1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/IRReader/IRReader.h" 35 #include "llvm/Linker/Linker.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/TargetSelect.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 #include "isl/union_map.h" 43 44 extern "C" { 45 #include "ppcg/cuda.h" 46 #include "ppcg/gpu.h" 47 #include "ppcg/gpu_print.h" 48 #include "ppcg/ppcg.h" 49 #include "ppcg/schedule.h" 50 } 51 52 #include "llvm/Support/Debug.h" 53 54 using namespace polly; 55 using namespace llvm; 56 57 #define DEBUG_TYPE "polly-codegen-ppcg" 58 59 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 60 cl::desc("Dump the computed GPU Schedule"), 61 cl::Hidden, cl::init(false), cl::ZeroOrMore, 62 cl::cat(PollyCategory)); 63 64 static cl::opt<bool> 65 DumpCode("polly-acc-dump-code", 66 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 67 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 68 69 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 70 cl::desc("Dump the kernel LLVM-IR"), 71 cl::Hidden, cl::init(false), cl::ZeroOrMore, 72 cl::cat(PollyCategory)); 73 74 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 75 cl::desc("Dump the kernel assembly code"), 76 cl::Hidden, cl::init(false), cl::ZeroOrMore, 77 cl::cat(PollyCategory)); 78 79 static cl::opt<bool> FastMath("polly-acc-fastmath", 80 cl::desc("Allow unsafe math optimizations"), 81 cl::Hidden, cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 84 cl::desc("Use shared memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 88 cl::desc("Use private memory"), cl::Hidden, 89 cl::init(false), cl::ZeroOrMore, 90 cl::cat(PollyCategory)); 91 92 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 93 cl::desc("Generate Host kernel code assuming" 94 " that all memory has been" 95 " declared as managed memory"), 96 cl::Hidden, cl::init(false), cl::ZeroOrMore, 97 cl::cat(PollyCategory)); 98 99 static cl::opt<bool> 100 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 101 cl::desc("Fail and generate a backtrace if" 102 " verifyModule fails on the GPU " 103 " kernel module."), 104 cl::Hidden, cl::init(false), cl::ZeroOrMore, 105 cl::cat(PollyCategory)); 106 107 static cl::opt<std::string> CUDALibDevice( 108 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 109 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 110 cl::ZeroOrMore, cl::cat(PollyCategory)); 111 112 static cl::opt<std::string> 113 CudaVersion("polly-acc-cuda-version", 114 cl::desc("The CUDA version to compile for"), cl::Hidden, 115 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 116 117 static cl::opt<int> 118 MinCompute("polly-acc-mincompute", 119 cl::desc("Minimal number of compute statements to run on GPU."), 120 cl::Hidden, cl::init(10 * 512 * 512)); 121 122 /// Return a unique name for a Scop, which is the scop region with the 123 /// function name. 124 std::string getUniqueScopName(const Scop *S) { 125 return "Scop Region: " + S->getNameStr() + 126 " | Function: " + std::string(S->getFunction().getName()); 127 } 128 129 /// Used to store information PPCG wants for kills. This information is 130 /// used by live range reordering. 131 /// 132 /// @see computeLiveRangeReordering 133 /// @see GPUNodeBuilder::createPPCGScop 134 /// @see GPUNodeBuilder::createPPCGProg 135 struct MustKillsInfo { 136 /// Collection of all kill statements that will be sequenced at the end of 137 /// PPCGScop->schedule. 138 /// 139 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 140 /// which merges schedules in *arbitrary* order. 141 /// (we don't care about the order of the kills anyway). 142 isl::schedule KillsSchedule; 143 /// Map from kill statement instances to scalars that need to be 144 /// killed. 145 /// 146 /// We currently derive kill information for: 147 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 148 /// consequently all be killed. 149 /// 2. Scalar arrays that are not used outside the Scop. This is 150 /// checked by `isScalarUsesContainedInScop`. 151 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 152 isl::union_map TaggedMustKills; 153 154 /// Tagged must kills stripped of the tags. 155 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 156 isl::union_map MustKills; 157 158 MustKillsInfo() : KillsSchedule(nullptr) {} 159 }; 160 161 /// Check if SAI's uses are entirely contained within Scop S. 162 /// If a scalar is used only with a Scop, we are free to kill it, as no data 163 /// can flow in/out of the value any more. 164 /// @see computeMustKillsInfo 165 static bool isScalarUsesContainedInScop(const Scop &S, 166 const ScopArrayInfo *SAI) { 167 assert(SAI->isValueKind() && "this function only deals with scalars." 168 " Dealing with arrays required alias analysis"); 169 170 const Region &R = S.getRegion(); 171 for (User *U : SAI->getBasePtr()->users()) { 172 Instruction *I = dyn_cast<Instruction>(U); 173 assert(I && "invalid user of scop array info"); 174 if (!R.contains(I)) 175 return false; 176 } 177 return true; 178 } 179 180 /// Compute must-kills needed to enable live range reordering with PPCG. 181 /// 182 /// @params S The Scop to compute live range reordering information 183 /// @returns live range reordering information that can be used to setup 184 /// PPCG. 185 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 186 const isl::space ParamSpace(isl::manage(S.getParamSpace())); 187 MustKillsInfo Info; 188 189 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 190 // 1.1 phi nodes in scop. 191 // 1.2 scalars that are only used within the scop 192 SmallVector<isl::id, 4> KillMemIds; 193 for (ScopArrayInfo *SAI : S.arrays()) { 194 if (SAI->isPHIKind() || 195 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 196 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 197 } 198 199 Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace)); 200 Info.MustKills = isl::union_map::empty(isl::space(ParamSpace)); 201 202 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 203 // schedule: 204 // - filter: "[control] -> { }" 205 // So, we choose to not create this to keep the output a little nicer, 206 // at the cost of some code complexity. 207 Info.KillsSchedule = nullptr; 208 209 for (isl::id &ToKillId : KillMemIds) { 210 isl::id KillStmtId = isl::id::alloc( 211 S.getIslCtx(), 212 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 213 214 // NOTE: construction of tagged_must_kill: 215 // 2. We need to construct a map: 216 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 217 // To construct this, we use `isl_map_domain_product` on 2 maps`: 218 // 2a. StmtToScalar: 219 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 220 // 2b. PhantomRefToScalar: 221 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 222 // 223 // Combining these with `isl_map_domain_product` gives us 224 // TaggedMustKill: 225 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 226 227 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 228 isl::map StmtToScalar = isl::map::universe(isl::space(ParamSpace)); 229 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 230 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 231 232 isl::id PhantomRefId = isl::id::alloc( 233 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 234 nullptr); 235 236 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 237 isl::map PhantomRefToScalar = isl::map::universe(isl::space(ParamSpace)); 238 PhantomRefToScalar = 239 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 240 PhantomRefToScalar = 241 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 242 243 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 244 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 245 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 246 247 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 248 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 249 250 // 3. Create the kill schedule of the form: 251 // "[param] -> { Stmt_phantom[] }" 252 // Then add this to Info.KillsSchedule. 253 isl::space KillStmtSpace = ParamSpace; 254 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 255 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 256 257 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 258 if (Info.KillsSchedule) 259 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 260 else 261 Info.KillsSchedule = KillSchedule; 262 } 263 264 return Info; 265 } 266 267 /// Create the ast expressions for a ScopStmt. 268 /// 269 /// This function is a callback for to generate the ast expressions for each 270 /// of the scheduled ScopStmts. 271 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 272 void *StmtT, __isl_take isl_ast_build *Build_C, 273 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 274 isl_id *Id, void *User), 275 void *UserIndex, 276 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 277 void *UserExpr) { 278 279 ScopStmt *Stmt = (ScopStmt *)StmtT; 280 281 if (!Stmt || !Build_C) 282 return NULL; 283 284 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 285 isl::ctx Ctx = Build.get_ctx(); 286 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 287 288 for (MemoryAccess *Acc : *Stmt) { 289 isl::map AddrFunc = Acc->getAddressFunction(); 290 AddrFunc = AddrFunc.intersect_domain(isl::manage(Stmt->getDomain())); 291 292 isl::id RefId = Acc->getId(); 293 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 294 295 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 296 MPA = MPA.coalesce(); 297 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 298 299 isl::ast_expr Access = Build.access_from(MPA); 300 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 301 RefToExpr = RefToExpr.set(RefId, Access); 302 } 303 304 return RefToExpr.release(); 305 } 306 307 /// Given a LLVM Type, compute its size in bytes, 308 static int computeSizeInBytes(const Type *T) { 309 int bytes = T->getPrimitiveSizeInBits() / 8; 310 if (bytes == 0) 311 bytes = T->getScalarSizeInBits() / 8; 312 return bytes; 313 } 314 315 /// Generate code for a GPU specific isl AST. 316 /// 317 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 318 /// generates code for general-purpose AST nodes, with special functionality 319 /// for generating GPU specific user nodes. 320 /// 321 /// @see GPUNodeBuilder::createUser 322 class GPUNodeBuilder : public IslNodeBuilder { 323 public: 324 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 325 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 326 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 327 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 328 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 329 Prog(Prog), Runtime(Runtime), Arch(Arch) { 330 getExprBuilder().setIDToSAI(&IDToSAI); 331 } 332 333 /// Create after-run-time-check initialization code. 334 void initializeAfterRTH(); 335 336 /// Finalize the generated scop. 337 virtual void finalize(); 338 339 /// Track if the full build process was successful. 340 /// 341 /// This value is set to false, if throughout the build process an error 342 /// occurred which prevents us from generating valid GPU code. 343 bool BuildSuccessful = true; 344 345 /// The maximal number of loops surrounding a sequential kernel. 346 unsigned DeepestSequential = 0; 347 348 /// The maximal number of loops surrounding a parallel kernel. 349 unsigned DeepestParallel = 0; 350 351 /// Return the name to set for the ptx_kernel. 352 std::string getKernelFuncName(int Kernel_id); 353 354 private: 355 /// A vector of array base pointers for which a new ScopArrayInfo was created. 356 /// 357 /// This vector is used to delete the ScopArrayInfo when it is not needed any 358 /// more. 359 std::vector<Value *> LocalArrays; 360 361 /// A map from ScopArrays to their corresponding device allocations. 362 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 363 364 /// The current GPU context. 365 Value *GPUContext; 366 367 /// The set of isl_ids allocated in the kernel 368 std::vector<isl_id *> KernelIds; 369 370 /// A module containing GPU code. 371 /// 372 /// This pointer is only set in case we are currently generating GPU code. 373 std::unique_ptr<Module> GPUModule; 374 375 /// The GPU program we generate code for. 376 gpu_prog *Prog; 377 378 /// The GPU Runtime implementation to use (OpenCL or CUDA). 379 GPURuntime Runtime; 380 381 /// The GPU Architecture to target. 382 GPUArch Arch; 383 384 /// Class to free isl_ids. 385 class IslIdDeleter { 386 public: 387 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 388 }; 389 390 /// A set containing all isl_ids allocated in a GPU kernel. 391 /// 392 /// By releasing this set all isl_ids will be freed. 393 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 394 395 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 396 397 /// Create code for user-defined AST nodes. 398 /// 399 /// These AST nodes can be of type: 400 /// 401 /// - ScopStmt: A computational statement (TODO) 402 /// - Kernel: A GPU kernel call (TODO) 403 /// - Data-Transfer: A GPU <-> CPU data-transfer 404 /// - In-kernel synchronization 405 /// - In-kernel memory copy statement 406 /// 407 /// @param UserStmt The ast node to generate code for. 408 virtual void createUser(__isl_take isl_ast_node *UserStmt); 409 410 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 411 412 /// Create code for a data transfer statement 413 /// 414 /// @param TransferStmt The data transfer statement. 415 /// @param Direction The direction in which to transfer data. 416 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 417 enum DataDirection Direction); 418 419 /// Find llvm::Values referenced in GPU kernel. 420 /// 421 /// @param Kernel The kernel to scan for llvm::Values 422 /// 423 /// @returns A tuple, whose: 424 /// - First element contains the set of values referenced by the 425 /// kernel 426 /// - Second element contains the set of functions referenced by the 427 /// kernel. All functions in the set satisfy 428 /// `isValidFunctionInKernel`. 429 /// - Third element contains loops that have induction variables 430 /// which are used in the kernel, *and* these loops are *neither* 431 /// in the scop, nor do they immediately surroung the Scop. 432 /// See [Code generation of induction variables of loops outside 433 /// Scops] 434 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 435 getReferencesInKernel(ppcg_kernel *Kernel); 436 437 /// Compute the sizes of the execution grid for a given kernel. 438 /// 439 /// @param Kernel The kernel to compute grid sizes for. 440 /// 441 /// @returns A tuple with grid sizes for X and Y dimension 442 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 443 444 /// Creates a array that can be sent to the kernel on the device using a 445 /// host pointer. This is required for managed memory, when we directly send 446 /// host pointers to the device. 447 /// \note 448 /// This is to be used only with managed memory 449 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 450 ScopArrayInfo *ArrayInfo); 451 452 /// Compute the sizes of the thread blocks for a given kernel. 