1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::Hidden, cl::init(false), cl::ZeroOrMore, 95 cl::cat(PollyCategory)); 96 97 static cl::opt<std::string> 98 CudaVersion("polly-acc-cuda-version", 99 cl::desc("The CUDA version to compile for"), cl::Hidden, 100 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 101 102 static cl::opt<int> 103 MinCompute("polly-acc-mincompute", 104 cl::desc("Minimal number of compute statements to run on GPU."), 105 cl::Hidden, cl::init(10 * 512 * 512)); 106 107 /// Create the ast expressions for a ScopStmt. 108 /// 109 /// This function is a callback for to generate the ast expressions for each 110 /// of the scheduled ScopStmts. 111 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 112 void *StmtT, isl_ast_build *Build, 113 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 114 isl_id *Id, void *User), 115 void *UserIndex, 116 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 117 void *UserExpr) { 118 119 ScopStmt *Stmt = (ScopStmt *)StmtT; 120 121 isl_ctx *Ctx; 122 123 if (!Stmt || !Build) 124 return NULL; 125 126 Ctx = isl_ast_build_get_ctx(Build); 127 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 128 129 for (MemoryAccess *Acc : *Stmt) { 130 isl_map *AddrFunc = Acc->getAddressFunction(); 131 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 132 isl_id *RefId = Acc->getId(); 133 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 134 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 135 MPA = isl_multi_pw_aff_coalesce(MPA); 136 MPA = FunctionIndex(MPA, RefId, UserIndex); 137 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 138 Access = FunctionExpr(Access, RefId, UserExpr); 139 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 140 } 141 142 return RefToExpr; 143 } 144 145 /// Generate code for a GPU specific isl AST. 146 /// 147 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 148 /// generates code for general-prupose AST nodes, with special functionality 149 /// for generating GPU specific user nodes. 150 /// 151 /// @see GPUNodeBuilder::createUser 152 class GPUNodeBuilder : public IslNodeBuilder { 153 public: 154 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 155 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 156 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 157 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 158 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 159 Prog(Prog), Runtime(Runtime), Arch(Arch) { 160 getExprBuilder().setIDToSAI(&IDToSAI); 161 } 162 163 /// Create after-run-time-check initialization code. 164 void initializeAfterRTH(); 165 166 /// Finalize the generated scop. 167 virtual void finalize(); 168 169 /// Track if the full build process was successful. 170 /// 171 /// This value is set to false, if throughout the build process an error 172 /// occurred which prevents us from generating valid GPU code. 173 bool BuildSuccessful = true; 174 175 /// The maximal number of loops surrounding a sequential kernel. 176 unsigned DeepestSequential = 0; 177 178 /// The maximal number of loops surrounding a parallel kernel. 179 unsigned DeepestParallel = 0; 180 181 private: 182 /// A vector of array base pointers for which a new ScopArrayInfo was created. 183 /// 184 /// This vector is used to delete the ScopArrayInfo when it is not needed any 185 /// more. 186 std::vector<Value *> LocalArrays; 187 188 /// A map from ScopArrays to their corresponding device allocations. 189 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 190 191 /// The current GPU context. 192 Value *GPUContext; 193 194 /// The set of isl_ids allocated in the kernel 195 std::vector<isl_id *> KernelIds; 196 197 /// A module containing GPU code. 198 /// 199 /// This pointer is only set in case we are currently generating GPU code. 200 std::unique_ptr<Module> GPUModule; 201 202 /// The GPU program we generate code for. 203 gpu_prog *Prog; 204 205 /// The GPU Runtime implementation to use (OpenCL or CUDA). 206 GPURuntime Runtime; 207 208 /// The GPU Architecture to target. 209 GPUArch Arch; 210 211 /// Class to free isl_ids. 212 class IslIdDeleter { 213 public: 214 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 215 }; 216 217 /// A set containing all isl_ids allocated in a GPU kernel. 218 /// 219 /// By releasing this set all isl_ids will be freed. 220 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 221 222 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 223 224 /// Create code for user-defined AST nodes. 225 /// 226 /// These AST nodes can be of type: 227 /// 228 /// - ScopStmt: A computational statement (TODO) 229 /// - Kernel: A GPU kernel call (TODO) 230 /// - Data-Transfer: A GPU <-> CPU data-transfer 231 /// - In-kernel synchronization 232 /// - In-kernel memory copy statement 233 /// 234 /// @param UserStmt The ast node to generate code for. 235 virtual void createUser(__isl_take isl_ast_node *UserStmt); 236 237 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 238 239 /// Create code for a data transfer statement 240 /// 241 /// @param TransferStmt The data transfer statement. 242 /// @param Direction The direction in which to transfer data. 243 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 244 enum DataDirection Direction); 245 246 /// Find llvm::Values referenced in GPU kernel. 247 /// 248 /// @param Kernel The kernel to scan for llvm::Values 249 /// 250 /// @returns A set of values referenced by the kernel. 251 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 252 253 /// Compute the sizes of the execution grid for a given kernel. 254 /// 255 /// @param Kernel The kernel to compute grid sizes for. 256 /// 257 /// @returns A tuple with grid sizes for X and Y dimension 258 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 259 260 /// Creates a array that can be sent to the kernel on the device using a 261 /// host pointer. This is required for managed memory, when we directly send 262 /// host pointers to the device. 263 /// \note 264 /// This is to be used only with managed memory 265 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 266 ScopArrayInfo *ArrayInfo); 267 268 /// Compute the sizes of the thread blocks for a given kernel. 269 /// 270 /// @param Kernel The kernel to compute thread block sizes for. 271 /// 272 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 273 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 274 275 /// Create kernel launch parameters. 276 /// 277 /// @param Kernel The kernel to create parameters for. 278 /// @param F The kernel function that has been created. 279 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 280 /// 281 /// @returns A stack allocated array with pointers to the parameter 282 /// values that are passed to the kernel. 283 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 284 SetVector<Value *> SubtreeValues); 285 286 /// Create declarations for kernel variable. 287 /// 288 /// This includes shared memory declarations. 289 /// 290 /// @param Kernel The kernel definition to create variables for. 291 /// @param FN The function into which to generate the variables. 292 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 293 294 /// Add CUDA annotations to module. 295 /// 296 /// Add a set of CUDA annotations that declares the maximal block dimensions 297 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 298 /// PTX compiler to bound the number of allocated registers to ensure the 299 /// resulting kernel is known to run with up to as many block dimensions 300 /// as specified here. 301 /// 302 /// @param M The module to add the annotations to. 303 /// @param BlockDimX The size of block dimension X. 304 /// @param BlockDimY The size of block dimension Y. 305 /// @param BlockDimZ The size of block dimension Z. 306 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 307 Value *BlockDimZ); 308 309 /// Create GPU kernel. 310 /// 311 /// Code generate the kernel described by @p KernelStmt. 312 /// 313 /// @param KernelStmt The ast node to generate kernel code for. 314 void createKernel(__isl_take isl_ast_node *KernelStmt); 315 316 /// Generate code that computes the size of an array. 