1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "polly/Support/SCEVValidator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BasicAliasAnalysis.h" 25 #include "llvm/Analysis/GlobalsModRef.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/TargetSelect.h" 34 #include "llvm/Target/TargetMachine.h" 35 36 #include "isl/union_map.h" 37 38 extern "C" { 39 #include "ppcg/cuda.h" 40 #include "ppcg/gpu.h" 41 #include "ppcg/gpu_print.h" 42 #include "ppcg/ppcg.h" 43 #include "ppcg/schedule.h" 44 } 45 46 #include "llvm/Support/Debug.h" 47 48 using namespace polly; 49 using namespace llvm; 50 51 #define DEBUG_TYPE "polly-codegen-ppcg" 52 53 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 54 cl::desc("Dump the computed GPU Schedule"), 55 cl::Hidden, cl::init(false), cl::ZeroOrMore, 56 cl::cat(PollyCategory)); 57 58 static cl::opt<bool> 59 DumpCode("polly-acc-dump-code", 60 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 61 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 62 63 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 64 cl::desc("Dump the kernel LLVM-IR"), 65 cl::Hidden, cl::init(false), cl::ZeroOrMore, 66 cl::cat(PollyCategory)); 67 68 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 69 cl::desc("Dump the kernel assembly code"), 70 cl::Hidden, cl::init(false), cl::ZeroOrMore, 71 cl::cat(PollyCategory)); 72 73 static cl::opt<bool> FastMath("polly-acc-fastmath", 74 cl::desc("Allow unsafe math optimizations"), 75 cl::Hidden, cl::init(false), cl::ZeroOrMore, 76 cl::cat(PollyCategory)); 77 78 static cl::opt<std::string> 79 CudaVersion("polly-acc-cuda-version", 80 cl::desc("The CUDA version to compile for"), cl::Hidden, 81 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 82 83 /// Create the ast expressions for a ScopStmt. 84 /// 85 /// This function is a callback for to generate the ast expressions for each 86 /// of the scheduled ScopStmts. 87 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 88 void *StmtT, isl_ast_build *Build, 89 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 90 isl_id *Id, void *User), 91 void *UserIndex, 92 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 93 void *UserExpr) { 94 95 ScopStmt *Stmt = (ScopStmt *)StmtT; 96 97 isl_ctx *Ctx; 98 99 if (!Stmt || !Build) 100 return NULL; 101 102 Ctx = isl_ast_build_get_ctx(Build); 103 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 104 105 for (MemoryAccess *Acc : *Stmt) { 106 isl_map *AddrFunc = Acc->getAddressFunction(); 107 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 108 isl_id *RefId = Acc->getId(); 109 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 110 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 111 MPA = isl_multi_pw_aff_coalesce(MPA); 112 MPA = FunctionIndex(MPA, RefId, UserIndex); 113 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 114 Access = FunctionExpr(Access, RefId, UserExpr); 115 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 116 } 117 118 return RefToExpr; 119 } 120 121 /// Generate code for a GPU specific isl AST. 122 /// 123 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 124 /// generates code for general-prupose AST nodes, with special functionality 125 /// for generating GPU specific user nodes. 126 /// 127 /// @see GPUNodeBuilder::createUser 128 class GPUNodeBuilder : public IslNodeBuilder { 129 public: 130 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 131 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 132 DominatorTree &DT, Scop &S, gpu_prog *Prog) 133 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 134 getExprBuilder().setIDToSAI(&IDToSAI); 135 } 136 137 private: 138 /// A vector of array base pointers for which a new ScopArrayInfo was created. 139 /// 140 /// This vector is used to delete the ScopArrayInfo when it is not needed any 141 /// more. 142 std::vector<Value *> LocalArrays; 143 144 /// A module containing GPU code. 145 /// 146 /// This pointer is only set in case we are currently generating GPU code. 147 std::unique_ptr<Module> GPUModule; 148 149 /// The GPU program we generate code for. 150 gpu_prog *Prog; 151 152 /// Class to free isl_ids. 153 class IslIdDeleter { 154 public: 155 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 156 }; 157 158 /// A set containing all isl_ids allocated in a GPU kernel. 159 /// 160 /// By releasing this set all isl_ids will be freed. 161 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 162 163 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 164 165 /// Create code for user-defined AST nodes. 166 /// 167 /// These AST nodes can be of type: 168 /// 169 /// - ScopStmt: A computational statement (TODO) 170 /// - Kernel: A GPU kernel call (TODO) 171 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 172 /// - In-kernel synchronization 173 /// - In-kernel memory copy statement 174 /// 175 /// @param UserStmt The ast node to generate code for. 176 virtual void createUser(__isl_take isl_ast_node *UserStmt); 177 178 /// Find llvm::Values referenced in GPU kernel. 179 /// 180 /// @param Kernel The kernel to scan for llvm::Values 181 /// 182 /// @returns A set of values referenced by the kernel. 183 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 184 185 /// Create GPU kernel. 186 /// 187 /// Code generate the kernel described by @p KernelStmt. 188 /// 189 /// @param KernelStmt The ast node to generate kernel code for. 190 void createKernel(__isl_take isl_ast_node *KernelStmt); 191 192 /// Create kernel function. 193 /// 194 /// Create a kernel function located in a newly created module that can serve 195 /// as target for device code generation. Set the Builder to point to the 196 /// start block of this newly created function. 