453 /// 454 /// @param Kernel The kernel to compute thread block sizes for. 455 /// 456 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 457 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 458 459 /// Store a specific kernel launch parameter in the array of kernel launch 460 /// parameters. 461 /// 462 /// @param Parameters The list of parameters in which to store. 463 /// @param Param The kernel launch parameter to store. 464 /// @param Index The index in the parameter list, at which to store the 465 /// parameter. 466 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 467 int Index); 468 469 /// Create kernel launch parameters. 470 /// 471 /// @param Kernel The kernel to create parameters for. 472 /// @param F The kernel function that has been created. 473 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 474 /// 475 /// @returns A stack allocated array with pointers to the parameter 476 /// values that are passed to the kernel. 477 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 478 SetVector<Value *> SubtreeValues); 479 480 /// Create declarations for kernel variable. 481 /// 482 /// This includes shared memory declarations. 483 /// 484 /// @param Kernel The kernel definition to create variables for. 485 /// @param FN The function into which to generate the variables. 486 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 487 488 /// Add CUDA annotations to module. 489 /// 490 /// Add a set of CUDA annotations that declares the maximal block dimensions 491 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 492 /// PTX compiler to bound the number of allocated registers to ensure the 493 /// resulting kernel is known to run with up to as many block dimensions 494 /// as specified here. 495 /// 496 /// @param M The module to add the annotations to. 497 /// @param BlockDimX The size of block dimension X. 498 /// @param BlockDimY The size of block dimension Y. 499 /// @param BlockDimZ The size of block dimension Z. 500 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 501 Value *BlockDimZ); 502 503 /// Create GPU kernel. 504 /// 505 /// Code generate the kernel described by @p KernelStmt. 506 /// 507 /// @param KernelStmt The ast node to generate kernel code for. 508 void createKernel(__isl_take isl_ast_node *KernelStmt); 509 510 /// Generate code that computes the size of an array. 511 /// 512 /// @param Array The array for which to compute a size. 513 Value *getArraySize(gpu_array_info *Array); 514 515 /// Generate code to compute the minimal offset at which an array is accessed. 516 /// 517 /// The offset of an array is the minimal array location accessed in a scop. 518 /// 519 /// Example: 520 /// 521 /// for (long i = 0; i < 100; i++) 522 /// A[i + 42] += ... 523 /// 524 /// getArrayOffset(A) results in 42. 525 /// 526 /// @param Array The array for which to compute the offset. 527 /// @returns An llvm::Value that contains the offset of the array. 528 Value *getArrayOffset(gpu_array_info *Array); 529 530 /// Prepare the kernel arguments for kernel code generation 531 /// 532 /// @param Kernel The kernel to generate code for. 533 /// @param FN The function created for the kernel. 534 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 535 536 /// Create kernel function. 537 /// 538 /// Create a kernel function located in a newly created module that can serve 539 /// as target for device code generation. Set the Builder to point to the 540 /// start block of this newly created function. 541 /// 542 /// @param Kernel The kernel to generate code for. 543 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 544 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 545 /// kernel. 546 void createKernelFunction(ppcg_kernel *Kernel, 547 SetVector<Value *> &SubtreeValues, 548 SetVector<Function *> &SubtreeFunctions); 549 550 /// Create the declaration of a kernel function. 551 /// 552 /// The kernel function takes as arguments: 553 /// 554 /// - One i8 pointer for each external array reference used in the kernel. 555 /// - Host iterators 556 /// - Parameters 557 /// - Other LLVM Value references (TODO) 558 /// 559 /// @param Kernel The kernel to generate the function declaration for. 560 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 561 /// 562 /// @returns The newly declared function. 563 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 564 SetVector<Value *> &SubtreeValues); 565 566 /// Insert intrinsic functions to obtain thread and block ids. 567 /// 568 /// @param The kernel to generate the intrinsic functions for. 569 void insertKernelIntrinsics(ppcg_kernel *Kernel); 570 571 /// Insert function calls to retrieve the SPIR group/local ids. 572 /// 573 /// @param The kernel to generate the function calls for. 574 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 575 576 /// Setup the creation of functions referenced by the GPU kernel. 577 /// 578 /// 1. Create new function declarations in GPUModule which are the same as 579 /// SubtreeFunctions. 580 /// 581 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 582 /// old functions (that come from the original module) to new functions 583 /// (that are created within GPUModule). That way, we generate references 584 /// to the correct function (in GPUModule) in BlockGenerator. 585 /// 586 /// @see IslNodeBuilder::ValueMap 587 /// @see BlockGenerator::GlobalMap 588 /// @see BlockGenerator::getNewValue 589 /// @see GPUNodeBuilder::getReferencesInKernel. 590 /// 591 /// @param SubtreeFunctions The set of llvm::Functions referenced by 592 /// this kernel. 593 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 594 595 /// Create a global-to-shared or shared-to-global copy statement. 596 /// 597 /// @param CopyStmt The copy statement to generate code for 598 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 599 600 /// Create code for a ScopStmt called in @p Expr. 601 /// 602 /// @param Expr The expression containing the call. 603 /// @param KernelStmt The kernel statement referenced in the call. 604 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 605 606 /// Create an in-kernel synchronization call. 607 void createKernelSync(); 608 609 /// Create a PTX assembly string for the current GPU kernel. 610 /// 611 /// @returns A string containing the corresponding PTX assembly code. 612 std::string createKernelASM(); 613 614 /// Remove references from the dominator tree to the kernel function @p F. 615 /// 616 /// @param F The function to remove references to. 617 void clearDominators(Function *F); 618 619 /// Remove references from scalar evolution to the kernel function @p F. 620 /// 621 /// @param F The function to remove references to. 622 void clearScalarEvolution(Function *F); 623 624 /// Remove references from loop info to the kernel function @p F. 625 /// 626 /// @param F The function to remove references to. 627 void clearLoops(Function *F); 628 629 /// Check if the scop requires to be linked with CUDA's libdevice. 630 bool requiresCUDALibDevice(); 631 632 /// Link with the NVIDIA libdevice library (if needed and available). 633 void addCUDALibDevice(); 634 635 /// Finalize the generation of the kernel function. 636 /// 637 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 638 /// dump its IR to stderr. 639 /// 640 /// @returns The Assembly string of the kernel. 641 std::string finalizeKernelFunction(); 642 643 /// Finalize the generation of the kernel arguments. 644 /// 645 /// This function ensures that not-read-only scalars used in a kernel are 646 /// stored back to the global memory location they are backed with before 647 /// the kernel terminates. 648 /// 649 /// @params Kernel The kernel to finalize kernel arguments for. 650 void finalizeKernelArguments(ppcg_kernel *Kernel); 651 652 /// Create code that allocates memory to store arrays on device. 653 void allocateDeviceArrays(); 654 655 /// Free all allocated device arrays. 656 void freeDeviceArrays(); 657 658 /// Create a call to initialize the GPU context. 659 /// 660 /// @returns A pointer to the newly initialized context. 661 Value *createCallInitContext(); 662 663 /// Create a call to get the device pointer for a kernel allocation. 664 /// 665 /// @param Allocation The Polly GPU allocation 666 /// 667 /// @returns The device parameter corresponding to this allocation. 668 Value *createCallGetDevicePtr(Value *Allocation); 669 670 /// Create a call to free the GPU context. 671 /// 672 /// @param Context A pointer to an initialized GPU context. 673 void createCallFreeContext(Value *Context); 674 675 /// Create a call to allocate memory on the device. 676 /// 677 /// @param Size The size of memory to allocate 678 /// 679 /// @returns A pointer that identifies this allocation. 680 Value *createCallAllocateMemoryForDevice(Value *Size); 681 682 /// Create a call to free a device array. 683 /// 684 /// @param Array The device array to free. 685 void createCallFreeDeviceMemory(Value *Array); 686 687 /// Create a call to copy data from host to device. 688 /// 689 /// @param HostPtr A pointer to the host data that should be copied. 690 /// @param DevicePtr A device pointer specifying the location to copy to. 691 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 692 Value *Size); 693 694 /// Create a call to copy data from device to host. 695 /// 696 /// @param DevicePtr A pointer to the device data that should be copied. 697 /// @param HostPtr A host pointer specifying the location to copy to. 698 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 699 Value *Size); 700 701 /// Create a call to synchronize Host & Device. 702 /// \note 703 /// This is to be used only with managed memory. 704 void createCallSynchronizeDevice(); 705 706 /// Create a call to get a kernel from an assembly string. 707 /// 708 /// @param Buffer The string describing the kernel. 709 /// @param Entry The name of the kernel function to call. 710 /// 711 /// @returns A pointer to a kernel object 712 Value *createCallGetKernel(Value *Buffer, Value *Entry); 713 714 /// Create a call to free a GPU kernel. 715 /// 716 /// @param GPUKernel THe kernel to free. 717 void createCallFreeKernel(Value *GPUKernel); 718 719 /// Create a call to launch a GPU kernel. 720 /// 721 /// @param GPUKernel The kernel to launch. 722 /// @param GridDimX The size of the first grid dimension. 723 /// @param GridDimY The size of the second grid dimension. 724 /// @param GridBlockX The size of the first block dimension. 725 /// @param GridBlockY The size of the second block dimension. 726 /// @param GridBlockZ The size of the third block dimension. 727 /// @param Parameters A pointer to an array that contains itself pointers to 728 /// the parameter values passed for each kernel argument. 729 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 730 Value *GridDimY, Value *BlockDimX, 731 Value *BlockDimY, Value *BlockDimZ, 732 Value *Parameters); 733 }; 734 735 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 736 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 737 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 738 } 739 740 void GPUNodeBuilder::initializeAfterRTH() { 741 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 742 &*Builder.GetInsertPoint(), &DT, &LI); 743 NewBB->setName("polly.acc.initialize"); 744 Builder.SetInsertPoint(&NewBB->front()); 745 746 GPUContext = createCallInitContext(); 747 748 if (!ManagedMemory) 749 allocateDeviceArrays(); 750 } 751 752 void GPUNodeBuilder::finalize() { 753 if (!ManagedMemory) 754 freeDeviceArrays(); 755 756 createCallFreeContext(GPUContext); 757 IslNodeBuilder::finalize(); 758 } 759 760 void GPUNodeBuilder::allocateDeviceArrays() { 761 assert(!ManagedMemory && "Managed memory will directly send host pointers " 762 "to the kernel. There is no need for device arrays"); 763 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 764 765 for (int i = 0; i < Prog->n_array; ++i) { 766 gpu_array_info *Array = &Prog->array[i]; 767 auto *ScopArray = (ScopArrayInfo *)Array->user; 768 std::string DevArrayName("p_dev_array_"); 769 DevArrayName.append(Array->name); 770 771 Value *ArraySize = getArraySize(Array); 772 Value *Offset = getArrayOffset(Array); 773 if (Offset) 774 ArraySize = Builder.CreateSub( 775 ArraySize, 776 Builder.CreateMul(Offset, 777 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 778 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 779 DevArray->setName(DevArrayName); 780 DeviceAllocations[ScopArray] = DevArray; 781 } 782 783 isl_ast_build_free(Build); 784 } 785 786 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 787 Value *BlockDimY, Value *BlockDimZ) { 788 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 789 790 for (auto &F : *M) { 791 if (F.getCallingConv() != CallingConv::PTX_Kernel) 792 continue; 793 794 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 795 796 Metadata *Elements[] = { 797 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 798 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 799 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 800 ValueAsMetadata::get(V[2]), 801 }; 802 MDNode *Node = MDNode::get(M->getContext(), Elements); 803 AnnotationNode->addOperand(Node); 804 } 805 } 806 807 void GPUNodeBuilder::freeDeviceArrays() { 808 assert(!ManagedMemory && "Managed memory does not use device arrays"); 809 for (auto &Array : DeviceAllocations) 810 createCallFreeDeviceMemory(Array.second); 811 } 812 813 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 814 const char *Name = "polly_getKernel"; 815 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 816 Function *F = M->getFunction(Name); 817 818 // If F is not available, declare it. 819 if (!F) { 820 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 821 std::vector<Type *> Args; 822 Args.push_back(Builder.getInt8PtrTy()); 823 Args.push_back(Builder.getInt8PtrTy()); 824 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 825 F = Function::Create(Ty, Linkage, Name, M); 826 } 827 828 return Builder.CreateCall(F, {Buffer, Entry}); 829 } 830 831 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 832 const char *Name = "polly_getDevicePtr"; 833 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 834 Function *F = M->getFunction(Name); 835 836 // If F is not available, declare it. 837 if (!F) { 838 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 839 std::vector<Type *> Args; 840 Args.push_back(Builder.getInt8PtrTy()); 841 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 842 F = Function::Create(Ty, Linkage, Name, M); 843 } 844 845 return Builder.CreateCall(F, {Allocation}); 846 } 847 848 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 849 Value *GridDimY, Value *BlockDimX, 850 Value *BlockDimY, Value *BlockDimZ, 851 Value *Parameters) { 852 const char *Name = "polly_launchKernel"; 853 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 854 Function *F = M->getFunction(Name); 855 856 // If F is not available, declare