317 /// 318 /// @param Array The array for which to compute a size. 319 Value *getArraySize(gpu_array_info *Array); 320 321 /// Generate code to compute the minimal offset at which an array is accessed. 322 /// 323 /// The offset of an array is the minimal array location accessed in a scop. 324 /// 325 /// Example: 326 /// 327 /// for (long i = 0; i < 100; i++) 328 /// A[i + 42] += ... 329 /// 330 /// getArrayOffset(A) results in 42. 331 /// 332 /// @param Array The array for which to compute the offset. 333 /// @returns An llvm::Value that contains the offset of the array. 334 Value *getArrayOffset(gpu_array_info *Array); 335 336 /// Prepare the kernel arguments for kernel code generation 337 /// 338 /// @param Kernel The kernel to generate code for. 339 /// @param FN The function created for the kernel. 340 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 341 342 /// Create kernel function. 343 /// 344 /// Create a kernel function located in a newly created module that can serve 345 /// as target for device code generation. Set the Builder to point to the 346 /// start block of this newly created function. 347 /// 348 /// @param Kernel The kernel to generate code for. 349 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 350 void createKernelFunction(ppcg_kernel *Kernel, 351 SetVector<Value *> &SubtreeValues); 352 353 /// Create the declaration of a kernel function. 354 /// 355 /// The kernel function takes as arguments: 356 /// 357 /// - One i8 pointer for each external array reference used in the kernel. 358 /// - Host iterators 359 /// - Parameters 360 /// - Other LLVM Value references (TODO) 361 /// 362 /// @param Kernel The kernel to generate the function declaration for. 363 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 364 /// 365 /// @returns The newly declared function. 366 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 367 SetVector<Value *> &SubtreeValues); 368 369 /// Insert intrinsic functions to obtain thread and block ids. 370 /// 371 /// @param The kernel to generate the intrinsic functions for. 372 void insertKernelIntrinsics(ppcg_kernel *Kernel); 373 374 /// Create a global-to-shared or shared-to-global copy statement. 375 /// 376 /// @param CopyStmt The copy statement to generate code for 377 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 378 379 /// Create code for a ScopStmt called in @p Expr. 380 /// 381 /// @param Expr The expression containing the call. 382 /// @param KernelStmt The kernel statement referenced in the call. 383 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 384 385 /// Create an in-kernel synchronization call. 386 void createKernelSync(); 387 388 /// Create a PTX assembly string for the current GPU kernel. 389 /// 390 /// @returns A string containing the corresponding PTX assembly code. 391 std::string createKernelASM(); 392 393 /// Remove references from the dominator tree to the kernel function @p F. 394 /// 395 /// @param F The function to remove references to. 396 void clearDominators(Function *F); 397 398 /// Remove references from scalar evolution to the kernel function @p F. 399 /// 400 /// @param F The function to remove references to. 401 void clearScalarEvolution(Function *F); 402 403 /// Remove references from loop info to the kernel function @p F. 404 /// 405 /// @param F The function to remove references to. 406 void clearLoops(Function *F); 407 408 /// Finalize the generation of the kernel function. 409 /// 410 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 411 /// dump its IR to stderr. 412 /// 413 /// @returns The Assembly string of the kernel. 414 std::string finalizeKernelFunction(); 415 416 /// Finalize the generation of the kernel arguments. 417 /// 418 /// This function ensures that not-read-only scalars used in a kernel are 419 /// stored back to the global memory location they ared backed up with before 420 /// the kernel terminates. 421 /// 422 /// @params Kernel The kernel to finalize kernel arguments for. 423 void finalizeKernelArguments(ppcg_kernel *Kernel); 424 425 /// Create code that allocates memory to store arrays on device. 426 void allocateDeviceArrays(); 427 428 /// Free all allocated device arrays. 429 void freeDeviceArrays(); 430 431 /// Create a call to initialize the GPU context. 432 /// 433 /// @returns A pointer to the newly initialized context. 434 Value *createCallInitContext(); 435 436 /// Create a call to get the device pointer for a kernel allocation. 437 /// 438 /// @param Allocation The Polly GPU allocation 439 /// 440 /// @returns The device parameter corresponding to this allocation. 441 Value *createCallGetDevicePtr(Value *Allocation); 442 443 /// Create a call to free the GPU context. 444 /// 445 /// @param Context A pointer to an initialized GPU context. 446 void createCallFreeContext(Value *Context); 447 448 /// Create a call to allocate memory on the device. 449 /// 450 /// @param Size The size of memory to allocate 451 /// 452 /// @returns A pointer that identifies this allocation. 453 Value *createCallAllocateMemoryForDevice(Value *Size); 454 455 /// Create a call to free a device array. 456 /// 457 /// @param Array The device array to free. 458 void createCallFreeDeviceMemory(Value *Array); 459 460 /// Create a call to copy data from host to device. 461 /// 462 /// @param HostPtr A pointer to the host data that should be copied. 463 /// @param DevicePtr A device pointer specifying the location to copy to. 464 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 465 Value *Size); 466 467 /// Create a call to copy data from device to host. 468 /// 469 /// @param DevicePtr A pointer to the device data that should be copied. 470 /// @param HostPtr A host pointer specifying the location to copy to. 471 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 472 Value *Size); 473 474 /// Create a call to synchronize Host & Device. 475 /// \note 476 /// This is to be used only with managed memory. 477 void createCallSynchronizeDevice(); 478 479 /// Create a call to get a kernel from an assembly string. 480 /// 481 /// @param Buffer The string describing the kernel. 482 /// @param Entry The name of the kernel function to call. 483 /// 484 /// @returns A pointer to a kernel object 485 Value *createCallGetKernel(Value *Buffer, Value *Entry); 486 487 /// Create a call to free a GPU kernel. 488 /// 489 /// @param GPUKernel THe kernel to free. 490 void createCallFreeKernel(Value *GPUKernel); 491 492 /// Create a call to launch a GPU kernel. 493 /// 494 /// @param GPUKernel The kernel to launch. 495 /// @param GridDimX The size of the first grid dimension. 496 /// @param GridDimY The size of the second grid dimension. 497 /// @param GridBlockX The size of the first block dimension. 498 /// @param GridBlockY The size of the second block dimension. 499 /// @param GridBlockZ The size of the third block dimension. 500 /// @param Paramters A pointer to an array that contains itself pointers to 501 /// the parameter values passed for each kernel argument. 