197 /// 198 /// @param Kernel The kernel to generate code for. 199 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 200 void createKernelFunction(ppcg_kernel *Kernel, 201 SetVector<Value *> &SubtreeValues); 202 203 /// Create the declaration of a kernel function. 204 /// 205 /// The kernel function takes as arguments: 206 /// 207 /// - One i8 pointer for each external array reference used in the kernel. 208 /// - Host iterators 209 /// - Parameters 210 /// - Other LLVM Value references (TODO) 211 /// 212 /// @param Kernel The kernel to generate the function declaration for. 213 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 214 /// 215 /// @returns The newly declared function. 216 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 217 SetVector<Value *> &SubtreeValues); 218 219 /// Insert intrinsic functions to obtain thread and block ids. 220 /// 221 /// @param The kernel to generate the intrinsic functions for. 222 void insertKernelIntrinsics(ppcg_kernel *Kernel); 223 224 /// Create code for a ScopStmt called in @p Expr. 225 /// 226 /// @param Expr The expression containing the call. 227 /// @param KernelStmt The kernel statement referenced in the call. 228 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 229 230 /// Create an in-kernel synchronization call. 231 void createKernelSync(); 232 233 /// Create a PTX assembly string for the current GPU kernel. 234 /// 235 /// @returns A string containing the corresponding PTX assembly code. 236 std::string createKernelASM(); 237 238 /// Remove references from the dominator tree to the kernel function @p F. 239 /// 240 /// @param F The function to remove references to. 241 void clearDominators(Function *F); 242 243 /// Remove references from scalar evolution to the kernel function @p F. 244 /// 245 /// @param F The function to remove references to. 246 void clearScalarEvolution(Function *F); 247 248 /// Remove references from loop info to the kernel function @p F. 249 /// 250 /// @param F The function to remove references to. 251 void clearLoops(Function *F); 252 253 /// Finalize the generation of the kernel function. 254 /// 255 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 256 /// dump its IR to stderr. 257 void finalizeKernelFunction(); 258 }; 259 260 /// Check if one string is a prefix of another. 261 /// 262 /// @param String The string in which to look for the prefix. 263 /// @param Prefix The prefix to look for. 264 static bool isPrefix(std::string String, std::string Prefix) { 265 return String.find(Prefix) == 0; 266 } 267 268 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 269 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 270 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 271 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 272 isl_id_free(Id); 273 isl_ast_expr_free(StmtExpr); 274 275 const char *Str = isl_id_get_name(Id); 276 if (!strcmp(Str, "kernel")) { 277 createKernel(UserStmt); 278 isl_ast_expr_free(Expr); 279 return; 280 } 281 282 if (isPrefix(Str, "to_device") || isPrefix(Str, "from_device")) { 283 // TODO: Insert memory copies 284 isl_ast_expr_free(Expr); 285 isl_ast_node_free(UserStmt); 286 return; 287 } 288 289 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 290 struct ppcg_kernel_stmt *KernelStmt = 291 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 292 isl_id_free(Anno); 293 294 switch (KernelStmt->type) { 295 case ppcg_kernel_domain: 296 createScopStmt(Expr, KernelStmt); 297 isl_ast_node_free(UserStmt); 298 return; 299 case ppcg_kernel_copy: 300 // TODO: Create kernel copy stmt 301 isl_ast_expr_free(Expr); 302 isl_ast_node_free(UserStmt); 303 return; 304 case ppcg_kernel_sync: 305 createKernelSync(); 306 isl_ast_expr_free(Expr); 307 isl_ast_node_free(UserStmt); 308 return; 309 } 310 311 isl_ast_expr_free(Expr); 312 isl_ast_node_free(UserStmt); 313 return; 314 } 315 316 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 317 ppcg_kernel_stmt *KernelStmt) { 318 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 319 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 320 321 LoopToScevMapT LTS; 322 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 323 324 createSubstitutions(Expr, Stmt, LTS); 325 326 if (Stmt->isBlockStmt()) 327 BlockGen.copyStmt(*Stmt, LTS, Indexes); 328 else 329 assert(0 && "Region statement not supported\n"); 330 } 331 332 void GPUNodeBuilder::createKernelSync() { 333 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 334 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 335 Builder.CreateCall(Sync, {}); 336 } 337 338 /// Collect llvm::Values referenced from @p Node 339 /// 340 /// This function only applies to isl_ast_nodes that are user_nodes referring 341 /// to a ScopStmt. All other node types are ignore. 342 /// 343 /// @param Node The node to collect references for. 344 /// @param User A user pointer used as storage for the data that is collected. 345 /// 346 /// @returns isl_bool_true if data could be collected successfully. 