it. 857 if (!F) { 858 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 859 std::vector<Type *> Args; 860 Args.push_back(Builder.getInt8PtrTy()); 861 Args.push_back(Builder.getInt32Ty()); 862 Args.push_back(Builder.getInt32Ty()); 863 Args.push_back(Builder.getInt32Ty()); 864 Args.push_back(Builder.getInt32Ty()); 865 Args.push_back(Builder.getInt32Ty()); 866 Args.push_back(Builder.getInt8PtrTy()); 867 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 868 F = Function::Create(Ty, Linkage, Name, M); 869 } 870 871 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 872 BlockDimZ, Parameters}); 873 } 874 875 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 876 const char *Name = "polly_freeKernel"; 877 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 878 Function *F = M->getFunction(Name); 879 880 // If F is not available, declare it. 881 if (!F) { 882 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 883 std::vector<Type *> Args; 884 Args.push_back(Builder.getInt8PtrTy()); 885 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 886 F = Function::Create(Ty, Linkage, Name, M); 887 } 888 889 Builder.CreateCall(F, {GPUKernel}); 890 } 891 892 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 893 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 894 "for device"); 895 const char *Name = "polly_freeDeviceMemory"; 896 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 897 Function *F = M->getFunction(Name); 898 899 // If F is not available, declare it. 900 if (!F) { 901 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 902 std::vector<Type *> Args; 903 Args.push_back(Builder.getInt8PtrTy()); 904 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 905 F = Function::Create(Ty, Linkage, Name, M); 906 } 907 908 Builder.CreateCall(F, {Array}); 909 } 910 911 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 912 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 913 "for device"); 914 const char *Name = "polly_allocateMemoryForDevice"; 915 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 916 Function *F = M->getFunction(Name); 917 918 // If F is not available, declare it. 919 if (!F) { 920 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 921 std::vector<Type *> Args; 922 Args.push_back(Builder.getInt64Ty()); 923 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 924 F = Function::Create(Ty, Linkage, Name, M); 925 } 926 927 return Builder.CreateCall(F, {Size}); 928 } 929 930 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 931 Value *DeviceData, 932 Value *Size) { 933 assert(!ManagedMemory && "Managed memory does not transfer memory between " 934 "device and host"); 935 const char *Name = "polly_copyFromHostToDevice"; 936 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 937 Function *F = M->getFunction(Name); 938 939 // If F is not available, declare it. 940 if (!F) { 941 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 942 std::vector<Type *> Args; 943 Args.push_back(Builder.getInt8PtrTy()); 944 Args.push_back(Builder.getInt8PtrTy()); 945 Args.push_back(Builder.getInt64Ty()); 946 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 947 F = Function::Create(Ty, Linkage, Name, M); 948 } 949 950 Builder.CreateCall(F, {HostData, DeviceData, Size}); 951 } 952 953 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 954 Value *HostData, 955 Value *Size) { 956 assert(!ManagedMemory && "Managed memory does not transfer memory between " 957 "device and host"); 958 const char *Name = "polly_copyFromDeviceToHost"; 959 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 960 Function *F = M->getFunction(Name); 961 962 // If F is not available, declare it. 963 if (!F) { 964 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 965 std::vector<Type *> Args; 966 Args.push_back(Builder.getInt8PtrTy()); 967 Args.push_back(Builder.getInt8PtrTy()); 968 Args.push_back(Builder.getInt64Ty()); 969 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 970 F = Function::Create(Ty, Linkage, Name, M); 971 } 972 973 Builder.CreateCall(F, {DeviceData, HostData, Size}); 974 } 975 976 void GPUNodeBuilder::createCallSynchronizeDevice() { 977 assert(ManagedMemory && "explicit synchronization is only necessary for " 978 "managed memory"); 979 const char *Name = "polly_synchronizeDevice"; 980 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 981 Function *F = M->getFunction(Name); 982 983 // If F is not available, declare it. 984 if (!F) { 985 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 986 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 987 F = Function::Create(Ty, Linkage, Name, M); 988 } 989 990 Builder.CreateCall(F); 991 } 992 993 Value *GPUNodeBuilder::createCallInitContext() { 994 const char *Name; 995 996 switch (Runtime) { 997 case GPURuntime::CUDA: 998 Name = "polly_initContextCUDA"; 999 break; 1000 case GPURuntime::OpenCL: 1001 Name = "polly_initContextCL"; 1002 break; 1003 } 1004 1005 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1006 Function *F = M->getFunction(Name); 1007 1008 // If F is not available, declare it. 1009 if (!F) { 1010 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1011 std::vector<Type *> Args; 1012 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1013 F = Function::Create(Ty, Linkage, Name, M); 1014 } 1015 1016 return Builder.CreateCall(F, {}); 1017 } 1018 1019 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1020 const char *Name = "polly_freeContext"; 1021 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1022 Function *F = M->getFunction(Name); 1023 1024 // If F is not available, declare it. 1025 if (!F) { 1026 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1027 std::vector<Type *> Args; 1028 Args.push_back(Builder.getInt8PtrTy()); 1029 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1030 F = Function::Create(Ty, Linkage, Name, M); 1031 } 1032 1033 Builder.CreateCall(F, {Context}); 1034 } 1035 1036 /// Check if one string is a prefix of another. 1037 /// 1038 /// @param String The string in which to look for the prefix. 1039 /// @param Prefix The prefix to look for. 1040 static bool isPrefix(std::string String, std::string Prefix) { 1041 return String.find(Prefix) == 0; 1042 } 1043 1044 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1045 isl::ast_build Build = 1046 isl::ast_build::from_context(isl::manage(S.getContext())); 1047 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1048 1049 if (!gpu_array_is_scalar(Array)) { 1050 isl::multi_pw_aff ArrayBound = 1051 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1052 1053 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1054 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1055 1056 for (unsigned int i = 1; i < Array->n_index; i++) { 1057 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1058 isl::ast_expr Expr = Build.expr_from(Bound_I); 1059 Res = Res.mul(Expr); 1060 } 1061 1062 Value *NumElements = ExprBuilder.create(Res.release()); 1063 if (NumElements->getType() != ArraySize->getType()) 1064 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1065 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1066 } 1067 return ArraySize; 1068 } 1069 1070 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1071 if (gpu_array_is_scalar(Array)) 1072 return nullptr; 1073 1074 isl::ast_build Build = 1075 isl::ast_build::from_context(isl::manage(S.getContext())); 1076 1077 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1078 1079 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1080 1081 for (long i = 0; i < Min.dim(isl::dim::set); i++) 1082 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1083 1084 if (Min.is_subset(ZeroSet)) { 1085 return nullptr; 1086 } 1087 1088 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1089 1090 for (long i = 0; i < Min.dim(isl::dim::set); i++) { 1091 if (i > 0) { 1092 isl::pw_aff Bound_I = 1093 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1094 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1095 Result = Result.mul(BExpr); 1096 } 1097 isl::pw_aff DimMin = Min.dim_min(i); 1098 isl::ast_expr MExpr = Build.expr_from(DimMin); 1099 Result = Result.add(MExpr); 1100 } 1101 1102 return ExprBuilder.create(Result.release()); 1103 } 1104 1105 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 1106 ScopArrayInfo *ArrayInfo) { 1107 1108 assert(ManagedMemory && "Only used when you wish to get a host " 1109 "pointer for sending data to the kernel, " 1110 "with managed memory"); 1111 std::map<ScopArrayInfo *, Value *>::iterator it; 1112 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 1113 return it->second; 1114 } else { 1115 Value *HostPtr; 1116 1117 if (gpu_array_is_scalar(Array)) 1118 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 1119 else 1120 HostPtr = ArrayInfo->getBasePtr(); 1121 HostPtr = getLatestValue(HostPtr); 1122 1123 Value *Offset = getArrayOffset(Array); 1124 if (Offset) { 1125 HostPtr = Builder.CreatePointerCast( 1126 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 1127 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1128 } 1129 1130 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1131 DeviceAllocations[ArrayInfo] = HostPtr; 1132 return HostPtr; 1133 } 1134 } 1135 1136 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1137 enum DataDirection Direction) { 1138 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1139 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1140 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1141 isl_id *Id = isl_ast_expr_get_id(Arg); 1142 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1143 auto ScopArray = (ScopArrayInfo *)(Array->user); 1144 1145 Value *Size = getArraySize(Array); 1146 Value *Offset = getArrayOffset(Array); 1147 Value *DevPtr = DeviceAllocations[ScopArray]; 1148 1149 Value *HostPtr; 1150 1151 if (gpu_array_is_scalar(Array)) 1152 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1153 else 1154 HostPtr = ScopArray->getBasePtr(); 1155 HostPtr = getLatestValue(HostPtr); 1156 1157 if (Offset) { 1158 HostPtr = Builder.CreatePointerCast( 1159 HostPtr, ScopArray->getElementType()->getPointerTo()); 1160 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1161 } 1162 1163 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1164 1165 if (Offset) { 1166 Size = Builder.CreateSub( 1167 Size, Builder.CreateMul( 1168 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1169 } 1170 1171 if (Direction == HOST_TO_DEVICE) 1172 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1173 else 1174 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1175 1176 isl_id_free(Id); 1177 isl_ast_expr_free(Arg); 1178 isl_ast_expr_free(Expr); 1179 isl_ast_node_free(TransferStmt); 1180 } 1181 1182 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1183 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1184 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1185 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1186 isl_id_free(Id); 1187 isl_ast_expr_free(StmtExpr); 1188 1189 const char *Str = isl_id_get_name(Id); 1190 if (!strcmp(Str, "kernel")) { 1191 createKernel(UserStmt); 1192 isl_ast_expr_free(Expr); 1193 return; 1194 } 1195 if (!strcmp(Str, "init_device")) { 1196 initializeAfterRTH(); 1197 isl_ast_node_free(UserStmt); 1198 isl_ast_expr_free(Expr); 1199 return; 1200 } 1201 if (!strcmp(Str, "clear_device")) { 1202 finalize(); 1203 isl_ast_node_free(UserStmt); 1204 isl_ast_expr_free(Expr); 1205 return; 1206 } 1207 if (isPrefix(Str, "to_device")) { 1208 if (!ManagedMemory) 1209 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1210 else 1211 isl_ast_node_free(UserStmt); 1212 1213 isl_ast_expr_free(Expr); 1214 return; 1215 } 1216 1217 if (isPrefix(Str, "from_device")) { 1218 if (!ManagedMemory) { 1219 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1220 } else { 1221 createCallSynchronizeDevice(); 1222 isl_ast_node_free(UserStmt); 1223 } 1224 isl_ast_expr_free(Expr); 1225 return; 1226 } 1227 1228 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1229 struct ppcg_kernel_stmt *KernelStmt = 1230 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1231 isl_id_free(Anno); 1232 1233 switch (KernelStmt->type) { 1234 case ppcg_kernel_domain: 1235 createScopStmt(Expr, KernelStmt); 1236 isl_ast_node_free(UserStmt); 1237 return; 1238 case ppcg_kernel_copy: 1239 createKernelCopy(KernelStmt); 1240 isl_ast_expr_free(Expr); 1241 isl_ast_node_free(UserStmt); 1242 return; 1243 case ppcg_kernel_sync: 1244 createKernelSync(); 1245 isl_ast_expr_free(Expr); 1246 isl_ast_node_free(UserStmt); 1247 return; 1248 } 1249 1250 isl_ast_expr_free(Expr); 1251 isl_ast_node_free(UserStmt); 1252 return; 1253 } 1254 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1255 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1256 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1257 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1258 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1259 Index = isl_ast_expr_address_of(Index); 1260 Value *GlobalAddr = ExprBuilder.create(Index); 1261 1262 if (KernelStmt->u.c.read) { 1263 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1264 Builder.CreateStore(Load, LocalAddr); 1265 } else { 1266 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1267 Builder.CreateStore(Load, GlobalAddr); 1268 } 1269 } 1270 1271 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1272 ppcg_kernel_stmt *KernelStmt) { 1273 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1274 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1275 1276 LoopToScevMapT LTS; 1277 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1278 1279 createSubstitutions(Expr, Stmt, LTS); 1280 1281 if (Stmt->isBlockStmt()) 1282 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1283 else 1284 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1285 } 1286 1287 void GPUNodeBuilder::createKernelSync() { 1288 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1289 const char *SpirName = "__gen_ocl_barrier_global"; 1290 1291 Function *Sync; 1292 1293 switch (Arch) { 1294 case GPUArch::SPIR64: 1295 case GPUArch::SPIR32: 1296 Sync = M->getFunction(SpirName); 1297 1298 // If Sync is not available, declare it. 1299 if (!Sync) { 1300 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1301 std::vector<Type *> Args; 1302 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1303 Sync = Function::Create(Ty, Linkage, SpirName, M); 1304 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1305 } 1306 break; 1307 case GPUArch::NVPTX64: 1308 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1309 break; 1310 } 1311 1312 Builder.CreateCall(Sync, {}); 1313 } 1314 1315 /// Collect llvm::Values referenced from @p Node 1316 /// 1317 /// This function only applies to isl_ast_nodes that are user_nodes referring 1318 /// to a ScopStmt. All other node types are ignore. 1319 /// 1320 /// @param Node The node to collect references for. 1321 /// @param User A user pointer used as storage for the data that is collected. 