502 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 503 Value *GridDimY, Value *BlockDimX, 504 Value *BlockDimY, Value *BlockDimZ, 505 Value *Parameters); 506 }; 507 508 void GPUNodeBuilder::initializeAfterRTH() { 509 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 510 &*Builder.GetInsertPoint(), &DT, &LI); 511 NewBB->setName("polly.acc.initialize"); 512 Builder.SetInsertPoint(&NewBB->front()); 513 514 GPUContext = createCallInitContext(); 515 516 if (!ManagedMemory) 517 allocateDeviceArrays(); 518 } 519 520 void GPUNodeBuilder::finalize() { 521 if (!ManagedMemory) 522 freeDeviceArrays(); 523 524 createCallFreeContext(GPUContext); 525 IslNodeBuilder::finalize(); 526 } 527 528 void GPUNodeBuilder::allocateDeviceArrays() { 529 assert(!ManagedMemory && "Managed memory will directly send host pointers " 530 "to the kernel. There is no need for device arrays"); 531 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 532 533 for (int i = 0; i < Prog->n_array; ++i) { 534 gpu_array_info *Array = &Prog->array[i]; 535 auto *ScopArray = (ScopArrayInfo *)Array->user; 536 std::string DevArrayName("p_dev_array_"); 537 DevArrayName.append(Array->name); 538 539 Value *ArraySize = getArraySize(Array); 540 Value *Offset = getArrayOffset(Array); 541 if (Offset) 542 ArraySize = Builder.CreateSub( 543 ArraySize, 544 Builder.CreateMul(Offset, 545 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 546 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 547 DevArray->setName(DevArrayName); 548 DeviceAllocations[ScopArray] = DevArray; 549 } 550 551 isl_ast_build_free(Build); 552 } 553 554 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 555 Value *BlockDimY, Value *BlockDimZ) { 556 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 557 558 for (auto &F : *M) { 559 if (F.getCallingConv() != CallingConv::PTX_Kernel) 560 continue; 561 562 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 563 564 Metadata *Elements[] = { 565 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 566 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 567 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 568 ValueAsMetadata::get(V[2]), 569 }; 570 MDNode *Node = MDNode::get(M->getContext(), Elements); 571 AnnotationNode->addOperand(Node); 572 } 573 } 574 575 void GPUNodeBuilder::freeDeviceArrays() { 576 assert(!ManagedMemory && "Managed memory does not use device arrays"); 577 for (auto &Array : DeviceAllocations) 578 createCallFreeDeviceMemory(Array.second); 579 } 580 581 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 582 const char *Name = "polly_getKernel"; 583 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 584 Function *F = M->getFunction(Name); 585 586 // If F is not available, declare it. 587 if (!F) { 588 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 589 std::vector<Type *> Args; 590 Args.push_back(Builder.getInt8PtrTy()); 591 Args.push_back(Builder.getInt8PtrTy()); 592 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 593 F = Function::Create(Ty, Linkage, Name, M); 594 } 595 596 return Builder.CreateCall(F, {Buffer, Entry}); 597 } 598 599 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 600 const char *Name = "polly_getDevicePtr"; 601 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 602 Function *F = M->getFunction(Name); 603 604 // If F is not available, declare it. 605 if (!F) { 606 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 607 std::vector<Type *> Args; 608 Args.push_back(Builder.getInt8PtrTy()); 609 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 610 F = Function::Create(Ty, Linkage, Name, M); 611 } 612 613 return Builder.CreateCall(F, {Allocation}); 614 } 615 616 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 617 Value *GridDimY, Value *BlockDimX, 618 Value *BlockDimY, Value *BlockDimZ, 619 Value *Parameters) { 620 const char *Name = "polly_launchKernel"; 621 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 622 Function *F = M->getFunction(Name); 623 624 // If F is not available, declare it. 625 if (!F) { 626 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 627 std::vector<Type *> Args; 628 Args.push_back(Builder.getInt8PtrTy()); 629 Args.push_back(Builder.getInt32Ty()); 630 Args.push_back(Builder.getInt32Ty()); 631 Args.push_back(Builder.getInt32Ty()); 632 Args.push_back(Builder.getInt32Ty()); 633 Args.push_back(Builder.getInt32Ty()); 634 Args.push_back(Builder.getInt8PtrTy()); 635 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 636 F = Function::Create(Ty, Linkage, Name, M); 637 } 638 639 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 640 BlockDimZ, Parameters}); 641 } 642 643 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 644 const char *Name = "polly_freeKernel"; 645 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 646 Function *F = M->getFunction(Name); 647 648 // If F is not available, declare it. 649 if (!F) { 650 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 651 std::vector<Type *> Args; 652 Args.push_back(Builder.getInt8PtrTy()); 653 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 654 F = Function::Create(Ty, Linkage, Name, M); 655 } 656 657 Builder.CreateCall(F, {GPUKernel}); 658 } 659 660 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 661 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 662 "for device"); 663 const char *Name = "polly_freeDeviceMemory"; 664 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 665 Function *F = M->getFunction(Name); 666 667 // If F is not available, declare it. 668 if (!F) { 669 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 670 std::vector<Type *> Args; 671 Args.push_back(Builder.getInt8PtrTy()); 672 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 673 F = Function::Create(Ty, Linkage, Name, M); 674 } 675 676 Builder.CreateCall(F, {Array}); 677 } 678 679 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 680 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 681 "for device"); 682 const char *Name = "polly_allocateMemoryForDevice"; 683 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 684 Function *F = M->getFunction(Name); 685 686 // If F is not available, declare it. 687 if (!F) { 688 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 689 std::vector<Type *> Args; 690 Args.push_back(Builder.getInt64Ty()); 691 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 692 F = Function::Create(Ty, Linkage, Name, M); 693 } 694 695 return Builder.CreateCall(F, {Size}); 696 } 697 698 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 699 Value *DeviceData, 700 Value *Size) { 701 assert(!ManagedMemory && "Managed memory does not transfer memory between " 702 "device and host"); 703 const char *Name = "polly_copyFromHostToDevice"; 704 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 705 Function *F = M->getFunction(Name); 706 707 // If F is not available, declare it. 708 if (!F) { 709 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 710 std::vector<Type *> Args; 711 Args.push_back(Builder.getInt8PtrTy()); 712 Args.push_back(Builder.getInt8PtrTy()); 713 Args.push_back(Builder.getInt64Ty()); 714 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 715 F = Function::Create(Ty, Linkage, Name, M); 716 } 717 718 Builder.CreateCall(F, {HostData, DeviceData, Size}); 719 } 720 721 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 722 Value *HostData, 723 Value *Size) { 724 assert(!ManagedMemory && "Managed memory does not transfer memory between " 725 "device and host"); 726 const char *Name = "polly_copyFromDeviceToHost"; 727 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 728 Function *F = M->getFunction(Name); 729 730 // If F is not available, declare it. 731 if (!F) { 732 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 733 std::vector<Type *> Args; 734 Args.push_back(Builder.getInt8PtrTy()); 735 Args.push_back(Builder.getInt8PtrTy()); 736 Args.push_back(Builder.getInt64Ty()); 737 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 738 F = Function::Create(Ty, Linkage, Name, M); 739 } 740 741 Builder.CreateCall(F, {DeviceData, HostData, Size}); 742 } 743 744 void GPUNodeBuilder::createCallSynchronizeDevice() { 745 assert(ManagedMemory && "explicit synchronization is only necessary for " 746 "managed memory"); 747 const char *Name = "polly_synchronizeDevice"; 748 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 749 Function *F = M->getFunction(Name); 750 751 // If F is not available, declare it. 752 if (!F) { 753 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 754 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 755 F = Function::Create(Ty, Linkage, Name, M); 756 } 757 758 Builder.CreateCall(F); 759 } 760 761 Value *GPUNodeBuilder::createCallInitContext() { 762 const char *Name; 763 764 switch (Runtime) { 765 case GPURuntime::CUDA: 766 Name = "polly_initContextCUDA"; 767 break; 768 case GPURuntime::OpenCL: 769 Name = "polly_initContextCL"; 770 break; 771 } 772 773 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 774 Function *F = M->getFunction(Name); 775 776 // If F is not available, declare it. 777 if (!F) { 778 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 779 std::vector<Type *> Args; 780 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 781 F = Function::Create(Ty, Linkage, Name, M); 782 } 783 784 return Builder.CreateCall(F, {}); 785 } 786 787 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 788 const char *Name = "polly_freeContext"; 789 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 790 Function *F = M->getFunction(Name); 791 792 // If F is not available, declare it. 793 if (!F) { 794 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 795 std::vector<Type *> Args; 796 Args.push_back(Builder.getInt8PtrTy()); 797 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 798 F = Function::Create(Ty, Linkage, Name, M); 799 } 800 801 Builder.CreateCall(F, {Context}); 802 } 803 804 /// Check if one string is a prefix of another. 