347 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 348 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 349 return isl_bool_true; 350 351 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 352 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 353 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 354 const char *Str = isl_id_get_name(Id); 355 isl_id_free(Id); 356 isl_ast_expr_free(StmtExpr); 357 isl_ast_expr_free(Expr); 358 359 if (!isPrefix(Str, "Stmt")) 360 return isl_bool_true; 361 362 Id = isl_ast_node_get_annotation(Node); 363 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 364 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 365 isl_id_free(Id); 366 367 addReferencesFromStmt(Stmt, User); 368 369 return isl_bool_true; 370 } 371 372 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 373 SetVector<Value *> SubtreeValues; 374 SetVector<const SCEV *> SCEVs; 375 SetVector<const Loop *> Loops; 376 SubtreeReferences References = { 377 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 378 379 for (const auto &I : IDToValue) 380 SubtreeValues.insert(I.second); 381 382 isl_ast_node_foreach_descendant_top_down( 383 Kernel->tree, collectReferencesInGPUStmt, &References); 384 385 for (const SCEV *Expr : SCEVs) 386 findValues(Expr, SE, SubtreeValues); 387 388 for (auto &SAI : S.arrays()) 389 SubtreeValues.remove(SAI.second->getBasePtr()); 390 391 isl_space *Space = S.getParamSpace(); 392 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 393 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 394 assert(IDToValue.count(Id)); 395 Value *Val = IDToValue[Id]; 396 SubtreeValues.remove(Val); 397 isl_id_free(Id); 398 } 399 isl_space_free(Space); 400 401 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 402 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 403 assert(IDToValue.count(Id)); 404 Value *Val = IDToValue[Id]; 405 SubtreeValues.remove(Val); 406 isl_id_free(Id); 407 } 408 409 return SubtreeValues; 410 } 411 412 void GPUNodeBuilder::clearDominators(Function *F) { 413 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 414 std::vector<BasicBlock *> Nodes; 415 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 416 Nodes.push_back(I->getBlock()); 417 418 for (BasicBlock *BB : Nodes) 419 DT.eraseNode(BB); 420 } 421 422 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 423 for (BasicBlock &BB : *F) { 424 Loop *L = LI.getLoopFor(&BB); 425 if (L) 426 SE.forgetLoop(L); 427 } 428 } 429 430 void GPUNodeBuilder::clearLoops(Function *F) { 431 for (BasicBlock &BB : *F) { 432 Loop *L = LI.getLoopFor(&BB); 433 if (L) 434 SE.forgetLoop(L); 435 LI.removeBlock(&BB); 436 } 437 } 438 439 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 440 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 441 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 442 isl_id_free(Id); 443 isl_ast_node_free(KernelStmt); 444 445 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 446 447 assert(Kernel->tree && "Device AST of kernel node is empty"); 448 449 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 450 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 451 ValueMapT HostValueMap = ValueMap; 452 453 SetVector<const Loop *> Loops; 454 455 // Create for all loops we depend on values that contain the current loop 456 // iteration. These values are necessary to generate code for SCEVs that 457 // depend on such loops. As a result we need to pass them to the subfunction. 458 for (const Loop *L : Loops) { 459 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 460 SE.getUnknown(Builder.getInt64(1)), 461 L, SCEV::FlagAnyWrap); 462 Value *V = generateSCEV(OuterLIV); 463 OutsideLoopIterations[L] = SE.getUnknown(V); 464 SubtreeValues.insert(V); 465 } 466 467 createKernelFunction(Kernel, SubtreeValues); 468 469 create(isl_ast_node_copy(Kernel->tree)); 470 471 Function *F = Builder.GetInsertBlock()->getParent(); 472 clearDominators(F); 473 clearScalarEvolution(F); 474 clearLoops(F); 475 476 Builder.SetInsertPoint(&HostInsertPoint); 477 IDToValue = HostIDs; 478 479 ValueMap = HostValueMap; 480 ScalarMap.clear(); 481 PHIOpMap.clear(); 482 EscapeMap.clear(); 483 IDToSAI.clear(); 484 Annotator.resetAlternativeAliasBases(); 485 for (auto &BasePtr : LocalArrays) 486 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 487 LocalArrays.clear(); 488 489 finalizeKernelFunction(); 490 } 491 492 /// Compute the DataLayout string for the NVPTX backend. 493 /// 494 /// @param is64Bit Are we looking for a 64 bit architecture? 495 static std::string computeNVPTXDataLayout(bool is64Bit) { 496 std::string Ret = "e"; 497 498 if (!is64Bit) 499 Ret += "-p:32:32"; 500 501 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 502 503 return Ret; 504 } 505 506 Function * 507 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 508 SetVector<Value *> &SubtreeValues) { 509 std::vector<Type *> Args; 510 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 511 512 for (long i = 0; i < Prog->n_array; i++) { 513 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 514 continue; 515 516 Args.push_back(Builder.getInt8PtrTy()); 517 } 518 519 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 520 521 for (long i = 0; i < NumHostIters; i++) 522 Args.push_back(Builder.getInt64Ty()); 523 524 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 525 526 for (long i = 0; i < NumVars; i++) 527 Args.push_back(Builder.getInt64Ty()); 528 529 for (auto *V : SubtreeValues) 530 Args.push_back(V->getType()); 531 532 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 533 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 534 GPUModule.get()); 535 FN->setCallingConv(CallingConv::PTX_Kernel); 536 537 auto Arg = FN->arg_begin(); 538 for (long i = 0; i < Kernel->n_array; i++) { 539 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 540 continue; 541 542 Arg->setName(Kernel->array[i].array->name); 543 544 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 545 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 546 Type *EleTy = SAI->getElementType(); 547 Value *Val = &*Arg; 548 SmallVector<const SCEV *, 4> Sizes; 549 isl_ast_build *Build = 550 