1322 /// 1323 /// @returns isl_bool_true if data could be collected successfully. 1324 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1325 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1326 return isl_bool_true; 1327 1328 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1329 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1330 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1331 const char *Str = isl_id_get_name(Id); 1332 isl_id_free(Id); 1333 isl_ast_expr_free(StmtExpr); 1334 isl_ast_expr_free(Expr); 1335 1336 if (!isPrefix(Str, "Stmt")) 1337 return isl_bool_true; 1338 1339 Id = isl_ast_node_get_annotation(Node); 1340 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1341 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1342 isl_id_free(Id); 1343 1344 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1345 1346 return isl_bool_true; 1347 } 1348 1349 /// A list of functions that are available in NVIDIA's libdevice. 1350 const std::set<std::string> CUDALibDeviceFunctions = { 1351 "exp", "expf", "expl", "cos", "cosf", 1352 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"}; 1353 1354 /// Return the corresponding CUDA libdevice function name for @p F. 1355 /// 1356 /// Return "" if we are not compiling for CUDA. 1357 std::string getCUDALibDeviceFuntion(Function *F) { 1358 if (CUDALibDeviceFunctions.count(F->getName())) 1359 return std::string("__nv_") + std::string(F->getName()); 1360 1361 return ""; 1362 } 1363 1364 /// Check if F is a function that we can code-generate in a GPU kernel. 1365 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1366 assert(F && "F is an invalid pointer"); 1367 // We string compare against the name of the function to allow 1368 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1369 // "llvm.copysign". 1370 const StringRef Name = F->getName(); 1371 1372 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1373 return true; 1374 1375 return F->isIntrinsic() && 1376 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1377 Name.startswith("llvm.copysign")); 1378 } 1379 1380 /// Do not take `Function` as a subtree value. 1381 /// 1382 /// We try to take the reference of all subtree values and pass them along 1383 /// to the kernel from the host. Taking an address of any function and 1384 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1385 /// `Function`s. 1386 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1387 1388 /// Return `Function`s from `RawSubtreeValues`. 1389 static SetVector<Function *> 1390 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1391 bool AllowCUDALibDevice) { 1392 SetVector<Function *> SubtreeFunctions; 1393 for (Value *It : RawSubtreeValues) { 1394 Function *F = dyn_cast<Function>(It); 1395 if (F) { 1396 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1397 "Code should have bailed out by " 1398 "this point if an invalid function " 1399 "were present in a kernel."); 1400 SubtreeFunctions.insert(F); 1401 } 1402 } 1403 return SubtreeFunctions; 1404 } 1405 1406 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 1407 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1408 SetVector<Value *> SubtreeValues; 1409 SetVector<const SCEV *> SCEVs; 1410 SetVector<const Loop *> Loops; 1411 SubtreeReferences References = { 1412 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1413 1414 for (const auto &I : IDToValue) 1415 SubtreeValues.insert(I.second); 1416 1417 // NOTE: this is populated in IslNodeBuilder::addParameters 1418 // See [Code generation of induction variables of loops outside Scops]. 1419 for (const auto &I : OutsideLoopIterations) 1420 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1421 1422 isl_ast_node_foreach_descendant_top_down( 1423 Kernel->tree, collectReferencesInGPUStmt, &References); 1424 1425 for (const SCEV *Expr : SCEVs) { 1426 findValues(Expr, SE, SubtreeValues); 1427 findLoops(Expr, Loops); 1428 } 1429 1430 Loops.remove_if([this](const Loop *L) { 1431 return S.contains(L) || L->contains(S.getEntry()); 1432 }); 1433 1434 for (auto &SAI : S.arrays()) 1435 SubtreeValues.remove(SAI->getBasePtr()); 1436 1437 isl_space *Space = S.getParamSpace(); 1438 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1439 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1440 assert(IDToValue.count(Id)); 1441 Value *Val = IDToValue[Id]; 1442 SubtreeValues.remove(Val); 1443 isl_id_free(Id); 1444 } 1445 isl_space_free(Space); 1446 1447 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1448 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1449 assert(IDToValue.count(Id)); 1450 Value *Val = IDToValue[Id]; 1451 SubtreeValues.remove(Val); 1452 isl_id_free(Id); 1453 } 1454 1455 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1456 // SubtreeValues. This is important, because we should not lose any 1457 // SubtreeValues in the process of constructing the 1458 // "ValidSubtree{Values, Functions} sets. Nor should the set 1459 // ValidSubtree{Values, Functions} have any common element. 1460 auto ValidSubtreeValuesIt = 1461 make_filter_range(SubtreeValues, isValidSubtreeValue); 1462 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1463 ValidSubtreeValuesIt.end()); 1464 1465 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1466 1467 SetVector<Function *> ValidSubtreeFunctions( 1468 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1469 1470 // @see IslNodeBuilder::getReferencesInSubtree 1471 SetVector<Value *> ReplacedValues; 1472 for (Value *V : ValidSubtreeValues) { 1473 auto It = ValueMap.find(V); 1474 if (It == ValueMap.end()) 1475 ReplacedValues.insert(V); 1476 else 1477 ReplacedValues.insert(It->second); 1478 } 1479 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops); 1480 } 1481 1482 void GPUNodeBuilder::clearDominators(Function *F) { 1483 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1484 std::vector<BasicBlock *> Nodes; 1485 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1486 Nodes.push_back(I->getBlock()); 1487 1488 for (BasicBlock *BB : Nodes) 1489 DT.eraseNode(BB); 1490 } 1491 1492 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1493 for (BasicBlock &BB : *F) { 1494 Loop *L = LI.getLoopFor(&BB); 1495 if (L) 1496 SE.forgetLoop(L); 1497 } 1498 } 1499 1500 void GPUNodeBuilder::clearLoops(Function *F) { 1501 for (BasicBlock &BB : *F) { 1502 Loop *L = LI.getLoopFor(&BB); 1503 if (L) 1504 SE.forgetLoop(L); 1505 LI.removeBlock(&BB); 1506 } 1507 } 1508 1509 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1510 std::vector<Value *> Sizes; 1511 isl::ast_build Context = 1512 isl::ast_build::from_context(isl::manage(S.getContext())); 1513 1514 isl::multi_pw_aff GridSizePwAffs = 1515 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1516 for (long i = 0; i < Kernel->n_grid; i++) { 1517 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1518 isl::ast_expr GridSize = Context.expr_from(Size); 1519 Value *Res = ExprBuilder.create(GridSize.release()); 1520 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1521 Sizes.push_back(Res); 1522 } 1523 1524 for (long i = Kernel->n_grid; i < 3; i++) 1525 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1526 1527 return std::make_tuple(Sizes[0], Sizes[1]); 1528 } 1529 1530 std::tuple<Value *, Value *, Value *> 1531 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1532 std::vector<Value *> Sizes; 1533 1534 for (long i = 0; i < Kernel->n_block; i++) { 1535 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1536 Sizes.push_back(Res); 1537 } 1538 1539 for (long i = Kernel->n_block; i < 3; i++) 1540 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1541 1542 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1543 } 1544 1545 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1546 Instruction *Param, int Index) { 1547 Value *Slot = Builder.CreateGEP( 1548 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1549 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1550 Builder.CreateStore(ParamTyped, Slot); 1551 } 1552 1553 Value * 1554 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1555 SetVector<Value *> SubtreeValues) { 1556 const int NumArgs = F->arg_size(); 1557 std::vector<int> ArgSizes(NumArgs); 1558 1559 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1560 1561 BasicBlock *EntryBlock = 1562 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1563 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1564 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1565 Instruction *Parameters = new AllocaInst( 1566 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1567 1568 int Index = 0; 1569 for (long i = 0; i < Prog->n_array; i++) { 1570 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1571 continue; 1572 1573 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1574 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1575 1576 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1577 1578 Value *DevArray = nullptr; 1579 if (ManagedMemory) { 1580 DevArray = getOrCreateManagedDeviceArray( 1581 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1582 } else { 1583 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1584 DevArray = createCallGetDevicePtr(DevArray); 1585 } 1586 assert(DevArray != nullptr && "Array to be offloaded to device not " 1587 "initialized"); 1588 Value *Offset = getArrayOffset(&Prog->array[i]); 1589 1590 if (Offset) { 1591 DevArray = Builder.CreatePointerCast( 1592 DevArray, SAI->getElementType()->getPointerTo()); 1593 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1594 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1595 } 1596 Value *Slot = Builder.CreateGEP( 1597 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1598 1599 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1600 Value *ValPtr = nullptr; 1601 if (ManagedMemory) 1602 ValPtr = DevArray; 1603 else 1604 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1605 1606 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1607 " to be stored into Parameters"); 1608 Value *ValPtrCast = 1609 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1610 Builder.CreateStore(ValPtrCast, Slot); 1611 } else { 1612 Instruction *Param = 1613 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1614 Launch + "_param_" + std::to_string(Index), 1615 EntryBlock->getTerminator()); 1616 Builder.CreateStore(DevArray, Param); 1617 Value *ParamTyped = 1618 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1619 Builder.CreateStore(ParamTyped, Slot); 1620 } 1621 Index++; 1622 } 1623 1624 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1625 1626 for (long i = 0; i < NumHostIters; i++) { 1627 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1628 Value *Val = IDToValue[Id]; 1629 isl_id_free(Id); 1630 1631 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1632 1633 Instruction *Param = 1634 new AllocaInst(Val->getType(), AddressSpace, 1635 Launch + "_param_" + std::to_string(Index), 1636 EntryBlock->getTerminator()); 1637 Builder.CreateStore(Val, Param); 1638 insertStoreParameter(Parameters, Param, Index); 1639 Index++; 1640 } 1641 1642 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1643 1644 for (long i = 0; i < NumVars; i++) { 1645 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1646 Value *Val = IDToValue[Id]; 1647 if (ValueMap.count(Val)) 1648 Val = ValueMap[Val]; 1649 isl_id_free(Id); 1650 1651 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1652 1653 Instruction *Param = 1654 new AllocaInst(Val->getType(), AddressSpace, 1655 Launch + "_param_" + std::to_string(Index), 1656 EntryBlock->getTerminator()); 1657 Builder.CreateStore(Val, Param); 1658 insertStoreParameter(Parameters, Param, Index); 1659 Index++; 1660 } 1661 1662 for (auto Val : SubtreeValues) { 1663 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1664 1665 Instruction *Param = 1666 new AllocaInst(Val->getType(), AddressSpace, 1667 Launch + "_param_" + std::to_string(Index), 1668 EntryBlock->getTerminator()); 1669 Builder.CreateStore(Val, Param); 1670 insertStoreParameter(Parameters, Param, Index); 1671 Index++; 1672 } 1673 1674 for (int i = 0; i < NumArgs; i++) { 1675 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1676 Instruction *Param = 1677 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1678 Launch + "_param_size_" + std::to_string(i), 1679 EntryBlock->getTerminator()); 1680 Builder.CreateStore(Val, Param); 1681 insertStoreParameter(Parameters, Param, Index); 1682 Index++; 1683 } 1684 1685 auto Location = EntryBlock->getTerminator(); 1686 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1687 Launch + "_params_i8ptr", Location); 1688 } 1689 1690 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1691 SetVector<Function *> SubtreeFunctions) { 1692 for (auto Fn : SubtreeFunctions) { 1693 const std::string ClonedFnName = Fn->getName(); 1694 Function *Clone = GPUModule->getFunction(ClonedFnName); 1695 if (!Clone) 1696 Clone = 1697 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1698 ClonedFnName, GPUModule.get()); 1699 assert(Clone && "Expected cloned function to be initialized."); 1700 assert(ValueMap.find(Fn) == ValueMap.end() && 1701 "Fn already present in ValueMap"); 1702 ValueMap[Fn] = Clone; 1703 } 1704 } 1705 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1706 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1707 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1708 isl_id_free(Id); 1709 isl_ast_node_free(KernelStmt); 1710 1711 if (Kernel->n_grid > 1) 1712 DeepestParallel = 1713 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1714 else 1715 DeepestSequential = 1716 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1717 1718 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1719 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1720 1721 SetVector<Value *> SubtreeValues; 1722 SetVector<Function *> SubtreeFunctions; 1723 SetVector<const Loop *> Loops; 1724 std::tie(SubtreeValues, SubtreeFunctions, Loops) = 1725 getReferencesInKernel(Kernel); 1726 1727 assert(Kernel->tree && "Device AST of kernel node is empty"); 1728 1729 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1730 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1731 ValueMapT HostValueMap = ValueMap; 1732 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1733 ScalarMap.clear(); 1734 1735 // Create for all loops we depend on values that contain the current loop 1736 // iteration. These values are necessary to generate code for SCEVs that 1737 // depend on such loops. As a result we need to pass them to the subfunction. 