 2509 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2510 } 2511 2512 for (auto &Array : S->arrays()) { 2513 auto Id = Array->getBasePtrId().release(); 2514 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2515 } 2516 2517 isl_ast_expr_free(Zero); 2518 2519 return Names; 2520 } 2521 2522 /// Create a new PPCG scop from the current scop. 2523 /// 2524 /// The PPCG scop is initialized with data from the current polly::Scop. From 2525 /// this initial data, the data-dependences in the PPCG scop are initialized. 2526 /// We do not use Polly's dependence analysis for now, to ensure we match 2527 /// the PPCG default behaviour more closely. 2528 /// 2529 /// @returns A new ppcg scop. 2530 ppcg_scop *createPPCGScop() { 2531 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2532 2533 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2534 2535 PPCGScop->options = createPPCGOptions(); 2536 // enable live range reordering 2537 PPCGScop->options->live_range_reordering = 1; 2538 2539 PPCGScop->start = 0; 2540 PPCGScop->end = 0; 2541 2542 PPCGScop->context = S->getContext(); 2543 PPCGScop->domain = S->getDomains(); 2544 // TODO: investigate this further. PPCG calls collect_call_domains. 2545 PPCGScop->call = isl_union_set_from_set(S->getContext()); 2546 PPCGScop->tagged_reads = getTaggedReads(); 2547 PPCGScop->reads = S->getReads(); 2548 PPCGScop->live_in = nullptr; 2549 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2550 PPCGScop->may_writes = S->getWrites(); 2551 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2552 PPCGScop->must_writes = S->getMustWrites(); 2553 PPCGScop->live_out = nullptr; 2554 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2555 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2556 2557 PPCGScop->tagger = nullptr; 2558 PPCGScop->independence = 2559 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2560 PPCGScop->dep_flow = nullptr; 2561 PPCGScop->tagged_dep_flow = nullptr; 2562 PPCGScop->dep_false = nullptr; 2563 PPCGScop->dep_forced = nullptr; 2564 PPCGScop->dep_order = nullptr; 2565 PPCGScop->tagged_dep_order = nullptr; 2566 2567 PPCGScop->schedule = S->getScheduleTree(); 2568 // If we have something non-trivial to kill, add it to the schedule 2569 if (KillsInfo.KillsSchedule.get()) 2570 PPCGScop->schedule = isl_schedule_sequence( 2571 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2572 2573 PPCGScop->names = getNames(); 2574 PPCGScop->pet = nullptr; 2575 2576 compute_tagger(PPCGScop); 2577 compute_dependences(PPCGScop); 2578 eliminate_dead_code(PPCGScop); 2579 2580 return PPCGScop; 2581 } 2582 2583 /// Collect the array accesses in a statement. 2584 /// 2585 /// @param Stmt The statement for which to collect the accesses. 2586 /// 2587 /// @returns A list of array accesses. 2588 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2589 gpu_stmt_access *Accesses = nullptr; 2590 2591 for (MemoryAccess *Acc : Stmt) { 2592 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2593 Access->read = Acc->isRead(); 2594 Access->write = Acc->isWrite(); 2595 Access->access = Acc->getAccessRelation().release(); 2596 isl_space *Space = isl_map_get_space(Access->access); 2597 Space = isl_space_range(Space); 2598 Space = isl_space_from_range(Space); 2599 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2600 isl_map *Universe = isl_map_universe(Space); 2601 Access->tagged_access = 2602 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2603 Access->exact_write = !Acc->isMayWrite(); 2604 Access->ref_id = Acc->getId().release(); 2605 Access->next = Accesses; 2606 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2607 Accesses = Access; 2608 } 2609 2610 return Accesses; 2611 } 2612 2613 /// Collect the list of GPU statements. 2614 /// 2615 /// Each statement has an id, a pointer to the underlying data structure, 2616 /// as well as a list with all memory accesses. 2617 /// 2618 /// TODO: Initialize the list of memory accesses. 2619 /// 2620 /// @returns A linked-list of statements. 2621 gpu_stmt *getStatements() { 2622 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2623 std::distance(S->begin(), S->end())); 2624 2625 int i = 0; 2626 for (auto &Stmt : *S) { 2627 gpu_stmt *GPUStmt = &Stmts[i]; 2628 2629 GPUStmt->id = Stmt.getDomainId(); 2630 2631 // We use the pet stmt pointer to keep track of the Polly statements. 2632 GPUStmt->stmt = (pet_stmt *)&Stmt; 2633 GPUStmt->accesses = getStmtAccesses(Stmt); 2634 i++; 2635 } 2636 2637 return Stmts; 2638 } 2639 2640 /// Derive the extent of an array. 