isl_ast_build_from_context(isl_set_copy(Prog->context)); 551 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 552 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 553 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 554 auto V = ExprBuilder.create(DimSize); 555 Sizes.push_back(SE.getSCEV(V)); 556 } 557 const ScopArrayInfo *SAIRep = 558 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 559 LocalArrays.push_back(Val); 560 561 isl_ast_build_free(Build); 562 isl_id_free(Id); 563 IDToSAI[Id] = SAIRep; 564 Arg++; 565 } 566 567 for (long i = 0; i < NumHostIters; i++) { 568 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 569 Arg->setName(isl_id_get_name(Id)); 570 IDToValue[Id] = &*Arg; 571 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 572 Arg++; 573 } 574 575 for (long i = 0; i < NumVars; i++) { 576 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 577 Arg->setName(isl_id_get_name(Id)); 578 IDToValue[Id] = &*Arg; 579 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 580 Arg++; 581 } 582 583 for (auto *V : SubtreeValues) { 584 Arg->setName(V->getName()); 585 ValueMap[V] = &*Arg; 586 Arg++; 587 } 588 589 return FN; 590 } 591 592 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 593 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 594 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 595 596 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 597 Intrinsic::nvvm_read_ptx_sreg_tid_y, 598 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 599 600 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 601 std::string Name = isl_id_get_name(Id); 602 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 603 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 604 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 605 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 606 IDToValue[Id] = Val; 607 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 608 }; 609 610 for (int i = 0; i < Kernel->n_grid; ++i) { 611 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 612 addId(Id, IntrinsicsBID[i]); 613 } 614 615 for (int i = 0; i < Kernel->n_block; ++i) { 616 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 617 addId(Id, IntrinsicsTID[i]); 618 } 619 } 620 621 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 622 SetVector<Value *> &SubtreeValues) { 623 624 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 625 GPUModule.reset(new Module(Identifier, Builder.getContext())); 626 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 627 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 628 629 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 630 631 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 632 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 633 634 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 635 DT.addNewBlock(EntryBlock, PrevBlock); 636 637 Builder.SetInsertPoint(EntryBlock); 638 Builder.CreateRetVoid(); 639 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 640 641 insertKernelIntrinsics(Kernel); 642 } 643 644 std::string GPUNodeBuilder::createKernelASM() { 645 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 646 std::string ErrMsg; 647 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 648 649 if (!GPUTarget) { 650 errs() << ErrMsg << "\n"; 651 return ""; 652 } 653 654 TargetOptions Options; 655 Options.UnsafeFPMath = FastMath; 656 std::unique_ptr<TargetMachine> TargetM( 657 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 658 Options, Optional<Reloc::Model>())); 659 660 SmallString<0> ASMString; 661 raw_svector_ostream ASMStream(ASMString); 662 llvm::legacy::PassManager PM; 663 664 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 665 666 if (TargetM->addPassesToEmitFile( 667 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 668 errs() << "The target does not support generation of this file type!\n"; 669 return ""; 670 } 671 672 PM.run(*GPUModule); 673 674 return ASMStream.str(); 675 } 676 677 void GPUNodeBuilder::finalizeKernelFunction() { 678 // Verify module. 679 llvm::legacy::PassManager Passes; 680 Passes.add(createVerifierPass()); 681 Passes.run(*GPUModule); 682 683 if (DumpKernelIR) 684 outs() << *GPUModule << "\n"; 685 686 std::string Assembly = createKernelASM(); 687 688 if (DumpKernelASM) 689 outs() << Assembly << "\n"; 690 691 GPUModule.release(); 692 KernelIDs.clear(); 693 } 694 695 namespace { 696 class PPCGCodeGeneration : public ScopPass { 697 public: 698 static char ID; 699 700 /// The scop that is currently processed. 701 Scop *S; 702 703 LoopInfo *LI; 704 DominatorTree *DT; 705 ScalarEvolution *SE; 706 const DataLayout *DL; 707 RegionInfo *RI; 708 709 PPCGCodeGeneration() : ScopPass(ID) {} 710 711 /// Construct compilation options for PPCG. 712 /// 713 /// @returns The compilation options. 714 ppcg_options *createPPCGOptions() { 715 auto DebugOptions = 716 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 717 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 718 719 DebugOptions->dump_schedule_constraints = false; 720 DebugOptions->dump_schedule = false; 721 DebugOptions->dump_final_schedule = false; 722 DebugOptions->dump_sizes = false; 723 724 Options->debug = DebugOptions; 725 726 Options->reschedule = true; 727 Options->scale_tile_loops = false; 728 Options->wrap = false; 729 730 Options->non_negative_parameters = false; 731 Options->ctx = nullptr; 732 Options->sizes = nullptr; 733 734 Options->tile_size = 32; 735 736 Options->use_private_memory = false; 737 Options->use_shared_memory = false; 738 Options->max_shared_memory = 0; 739 740 Options->target = PPCG_TARGET_CUDA; 741 Options->openmp = false; 742 Options->linearize_device_arrays = true; 743 Options->live_range_reordering = false; 744 745 Options->opencl_compiler_options = nullptr; 746 Options->opencl_use_gpu = false; 747 Options->opencl_n_include_file = 0; 748 Options->opencl_include_files = nullptr; 749 Options->opencl_print_kernel_types = false; 750 Options->opencl_embed_kernel_code = false; 751 752 Options->save_schedule_file = nullptr; 753 Options->load_schedule_file = nullptr; 754 755 return Options; 756 } 757 758 /// Get a tagged access relation containing all accesses of type @p AccessTy. 