1738 for (const Loop *L : Loops) { 1739 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1740 SE.getUnknown(Builder.getInt64(1)), 1741 L, SCEV::FlagAnyWrap); 1742 Value *V = generateSCEV(OuterLIV); 1743 OutsideLoopIterations[L] = SE.getUnknown(V); 1744 SubtreeValues.insert(V); 1745 } 1746 1747 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1748 setupKernelSubtreeFunctions(SubtreeFunctions); 1749 1750 create(isl_ast_node_copy(Kernel->tree)); 1751 1752 finalizeKernelArguments(Kernel); 1753 Function *F = Builder.GetInsertBlock()->getParent(); 1754 if (Arch == GPUArch::NVPTX64) 1755 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1756 clearDominators(F); 1757 clearScalarEvolution(F); 1758 clearLoops(F); 1759 1760 IDToValue = HostIDs; 1761 1762 ValueMap = std::move(HostValueMap); 1763 ScalarMap = std::move(HostScalarMap); 1764 EscapeMap.clear(); 1765 IDToSAI.clear(); 1766 Annotator.resetAlternativeAliasBases(); 1767 for (auto &BasePtr : LocalArrays) 1768 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1769 LocalArrays.clear(); 1770 1771 std::string ASMString = finalizeKernelFunction(); 1772 Builder.SetInsertPoint(&HostInsertPoint); 1773 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1774 1775 std::string Name = getKernelFuncName(Kernel->id); 1776 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1777 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1778 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1779 1780 Value *GridDimX, *GridDimY; 1781 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1782 1783 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1784 BlockDimZ, Parameters); 1785 createCallFreeKernel(GPUKernel); 1786 1787 for (auto Id : KernelIds) 1788 isl_id_free(Id); 1789 1790 KernelIds.clear(); 1791 } 1792 1793 /// Compute the DataLayout string for the NVPTX backend. 1794 /// 1795 /// @param is64Bit Are we looking for a 64 bit architecture? 1796 static std::string computeNVPTXDataLayout(bool is64Bit) { 1797 std::string Ret = ""; 1798 1799 if (!is64Bit) { 1800 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1801 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1802 "64-v128:128:128-n16:32:64"; 1803 } else { 1804 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1805 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1806 "64-v128:128:128-n16:32:64"; 1807 } 1808 1809 return Ret; 1810 } 1811 1812 /// Compute the DataLayout string for a SPIR kernel. 1813 /// 1814 /// @param is64Bit Are we looking for a 64 bit architecture? 1815 static std::string computeSPIRDataLayout(bool is64Bit) { 1816 std::string Ret = ""; 1817 1818 if (!is64Bit) { 1819 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1820 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1821 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1822 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1823 } else { 1824 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1825 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1826 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1827 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1828 } 1829 1830 return Ret; 1831 } 1832 1833 Function * 1834 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1835 SetVector<Value *> &SubtreeValues) { 1836 std::vector<Type *> Args; 1837 std::string Identifier = getKernelFuncName(Kernel->id); 1838 1839 std::vector<Metadata *> MemoryType; 1840 1841 for (long i = 0; i < Prog->n_array; i++) { 1842 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1843 continue; 1844 1845 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1846 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1847 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1848 Args.push_back(SAI->getElementType()); 1849 MemoryType.push_back( 1850 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1851 } else { 1852 static const int UseGlobalMemory = 1; 1853 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1854 MemoryType.push_back( 1855 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1856 } 1857 } 1858 1859 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1860 1861 for (long i = 0; i < NumHostIters; i++) { 1862 Args.push_back(Builder.getInt64Ty()); 1863 MemoryType.push_back( 1864 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1865 } 1866 1867 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1868 1869 for (long i = 0; i < NumVars; i++) { 1870 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1871 Value *Val = IDToValue[Id]; 1872 isl_id_free(Id); 1873 Args.push_back(Val->getType()); 1874 MemoryType.push_back( 1875 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1876 } 1877 1878 for (auto *V : SubtreeValues) { 1879 Args.push_back(V->getType()); 1880 MemoryType.push_back( 1881 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1882 } 1883 1884 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1885 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1886 GPUModule.get()); 1887 1888 std::vector<Metadata *> EmptyStrings; 1889 1890 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1891 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1892 } 1893 1894 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1895 FN->setMetadata("kernel_arg_addr_space", 1896 MDNode::get(FN->getContext(), MemoryType)); 1897 FN->setMetadata("kernel_arg_name", 1898 MDNode::get(FN->getContext(), EmptyStrings)); 1899 FN->setMetadata("kernel_arg_access_qual", 1900 MDNode::get(FN->getContext(), EmptyStrings)); 1901 FN->setMetadata("kernel_arg_type", 1902 MDNode::get(FN->getContext(), EmptyStrings)); 1903 FN->setMetadata("kernel_arg_type_qual", 1904 MDNode::get(FN->getContext(), EmptyStrings)); 1905 FN->setMetadata("kernel_arg_base_type", 1906 MDNode::get(FN->getContext(), EmptyStrings)); 1907 } 1908 1909 switch (Arch) { 1910 case GPUArch::NVPTX64: 1911 FN->setCallingConv(CallingConv::PTX_Kernel); 1912 break; 1913 case GPUArch::SPIR32: 1914 case GPUArch::SPIR64: 1915 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1916 break; 1917 } 1918 1919 auto Arg = FN->arg_begin(); 1920 for (long i = 0; i < Kernel->n_array; i++) { 1921 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1922 continue; 1923 1924 Arg->setName(Kernel->array[i].array->name); 1925 1926 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1927 const ScopArrayInfo *SAI = 1928 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1929 Type *EleTy = SAI->getElementType(); 1930 Value *Val = &*Arg; 1931 SmallVector<const SCEV *, 4> Sizes; 1932 isl_ast_build *Build = 1933 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1934 Sizes.push_back(nullptr); 1935 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1936 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1937 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1938 auto V = ExprBuilder.create(DimSize); 1939 Sizes.push_back(SE.getSCEV(V)); 1940 } 1941 const ScopArrayInfo *SAIRep = 1942 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1943 LocalArrays.push_back(Val); 1944 1945 isl_ast_build_free(Build); 1946 KernelIds.push_back(Id); 1947 IDToSAI[Id] = SAIRep; 1948 Arg++; 1949 } 1950 1951 for (long i = 0; i < NumHostIters; i++) { 1952 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1953 Arg->setName(isl_id_get_name(Id)); 1954 IDToValue[Id] = &*Arg; 1955 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1956 Arg++; 1957 } 1958 1959 for (long i = 0; i < NumVars; i++) { 1960 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1961 Arg->setName(isl_id_get_name(Id)); 1962 Value *Val = IDToValue[Id]; 1963 ValueMap[Val] = &*Arg; 1964 IDToValue[Id] = &*Arg; 1965 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1966 Arg++; 1967 } 1968 1969 for (auto *V : SubtreeValues) { 1970 Arg->setName(V->getName()); 1971 ValueMap[V] = &*Arg; 1972 Arg++; 1973 } 1974 1975 return FN; 1976 } 1977 1978 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1979 Intrinsic::ID IntrinsicsBID[2]; 1980 Intrinsic::ID IntrinsicsTID[3]; 1981 1982 switch (Arch) { 1983 case GPUArch::SPIR64: 1984 case GPUArch::SPIR32: 1985 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 1986 case GPUArch::NVPTX64: 1987 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1988 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1989 1990 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1991 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1992 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1993 break; 1994 } 1995 1996 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1997 std::string Name = isl_id_get_name(Id); 1998 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1999 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2000 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2001 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2002 IDToValue[Id] = Val; 2003 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2004 }; 2005 2006 for (int i = 0; i < Kernel->n_grid; ++i) { 2007 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2008 addId(Id, IntrinsicsBID[i]); 2009 } 2010 2011 for (int i = 0; i < Kernel->n_block; ++i) { 2012 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2013 addId(Id, IntrinsicsTID[i]); 2014 } 2015 } 2016 2017 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2018 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2019 "__gen_ocl_get_group_id1", 2020 "__gen_ocl_get_group_id2"}; 2021 2022 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2023 "__gen_ocl_get_local_id1", 2024 "__gen_ocl_get_local_id2"}; 2025 2026 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2027 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2028 Function *FN = M->getFunction(Name); 2029 2030 // If FN is not available, declare it. 2031 if (!FN) { 2032 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2033 std::vector<Type *> Args; 2034 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2035 FN = Function::Create(Ty, Linkage, Name, M); 2036 FN->setCallingConv(CallingConv::SPIR_FUNC); 2037 } 2038 2039 Value *Val = Builder.CreateCall(FN, {}); 2040 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2041 IDToValue[Id] = Val; 2042 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2043 }; 2044 2045 for (int i = 0; i < Kernel->n_grid; ++i) 2046 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2047 2048 for (int i = 0; i < Kernel->n_block; ++i) 2049 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2050 } 2051 2052 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2053 auto Arg = FN->arg_begin(); 2054 for (long i = 0; i < Kernel->n_array; i++) { 2055 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2056 continue; 2057 2058 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2059 const ScopArrayInfo *SAI = 2060 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2061 isl_id_free(Id); 2062 2063 if (SAI->getNumberOfDimensions() > 0) { 2064 Arg++; 2065 continue; 2066 } 2067 2068 Value *Val = &*Arg; 2069 2070 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2071 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2072 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2073 Val = Builder.CreateLoad(TypedArgPtr); 2074 } 2075 2076 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2077 Builder.CreateStore(Val, Alloca); 2078 2079 Arg++; 2080 } 2081 } 2082 2083 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2084 auto *FN = Builder.GetInsertBlock()->getParent(); 2085 auto Arg = FN->arg_begin(); 2086 2087 bool StoredScalar = false; 2088 for (long i = 0; i < Kernel->n_array; i++) { 2089 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2090 continue; 2091 2092 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2093 const ScopArrayInfo *SAI = 2094 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2095 isl_id_free(Id); 2096 2097 if (SAI->getNumberOfDimensions() > 0) { 2098 Arg++; 2099 continue; 2100 } 2101 2102 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2103 Arg++; 2104 continue; 2105 } 2106 2107 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2108 Value *ArgPtr = &*Arg; 2109 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2110 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2111 Value *Val = Builder.CreateLoad(Alloca); 2112 Builder.CreateStore(Val, TypedArgPtr); 2113 StoredScalar = true; 2114 2115 Arg++; 2116 } 2117 2118 if (StoredScalar) { 2119 /// In case more than one thread contains scalar stores, the generated 2120 /// code might be incorrect, if we only store at the end of the kernel. 2121 /// To support this case we need to store these scalars back at each 2122 /// memory store or at least before each kernel barrier. 2123 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2124 BuildSuccessful = 0; 2125 DEBUG( 2126 dbgs() << getUniqueScopName(&S) 2127 << " has a store to a scalar value that" 2128 " would be undefined to run in parallel. Bailing out.\n";); 2129 } 2130 } 2131 } 2132 2133 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2134 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2135 2136 for (int i = 0; i < Kernel->n_var; ++i) { 2137 struct ppcg_kernel_var &Var = Kernel->var[i]; 2138 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2139 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2140 2141 Type *ArrayTy = EleTy; 2142 SmallVector<const SCEV *, 4> Sizes; 2143 2144 Sizes.push_back(nullptr); 2145 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2146 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2147 long Bound = isl_val_get_num_si(Val); 2148 isl_val_free(Val); 2149 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2150 } 2151 2152 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2153 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2154 long Bound = isl_val_get_num_si(Val); 2155 isl_val_free(Val); 2156 ArrayTy = ArrayType::get(ArrayTy, Bound); 2157 } 2158 2159 const ScopArrayInfo *SAI; 2160 Value *Allocation; 2161 if (Var.type == ppcg_access_shared) { 2162 auto GlobalVar = new GlobalVariable( 2163 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2164 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2165 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2166 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2167 2168 Allocation = GlobalVar; 2169 } else if (Var.type == ppcg_access_private) { 2170 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2171 } else { 2172 llvm_unreachable("unknown variable type"); 2173 } 2174 SAI = 2175 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2176 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2177 IDToValue[Id] = Allocation; 2178 LocalArrays.push_back(Allocation); 2179 KernelIds.push_back(Id); 2180 IDToSAI[Id] = SAI; 2181 } 2182 } 2183 2184 void GPUNodeBuilder::createKernelFunction( 2185 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2186 SetVector<Function *> &SubtreeFunctions) { 2187 std::string Identifier = getKernelFuncName(Kernel->id); 2188 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2189 2190 switch (Arch) { 2191 case GPUArch::NVPTX64: 2192 if (Runtime == GPURuntime::CUDA) 2193 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2194 else if (Runtime == GPURuntime::OpenCL) 2195 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2196 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2197 break; 2198 case GPUArch::SPIR32: 2199 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2200 