2641 /// 2642 /// The extent of an array is the set of elements that are within the 2643 /// accessed array. For the inner dimensions, the extent constraints are 2644 /// 0 and the size of the corresponding array dimension. For the first 2645 /// (outermost) dimension, the extent constraints are the minimal and maximal 2646 /// subscript value for the first dimension. 2647 /// 2648 /// @param Array The array to derive the extent for. 2649 /// 2650 /// @returns An isl_set describing the extent of the array. 2651 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2652 unsigned NumDims = Array->getNumberOfDimensions(); 2653 isl_union_map *Accesses = S->getAccesses(); 2654 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2655 Accesses = isl_union_map_detect_equalities(Accesses); 2656 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2657 AccessUSet = isl_union_set_coalesce(AccessUSet); 2658 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2659 AccessUSet = isl_union_set_coalesce(AccessUSet); 2660 2661 if (isl_union_set_is_empty(AccessUSet)) { 2662 isl_union_set_free(AccessUSet); 2663 return isl_set_empty(Array->getSpace().release()); 2664 } 2665 2666 if (Array->getNumberOfDimensions() == 0) { 2667 isl_union_set_free(AccessUSet); 2668 return isl_set_universe(Array->getSpace().release()); 2669 } 2670 2671 isl_set *AccessSet = 2672 isl_union_set_extract_set(AccessUSet, Array->getSpace().release()); 2673 2674 isl_union_set_free(AccessUSet); 2675 isl_local_space *LS = 2676 isl_local_space_from_space(Array->getSpace().release()); 2677 2678 isl_pw_aff *Val = 2679 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2680 2681 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2682 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2683 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2684 isl_pw_aff_dim(Val, isl_dim_in)); 2685 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2686 isl_pw_aff_dim(Val, isl_dim_in)); 2687 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, 2688 Array->getBasePtrId().release()); 2689 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, 2690 Array->getBasePtrId().release()); 2691 2692 isl_set *Extent = isl_set_universe(Array->getSpace().release()); 2693 2694 Extent = isl_set_intersect( 2695 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2696 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2697 2698 for (unsigned i = 1; i < NumDims; ++i) 2699 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2700 2701 for (unsigned i = 0; i < NumDims; ++i) { 2702 isl_pw_aff *PwAff = 2703 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release()); 2704 2705 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2706 // Fortran array will we have a legitimate dimension. 2707 if (!PwAff) { 2708 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2709 continue; 2710 } 2711 2712 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2713 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set, 2714 i)); 2715 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2716 isl_pw_aff_dim(Val, isl_dim_in)); 2717 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2718 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2719 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2720 Extent = isl_set_intersect(Set, Extent); 2721 } 2722 2723 return Extent; 2724 } 2725 2726 /// Derive the bounds of an array. 2727 /// 2728 /// For the first dimension we derive the bound of the array from the extent 2729 /// of this dimension. For inner dimensions we obtain their size directly from 2730 /// ScopArrayInfo. 2731 /// 2732 /// @param PPCGArray The array to compute bounds for. 2733 /// @param Array The polly array from which to take the information. 2734 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2735 isl_pw_aff_list *BoundsList = 2736 isl_pw_aff_list_alloc(S->getIslCtx(), PPCGArray.n_index); 2737 std::vector<isl::pw_aff> PwAffs; 2738 2739 isl_space *AlignSpace = S->getParamSpace(); 2740 AlignSpace = isl_space_add_dims(AlignSpace, isl_dim_set, 1); 2741 2742 if (PPCGArray.n_index > 0) { 2743 if (isl_set_is_empty(PPCGArray.extent)) { 2744 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2745 isl_local_space *LS = isl_local_space_from_space( 2746 isl_space_params(isl_set_get_space(Dom))); 2747 isl_set_free(Dom); 2748 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2749 Zero = isl_pw_aff_align_params(Zero, isl_space_copy(AlignSpace)); 2750 PwAffs.push_back(isl::manage(isl_pw_aff_copy(Zero))); 2751 BoundsList = isl_pw_aff_list_insert(BoundsList, 0, Zero); 2752 } else { 2753 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2754 