759 /// 760 /// Instead of a normal access of the form: 761 /// 762 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 763 /// 764 /// a tagged access has the form 765 /// 766 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 767 /// 768 /// where 'id' is an additional space that references the memory access that 769 /// triggered the access. 770 /// 771 /// @param AccessTy The type of the memory accesses to collect. 772 /// 773 /// @return The relation describing all tagged memory accesses. 774 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 775 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 776 777 for (auto &Stmt : *S) 778 for (auto &Acc : Stmt) 779 if (Acc->getType() == AccessTy) { 780 isl_map *Relation = Acc->getAccessRelation(); 781 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 782 783 isl_space *Space = isl_map_get_space(Relation); 784 Space = isl_space_range(Space); 785 Space = isl_space_from_range(Space); 786 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 787 isl_map *Universe = isl_map_universe(Space); 788 Relation = isl_map_domain_product(Relation, Universe); 789 Accesses = isl_union_map_add_map(Accesses, Relation); 790 } 791 792 return Accesses; 793 } 794 795 /// Get the set of all read accesses, tagged with the access id. 796 /// 797 /// @see getTaggedAccesses 798 isl_union_map *getTaggedReads() { 799 return getTaggedAccesses(MemoryAccess::READ); 800 } 801 802 /// Get the set of all may (and must) accesses, tagged with the access id. 803 /// 804 /// @see getTaggedAccesses 805 isl_union_map *getTaggedMayWrites() { 806 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 807 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 808 } 809 810 /// Get the set of all must accesses, tagged with the access id. 811 /// 812 /// @see getTaggedAccesses 813 isl_union_map *getTaggedMustWrites() { 814 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 815 } 816 817 /// Collect parameter and array names as isl_ids. 818 /// 819 /// To reason about the different parameters and arrays used, ppcg requires 820 /// a list of all isl_ids in use. As PPCG traditionally performs 821 /// source-to-source compilation each of these isl_ids is mapped to the 822 /// expression that represents it. As we do not have a corresponding 823 /// expression in Polly, we just map each id to a 'zero' expression to match 824 /// the data format that ppcg expects. 825 /// 826 /// @returns Retun a map from collected ids to 'zero' ast expressions. 827 __isl_give isl_id_to_ast_expr *getNames() { 828 auto *Names = isl_id_to_ast_expr_alloc( 829 S->getIslCtx(), 830 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 831 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 832 auto *Space = S->getParamSpace(); 833 834 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 835 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 836 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 837 } 838 839 for (auto &Array : S->arrays()) { 840 auto Id = Array.second->getBasePtrId(); 841 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 842 } 843 844 isl_space_free(Space); 845 isl_ast_expr_free(Zero); 846 847 return Names; 848 } 849 850 /// Create a new PPCG scop from the current scop. 851 /// 852 /// The PPCG scop is initialized with data from the current polly::Scop. From 853 /// this initial data, the data-dependences in the PPCG scop are initialized. 854 /// We do not use Polly's dependence analysis for now, to ensure we match 855 /// the PPCG default behaviour more closely. 856 /// 857 /// @returns A new ppcg scop. 858 ppcg_scop *createPPCGScop() { 859 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 860 861 PPCGScop->options = createPPCGOptions(); 862 863 PPCGScop->start = 0; 864 PPCGScop->end = 0; 865 866 PPCGScop->context = S->getContext(); 867 PPCGScop->domain = S->getDomains(); 868 PPCGScop->call = nullptr; 869 PPCGScop->tagged_reads = getTaggedReads(); 870 PPCGScop->reads = S->getReads(); 871 PPCGScop->live_in = nullptr; 872 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 873 PPCGScop->may_writes = S->getWrites(); 874 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 875 PPCGScop->must_writes = S->getMustWrites(); 876 PPCGScop->live_out = nullptr; 877 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 878 PPCGScop->tagger = nullptr; 879 880 PPCGScop->independence = nullptr; 881 PPCGScop->dep_flow = nullptr; 882 PPCGScop->tagged_dep_flow = nullptr; 883 PPCGScop->dep_false = nullptr; 884 PPCGScop->dep_forced = nullptr; 885 PPCGScop->dep_order = nullptr; 886 PPCGScop->tagged_dep_order = nullptr; 887 888 PPCGScop->schedule = S->getScheduleTree(); 889 PPCGScop->names = getNames(); 890 891 PPCGScop->pet = nullptr; 892 893 compute_tagger(PPCGScop); 894 compute_dependences(PPCGScop); 895 896 return PPCGScop; 897 } 898 899 /// Collect the array acesses in a statement. 900 /// 901 /// @param Stmt The statement for which to collect the accesses. 902 /// 903 /// @returns A list of array accesses. 