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2201 break; 2202 case GPUArch::SPIR64: 2203 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2204 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2205 break; 2206 } 2207 2208 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2209 2210 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2211 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2212 2213 DT.addNewBlock(EntryBlock, PrevBlock); 2214 2215 Builder.SetInsertPoint(EntryBlock); 2216 Builder.CreateRetVoid(); 2217 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2218 2219 ScopDetection::markFunctionAsInvalid(FN); 2220 2221 prepareKernelArguments(Kernel, FN); 2222 createKernelVariables(Kernel, FN); 2223 2224 switch (Arch) { 2225 case GPUArch::NVPTX64: 2226 insertKernelIntrinsics(Kernel); 2227 break; 2228 case GPUArch::SPIR32: 2229 case GPUArch::SPIR64: 2230 insertKernelCallsSPIR(Kernel); 2231 break; 2232 } 2233 } 2234 2235 std::string GPUNodeBuilder::createKernelASM() { 2236 llvm::Triple GPUTriple; 2237 2238 switch (Arch) { 2239 case GPUArch::NVPTX64: 2240 switch (Runtime) { 2241 case GPURuntime::CUDA: 2242 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2243 break; 2244 case GPURuntime::OpenCL: 2245 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2246 break; 2247 } 2248 break; 2249 case GPUArch::SPIR64: 2250 case GPUArch::SPIR32: 2251 std::string SPIRAssembly; 2252 raw_string_ostream IROstream(SPIRAssembly); 2253 IROstream << *GPUModule; 2254 IROstream.flush(); 2255 return SPIRAssembly; 2256 } 2257 2258 std::string ErrMsg; 2259 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2260 2261 if (!GPUTarget) { 2262 errs() << ErrMsg << "\n"; 2263 return ""; 2264 } 2265 2266 TargetOptions Options; 2267 Options.UnsafeFPMath = FastMath; 2268 2269 std::string subtarget; 2270 2271 switch (Arch) { 2272 case GPUArch::NVPTX64: 2273 subtarget = CudaVersion; 2274 break; 2275 case GPUArch::SPIR32: 2276 case GPUArch::SPIR64: 2277 llvm_unreachable("No subtarget for SPIR architecture"); 2278 } 2279 2280 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2281 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2282 2283 SmallString<0> ASMString; 2284 raw_svector_ostream ASMStream(ASMString); 2285 llvm::legacy::PassManager PM; 2286 2287 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2288 2289 if (TargetM->addPassesToEmitFile( 2290 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2291 errs() << "The target does not support generation of this file type!\n"; 2292 return ""; 2293 } 2294 2295 PM.run(*GPUModule); 2296 2297 return ASMStream.str(); 2298 } 2299 2300 bool GPUNodeBuilder::requiresCUDALibDevice() { 2301 for (Function &F : GPUModule->functions()) { 2302 if (!F.isDeclaration()) 2303 continue; 2304 2305 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2306 if (CUDALibDeviceFunc.length() != 0) { 2307 F.setName(CUDALibDeviceFunc); 2308 return true; 2309 } 2310 } 2311 2312 return false; 2313 } 2314 2315 void GPUNodeBuilder::addCUDALibDevice() { 2316 if (Arch != GPUArch::NVPTX64) 2317 return; 2318 2319 if (requiresCUDALibDevice()) { 2320 SMDiagnostic Error; 2321 2322 errs() << CUDALibDevice << "\n"; 2323 auto LibDeviceModule = 2324 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2325 2326 if (!LibDeviceModule) { 2327 BuildSuccessful = false; 2328 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2329 "kernel generation. Please set -polly-acc-libdevice " 2330 "accordingly.\n"); 2331 return; 2332 } 2333 2334 Linker L(*GPUModule); 2335 2336 // Set an nvptx64 target triple to avoid linker warnings. The original 2337 // triple of the libdevice files are nvptx-unknown-unknown. 2338 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2339 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2340 } 2341 } 2342 2343 std::string GPUNodeBuilder::finalizeKernelFunction() { 2344 2345 if (verifyModule(*GPUModule)) { 2346 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2347 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2348 DEBUG(dbgs() << "verifyModule Error:\n"; 2349 verifyModule(*GPUModule, &dbgs());); 2350 2351 if (FailOnVerifyModuleFailure) 2352 llvm_unreachable("VerifyModule failed."); 2353 2354 BuildSuccessful = false; 2355 return ""; 2356 } 2357 2358 addCUDALibDevice(); 2359 2360 if (DumpKernelIR) 2361 outs() << *GPUModule << "\n"; 2362 2363 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2364 // Optimize module. 2365 llvm::legacy::PassManager OptPasses; 2366 PassManagerBuilder PassBuilder; 2367 PassBuilder.OptLevel = 3; 2368 PassBuilder.SizeLevel = 0; 2369 PassBuilder.populateModulePassManager(OptPasses); 2370 OptPasses.run(*GPUModule); 2371 } 2372 2373 std::string Assembly = createKernelASM(); 2374 2375 if (DumpKernelASM) 2376 outs() << Assembly << "\n"; 2377 2378 GPUModule.release(); 2379 KernelIDs.clear(); 2380 2381 return Assembly; 2382 } 2383 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2384 /// @param PwAffs The list of piecewise affine functions to create an 2385 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2386 /// all the isl_pw_aff are used up by this function. 2387 /// 2388 /// @returns The `isl_pw_aff_list`. 2389 __isl_give isl_pw_aff_list * 2390 createPwAffList(isl_ctx *Context, 2391 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2392 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2393 2394 for (unsigned i = 0; i < PwAffs.size(); i++) { 2395 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2396 } 2397 return List; 2398 } 2399 2400 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2401 /// 2402 /// We loop over all `pw_aff` and align all of their spaces together to 2403 /// create a common space for all the `pw_aff`. This common space is the 2404 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2405 /// with the given `SeedSpace`. 2406 /// @param PwAffs The list of piecewise affine functions we want to align. 2407 /// This is an rvalue reference because the entire vector is 2408 /// used up by the end of the operation. 2409 /// @param SeedSpace The space to start the alignment process with. 2410 /// @returns A std::pair, whose first element is the aligned space, 2411 /// whose second element is the vector of aligned piecewise 2412 /// affines. 2413 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2414 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2415 __isl_take isl_space *SeedSpace) { 2416 assert(SeedSpace && "Invalid seed space given."); 2417 2418 isl_space *AlignSpace = SeedSpace; 2419 for (isl_pw_aff *PwAff : PwAffs) { 2420 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2421 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2422 } 2423 std::vector<isl_pw_aff *> AdjustedPwAffs; 2424 2425 for (unsigned i = 0; i < PwAffs.size(); i++) { 2426 isl_pw_aff *Adjusted = PwAffs[i]; 2427 assert(Adjusted && "Invalid pw_aff given."); 2428 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2429 AdjustedPwAffs.push_back(Adjusted); 2430 } 2431 return std::make_pair(AlignSpace, AdjustedPwAffs); 2432 } 2433 2434 namespace { 2435 class PPCGCodeGeneration : public ScopPass { 2436 public: 2437 static char ID; 2438 2439 GPURuntime Runtime = GPURuntime::CUDA; 2440 2441 GPUArch Architecture = GPUArch::NVPTX64; 2442 2443 /// The scop that is currently processed. 2444 Scop *S; 2445 2446 LoopInfo *LI; 2447 DominatorTree *DT; 2448 ScalarEvolution *SE; 2449 const DataLayout *DL; 2450 RegionInfo *RI; 2451 2452 PPCGCodeGeneration() : ScopPass(ID) {} 2453 2454 /// Construct compilation options for PPCG. 2455 /// 2456 /// @returns The compilation options. 2457 ppcg_options *createPPCGOptions() { 2458 auto DebugOptions = 2459 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2460 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2461 2462 DebugOptions->dump_schedule_constraints = false; 2463 DebugOptions->dump_schedule = false; 2464 DebugOptions->dump_final_schedule = false; 2465 DebugOptions->dump_sizes = false; 2466 DebugOptions->verbose = false; 2467 2468 Options->debug = DebugOptions; 2469 2470 Options->group_chains = false; 2471 Options->reschedule = true; 2472 Options->scale_tile_loops = false; 2473 Options->wrap = false; 2474 2475 Options->non_negative_parameters = false; 2476 Options->ctx = nullptr; 2477 Options->sizes = nullptr; 2478 2479 Options->tile = true; 2480 Options->tile_size = 32; 2481 2482 Options->isolate_full_tiles = false; 2483 2484 Options->use_private_memory = PrivateMemory; 2485 Options->use_shared_memory = SharedMemory; 2486 Options->max_shared_memory = 48 * 1024; 2487 2488 Options->target = PPCG_TARGET_CUDA; 2489 Options->openmp = false; 2490 Options->linearize_device_arrays = true; 2491 Options->allow_gnu_extensions = false; 2492 2493 Options->unroll_copy_shared = false; 2494 Options->unroll_gpu_tile = false; 2495 Options->live_range_reordering = true; 2496 2497 Options->live_range_reordering = true; 2498 Options->hybrid = false; 2499 Options->opencl_compiler_options = nullptr; 2500 Options->opencl_use_gpu = false; 2501 Options->opencl_n_include_file = 0; 2502 Options->opencl_include_files = nullptr; 2503 Options->opencl_print_kernel_types = false; 2504 Options->opencl_embed_kernel_code = false; 2505 2506 Options->save_schedule_file = nullptr; 2507 Options->load_schedule_file = nullptr; 2508 2509 return Options; 2510 } 2511 2512 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2513 /// 2514 /// Instead of a normal access of the form: 2515 /// 2516 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2517 /// 2518 /// a tagged access has the form 2519 /// 2520 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2521 /// 2522 /// where 'id' is an additional space that references the memory access that 2523 /// triggered the access. 2524 /// 2525 /// @param AccessTy The type of the memory accesses to collect. 2526 /// 2527 /// @return The relation describing all tagged memory accesses. 2528 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2529 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2530 2531 for (auto &Stmt : *S) 2532 for (auto &Acc : Stmt) 2533 if (Acc->getType() == AccessTy) { 2534 isl_map *Relation = Acc->getAccessRelation().release(); 2535 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2536 2537 isl_space *Space = isl_map_get_space(Relation); 2538 Space = isl_space_range(Space); 2539 Space = isl_space_from_range(Space); 2540 Space = 2541 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2542 isl_map *Universe = isl_map_universe(Space); 2543 Relation = isl_map_domain_product(Relation, Universe); 2544 Accesses = isl_union_map_add_map(Accesses, Relation); 2545 } 2546 2547 return Accesses; 2548 } 2549 2550 /// Get the set of all read accesses, tagged with the access id. 2551 /// 2552 /// @see getTaggedAccesses 2553 isl_union_map *getTaggedReads() { 2554 return getTaggedAccesses(MemoryAccess::READ); 2555 } 2556 2557 /// Get the set of all may (and must) accesses, tagged with the access id. 2558 /// 2559 /// @see getTaggedAccesses 2560 isl_union_map *getTaggedMayWrites() { 2561 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2562 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2563 } 2564 2565 /// Get the set of all must accesses, tagged with the access id. 2566 /// 2567 /// @see getTaggedAccesses 2568 isl_union_map *getTaggedMustWrites() { 2569 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2570 } 2571 2572 /// Collect parameter and array names as isl_ids. 2573 /// 2574 /// To reason about the different parameters and arrays used, ppcg requires 2575 /// a list of all isl_ids in use. As PPCG traditionally performs 2576 /// source-to-source compilation each of these isl_ids is mapped to the 2577 /// expression that represents it. As we do not have a corresponding 2578 /// expression in Polly, we just map each id to a 'zero' expression to match 2579 /// the data format that ppcg expects. 2580 /// 2581 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2582 __isl_give isl_id_to_ast_expr *getNames() { 2583 auto *Names = isl_id_to_ast_expr_alloc( 2584 S->getIslCtx(), 2585 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2586 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2587 2588 for (const SCEV *P : S->parameters()) { 2589 isl_id *Id = S->getIdForParam(P); 2590 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2591 } 2592 2593 for (auto &Array : S->arrays()) { 2594 auto Id = Array->getBasePtrId().release(); 2595 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2596 } 2597 2598 isl_ast_expr_free(Zero); 2599 2600 return Names; 2601 } 2602 2603 /// Create a new PPCG scop from the current scop. 2604 /// 2605 /// The PPCG scop is initialized with data from the current polly::Scop. From 2606 /// this initial data, the data-dependences in the PPCG scop are initialized. 2607 /// We do not use Polly's dependence analysis for now, to ensure we match 2608 /// the PPCG default behaviour more closely. 2609 /// 2610 /// @returns A new ppcg scop. 2611 ppcg_scop *createPPCGScop() { 2612 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2613 2614 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2615 2616 PPCGScop->options = createPPCGOptions(); 2617 // enable live range reordering 2618 PPCGScop->options->live_range_reordering = 1; 2619 2620 PPCGScop->start = 0; 2621 PPCGScop->end = 0; 2622 2623 PPCGScop->context = S->getContext(); 2624 PPCGScop->domain = S->getDomains(); 2625 // TODO: investigate this further. PPCG calls collect_call_domains. 2626 PPCGScop->call = isl_union_set_from_set(S->getContext()); 2627 PPCGScop->tagged_reads = getTaggedReads(); 2628 PPCGScop->reads = S->getReads(); 2629 PPCGScop->live_in = nullptr; 2630 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2631 PPCGScop->may_writes = S->getWrites(); 2632 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2633 PPCGScop->must_writes = S->getMustWrites(); 2634 PPCGScop->live_out = nullptr; 2635 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2636 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2637 2638 PPCGScop->tagger = nullptr; 2639 PPCGScop->independence = 2640 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2641 PPCGScop->dep_flow = nullptr; 2642 PPCGScop->tagged_dep_flow = nullptr; 2643 PPCGScop->dep_false = nullptr; 2644 PPCGScop->dep_forced = nullptr; 2645 PPCGScop->dep_order = nullptr; 2646 PPCGScop->tagged_dep_order = nullptr; 2647 2648 PPCGScop->schedule = S->getScheduleTree(); 2649 // If we have something non-trivial to kill, add it to the schedule 2650 if (KillsInfo.KillsSchedule.get()) 2651 PPCGScop->schedule = isl_schedule_sequence( 2652 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2653 2654 PPCGScop->names = getNames(); 2655 PPCGScop->pet = nullptr; 2656 2657 compute_tagger(PPCGScop); 2658 compute_dependences(PPCGScop); 2659 eliminate_dead_code(PPCGScop); 2660 2661 return PPCGScop; 2662 } 2663 2664 /// Collect the array accesses in a statement. 2665 /// 2666 /// @param Stmt The statement for which to collect the accesses. 