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2755 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2756 isl_set_free(Dom); 2757 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2758 isl_local_space *LS = 2759 isl_local_space_from_space(isl_set_get_space(Dom)); 2760 isl_aff *One = isl_aff_zero_on_domain(LS); 2761 One = isl_aff_add_constant_si(One, 1); 2762 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2763 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2764 Bound = isl_pw_aff_align_params(Bound, isl_space_copy(AlignSpace)); 2765 PwAffs.push_back(isl::manage(isl_pw_aff_copy(Bound))); 2766 BoundsList = isl_pw_aff_list_insert(BoundsList, 0, Bound); 2767 } 2768 } 2769 2770 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2771 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2772 auto LS = isl_pw_aff_get_domain_space(Bound); 2773 auto Aff = isl_multi_aff_zero(LS); 2774 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2775 Bound = isl_pw_aff_align_params(Bound, isl_space_copy(AlignSpace)); 2776 PwAffs.push_back(isl::manage(isl_pw_aff_copy(Bound))); 2777 BoundsList = isl_pw_aff_list_insert(BoundsList, i, Bound); 2778 } 2779 2780 isl_space_free(AlignSpace); 2781 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2782 2783 assert(BoundsSpace && "Unable to access space of array."); 2784 assert(BoundsList && "Unable to access list of bounds."); 2785 2786 PPCGArray.bound = 2787 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2788 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2789 } 2790 2791 /// Create the arrays for @p PPCGProg. 2792 /// 2793 /// @param PPCGProg The program to compute the arrays for. 2794 void createArrays(gpu_prog *PPCGProg, 2795 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2796 int i = 0; 2797 for (auto &Array : ValidSAIs) { 2798 std::string TypeName; 2799 raw_string_ostream OS(TypeName); 2800 2801 OS << *Array->getElementType(); 2802 TypeName = OS.str(); 2803 2804 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2805 2806 PPCGArray.space = Array->getSpace().release(); 2807 PPCGArray.type = strdup(TypeName.c_str()); 2808 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2809 PPCGArray.name = strdup(Array->getName().c_str()); 2810 PPCGArray.extent = nullptr; 2811 PPCGArray.n_index = Array->getNumberOfDimensions(); 2812 PPCGArray.extent = getExtent(Array); 2813 PPCGArray.n_ref = 0; 2814 PPCGArray.refs = nullptr; 2815 PPCGArray.accessed = true; 2816 PPCGArray.read_only_scalar = 2817 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2818 PPCGArray.has_compound_element = false; 2819 PPCGArray.local = false; 2820 PPCGArray.declare_local = false; 2821 PPCGArray.global = false; 2822 PPCGArray.linearize = false; 2823 PPCGArray.dep_order = nullptr; 2824 PPCGArray.user = Array; 2825 2826 PPCGArray.bound = nullptr; 2827 setArrayBounds(PPCGArray, Array); 2828 i++; 2829 2830 collect_references(PPCGProg, &PPCGArray); 2831 } 2832 } 2833 2834 /// Create an identity map between the arrays in the scop. 2835 /// 2836 /// @returns An identity map between the arrays in the scop. 2837 isl_union_map *getArrayIdentity() { 2838 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2839 2840 for (auto &Array : S->arrays()) { 2841 isl_space *Space = Array->getSpace().release(); 2842 Space = isl_space_map_from_set(Space); 2843 isl_map *Identity = isl_map_identity(Space); 2844 Maps = isl_union_map_add_map(Maps, Identity); 2845 } 2846 2847 return Maps; 2848 } 2849 2850 /// Create a default-initialized PPCG GPU program. 2851 /// 2852 /// @returns A new gpu program description. 2853 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2854 2855 if (!PPCGScop) 2856 return nullptr; 2857 2858 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2859 2860 PPCGProg->ctx = S->getIslCtx(); 2861 PPCGProg->scop = PPCGScop; 2862 PPCGProg->context = isl_set_copy(PPCGScop->context); 2863 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2864 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2865 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2866 PPCGProg->tagged_must_kill = 2867 isl_union_map_copy(PPCGScop->tagged_must_kills); 2868 PPCGProg->to_inner = getArrayIdentity(); 2869 PPCGProg->to_outer = getArrayIdentity(); 2870 // TODO: verify that this assignment is correct. 2871 PPCGProg->any_to_outer = nullptr; 2872 2873 // this needs to be set when live range reordering is enabled. 2874 // NOTE: I believe that is conservatively correct. I'm not sure 2875 // what the semantics of this is. 2876 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2877 PPCGProg->array_order = 2878 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2879 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2880 PPCGProg->stmts = getStatements(); 2881 2882 // Only consider arrays that have a non-empty extent. 