904 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 905 gpu_stmt_access *Accesses = nullptr; 906 907 for (MemoryAccess *Acc : Stmt) { 908 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 909 Access->read = Acc->isRead(); 910 Access->write = Acc->isWrite(); 911 Access->access = Acc->getAccessRelation(); 912 isl_space *Space = isl_map_get_space(Access->access); 913 Space = isl_space_range(Space); 914 Space = isl_space_from_range(Space); 915 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 916 isl_map *Universe = isl_map_universe(Space); 917 Access->tagged_access = 918 isl_map_domain_product(Acc->getAccessRelation(), Universe); 919 Access->exact_write = Acc->isWrite(); 920 Access->ref_id = Acc->getId(); 921 Access->next = Accesses; 922 Accesses = Access; 923 } 924 925 return Accesses; 926 } 927 928 /// Collect the list of GPU statements. 929 /// 930 /// Each statement has an id, a pointer to the underlying data structure, 931 /// as well as a list with all memory accesses. 932 /// 933 /// TODO: Initialize the list of memory accesses. 934 /// 935 /// @returns A linked-list of statements. 936 gpu_stmt *getStatements() { 937 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 938 std::distance(S->begin(), S->end())); 939 940 int i = 0; 941 for (auto &Stmt : *S) { 942 gpu_stmt *GPUStmt = &Stmts[i]; 943 944 GPUStmt->id = Stmt.getDomainId(); 945 946 // We use the pet stmt pointer to keep track of the Polly statements. 947 GPUStmt->stmt = (pet_stmt *)&Stmt; 948 GPUStmt->accesses = getStmtAccesses(Stmt); 949 i++; 950 } 951 952 return Stmts; 953 } 954 955 /// Derive the extent of an array. 956 /// 957 /// The extent of an array is defined by the set of memory locations for 958 /// which a memory access in the iteration domain exists. 959 /// 960 /// @param Array The array to derive the extent for. 961 /// 962 /// @returns An isl_set describing the extent of the array. 963 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 964 isl_union_map *Accesses = S->getAccesses(); 965 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 966 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 967 isl_set *AccessSet = 968 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 969 isl_union_set_free(AccessUSet); 970 971 return AccessSet; 972 } 973 974 /// Derive the bounds of an array. 975 /// 976 /// For the first dimension we derive the bound of the array from the extent 977 /// of this dimension. For inner dimensions we obtain their size directly from 978 /// ScopArrayInfo. 979 /// 980 /// @param PPCGArray The array to compute bounds for. 981 /// @param Array The polly array from which to take the information. 982 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 983 if (PPCGArray.n_index > 0) { 984 isl_set *Dom = isl_set_copy(PPCGArray.extent); 985 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 986 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 987 isl_set_free(Dom); 988 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 989 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 990 isl_aff *One = isl_aff_zero_on_domain(LS); 991 One = isl_aff_add_constant_si(One, 1); 992 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 993 Bound = isl_pw_aff_gist(Bound, S->getContext()); 994 PPCGArray.bound[0] = Bound; 995 } 996 997 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 998 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 999 auto LS = isl_pw_aff_get_domain_space(Bound); 1000 auto Aff = isl_multi_aff_zero(LS); 1001 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1002 PPCGArray.bound[i] = Bound; 1003 } 1004 } 1005 1006 /// Create the arrays for @p PPCGProg. 1007 /// 1008 /// @param PPCGProg The program to compute the arrays for. 1009 void createArrays(gpu_prog *PPCGProg) { 1010 int i = 0; 1011 for (auto &Element : S->arrays()) { 1012 ScopArrayInfo *Array = Element.second.get(); 1013 1014 std::string TypeName; 1015 raw_string_ostream OS(TypeName); 1016 1017 OS << *Array->getElementType(); 1018 TypeName = OS.str(); 1019 1020 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1021 1022 PPCGArray.space = Array->getSpace(); 1023 PPCGArray.type = strdup(TypeName.c_str()); 1024 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1025 PPCGArray.name = strdup(Array->getName().c_str()); 1026 PPCGArray.extent = nullptr; 1027 PPCGArray.n_index = Array->getNumberOfDimensions(); 1028 PPCGArray.bound = 1029 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1030 PPCGArray.extent = getExtent(Array); 1031 PPCGArray.n_ref = 0; 1032 PPCGArray.refs = nullptr; 1033 PPCGArray.accessed = true; 1034 PPCGArray.read_only_scalar = false; 1035 PPCGArray.has_compound_element = false; 1036 PPCGArray.local = false; 1037 PPCGArray.declare_local = false; 1038 PPCGArray.global = false; 1039 PPCGArray.linearize = false; 1040 PPCGArray.dep_order = nullptr; 1041 1042 setArrayBounds(PPCGArray, Array); 1043 i++; 1044 1045 collect_references(PPCGProg, &PPCGArray); 1046 } 1047 } 1048 1049 /// Create an identity map between the arrays in the scop. 1050 /// 1051 /// @returns An identity map between the arrays in the scop. 1052 isl_union_map *getArrayIdentity() { 1053 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1054 1055 for (auto &Item : S->arrays()) { 1056 ScopArrayInfo *Array = Item.second.get(); 1057 isl_space *Space = Array->getSpace(); 1058 Space = isl_space_map_from_set(Space); 1059 isl_map *Identity = isl_map_identity(Space); 1060 Maps = isl_union_map_add_map(Maps, Identity); 1061 } 1062 1063 return Maps; 1064 } 1065 1066 /// Create a default-initialized PPCG GPU program. 1067 /// 1068 /// @returns A new gpu grogram description. 