805 /// 806 /// @param String The string in which to look for the prefix. 807 /// @param Prefix The prefix to look for. 808 static bool isPrefix(std::string String, std::string Prefix) { 809 return String.find(Prefix) == 0; 810 } 811 812 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 813 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 814 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 815 816 if (!gpu_array_is_scalar(Array)) { 817 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 818 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 819 820 for (unsigned int i = 1; i < Array->n_index; i++) { 821 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 822 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 823 Res = isl_ast_expr_mul(Res, Expr); 824 } 825 826 Value *NumElements = ExprBuilder.create(Res); 827 if (NumElements->getType() != ArraySize->getType()) 828 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 829 ArraySize = Builder.CreateMul(ArraySize, NumElements); 830 } 831 isl_ast_build_free(Build); 832 return ArraySize; 833 } 834 835 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 836 if (gpu_array_is_scalar(Array)) 837 return nullptr; 838 839 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 840 841 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 842 843 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 844 845 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 846 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 847 848 if (isl_set_is_subset(Min, ZeroSet)) { 849 isl_set_free(Min); 850 isl_set_free(ZeroSet); 851 isl_ast_build_free(Build); 852 return nullptr; 853 } 854 isl_set_free(ZeroSet); 855 856 isl_ast_expr *Result = 857 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 858 859 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 860 if (i > 0) { 861 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i - 1]); 862 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 863 Result = isl_ast_expr_mul(Result, BExpr); 864 } 865 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 866 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 867 Result = isl_ast_expr_add(Result, MExpr); 868 } 869 870 Value *ResultValue = ExprBuilder.create(Result); 871 isl_set_free(Min); 872 isl_ast_build_free(Build); 873 874 return ResultValue; 875 } 876 877 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 878 ScopArrayInfo *ArrayInfo) { 879 880 assert(ManagedMemory && "Only used when you wish to get a host " 881 "pointer for sending data to the kernel, " 882 "with managed memory"); 883 std::map<ScopArrayInfo *, Value *>::iterator it; 884 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 885 return it->second; 886 } else { 887 Value *HostPtr; 888 889 if (gpu_array_is_scalar(Array)) 890 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 891 else 892 HostPtr = ArrayInfo->getBasePtr(); 893 894 Value *Offset = getArrayOffset(Array); 895 if (Offset) { 896 HostPtr = Builder.CreatePointerCast( 897 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 898 HostPtr = Builder.CreateGEP(HostPtr, Offset); 899 } 900 901 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 902 DeviceAllocations[ArrayInfo] = HostPtr; 903 return HostPtr; 904 } 905 } 906 907 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 908 enum DataDirection Direction) { 909 assert(!ManagedMemory && "Managed memory needs no data transfers"); 910 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 911 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 912 isl_id *Id = isl_ast_expr_get_id(Arg); 913 auto Array = (gpu_array_info *)isl_id_get_user(Id); 914 auto ScopArray = (ScopArrayInfo *)(Array->user); 915 916 Value *Size = getArraySize(Array); 917 Value *Offset = getArrayOffset(Array); 918 Value *DevPtr = DeviceAllocations[ScopArray]; 919 920 Value *HostPtr; 921 922 if (gpu_array_is_scalar(Array)) 923 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 924 else 925 HostPtr = ScopArray->getBasePtr(); 926 927 if (Offset) { 928 HostPtr = Builder.CreatePointerCast( 929 HostPtr, ScopArray->getElementType()->getPointerTo()); 930 HostPtr = Builder.CreateGEP(HostPtr, Offset); 931 } 932 933 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 934 935 if (Offset) { 936 Size = Builder.CreateSub( 937 Size, Builder.CreateMul( 938 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 939 } 940 941 if (Direction == HOST_TO_DEVICE) 942 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 943 else 944 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 945 946 isl_id_free(Id); 947 isl_ast_expr_free(Arg); 948 isl_ast_expr_free(Expr); 949 isl_ast_node_free(TransferStmt); 950 } 951 952 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 953 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 954 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 955 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 956 isl_id_free(Id); 957 isl_ast_expr_free(StmtExpr); 958 959 const char *Str = isl_id_get_name(Id); 960 if (!strcmp(Str, "kernel")) { 961 createKernel(UserStmt); 962 isl_ast_expr_free(Expr); 963 return; 964 } 965 966 if (isPrefix(Str, "to_device")) { 967 if (!ManagedMemory) 968 createDataTransfer(UserStmt, HOST_TO_DEVICE); 969 else 970 isl_ast_node_free(UserStmt); 971 972 isl_ast_expr_free(Expr); 973 return; 974 } 975 976 if (isPrefix(Str, "from_device")) { 977 if (!ManagedMemory) { 978 createDataTransfer(UserStmt, DEVICE_TO_HOST); 979 } else { 980 createCallSynchronizeDevice(); 981 isl_ast_node_free(UserStmt); 982 } 983 isl_ast_expr_free(Expr); 984 return; 985 } 986 987 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 988 struct ppcg_kernel_stmt *KernelStmt = 989 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 990 isl_id_free(Anno); 991 992 switch (KernelStmt->type) { 993 case ppcg_kernel_domain: 994 createScopStmt(Expr, KernelStmt); 995 isl_ast_node_free(UserStmt); 996 return; 997 case ppcg_kernel_copy: 998 createKernelCopy(KernelStmt); 999 isl_ast_expr_free(Expr); 1000 isl_ast_node_free(UserStmt); 1001 return; 1002 case ppcg_kernel_sync: 1003 createKernelSync(); 1004 isl_ast_expr_free(Expr); 1005 isl_ast_node_free(UserStmt); 1006 return; 1007 } 1008 1009 isl_ast_expr_free(Expr); 1010 isl_ast_node_free(UserStmt); 1011 return; 1012 } 1013 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1014 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1015 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1016 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1017 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1018 Index = isl_ast_expr_address_of(Index); 1019 Value *GlobalAddr = ExprBuilder.create(Index); 1020 1021 if (KernelStmt->u.c.read) { 1022 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1023 Builder.CreateStore(Load, LocalAddr); 1024 } else { 1025 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1026 Builder.CreateStore(Load, GlobalAddr); 1027 } 1028 } 1029 1030 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1031 ppcg_kernel_stmt *KernelStmt) { 1032 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1033 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1034 1035 LoopToScevMapT LTS; 1036 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1037 1038 createSubstitutions(Expr, Stmt, LTS); 1039 1040 if (Stmt->isBlockStmt()) 1041 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1042 else 1043 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1044 } 1045 1046 void GPUNodeBuilder::createKernelSync() { 1047 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1048 1049 Function *Sync; 1050 1051 switch (Arch) { 1052 case GPUArch::NVPTX64: 1053 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1054 break; 1055 } 1056 1057 Builder.CreateCall(Sync, {}); 1058 } 1059 1060 /// Collect llvm::Values referenced from @p Node 1061 /// 1062 /// This function only applies to isl_ast_nodes that are user_nodes referring 1063 /// to a ScopStmt. All other node types are ignore. 