2883 // Otherwise, this will cause us to consider the following kinds of 2884 // empty arrays: 2885 // 1. Invariant loads that are represented by SAI objects. 2886 // 2. Arrays with statically known zero size. 2887 auto ValidSAIsRange = 2888 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 2889 return !isl::manage(getExtent(SAI)).is_empty(); 2890 }); 2891 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 2892 ValidSAIsRange.end()); 2893 2894 PPCGProg->n_array = 2895 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 2896 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2897 PPCGProg->n_array); 2898 2899 createArrays(PPCGProg, ValidSAIs); 2900 2901 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2902 return PPCGProg; 2903 } 2904 2905 struct PrintGPUUserData { 2906 struct cuda_info *CudaInfo; 2907 struct gpu_prog *PPCGProg; 2908 std::vector<ppcg_kernel *> Kernels; 2909 }; 2910 2911 /// Print a user statement node in the host code. 2912 /// 2913 /// We use ppcg's printing facilities to print the actual statement and 2914 /// additionally build up a list of all kernels that are encountered in the 2915 /// host ast. 2916 /// 2917 /// @param P The printer to print to 2918 /// @param Options The printing options to use 2919 /// @param Node The node to print 2920 /// @param User A user pointer to carry additional data. This pointer is 2921 /// expected to be of type PrintGPUUserData. 2922 /// 2923 /// @returns A printer to which the output has been printed. 2924 static __isl_give isl_printer * 2925 printHostUser(__isl_take isl_printer *P, 2926 __isl_take isl_ast_print_options *Options, 2927 __isl_take isl_ast_node *Node, void *User) { 2928 auto Data = (struct PrintGPUUserData *)User; 2929 auto Id = isl_ast_node_get_annotation(Node); 2930 2931 if (Id) { 2932 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2933 2934 // If this is a user statement, format it ourselves as ppcg would 2935 // otherwise try to call pet functionality that is not available in 2936 // Polly. 2937 if (IsUser) { 2938 P = isl_printer_start_line(P); 2939 P = isl_printer_print_ast_node(P, Node); 2940 P = isl_printer_end_line(P); 2941 isl_id_free(Id); 2942 isl_ast_print_options_free(Options); 2943 return P; 2944 } 2945 2946 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2947 isl_id_free(Id); 2948 Data->Kernels.push_back(Kernel); 2949 } 2950 2951 return print_host_user(P, Options, Node, User); 2952 } 2953 2954 /// Print C code corresponding to the control flow in @p Kernel. 2955 /// 2956 /// @param Kernel The kernel to print 2957 void printKernel(ppcg_kernel *Kernel) { 2958 auto *P = isl_printer_to_str(S->getIslCtx()); 2959 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2960 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2961 P = isl_ast_node_print(Kernel->tree, P, Options); 2962 char *String = isl_printer_get_str(P); 2963 printf("%s\n", String); 2964 free(String); 2965 isl_printer_free(P); 2966 } 2967 2968 /// Print C code corresponding to the GPU code described by @p Tree. 2969 /// 2970 /// @param Tree An AST describing GPU code 2971 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2972 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2973 auto *P = isl_printer_to_str(S->getIslCtx()); 2974 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2975 2976 PrintGPUUserData Data; 2977 Data.PPCGProg = PPCGProg; 2978 2979 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2980 Options = 2981 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2982 P = isl_ast_node_print(Tree, P, Options); 2983 char *String = isl_printer_get_str(P); 2984 printf("# host\n"); 2985 printf("%s\n", String); 2986 free(String); 2987 isl_printer_free(P); 2988 2989 for (auto Kernel : Data.Kernels) { 2990 printf("# kernel%d\n", Kernel->id); 2991 printKernel(Kernel); 2992 } 2993 } 2994 2995 // Generate a GPU program using PPCG. 2996 // 2997 // GPU mapping consists of multiple steps: 2998 // 2999 // 1) Compute new schedule for the program. 