1069 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1070 1071 if (!PPCGScop) 1072 return nullptr; 1073 1074 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1075 1076 PPCGProg->ctx = S->getIslCtx(); 1077 PPCGProg->scop = PPCGScop; 1078 PPCGProg->context = isl_set_copy(PPCGScop->context); 1079 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1080 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1081 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1082 PPCGProg->tagged_must_kill = 1083 isl_union_map_copy(PPCGScop->tagged_must_kills); 1084 PPCGProg->to_inner = getArrayIdentity(); 1085 PPCGProg->to_outer = getArrayIdentity(); 1086 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1087 PPCGProg->any_to_outer = nullptr; 1088 PPCGProg->array_order = nullptr; 1089 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1090 PPCGProg->stmts = getStatements(); 1091 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1092 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1093 PPCGProg->n_array); 1094 1095 createArrays(PPCGProg); 1096 1097 return PPCGProg; 1098 } 1099 1100 struct PrintGPUUserData { 1101 struct cuda_info *CudaInfo; 1102 struct gpu_prog *PPCGProg; 1103 std::vector<ppcg_kernel *> Kernels; 1104 }; 1105 1106 /// Print a user statement node in the host code. 1107 /// 1108 /// We use ppcg's printing facilities to print the actual statement and 1109 /// additionally build up a list of all kernels that are encountered in the 1110 /// host ast. 1111 /// 1112 /// @param P The printer to print to 1113 /// @param Options The printing options to use 1114 /// @param Node The node to print 1115 /// @param User A user pointer to carry additional data. This pointer is 1116 /// expected to be of type PrintGPUUserData. 1117 /// 1118 /// @returns A printer to which the output has been printed. 1119 static __isl_give isl_printer * 1120 printHostUser(__isl_take isl_printer *P, 1121 __isl_take isl_ast_print_options *Options, 1122 __isl_take isl_ast_node *Node, void *User) { 1123 auto Data = (struct PrintGPUUserData *)User; 1124 auto Id = isl_ast_node_get_annotation(Node); 1125 1126 if (Id) { 1127 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1128 1129 // If this is a user statement, format it ourselves as ppcg would 1130 // otherwise try to call pet functionality that is not available in 1131 // Polly. 1132 if (IsUser) { 1133 P = isl_printer_start_line(P); 1134 P = isl_printer_print_ast_node(P, Node); 1135 P = isl_printer_end_line(P); 1136 isl_id_free(Id); 1137 isl_ast_print_options_free(Options); 1138 return P; 1139 } 1140 1141 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1142 isl_id_free(Id); 1143 Data->Kernels.push_back(Kernel); 1144 } 1145 1146 return print_host_user(P, Options, Node, User); 1147 } 1148 1149 /// Print C code corresponding to the control flow in @p Kernel. 1150 /// 1151 /// @param Kernel The kernel to print 1152 void printKernel(ppcg_kernel *Kernel) { 1153 auto *P = isl_printer_to_str(S->getIslCtx()); 1154 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1155 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1156 P = isl_ast_node_print(Kernel->tree, P, Options); 1157 char *String = isl_printer_get_str(P); 1158 printf("%s\n", String); 1159 free(String); 1160 isl_printer_free(P); 1161 } 1162 1163 /// Print C code corresponding to the GPU code described by @p Tree. 1164 /// 1165 /// @param Tree An AST describing GPU code 1166 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1167 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1168 auto *P = isl_printer_to_str(S->getIslCtx()); 1169 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1170 1171 PrintGPUUserData Data; 1172 Data.PPCGProg = PPCGProg; 1173 1174 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1175 Options = 1176 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1177 P = isl_ast_node_print(Tree, P, Options); 1178 char *String = isl_printer_get_str(P); 1179 printf("# host\n"); 1180 printf("%s\n", String); 1181 free(String); 1182 isl_printer_free(P); 1183 1184 for (auto Kernel : Data.Kernels) { 1185 printf("# kernel%d\n", Kernel->id); 1186 printKernel(Kernel); 1187 } 1188 } 1189 1190 // Generate a GPU program using PPCG. 1191 // 1192 // GPU mapping consists of multiple steps: 1193 // 1194 // 1) Compute new schedule for the program. 1195 // 2) Map schedule to GPU (TODO) 1196 // 3) Generate code for new schedule (TODO) 1197 // 1198 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1199 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1200 // strategy directly from this pass. 1201 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1202 1203 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1204 1205 PPCGGen->ctx = S->getIslCtx(); 1206 PPCGGen->options = PPCGScop->options; 1207 PPCGGen->print = nullptr; 1208 PPCGGen->print_user = nullptr; 1209 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1210 PPCGGen->prog = PPCGProg; 1211 PPCGGen->tree = nullptr; 1212 PPCGGen->types.n = 0; 1213 PPCGGen->types.name = nullptr; 1214 PPCGGen->sizes = nullptr; 1215 PPCGGen->used_sizes = nullptr; 1216 PPCGGen->kernel_id = 0; 1217 1218 // Set scheduling strategy to same strategy PPCG is using. 