2667 /// 2668 /// @returns A list of array accesses. 2669 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2670 gpu_stmt_access *Accesses = nullptr; 2671 2672 for (MemoryAccess *Acc : Stmt) { 2673 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2674 Access->read = Acc->isRead(); 2675 Access->write = Acc->isWrite(); 2676 Access->access = Acc->getAccessRelation().release(); 2677 isl_space *Space = isl_map_get_space(Access->access); 2678 Space = isl_space_range(Space); 2679 Space = isl_space_from_range(Space); 2680 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2681 isl_map *Universe = isl_map_universe(Space); 2682 Access->tagged_access = 2683 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2684 Access->exact_write = !Acc->isMayWrite(); 2685 Access->ref_id = Acc->getId().release(); 2686 Access->next = Accesses; 2687 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2688 Accesses = Access; 2689 } 2690 2691 return Accesses; 2692 } 2693 2694 /// Collect the list of GPU statements. 2695 /// 2696 /// Each statement has an id, a pointer to the underlying data structure, 2697 /// as well as a list with all memory accesses. 2698 /// 2699 /// TODO: Initialize the list of memory accesses. 2700 /// 2701 /// @returns A linked-list of statements. 2702 gpu_stmt *getStatements() { 2703 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2704 std::distance(S->begin(), S->end())); 2705 2706 int i = 0; 2707 for (auto &Stmt : *S) { 2708 gpu_stmt *GPUStmt = &Stmts[i]; 2709 2710 GPUStmt->id = Stmt.getDomainId(); 2711 2712 // We use the pet stmt pointer to keep track of the Polly statements. 2713 GPUStmt->stmt = (pet_stmt *)&Stmt; 2714 GPUStmt->accesses = getStmtAccesses(Stmt); 2715 i++; 2716 } 2717 2718 return Stmts; 2719 } 2720 2721 /// Derive the extent of an array. 2722 /// 2723 /// The extent of an array is the set of elements that are within the 2724 /// accessed array. For the inner dimensions, the extent constraints are 2725 /// 0 and the size of the corresponding array dimension. For the first 2726 /// (outermost) dimension, the extent constraints are the minimal and maximal 2727 /// subscript value for the first dimension. 2728 /// 2729 /// @param Array The array to derive the extent for. 2730 /// 2731 /// @returns An isl_set describing the extent of the array. 2732 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2733 unsigned NumDims = Array->getNumberOfDimensions(); 2734 isl_union_map *Accesses = S->getAccesses(); 2735 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2736 Accesses = isl_union_map_detect_equalities(Accesses); 2737 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2738 AccessUSet = isl_union_set_coalesce(AccessUSet); 2739 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2740 AccessUSet = isl_union_set_coalesce(AccessUSet); 2741 2742 if (isl_union_set_is_empty(AccessUSet)) { 2743 isl_union_set_free(AccessUSet); 2744 return isl_set_empty(Array->getSpace().release()); 2745 } 2746 2747 if (Array->getNumberOfDimensions() == 0) { 2748 isl_union_set_free(AccessUSet); 2749 return isl_set_universe(Array->getSpace().release()); 2750 } 2751 2752 isl_set *AccessSet = 2753 isl_union_set_extract_set(AccessUSet, Array->getSpace().release()); 2754 2755 isl_union_set_free(AccessUSet); 2756 isl_local_space *LS = 2757 isl_local_space_from_space(Array->getSpace().release()); 2758 2759 isl_pw_aff *Val = 2760 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2761 2762 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2763 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2764 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2765 isl_pw_aff_dim(Val, isl_dim_in)); 2766 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2767 isl_pw_aff_dim(Val, isl_dim_in)); 2768 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, 2769 Array->getBasePtrId().release()); 2770 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, 2771 Array->getBasePtrId().release()); 2772 2773 isl_set *Extent = isl_set_universe(Array->getSpace().release()); 2774 2775 Extent = isl_set_intersect( 2776 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2777 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2778 2779 for (unsigned i = 1; i < NumDims; ++i) 2780 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2781 2782 for (unsigned i = 0; i < NumDims; ++i) { 2783 isl_pw_aff *PwAff = 2784 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release()); 2785 2786 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2787 // Fortran array will we have a legitimate dimension. 2788 if (!PwAff) { 2789 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2790 continue; 2791 } 2792 2793 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2794 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set, 2795 i)); 2796 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2797 isl_pw_aff_dim(Val, isl_dim_in)); 2798 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2799 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2800 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2801 Extent = isl_set_intersect(Set, Extent); 2802 } 2803 2804 return Extent; 2805 } 2806 2807 /// Derive the bounds of an array. 2808 /// 2809 /// For the first dimension we derive the bound of the array from the extent 2810 /// of this dimension. For inner dimensions we obtain their size directly from 2811 /// ScopArrayInfo. 2812 /// 2813 /// @param PPCGArray The array to compute bounds for. 2814 /// @param Array The polly array from which to take the information. 2815 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2816 std::vector<isl_pw_aff *> Bounds; 2817 2818 if (PPCGArray.n_index > 0) { 2819 if (isl_set_is_empty(PPCGArray.extent)) { 2820 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2821 isl_local_space *LS = isl_local_space_from_space( 2822 isl_space_params(isl_set_get_space(Dom))); 2823 isl_set_free(Dom); 2824 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2825 Bounds.push_back(Zero); 2826 } else { 2827 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2828 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2829 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2830 isl_set_free(Dom); 2831 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2832 isl_local_space *LS = 2833 isl_local_space_from_space(isl_set_get_space(Dom)); 2834 isl_aff *One = isl_aff_zero_on_domain(LS); 2835 One = isl_aff_add_constant_si(One, 1); 2836 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2837 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2838 Bounds.push_back(Bound); 2839 } 2840 } 2841 2842 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2843 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2844 auto LS = isl_pw_aff_get_domain_space(Bound); 2845 auto Aff = isl_multi_aff_zero(LS); 2846 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2847 Bounds.push_back(Bound); 2848 } 2849 2850 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2851 /// to have the same parameter dimensions. So, we need to align them to an 2852 /// appropriate space. 2853 /// Scop::Context is _not_ an appropriate space, because when we have 2854 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2855 /// contain all parameter dimensions. 2856 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2857 isl_space *SeedAlignSpace = S->getParamSpace(); 2858 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2859 2860 isl_space *AlignSpace = nullptr; 2861 std::vector<isl_pw_aff *> AlignedBounds; 2862 std::tie(AlignSpace, AlignedBounds) = 2863 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2864 2865 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2866 2867 isl_pw_aff_list *BoundsList = 2868 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2869 2870 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2871 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2872 2873 assert(BoundsSpace && "Unable to access space of array."); 2874 assert(BoundsList && "Unable to access list of bounds."); 2875 2876 PPCGArray.bound = 2877 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2878 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2879 } 2880 2881 /// Create the arrays for @p PPCGProg. 2882 /// 2883 /// @param PPCGProg The program to compute the arrays for. 2884 void createArrays(gpu_prog *PPCGProg, 2885 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2886 int i = 0; 2887 for (auto &Array : ValidSAIs) { 2888 std::string TypeName; 2889 raw_string_ostream OS(TypeName); 2890 2891 OS << *Array->getElementType(); 2892 TypeName = OS.str(); 2893 2894 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2895 2896 PPCGArray.space = Array->getSpace().release(); 2897 PPCGArray.type = strdup(TypeName.c_str()); 2898 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2899 PPCGArray.name = strdup(Array->getName().c_str()); 2900 PPCGArray.extent = nullptr; 2901 PPCGArray.n_index = Array->getNumberOfDimensions(); 2902 PPCGArray.extent = getExtent(Array); 2903 PPCGArray.n_ref = 0; 2904 PPCGArray.refs = nullptr; 2905 PPCGArray.accessed = true; 2906 PPCGArray.read_only_scalar = 2907 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2908 PPCGArray.has_compound_element = false; 2909 PPCGArray.local = false; 2910 PPCGArray.declare_local = false; 2911 PPCGArray.global = false; 2912 PPCGArray.linearize = false; 2913 PPCGArray.dep_order = nullptr; 2914 PPCGArray.user = Array; 2915 2916 PPCGArray.bound = nullptr; 2917 setArrayBounds(PPCGArray, Array); 2918 i++; 2919 2920 collect_references(PPCGProg, &PPCGArray); 2921 } 2922 } 2923 2924 /// Create an identity map between the arrays in the scop. 2925 /// 2926 /// @returns An identity map between the arrays in the scop. 2927 isl_union_map *getArrayIdentity() { 2928 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2929 2930 for (auto &Array : S->arrays()) { 2931 isl_space *Space = Array->getSpace().release(); 2932 Space = isl_space_map_from_set(Space); 2933 isl_map *Identity = isl_map_identity(Space); 2934 Maps = isl_union_map_add_map(Maps, Identity); 2935 } 2936 2937 return Maps; 2938 } 2939 2940 /// Create a default-initialized PPCG GPU program. 2941 /// 2942 /// @returns A new gpu program description. 2943 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2944 2945 if (!PPCGScop) 2946 return nullptr; 2947 2948 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2949 2950 PPCGProg->ctx = S->getIslCtx(); 2951 PPCGProg->scop = PPCGScop; 2952 PPCGProg->context = isl_set_copy(PPCGScop->context); 2953 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2954 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2955 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2956 PPCGProg->tagged_must_kill = 2957 isl_union_map_copy(PPCGScop->tagged_must_kills); 2958 PPCGProg->to_inner = getArrayIdentity(); 2959 PPCGProg->to_outer = getArrayIdentity(); 2960 // TODO: verify that this assignment is correct. 2961 PPCGProg->any_to_outer = nullptr; 2962 2963 // this needs to be set when live range reordering is enabled. 2964 // NOTE: I believe that is conservatively correct. I'm not sure 2965 // what the semantics of this is. 2966 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2967 PPCGProg->array_order = 2968 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2969 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2970 PPCGProg->stmts = getStatements(); 2971 2972 // Only consider arrays that have a non-empty extent. 2973 // Otherwise, this will cause us to consider the following kinds of 2974 // empty arrays: 2975 // 1. Invariant loads that are represented by SAI objects. 2976 // 2. Arrays with statically known zero size. 2977 auto ValidSAIsRange = 2978 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 2979 return !isl::manage(getExtent(SAI)).is_empty(); 2980 }); 2981 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 2982 ValidSAIsRange.end()); 2983 2984 PPCGProg->n_array = 2985 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 2986 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2987 PPCGProg->n_array); 2988 2989 createArrays(PPCGProg, ValidSAIs); 2990 2991 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2992 return PPCGProg; 2993 } 2994 2995 struct PrintGPUUserData { 2996 struct cuda_info *CudaInfo; 2997 struct gpu_prog *PPCGProg; 2998 std::vector<ppcg_kernel *> Kernels; 2999 }; 3000 3001 /// Print a user statement node in the host code. 3002 /// 3003 /// We use ppcg's printing facilities to print the actual statement and 3004 /// additionally build up a list of all kernels that are encountered in the 3005 /// host ast. 3006 /// 3007 /// @param P The printer to print to 3008 /// @param Options The printing options to use 3009 /// @param Node The node to print 3010 /// @param User A user pointer to carry additional data. This pointer is 3011 /// expected to be of type PrintGPUUserData. 3012 /// 3013 /// @returns A printer to which the output has been printed. 3014 static __isl_give isl_printer * 3015 printHostUser(__isl_take isl_printer *P, 3016 __isl_take isl_ast_print_options *Options, 3017 __isl_take isl_ast_node *Node, void *User) { 3018 auto Data = (struct PrintGPUUserData *)User; 3019 auto Id = isl_ast_node_get_annotation(Node); 3020 3021 if (Id) { 3022 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3023 3024 // If this is a user statement, format it ourselves as ppcg would 3025 // otherwise try to call pet functionality that is not available in 3026 // Polly. 3027 if (IsUser) { 3028 P = isl_printer_start_line(P); 3029 P = isl_printer_print_ast_node(P, Node); 3030 P = isl_printer_end_line(P); 3031 isl_id_free(Id); 3032 isl_ast_print_options_free(Options); 3033 return P; 3034 } 3035 3036 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3037 isl_id_free(Id); 3038 Data->Kernels.push_back(Kernel); 3039 } 3040 3041 return print_host_user(P, Options, Node, User); 3042 } 3043 3044 /// Print C code corresponding to the control flow in @p Kernel. 3045 /// 3046 /// @param Kernel The kernel to print 3047 void printKernel(ppcg_kernel *Kernel) { 3048 auto *P = isl_printer_to_str(S->getIslCtx()); 3049 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3050 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3051 P = isl_ast_node_print(Kernel->tree, P, Options); 3052 char *String = isl_printer_get_str(P); 3053 printf("%s\n", String); 3054 free(String); 3055 isl_printer_free(P); 3056 } 3057 3058 /// Print C code corresponding to the GPU code described by @p Tree. 3059 /// 3060 /// @param Tree An AST describing GPU code 3061 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3062 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3063 auto *P = isl_printer_to_str(S->getIslCtx()); 3064 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3065 3066 PrintGPUUserData Data; 3067 Data.PPCGProg = PPCGProg; 3068 3069 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3070 Options = 3071 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3072 P = isl_ast_node_print(Tree, P, Options); 3073 char *String = isl_printer_get_str(P); 3074 printf("# host\n"); 3075 printf("%s\n", String); 3076 free(String); 3077 isl_printer_free(P); 3078 3079 for (auto Kernel : Data.Kernels) { 3080 printf("# kernel%d\n", Kernel->id); 3081 printKernel(Kernel); 3082 } 3083 } 3084 3085 // Generate a GPU program using PPCG. 3086 // 3087 // GPU mapping consists of multiple steps: 3088 // 3089 // 1) Compute new schedule for the program. 