3000 // 2) Map schedule to GPU (TODO) 3001 // 3) Generate code for new schedule (TODO) 3002 // 3003 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3004 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3005 // strategy directly from this pass. 3006 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3007 3008 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3009 3010 PPCGGen->ctx = S->getIslCtx(); 3011 PPCGGen->options = PPCGScop->options; 3012 PPCGGen->print = nullptr; 3013 PPCGGen->print_user = nullptr; 3014 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3015 PPCGGen->prog = PPCGProg; 3016 PPCGGen->tree = nullptr; 3017 PPCGGen->types.n = 0; 3018 PPCGGen->types.name = nullptr; 3019 PPCGGen->sizes = nullptr; 3020 PPCGGen->used_sizes = nullptr; 3021 PPCGGen->kernel_id = 0; 3022 3023 // Set scheduling strategy to same strategy PPCG is using. 3024 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3025 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3026 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3027 3028 isl_schedule *Schedule = get_schedule(PPCGGen); 3029 3030 int has_permutable = has_any_permutable_node(Schedule); 3031 3032 if (!has_permutable || has_permutable < 0) { 3033 Schedule = isl_schedule_free(Schedule); 3034 } else { 3035 Schedule = map_to_device(PPCGGen, Schedule); 3036 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3037 } 3038 3039 if (DumpSchedule) { 3040 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3041 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3042 P = isl_printer_print_str(P, "Schedule\n"); 3043 P = isl_printer_print_str(P, "========\n"); 3044 if (Schedule) 3045 P = isl_printer_print_schedule(P, Schedule); 3046 else 3047 P = isl_printer_print_str(P, "No schedule found\n"); 3048 3049 printf("%s\n", isl_printer_get_str(P)); 3050 isl_printer_free(P); 3051 } 3052 3053 if (DumpCode) { 3054 printf("Code\n"); 3055 printf("====\n"); 3056 if (PPCGGen->tree) 3057 printGPUTree(PPCGGen->tree, PPCGProg); 3058 else 3059 printf("No code generated\n"); 3060 } 3061 3062 isl_schedule_free(Schedule); 3063 3064 return PPCGGen; 3065 } 3066 3067 /// Free gpu_gen structure. 3068 /// 3069 /// @param PPCGGen The ppcg_gen object to free. 3070 void freePPCGGen(gpu_gen *PPCGGen) { 3071 isl_ast_node_free(PPCGGen->tree); 3072 isl_union_map_free(PPCGGen->sizes); 3073 isl_union_map_free(PPCGGen->used_sizes); 3074 free(PPCGGen); 3075 } 3076 3077 /// Free the options in the ppcg scop structure. 3078 /// 3079 /// ppcg is not freeing these options for us. To avoid leaks we do this 3080 /// ourselves. 3081 /// 3082 /// @param PPCGScop The scop referencing the options to free. 3083 void freeOptions(ppcg_scop *PPCGScop) { 3084 free(PPCGScop->options->debug); 3085 PPCGScop->options->debug = nullptr; 3086 free(PPCGScop->options); 3087 PPCGScop->options = nullptr; 3088 } 3089 3090 /// Approximate the number of points in the set. 3091 /// 3092 /// This function returns an ast expression that overapproximates the number 3093 /// of points in an isl set through the rectangular hull surrounding this set. 3094 /// 3095 /// @param Set The set to count. 3096 /// @param Build The isl ast build object to use for creating the ast 3097 /// expression. 3098 /// 3099 /// @returns An approximation of the number of points in the set. 3100 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3101 __isl_keep isl_ast_build *Build) { 3102 3103 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3104 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3105 3106 isl_space *Space = isl_set_get_space(Set); 3107 Space = isl_space_params(Space); 3108 auto *Univ = isl_set_universe(Space); 3109 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3110 3111 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 3112 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3113 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3114 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3115 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3116 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3117 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3118 } 3119 3120 isl_set_free(Set); 3121 isl_pw_aff_free(OneAff); 3122 3123 return Expr; 3124 } 3125 3126 /// Approximate a number of dynamic instructions executed by a given 3127 /// statement. 3128 /// 3129 /// @param Stmt The statement for which to compute the number of dynamic 3130 /// instructions. 3131 /// @param Build The isl ast build object to use for creating the ast 3132 /// expression. 3133 /// @returns An approximation of the number of dynamic instructions executed 3134 /// by @p Stmt. 3135 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3136 __isl_keep isl_ast_build *Build) { 3137 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 3138 3139 long InstCount = 0; 3140 3141 if (Stmt.isBlockStmt()) { 3142 auto *BB = Stmt.getBasicBlock(); 3143 InstCount = std::distance(BB->begin(), BB->end()); 3144 } else { 3145 auto *R = Stmt.getRegion(); 3146 3147 for (auto *BB : R->blocks()) { 3148 InstCount += std::distance(BB->begin(), BB->end()); 3149 } 3150 } 3151 3152 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3153 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3154 return isl_ast_expr_mul(InstExpr, Iterations); 3155 } 3156 3157 /// Approximate dynamic instructions executed in scop. 3158 /// 3159 /// @param S The scop for which to approximate dynamic instructions. 