1219 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1220 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1221 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1222 1223 isl_schedule *Schedule = get_schedule(PPCGGen); 1224 1225 int has_permutable = has_any_permutable_node(Schedule); 1226 1227 if (!has_permutable || has_permutable < 0) { 1228 Schedule = isl_schedule_free(Schedule); 1229 } else { 1230 Schedule = map_to_device(PPCGGen, Schedule); 1231 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1232 } 1233 1234 if (DumpSchedule) { 1235 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1236 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1237 P = isl_printer_print_str(P, "Schedule\n"); 1238 P = isl_printer_print_str(P, "========\n"); 1239 if (Schedule) 1240 P = isl_printer_print_schedule(P, Schedule); 1241 else 1242 P = isl_printer_print_str(P, "No schedule found\n"); 1243 1244 printf("%s\n", isl_printer_get_str(P)); 1245 isl_printer_free(P); 1246 } 1247 1248 if (DumpCode) { 1249 printf("Code\n"); 1250 printf("====\n"); 1251 if (PPCGGen->tree) 1252 printGPUTree(PPCGGen->tree, PPCGProg); 1253 else 1254 printf("No code generated\n"); 1255 } 1256 1257 isl_schedule_free(Schedule); 1258 1259 return PPCGGen; 1260 } 1261 1262 /// Free gpu_gen structure. 1263 /// 1264 /// @param PPCGGen The ppcg_gen object to free. 1265 void freePPCGGen(gpu_gen *PPCGGen) { 1266 isl_ast_node_free(PPCGGen->tree); 1267 isl_union_map_free(PPCGGen->sizes); 1268 isl_union_map_free(PPCGGen->used_sizes); 1269 free(PPCGGen); 1270 } 1271 1272 /// Free the options in the ppcg scop structure. 1273 /// 1274 /// ppcg is not freeing these options for us. To avoid leaks we do this 1275 /// ourselves. 1276 /// 1277 /// @param PPCGScop The scop referencing the options to free. 1278 void freeOptions(ppcg_scop *PPCGScop) { 1279 free(PPCGScop->options->debug); 1280 PPCGScop->options->debug = nullptr; 1281 free(PPCGScop->options); 1282 PPCGScop->options = nullptr; 1283 } 1284 1285 /// Generate code for a given GPU AST described by @p Root. 1286 /// 1287 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1288 /// @param Prog The GPU Program to generate code for. 1289 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1290 ScopAnnotator Annotator; 1291 Annotator.buildAliasScopes(*S); 1292 1293 Region *R = &S->getRegion(); 1294 1295 simplifyRegion(R, DT, LI, RI); 1296 1297 BasicBlock *EnteringBB = R->getEnteringBlock(); 1298 1299 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1300 1301 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1302 Prog); 1303 1304 // Only build the run-time condition and parameters _after_ having 1305 // introduced the conditional branch. This is important as the conditional 1306 // branch will guard the original scop from new induction variables that 1307 // the SCEVExpander may introduce while code generating the parameters and 1308 // which may introduce scalar dependences that prevent us from correctly 1309 // code generating this scop. 1310 BasicBlock *StartBlock = 1311 executeScopConditionally(*S, this, Builder.getTrue()); 1312 1313 // TODO: Handle LICM 1314 // TODO: Verify run-time checks 1315 auto SplitBlock = StartBlock->getSinglePredecessor(); 1316 Builder.SetInsertPoint(SplitBlock->getTerminator()); 1317 NodeBuilder.addParameters(S->getContext()); 1318 Builder.SetInsertPoint(&*StartBlock->begin()); 1319 NodeBuilder.create(Root); 1320 NodeBuilder.finalizeSCoP(*S); 1321 } 1322 1323 bool runOnScop(Scop &CurrentScop) override { 1324 S = &CurrentScop; 1325 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1326 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1327 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1328 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 1329 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 1330 1331 // We currently do not support scops with invariant loads. 1332 if (S->hasInvariantAccesses()) 1333 return false; 1334 1335 auto PPCGScop = createPPCGScop(); 1336 auto PPCGProg = createPPCGProg(PPCGScop); 1337 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 1338 1339 if (PPCGGen->tree) 1340 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 1341 1342 freeOptions(PPCGScop); 1343 freePPCGGen(PPCGGen); 1344 gpu_prog_free(PPCGProg); 1345 ppcg_scop_free(PPCGScop); 1346 1347 return true; 1348 } 1349 1350 void printScop(raw_ostream &, Scop &) const override {} 1351 1352 void getAnalysisUsage(AnalysisUsage &AU) const override { 1353 AU.addRequired<DominatorTreeWrapperPass>(); 1354 AU.addRequired<RegionInfoPass>(); 1355 AU.addRequired<ScalarEvolutionWrapperPass>(); 1356 AU.addRequired<ScopDetection>(); 1357 AU.addRequired<ScopInfoRegionPass>(); 1358 AU.addRequired<LoopInfoWrapperPass>(); 1359 1360 AU.addPreserved<AAResultsWrapperPass>(); 1361 AU.addPreserved<BasicAAWrapperPass>(); 1362 AU.addPreserved<LoopInfoWrapperPass>(); 1363 AU.addPreserved<DominatorTreeWrapperPass>(); 1364 AU.addPreserved<GlobalsAAWrapperPass>(); 1365 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1366 AU.addPreserved<ScopDetection>(); 1367 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1368 AU.addPreserved<SCEVAAWrapperPass>(); 1369 1370 // FIXME: We do not yet add regions for the newly generated code to the 1371 // region tree. 1372 AU.addPreserved<RegionInfoPass>(); 1373 AU.addPreserved<ScopInfoRegionPass>(); 1374 } 1375 }; 1376 } 1377 1378 char PPCGCodeGeneration::ID = 1; 1379 1380 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1381 1382 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1383 "Polly - Apply PPCG translation to SCOP", false, false) 1384 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1385 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1386 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1387 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1388 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1389 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1390 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1391 "Polly - Apply PPCG translation to SCOP", false, false) 1392