1064 /// 1065 /// @param Node The node to collect references for. 1066 /// @param User A user pointer used as storage for the data that is collected. 1067 /// 1068 /// @returns isl_bool_true if data could be collected successfully. 1069 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1070 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1071 return isl_bool_true; 1072 1073 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1074 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1075 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1076 const char *Str = isl_id_get_name(Id); 1077 isl_id_free(Id); 1078 isl_ast_expr_free(StmtExpr); 1079 isl_ast_expr_free(Expr); 1080 1081 if (!isPrefix(Str, "Stmt")) 1082 return isl_bool_true; 1083 1084 Id = isl_ast_node_get_annotation(Node); 1085 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1086 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1087 isl_id_free(Id); 1088 1089 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1090 1091 return isl_bool_true; 1092 } 1093 1094 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1095 SetVector<Value *> SubtreeValues; 1096 SetVector<const SCEV *> SCEVs; 1097 SetVector<const Loop *> Loops; 1098 SubtreeReferences References = { 1099 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1100 1101 for (const auto &I : IDToValue) 1102 SubtreeValues.insert(I.second); 1103 1104 isl_ast_node_foreach_descendant_top_down( 1105 Kernel->tree, collectReferencesInGPUStmt, &References); 1106 1107 for (const SCEV *Expr : SCEVs) 1108 findValues(Expr, SE, SubtreeValues); 1109 1110 for (auto &SAI : S.arrays()) 1111 SubtreeValues.remove(SAI->getBasePtr()); 1112 1113 isl_space *Space = S.getParamSpace(); 1114 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1115 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1116 assert(IDToValue.count(Id)); 1117 Value *Val = IDToValue[Id]; 1118 SubtreeValues.remove(Val); 1119 isl_id_free(Id); 1120 } 1121 isl_space_free(Space); 1122 1123 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1124 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1125 assert(IDToValue.count(Id)); 1126 Value *Val = IDToValue[Id]; 1127 SubtreeValues.remove(Val); 1128 isl_id_free(Id); 1129 } 1130 1131 return SubtreeValues; 1132 } 1133 1134 void GPUNodeBuilder::clearDominators(Function *F) { 1135 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1136 std::vector<BasicBlock *> Nodes; 1137 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1138 Nodes.push_back(I->getBlock()); 1139 1140 for (BasicBlock *BB : Nodes) 1141 DT.eraseNode(BB); 1142 } 1143 1144 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1145 for (BasicBlock &BB : *F) { 1146 Loop *L = LI.getLoopFor(&BB); 1147 if (L) 1148 SE.forgetLoop(L); 1149 } 1150 } 1151 1152 void GPUNodeBuilder::clearLoops(Function *F) { 1153 for (BasicBlock &BB : *F) { 1154 Loop *L = LI.getLoopFor(&BB); 1155 if (L) 1156 SE.forgetLoop(L); 1157 LI.removeBlock(&BB); 1158 } 1159 } 1160 1161 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1162 std::vector<Value *> Sizes; 1163 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1164 1165 for (long i = 0; i < Kernel->n_grid; i++) { 1166 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1167 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1168 Value *Res = ExprBuilder.create(GridSize); 1169 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1170 Sizes.push_back(Res); 1171 } 1172 isl_ast_build_free(Context); 1173 1174 for (long i = Kernel->n_grid; i < 3; i++) 1175 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1176 1177 return std::make_tuple(Sizes[0], Sizes[1]); 1178 } 1179 1180 std::tuple<Value *, Value *, Value *> 1181 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1182 std::vector<Value *> Sizes; 1183 1184 for (long i = 0; i < Kernel->n_block; i++) { 1185 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1186 Sizes.push_back(Res); 1187 } 1188 1189 for (long i = Kernel->n_block; i < 3; i++) 1190 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1191 1192 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1193 } 1194 1195 Value * 1196 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1197 SetVector<Value *> SubtreeValues) { 1198 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 1199 std::distance(F->arg_begin(), F->arg_end())); 1200 1201 BasicBlock *EntryBlock = 1202 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1203 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1204 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1205 Instruction *Parameters = new AllocaInst( 1206 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1207 1208 int Index = 0; 1209 for (long i = 0; i < Prog->n_array; i++) { 1210 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1211 continue; 1212 1213 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1214 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1215 1216 Value *DevArray = nullptr; 1217 if (ManagedMemory) { 1218 DevArray = getOrCreateManagedDeviceArray( 1219 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1220 } else { 1221 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1222 DevArray = createCallGetDevicePtr(DevArray); 1223 } 1224 assert(DevArray != nullptr && "Array to be offloaded to device not " 1225 "initialized"); 1226 Value *Offset = getArrayOffset(&Prog->array[i]); 1227 1228 if (Offset) { 1229 DevArray = Builder.CreatePointerCast( 1230 DevArray, SAI->getElementType()->getPointerTo()); 1231 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1232 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1233 } 1234 Value *Slot = Builder.CreateGEP( 1235 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1236 1237 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1238 Value *ValPtr = nullptr; 1239 if (ManagedMemory) 1240 ValPtr = DevArray; 1241 else 1242 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1243 1244 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1245 " to be stored into Parameters"); 1246 Value *ValPtrCast = 1247 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1248 Builder.CreateStore(ValPtrCast, Slot); 1249 } else { 1250 Instruction *Param = 1251 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1252 Launch + "_param_" + std::to_string(Index), 1253 EntryBlock->getTerminator()); 1254 Builder.CreateStore(DevArray, Param); 1255 Value *ParamTyped = 1256 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1257 Builder.CreateStore(ParamTyped, Slot); 1258 } 1259 Index++; 1260 } 1261 1262 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1263 1264 for (long i = 0; i < NumHostIters; i++) { 1265 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1266 Value *Val = IDToValue[Id]; 1267 isl_id_free(Id); 1268 Instruction *Param = 1269 new AllocaInst(Val->getType(), AddressSpace, 1270 Launch + "_param_" + std::to_string(Index), 1271 EntryBlock->getTerminator()); 1272 Builder.CreateStore(Val, Param); 1273 Value *Slot = Builder.CreateGEP( 1274 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1275 Value *ParamTyped = 1276 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1277 Builder.CreateStore(ParamTyped, Slot); 1278 Index++; 1279 } 1280 1281 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1282 1283 for (long i = 0; i < NumVars; i++) { 1284 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1285 Value *Val = IDToValue[Id]; 1286 isl_id_free(Id); 1287 Instruction *Param = 1288 new AllocaInst(Val->getType(), AddressSpace, 1289 Launch + "_param_" + std::to_string(Index), 1290 EntryBlock->getTerminator()); 1291 Builder.CreateStore(Val, Param); 1292 Value *Slot = Builder.CreateGEP( 