3160 /// @param Build The isl ast build object to use for creating the ast 3161 /// expression. 3162 /// @returns An approximation of the number of dynamic instructions executed 3163 /// in @p S. 3164 __isl_give isl_ast_expr * 3165 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3166 isl_ast_expr *Instructions; 3167 3168 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3169 Instructions = isl_ast_expr_from_val(Zero); 3170 3171 for (ScopStmt &Stmt : S) { 3172 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3173 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3174 } 3175 return Instructions; 3176 } 3177 3178 /// Create a check that ensures sufficient compute in scop. 3179 /// 3180 /// @param S The scop for which to ensure sufficient compute. 3181 /// @param Build The isl ast build object to use for creating the ast 3182 /// expression. 3183 /// @returns An expression that evaluates to TRUE in case of sufficient 3184 /// compute and to FALSE, otherwise. 3185 __isl_give isl_ast_expr * 3186 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3187 auto Iterations = getNumberOfIterations(S, Build); 3188 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3189 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3190 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3191 } 3192 3193 /// Check if the basic block contains a function we cannot codegen for GPU 3194 /// kernels. 3195 /// 3196 /// If this basic block does something with a `Function` other than calling 3197 /// a function that we support in a kernel, return true. 3198 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3199 bool AllowCUDALibDevice) { 3200 for (const Instruction &Inst : *BB) { 3201 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3202 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3203 AllowCUDALibDevice)) { 3204 continue; 3205 } 3206 3207 for (Value *SrcVal : Inst.operands()) { 3208 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 3209 if (!p) 3210 continue; 3211 if (isa<FunctionType>(p->getElementType())) 3212 return true; 3213 } 3214 } 3215 return false; 3216 } 3217 3218 /// Return whether the Scop S uses functions in a way that we do not support. 3219 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3220 for (auto &Stmt : S) { 3221 if (Stmt.isBlockStmt()) { 3222 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3223 AllowCUDALibDevice)) 3224 return true; 3225 } else { 3226 assert(Stmt.isRegionStmt() && 3227 "Stmt was neither block nor region statement"); 3228 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3229 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3230 return true; 3231 } 3232 } 3233 return false; 3234 } 3235 3236 /// Generate code for a given GPU AST described by @p Root. 3237 /// 3238 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3239 /// @param Prog The GPU Program to generate code for. 3240 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3241 ScopAnnotator Annotator; 3242 Annotator.buildAliasScopes(*S); 3243 3244 Region *R = &S->getRegion(); 3245 3246 simplifyRegion(R, DT, LI, RI); 3247 3248 BasicBlock *EnteringBB = R->getEnteringBlock(); 3249 3250 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3251 3252 // Only build the run-time condition and parameters _after_ having 3253 // introduced the conditional branch. This is important as the conditional 3254 // branch will guard the original scop from new induction variables that 3255 // the SCEVExpander may introduce while code generating the parameters and 3256 // which may introduce scalar dependences that prevent us from correctly 3257 // code generating this scop. 3258 BBPair StartExitBlocks; 3259 BranchInst *CondBr = nullptr; 3260 std::tie(StartExitBlocks, CondBr) = 3261 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3262 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3263 3264 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3265 3266 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3267 StartBlock, Prog, Runtime, Architecture); 3268 3269 // TODO: Handle LICM 3270 auto SplitBlock = StartBlock->getSinglePredecessor(); 3271 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3272 NodeBuilder.addParameters(S->getContext()); 3273 3274 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3275 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3276 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3277 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3278 isl_ast_build_free(Build); 3279 3280 // preload invariant loads. Note: This should happen before the RTC 3281 // because the RTC may depend on values that are invariant load hoisted. 