3090 // 2) Map schedule to GPU (TODO) 3091 // 3) Generate code for new schedule (TODO) 3092 // 3093 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3094 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3095 // strategy directly from this pass. 3096 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3097 3098 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3099 3100 PPCGGen->ctx = S->getIslCtx(); 3101 PPCGGen->options = PPCGScop->options; 3102 PPCGGen->print = nullptr; 3103 PPCGGen->print_user = nullptr; 3104 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3105 PPCGGen->prog = PPCGProg; 3106 PPCGGen->tree = nullptr; 3107 PPCGGen->types.n = 0; 3108 PPCGGen->types.name = nullptr; 3109 PPCGGen->sizes = nullptr; 3110 PPCGGen->used_sizes = nullptr; 3111 PPCGGen->kernel_id = 0; 3112 3113 // Set scheduling strategy to same strategy PPCG is using. 3114 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3115 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3116 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3117 3118 isl_schedule *Schedule = get_schedule(PPCGGen); 3119 3120 int has_permutable = has_any_permutable_node(Schedule); 3121 3122 Schedule = 3123 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3124 3125 if (!has_permutable || has_permutable < 0) { 3126 Schedule = isl_schedule_free(Schedule); 3127 DEBUG(dbgs() << getUniqueScopName(S) 3128 << " does not have permutable bands. Bailing out\n";); 3129 } else { 3130 Schedule = map_to_device(PPCGGen, Schedule); 3131 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3132 } 3133 3134 if (DumpSchedule) { 3135 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3136 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3137 P = isl_printer_print_str(P, "Schedule\n"); 3138 P = isl_printer_print_str(P, "========\n"); 3139 if (Schedule) 3140 P = isl_printer_print_schedule(P, Schedule); 3141 else 3142 P = isl_printer_print_str(P, "No schedule found\n"); 3143 3144 printf("%s\n", isl_printer_get_str(P)); 3145 isl_printer_free(P); 3146 } 3147 3148 if (DumpCode) { 3149 printf("Code\n"); 3150 printf("====\n"); 3151 if (PPCGGen->tree) 3152 printGPUTree(PPCGGen->tree, PPCGProg); 3153 else 3154 printf("No code generated\n"); 3155 } 3156 3157 isl_schedule_free(Schedule); 3158 3159 return PPCGGen; 3160 } 3161 3162 /// Free gpu_gen structure. 3163 /// 3164 /// @param PPCGGen The ppcg_gen object to free. 3165 void freePPCGGen(gpu_gen *PPCGGen) { 3166 isl_ast_node_free(PPCGGen->tree); 3167 isl_union_map_free(PPCGGen->sizes); 3168 isl_union_map_free(PPCGGen->used_sizes); 3169 free(PPCGGen); 3170 } 3171 3172 /// Free the options in the ppcg scop structure. 3173 /// 3174 /// ppcg is not freeing these options for us. To avoid leaks we do this 3175 /// ourselves. 3176 /// 3177 /// @param PPCGScop The scop referencing the options to free. 3178 void freeOptions(ppcg_scop *PPCGScop) { 3179 free(PPCGScop->options->debug); 3180 PPCGScop->options->debug = nullptr; 3181 free(PPCGScop->options); 3182 PPCGScop->options = nullptr; 3183 } 3184 3185 /// Approximate the number of points in the set. 3186 /// 3187 /// This function returns an ast expression that overapproximates the number 3188 /// of points in an isl set through the rectangular hull surrounding this set. 3189 /// 3190 /// @param Set The set to count. 3191 /// @param Build The isl ast build object to use for creating the ast 3192 /// expression. 3193 /// 3194 /// @returns An approximation of the number of points in the set. 3195 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3196 __isl_keep isl_ast_build *Build) { 3197 3198 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3199 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3200 3201 isl_space *Space = isl_set_get_space(Set); 3202 Space = isl_space_params(Space); 3203 auto *Univ = isl_set_universe(Space); 3204 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3205 3206 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 3207 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3208 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3209 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3210 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3211 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3212 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3213 } 3214 3215 isl_set_free(Set); 3216 isl_pw_aff_free(OneAff); 3217 3218 return Expr; 3219 } 3220 3221 /// Approximate a number of dynamic instructions executed by a given 3222 /// statement. 3223 /// 3224 /// @param Stmt The statement for which to compute the number of dynamic 3225 /// instructions. 3226 /// @param Build The isl ast build object to use for creating the ast 3227 /// expression. 3228 /// @returns An approximation of the number of dynamic instructions executed 3229 /// by @p Stmt. 3230 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3231 __isl_keep isl_ast_build *Build) { 3232 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 3233 3234 long InstCount = 0; 3235 3236 if (Stmt.isBlockStmt()) { 3237 auto *BB = Stmt.getBasicBlock(); 3238 InstCount = std::distance(BB->begin(), BB->end()); 3239 } else { 3240 auto *R = Stmt.getRegion(); 3241 3242 for (auto *BB : R->blocks()) { 3243 InstCount += std::distance(BB->begin(), BB->end()); 3244 } 3245 } 3246 3247 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3248 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3249 return isl_ast_expr_mul(InstExpr, Iterations); 3250 } 3251 3252 /// Approximate dynamic instructions executed in scop. 3253 /// 3254 /// @param S The scop for which to approximate dynamic instructions. 3255 /// @param Build The isl ast build object to use for creating the ast 3256 /// expression. 3257 /// @returns An approximation of the number of dynamic instructions executed 3258 /// in @p S. 3259 __isl_give isl_ast_expr * 3260 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3261 isl_ast_expr *Instructions; 3262 3263 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3264 Instructions = isl_ast_expr_from_val(Zero); 3265 3266 for (ScopStmt &Stmt : S) { 3267 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3268 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3269 } 3270 return Instructions; 3271 } 3272 3273 /// Create a check that ensures sufficient compute in scop. 3274 /// 3275 /// @param S The scop for which to ensure sufficient compute. 3276 /// @param Build The isl ast build object to use for creating the ast 3277 /// expression. 3278 /// @returns An expression that evaluates to TRUE in case of sufficient 3279 /// compute and to FALSE, otherwise. 3280 __isl_give isl_ast_expr * 3281 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3282 auto Iterations = getNumberOfIterations(S, Build); 3283 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3284 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3285 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3286 } 3287 3288 /// Check if the basic block contains a function we cannot codegen for GPU 3289 /// kernels. 3290 /// 3291 /// If this basic block does something with a `Function` other than calling 3292 /// a function that we support in a kernel, return true. 3293 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3294 bool AllowCUDALibDevice) { 3295 for (const Instruction &Inst : *BB) { 3296 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3297 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3298 AllowCUDALibDevice)) { 3299 continue; 3300 } 3301 3302 for (Value *SrcVal : Inst.operands()) { 3303 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 3304 if (!p) 3305 continue; 3306 if (isa<FunctionType>(p->getElementType())) 3307 return true; 3308 } 3309 } 3310 return false; 3311 } 3312 3313 /// Return whether the Scop S uses functions in a way that we do not support. 3314 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3315 for (auto &Stmt : S) { 3316 if (Stmt.isBlockStmt()) { 3317 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3318 AllowCUDALibDevice)) 3319 return true; 3320 } else { 3321 assert(Stmt.isRegionStmt() && 3322 "Stmt was neither block nor region statement"); 3323 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3324 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3325 return true; 3326 } 3327 } 3328 return false; 3329 } 3330 3331 /// Generate code for a given GPU AST described by @p Root. 3332 /// 3333 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3334 /// @param Prog The GPU Program to generate code for. 3335 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3336 ScopAnnotator Annotator; 3337 Annotator.buildAliasScopes(*S); 3338 3339 Region *R = &S->getRegion(); 3340 3341 simplifyRegion(R, DT, LI, RI); 3342 3343 BasicBlock *EnteringBB = R->getEnteringBlock(); 3344 3345 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3346 3347 // Only build the run-time condition and parameters _after_ having 3348 // introduced the conditional branch. This is important as the conditional 3349 // branch will guard the original scop from new induction variables that 3350 // the SCEVExpander may introduce while code generating the parameters and 3351 // which may introduce scalar dependences that prevent us from correctly 3352 // code generating this scop. 3353 BBPair StartExitBlocks; 3354 BranchInst *CondBr = nullptr; 3355 std::tie(StartExitBlocks, CondBr) = 3356 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3357 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3358 3359 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3360 3361 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3362 StartBlock, Prog, Runtime, Architecture); 3363 3364 // TODO: Handle LICM 3365 auto SplitBlock = StartBlock->getSinglePredecessor(); 3366 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3367 NodeBuilder.addParameters(S->getContext()); 3368 3369 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3370 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3371 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3372 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3373 isl_ast_build_free(Build); 3374 3375 // preload invariant loads. Note: This should happen before the RTC 3376 // because the RTC may depend on values that are invariant load hoisted. 3377 if (!NodeBuilder.preloadInvariantLoads()) 3378 report_fatal_error("preloading invariant loads failed in function: " + 3379 S->getFunction().getName() + 3380 " | Scop Region: " + S->getNameStr()); 3381 3382 Value *RTC = NodeBuilder.createRTC(Condition); 3383 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3384 3385 Builder.SetInsertPoint(&*StartBlock->begin()); 3386 3387 NodeBuilder.create(Root); 3388 3389 /// In case a sequential kernel has more surrounding loops as any parallel 3390 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3391 /// point in running it on a GPU. 3392 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3393 CondBr->setOperand(0, Builder.getFalse()); 3394 3395 if (!NodeBuilder.BuildSuccessful) 3396 CondBr->setOperand(0, Builder.getFalse()); 3397 } 3398 3399 bool runOnScop(Scop &CurrentScop) override { 3400 S = &CurrentScop; 3401 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3402 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3403 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3404 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3405 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3406 3407 // We currently do not support functions other than intrinsics inside 3408 // kernels, as code generation will need to offload function calls to the 3409 // kernel. This may lead to a kernel trying to call a function on the host. 3410 // This also allows us to prevent codegen from trying to take the 3411 // address of an intrinsic function to send to the kernel. 3412 if (containsInvalidKernelFunction(CurrentScop, 3413 Architecture == GPUArch::NVPTX64)) { 3414 DEBUG( 3415 dbgs() << getUniqueScopName(S) 3416 << " contains function which cannot be materialised in a GPU " 3417 "kernel. Bailing out.\n";); 3418 return false; 3419 } 3420 3421 auto PPCGScop = createPPCGScop(); 3422 auto PPCGProg = createPPCGProg(PPCGScop); 3423 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3424 3425 if (PPCGGen->tree) { 3426 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3427 CurrentScop.markAsToBeSkipped(); 3428 } else { 3429 DEBUG(dbgs() << getUniqueScopName(S) 3430 << " has empty PPCGGen->tree. Bailing out.\n"); 3431 } 3432 3433 freeOptions(PPCGScop); 3434 freePPCGGen(PPCGGen); 3435 gpu_prog_free(PPCGProg); 3436 ppcg_scop_free(PPCGScop); 3437 3438 return true; 3439 } 3440 3441 void printScop(raw_ostream &, Scop &) const override {} 3442 3443 void getAnalysisUsage(AnalysisUsage &AU) const override { 3444 AU.addRequired<DominatorTreeWrapperPass>(); 3445 AU.addRequired<RegionInfoPass>(); 3446 AU.addRequired<ScalarEvolutionWrapperPass>(); 3447 AU.addRequired<ScopDetectionWrapperPass>(); 3448 AU.addRequired<ScopInfoRegionPass>(); 3449 AU.addRequired<LoopInfoWrapperPass>(); 3450 3451 AU.addPreserved<AAResultsWrapperPass>(); 3452 AU.addPreserved<BasicAAWrapperPass>(); 3453 AU.addPreserved<LoopInfoWrapperPass>(); 3454 AU.addPreserved<DominatorTreeWrapperPass>(); 3455 AU.addPreserved<GlobalsAAWrapperPass>(); 3456 AU.addPreserved<ScopDetectionWrapperPass>(); 3457 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3458 AU.addPreserved<SCEVAAWrapperPass>(); 3459 3460 // FIXME: We do not yet add regions for the newly generated code to the 3461 // region tree. 3462 AU.addPreserved<RegionInfoPass>(); 3463 AU.addPreserved<ScopInfoRegionPass>(); 3464 } 3465 }; 3466 } // namespace 3467 3468 char PPCGCodeGeneration::ID = 1; 3469 3470 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3471 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3472 generator->Runtime = Runtime; 3473 generator->Architecture = Arch; 3474 return generator; 3475 } 3476 3477 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3478 "Polly - Apply PPCG translation to SCOP", false, false) 3479 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3480 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3481 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3482 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3483 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3484 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3485 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3486 "Polly - Apply PPCG translation to SCOP", false, false) 3487