1293 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1294 Value *ParamTyped = 1295 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1296 Builder.CreateStore(ParamTyped, Slot); 1297 Index++; 1298 } 1299 1300 for (auto Val : SubtreeValues) { 1301 Instruction *Param = 1302 new AllocaInst(Val->getType(), AddressSpace, 1303 Launch + "_param_" + std::to_string(Index), 1304 EntryBlock->getTerminator()); 1305 Builder.CreateStore(Val, Param); 1306 Value *Slot = Builder.CreateGEP( 1307 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1308 Value *ParamTyped = 1309 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1310 Builder.CreateStore(ParamTyped, Slot); 1311 Index++; 1312 } 1313 1314 auto Location = EntryBlock->getTerminator(); 1315 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1316 Launch + "_params_i8ptr", Location); 1317 } 1318 1319 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1320 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1321 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1322 isl_id_free(Id); 1323 isl_ast_node_free(KernelStmt); 1324 1325 if (Kernel->n_grid > 1) 1326 DeepestParallel = 1327 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1328 else 1329 DeepestSequential = 1330 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1331 1332 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1333 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1334 1335 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 1336 1337 assert(Kernel->tree && "Device AST of kernel node is empty"); 1338 1339 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1340 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1341 ValueMapT HostValueMap = ValueMap; 1342 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1343 ScalarMap.clear(); 1344 1345 SetVector<const Loop *> Loops; 1346 1347 // Create for all loops we depend on values that contain the current loop 1348 // iteration. These values are necessary to generate code for SCEVs that 1349 // depend on such loops. As a result we need to pass them to the subfunction. 1350 for (const Loop *L : Loops) { 1351 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1352 SE.getUnknown(Builder.getInt64(1)), 1353 L, SCEV::FlagAnyWrap); 1354 Value *V = generateSCEV(OuterLIV); 1355 OutsideLoopIterations[L] = SE.getUnknown(V); 1356 SubtreeValues.insert(V); 1357 } 1358 1359 createKernelFunction(Kernel, SubtreeValues); 1360 1361 create(isl_ast_node_copy(Kernel->tree)); 1362 1363 finalizeKernelArguments(Kernel); 1364 Function *F = Builder.GetInsertBlock()->getParent(); 1365 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1366 clearDominators(F); 1367 clearScalarEvolution(F); 1368 clearLoops(F); 1369 1370 IDToValue = HostIDs; 1371 1372 ValueMap = std::move(HostValueMap); 1373 ScalarMap = std::move(HostScalarMap); 1374 EscapeMap.clear(); 1375 IDToSAI.clear(); 1376 Annotator.resetAlternativeAliasBases(); 1377 for (auto &BasePtr : LocalArrays) 1378 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1379 LocalArrays.clear(); 1380 1381 std::string ASMString = finalizeKernelFunction(); 1382 Builder.SetInsertPoint(&HostInsertPoint); 1383 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1384 1385 std::string Name = "kernel_" + std::to_string(Kernel->id); 1386 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1387 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1388 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1389 1390 Value *GridDimX, *GridDimY; 1391 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1392 1393 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1394 BlockDimZ, Parameters); 1395 createCallFreeKernel(GPUKernel); 1396 1397 for (auto Id : KernelIds) 1398 isl_id_free(Id); 1399 1400 KernelIds.clear(); 1401 } 1402 1403 /// Compute the DataLayout string for the NVPTX backend. 1404 /// 1405 /// @param is64Bit Are we looking for a 64 bit architecture? 1406 static std::string computeNVPTXDataLayout(bool is64Bit) { 1407 std::string Ret = ""; 1408 1409 if (!is64Bit) { 1410 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1411 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1412 "64-v128:128:128-n16:32:64"; 1413 } else { 1414 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1415 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1416 "64-v128:128:128-n16:32:64"; 1417 } 1418 1419 return Ret; 1420 } 1421 1422 Function * 1423 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1424 SetVector<Value *> &SubtreeValues) { 1425 std::vector<Type *> Args; 1426 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1427 1428 for (long i = 0; i < Prog->n_array; i++) { 1429 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1430 continue; 1431 1432 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1433 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1434 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1435 Args.push_back(SAI->getElementType()); 1436 } else { 1437 static const int UseGlobalMemory = 1; 1438 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1439 } 1440 } 1441 1442 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1443 1444 for (long i = 0; i < NumHostIters; i++) 1445 Args.push_back(Builder.getInt64Ty()); 1446 1447 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1448 1449 for (long i = 0; i < NumVars; i++) { 1450 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1451 Value *Val = IDToValue[Id]; 1452 isl_id_free(Id); 1453 Args.push_back(Val->getType()); 1454 } 1455 1456 for (auto *V : SubtreeValues) 1457 Args.push_back(V->getType()); 1458 1459 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1460 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1461 GPUModule.get()); 1462 1463 switch (Arch) { 1464 case GPUArch::NVPTX64: 1465 FN->setCallingConv(CallingConv::PTX_Kernel); 1466 break; 1467 } 1468 1469 auto Arg = FN->arg_begin(); 1470 for (long i = 0; i < Kernel->n_array; i++) { 1471 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1472 continue; 1473 1474 Arg->setName(Kernel->array[i].array->name); 1475 1476 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1477 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1478 Type *EleTy = SAI->getElementType(); 1479 Value *Val = &*Arg; 1480 SmallVector<const SCEV *, 4> Sizes; 1481 isl_ast_build *Build = 1482 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1483 Sizes.push_back(nullptr); 1484 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1485 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1486 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1487 auto V = ExprBuilder.create(DimSize); 1488 Sizes.push_back(SE.getSCEV(V)); 1489 } 1490 const ScopArrayInfo *SAIRep = 1491 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1492 LocalArrays.push_back(Val); 1493 1494 isl_ast_build_free(Build); 1495 KernelIds.push_back(Id); 1496 IDToSAI[Id] = SAIRep; 1497 Arg++; 1498 } 1499 1500 for (long i = 0; i < NumHostIters; i++) { 1501 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1502 Arg->setName(isl_id_get_name(Id)); 1503 IDToValue[Id] = &*Arg; 1504 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1505 Arg++; 1506 } 1507 1508 for (long i = 0; i < NumVars; i++) { 1509 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1510 Arg->setName(isl_id_get_name(Id)); 1511 Value *Val = IDToValue[Id]; 1512 ValueMap[Val] = &*Arg; 1513 IDToValue[Id] = &*Arg; 1514 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1515 Arg++; 1516 } 1517 1518 for (auto *V : SubtreeValues) { 1519 Arg->setName(V->getName()); 1520 ValueMap[V] = &*Arg; 1521 Arg++; 1522 } 1523 1524 return FN; 1525 } 1526 1527 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1528 Intrinsic::ID IntrinsicsBID[2]; 1529 Intrinsic::ID IntrinsicsTID[3]; 1530 1531 switch (Arch) { 1532 case GPUArch::NVPTX64: 1533 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1534 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1535 1536 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1537 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1538 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1539 break; 1540 } 1541 1542 