3282 if (!NodeBuilder.preloadInvariantLoads()) 3283 report_fatal_error("preloading invariant loads failed in function: " + 3284 S->getFunction().getName() + 3285 " | Scop Region: " + S->getNameStr()); 3286 3287 Value *RTC = NodeBuilder.createRTC(Condition); 3288 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3289 3290 Builder.SetInsertPoint(&*StartBlock->begin()); 3291 3292 NodeBuilder.create(Root); 3293 3294 /// In case a sequential kernel has more surrounding loops as any parallel 3295 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3296 /// point in running it on a GPU. 3297 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3298 CondBr->setOperand(0, Builder.getFalse()); 3299 3300 if (!NodeBuilder.BuildSuccessful) 3301 CondBr->setOperand(0, Builder.getFalse()); 3302 } 3303 3304 bool runOnScop(Scop &CurrentScop) override { 3305 S = &CurrentScop; 3306 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3307 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3308 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3309 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3310 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3311 3312 // We currently do not support functions other than intrinsics inside 3313 // kernels, as code generation will need to offload function calls to the 3314 // kernel. This may lead to a kernel trying to call a function on the host. 3315 // This also allows us to prevent codegen from trying to take the 3316 // address of an intrinsic function to send to the kernel. 3317 if (containsInvalidKernelFunction(CurrentScop, 3318 Architecture == GPUArch::NVPTX64)) { 3319 DEBUG( 3320 dbgs() 3321 << "Scop contains function which cannot be materialised in a GPU " 3322 "kernel. Bailing out.\n";); 3323 return false; 3324 } 3325 3326 auto PPCGScop = createPPCGScop(); 3327 auto PPCGProg = createPPCGProg(PPCGScop); 3328 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3329 3330 if (PPCGGen->tree) { 3331 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3332 CurrentScop.markAsToBeSkipped(); 3333 } 3334 3335 freeOptions(PPCGScop); 3336 freePPCGGen(PPCGGen); 3337 gpu_prog_free(PPCGProg); 3338 ppcg_scop_free(PPCGScop); 3339 3340 return true; 3341 } 3342 3343 void printScop(raw_ostream &, Scop &) const override {} 3344 3345 void getAnalysisUsage(AnalysisUsage &AU) const override { 3346 AU.addRequired<DominatorTreeWrapperPass>(); 3347 AU.addRequired<RegionInfoPass>(); 3348 AU.addRequired<ScalarEvolutionWrapperPass>(); 3349 AU.addRequired<ScopDetectionWrapperPass>(); 3350 AU.addRequired<ScopInfoRegionPass>(); 3351 AU.addRequired<LoopInfoWrapperPass>(); 3352 3353 AU.addPreserved<AAResultsWrapperPass>(); 3354 AU.addPreserved<BasicAAWrapperPass>(); 3355 AU.addPreserved<LoopInfoWrapperPass>(); 3356 AU.addPreserved<DominatorTreeWrapperPass>(); 3357 AU.addPreserved<GlobalsAAWrapperPass>(); 3358 AU.addPreserved<ScopDetectionWrapperPass>(); 3359 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3360 AU.addPreserved<SCEVAAWrapperPass>(); 3361 3362 // FIXME: We do not yet add regions for the newly generated code to the 3363 // region tree. 3364 AU.addPreserved<RegionInfoPass>(); 3365 AU.addPreserved<ScopInfoRegionPass>(); 3366 } 3367 }; 3368 } // namespace 3369 3370 char PPCGCodeGeneration::ID = 1; 3371 3372 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3373 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3374 generator->Runtime = Runtime; 3375 generator->Architecture = Arch; 3376 return generator; 3377 } 3378 3379 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3380 "Polly - Apply PPCG translation to SCOP", false, false) 3381 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3382 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3383 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3384 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3385 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3386 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3387 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3388 "Polly - Apply PPCG translation to SCOP", false, false) 3389