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1543 std::string Name = isl_id_get_name(Id); 1544 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1545 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1546 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1547 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1548 IDToValue[Id] = Val; 1549 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1550 }; 1551 1552 for (int i = 0; i < Kernel->n_grid; ++i) { 1553 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1554 addId(Id, IntrinsicsBID[i]); 1555 } 1556 1557 for (int i = 0; i < Kernel->n_block; ++i) { 1558 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1559 addId(Id, IntrinsicsTID[i]); 1560 } 1561 } 1562 1563 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1564 auto Arg = FN->arg_begin(); 1565 for (long i = 0; i < Kernel->n_array; i++) { 1566 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1567 continue; 1568 1569 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1570 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1571 isl_id_free(Id); 1572 1573 if (SAI->getNumberOfDimensions() > 0) { 1574 Arg++; 1575 continue; 1576 } 1577 1578 Value *Val = &*Arg; 1579 1580 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1581 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1582 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1583 Val = Builder.CreateLoad(TypedArgPtr); 1584 } 1585 1586 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1587 Builder.CreateStore(Val, Alloca); 1588 1589 Arg++; 1590 } 1591 } 1592 1593 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1594 auto *FN = Builder.GetInsertBlock()->getParent(); 1595 auto Arg = FN->arg_begin(); 1596 1597 bool StoredScalar = false; 1598 for (long i = 0; i < Kernel->n_array; i++) { 1599 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1600 continue; 1601 1602 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1603 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1604 isl_id_free(Id); 1605 1606 if (SAI->getNumberOfDimensions() > 0) { 1607 Arg++; 1608 continue; 1609 } 1610 1611 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1612 Arg++; 1613 continue; 1614 } 1615 1616 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1617 Value *ArgPtr = &*Arg; 1618 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1619 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1620 Value *Val = Builder.CreateLoad(Alloca); 1621 Builder.CreateStore(Val, TypedArgPtr); 1622 StoredScalar = true; 1623 1624 Arg++; 1625 } 1626 1627 if (StoredScalar) 1628 /// In case more than one thread contains scalar stores, the generated 1629 /// code might be incorrect, if we only store at the end of the kernel. 1630 /// To support this case we need to store these scalars back at each 1631 /// memory store or at least before each kernel barrier. 1632 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1633 BuildSuccessful = 0; 1634 } 1635 1636 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1637 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1638 1639 for (int i = 0; i < Kernel->n_var; ++i) { 1640 struct ppcg_kernel_var &Var = Kernel->var[i]; 1641 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1642 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1643 1644 Type *ArrayTy = EleTy; 1645 SmallVector<const SCEV *, 4> Sizes; 1646 1647 Sizes.push_back(nullptr); 1648 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1649 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1650 long Bound = isl_val_get_num_si(Val); 1651 isl_val_free(Val); 1652 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1653 } 1654 1655 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1656 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1657 long Bound = isl_val_get_num_si(Val); 1658 isl_val_free(Val); 1659 ArrayTy = ArrayType::get(ArrayTy, Bound); 1660 } 1661 1662 const ScopArrayInfo *SAI; 1663 Value *Allocation; 1664 if (Var.type == ppcg_access_shared) { 1665 auto GlobalVar = new GlobalVariable( 1666 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1667 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1668 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1669 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1670 1671 Allocation = GlobalVar; 1672 } else if (Var.type == ppcg_access_private) { 1673 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1674 } else { 1675 llvm_unreachable("unknown variable type"); 1676 } 1677 SAI = 1678 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1679 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1680 IDToValue[Id] = Allocation; 1681 LocalArrays.push_back(Allocation); 1682 KernelIds.push_back(Id); 1683 IDToSAI[Id] = SAI; 1684 } 1685 } 1686 1687 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1688 SetVector<Value *> &SubtreeValues) { 1689 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1690 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1691 1692 switch (Arch) { 1693 case GPUArch::NVPTX64: 1694 if (Runtime == GPURuntime::CUDA) 1695 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1696 else if (Runtime == GPURuntime::OpenCL) 1697 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 1698 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1699 break; 1700 } 1701 1702 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1703 1704 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1705 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1706 1707 DT.addNewBlock(EntryBlock, PrevBlock); 1708 1709 Builder.SetInsertPoint(EntryBlock); 1710 Builder.CreateRetVoid(); 1711 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1712 1713 ScopDetection::markFunctionAsInvalid(FN); 1714 1715 prepareKernelArguments(Kernel, FN); 1716 createKernelVariables(Kernel, FN); 1717 insertKernelIntrinsics(Kernel); 1718 } 1719 1720 std::string GPUNodeBuilder::createKernelASM() { 1721 llvm::Triple GPUTriple; 1722 1723 switch (Arch) { 1724 case GPUArch::NVPTX64: 1725 switch (Runtime) { 1726 case GPURuntime::CUDA: 1727 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 1728 break; 1729 case GPURuntime::OpenCL: 1730 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 1731 break; 1732 } 1733 break; 1734 } 1735 1736 std::string ErrMsg; 1737 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1738 1739 if (!GPUTarget) { 1740 errs() << ErrMsg << "\n"; 1741 return ""; 1742 } 1743 1744 TargetOptions Options; 1745 Options.UnsafeFPMath = FastMath; 1746 1747 std::string subtarget; 1748 1749 switch (Arch) { 1750 case GPUArch::NVPTX64: 1751 subtarget = CudaVersion; 1752 break; 1753 } 1754 1755 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 1756 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 1757 1758 SmallString<0> ASMString; 1759 raw_svector_ostream ASMStream(ASMString); 1760 llvm::legacy::PassManager PM; 1761 1762 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1763 1764 if (TargetM->addPassesToEmitFile( 1765 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1766 errs() << "The target does not support generation of this file type!\n"; 1767 return ""; 1768 } 1769 1770 PM.run(*GPUModule); 1771 1772 return ASMStream.str(); 1773 } 1774 1775 std::string GPUNodeBuilder::finalizeKernelFunction() { 1776 if (verifyModule(*GPUModule)) { 1777 BuildSuccessful = false; 1778 return ""; 1779 } 1780 1781 if (DumpKernelIR) 1782 outs() << *GPUModule << "\n"; 1783 1784 // Optimize module. 1785 llvm::legacy::PassManager OptPasses; 1786 PassManagerBuilder PassBuilder; 1787 PassBuilder.OptLevel = 3; 1788 PassBuilder.SizeLevel = 0; 1789 PassBuilder.populateModulePassManager(OptPasses); 1790 OptPasses.run(*GPUModule); 1791 1792 std::string Assembly = createKernelASM(); 1793 1794 if (DumpKernelASM) 1795 outs() << Assembly << "\n"; 1796 1797 GPUModule.release(); 1798 KernelIDs.clear(); 1799 1800 return Assembly; 1801 } 1802 1803 namespace { 1804 class PPCGCodeGeneration : public ScopPass { 1805 public: 1806 static char ID; 1807 1808 GPURuntime Runtime = GPURuntime::CUDA; 1809 1810 GPUArch Architecture = GPUArch::NVPTX64; 1811 1812 /// The scop that is currently processed. 1813 Scop *S; 1814 1815 LoopInfo *LI; 1816 DominatorTree *DT; 1817 ScalarEvolution *SE; 1818 const DataLayout *DL; 1819 RegionInfo *RI; 1820 1821 PPCGCodeGeneration() : ScopPass(ID) {} 1822 1823 /// Construct compilation options for PPCG. 1824 /// 1825 /// @returns The compilation options. 1826 ppcg_options *createPPCGOptions() { 1827 auto DebugOptions = 1828 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1829 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1830 1831 DebugOptions->dump_schedule_constraints = false; 1832 DebugOptions->dump_schedule = false; 1833 DebugOptions->dump_final_schedule = false; 1834 DebugOptions->dump_sizes = false; 1835 DebugOptions->verbose = false; 1836 1837 Options->debug = DebugOptions; 1838 1839 Options->reschedule = true; 1840 Options->scale_tile_loops = false; 1841 Options->wrap = false; 1842 1843 Options->non_negative_parameters = false; 1844 Options->ctx = nullptr; 1845 Options->sizes = nullptr; 1846 1847 Options->tile_size = 32; 1848 1849 Options->use_private_memory = PrivateMemory; 1850 Options->use_shared_memory = SharedMemory; 1851 Options->max_shared_memory = 48 * 1024; 1852 1853 Options->target = PPCG_TARGET_CUDA; 1854 Options->openmp = false; 1855 Options->linearize_device_arrays = true; 1856 Options->live_range_reordering = false; 1857 1858 Options->opencl_compiler_options = nullptr; 1859 Options->opencl_use_gpu = false; 1860 Options->opencl_n_include_file = 0; 1861 Options->opencl_include_files = nullptr; 1862 Options->opencl_print_kernel_types = false; 1863 Options->opencl_embed_kernel_code = false; 1864 1865 Options->save_schedule_file = nullptr; 1866 Options->load_schedule_file = nullptr; 1867 1868 return Options; 1869 } 1870 1871 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1872 /// 1873 /// Instead of a normal access of the form: 1874 /// 1875 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1876 /// 1877 /// a tagged access has the form 1878 /// 1879 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1880 /// 1881 /// where 'id' is an additional space that references the memory access that 1882 /// triggered the access. 1883 /// 1884 /// @param AccessTy The type of the memory accesses to collect. 1885 /// 1886 /// @return The relation describing all tagged memory accesses. 1887 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1888 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1889 1890 for (auto &Stmt : *S) 1891 for (auto &Acc : Stmt) 1892 if (Acc->getType() == AccessTy) { 1893 isl_map *Relation = Acc->getAccessRelation(); 1894 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1895 1896 isl_space *Space = isl_map_get_space(Relation); 1897 Space = isl_space_range(Space); 1898 Space = isl_space_from_range(Space); 1899 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1900 isl_map *Universe = isl_map_universe(Space); 1901 Relation = isl_map_domain_product(Relation, Universe); 1902 Accesses = isl_union_map_add_map(Accesses, Relation); 1903 } 1904 1905 return Accesses; 1906 } 1907 1908 /// Get the set of all read accesses, tagged with the access id. 1909 /// 1910 /// @see getTaggedAccesses 1911 isl_union_map *getTaggedReads() { 1912 return getTaggedAccesses(MemoryAccess::READ); 1913 } 1914 1915 /// Get the set of all may (and must) accesses, tagged with the access id. 1916 /// 1917 /// @see getTaggedAccesses 1918 isl_union_map *getTaggedMayWrites() { 1919 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1920 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1921 } 1922 1923 /// Get the set of all must accesses, tagged with the access id. 1924 /// 1925 /// @see getTaggedAccesses 1926 isl_union_map *getTaggedMustWrites() { 1927 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1928 } 1929 1930 /// Collect parameter and array names as isl_ids. 1931 /// 1932 /// To reason about the different parameters and arrays used, ppcg requires 1933 /// a list of all isl_ids in use. As PPCG traditionally performs 1934 /// source-to-source compilation each of these isl_ids is mapped to the 1935 /// expression that represents it. As we do not have a corresponding 1936 /// expression in Polly, we just map each id to a 'zero' expression to match 1937 /// the data format that ppcg expects. 1938 /// 1939 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1940 __isl_give isl_id_to_ast_expr *getNames() { 1941 auto *Names = isl_id_to_ast_expr_alloc( 1942 S->getIslCtx(), 1943 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1944 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1945 auto *Space = S->getParamSpace(); 1946 1947 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1948 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1949 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1950 } 1951 1952 for (auto &Array : S->arrays()) { 1953 auto Id = Array->getBasePtrId(); 1954 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1955 } 1956 1957 isl_space_free(Space); 1958 isl_ast_expr_free(Zero); 1959 1960 return Names; 1961 } 1962 1963 /// Create a new PPCG scop from the current scop. 1964 /// 1965 /// The PPCG scop is initialized with data from the current polly::Scop. From 1966 /// this initial data, the data-dependences in the PPCG scop are initialized. 1967 /// We do not use Polly's dependence analysis for now, to ensure we match 1968 /// the PPCG default behaviour more closely. 1969 /// 1970 /// @returns A new ppcg scop. 1971 ppcg_scop *createPPCGScop() { 1972 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1973 1974 PPCGScop->options = createPPCGOptions(); 1975 1976 PPCGScop->start = 0; 1977 PPCGScop->end = 0; 1978 1979 PPCGScop->context = S->getContext(); 1980 PPCGScop->domain = S->getDomains(); 1981 PPCGScop->call = nullptr; 1982 PPCGScop->tagged_reads = getTaggedReads(); 1983 PPCGScop->reads = S->getReads(); 1984 PPCGScop->live_in = nullptr; 1985 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1986 PPCGScop->may_writes = S->getWrites(); 1987 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1988 PPCGScop->must_writes = S->getMustWrites(); 1989 PPCGScop->live_out = nullptr; 1990 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1991 PPCGScop->tagger = nullptr; 1992 1993 PPCGScop->independence = nullptr; 1994 PPCGScop->dep_flow = nullptr; 1995 PPCGScop->tagged_dep_flow = nullptr; 1996 PPCGScop->dep_false = nullptr; 1997 PPCGScop->dep_forced = nullptr; 1998 PPCGScop->dep_order = nullptr; 1999 PPCGScop->tagged_dep_order = nullptr; 2000 2001 PPCGScop->schedule = S->getScheduleTree(); 2002 PPCGScop->names = getNames(); 2003 2004 PPCGScop->pet = nullptr; 2005 2006 compute_tagger(PPCGScop); 2007 compute_dependences(PPCGScop); 2008 2009 return PPCGScop; 2010 } 2011 2012 /// Collect the array acesses in a statement. 2013 /// 2014 /// @param Stmt The statement for which to collect the accesses. 2015 /// 2016 /// @returns A list of array accesses. 2017 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2018 gpu_stmt_access *Accesses = nullptr; 2019 2020 for (MemoryAccess *Acc : Stmt) { 2021 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2022 Access->read = Acc->isRead(); 2023 Access->write = Acc->isWrite(); 2024 Access->access = Acc->getAccessRelation(); 2025 isl_space *Space = isl_map_get_space(Access->access); 2026 Space = isl_space_range(Space); 2027 Space = isl_space_from_range(Space); 2028 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2029 isl_map *Universe = isl_map_universe(Space); 2030 Access->tagged_access = 2031 isl_map_domain_product(Acc->getAccessRelation(), Universe); 2032 Access->exact_write = !Acc->isMayWrite(); 2033 Access->ref_id = Acc->getId(); 2034 Access->next = Accesses; 2035 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2036 Accesses = Access; 2037 } 2038 2039 return Accesses; 2040 } 2041 2042 /// Collect the list of GPU statements. 2043 /// 2044 /// Each statement has an id, a pointer to the underlying data structure, 2045 /// as well as a list with all memory accesses. 2046 /// 2047 /// TODO: Initialize the list of memory accesses. 2048 /// 2049 /// @returns A linked-list of statements. 2050 gpu_stmt *getStatements() { 2051 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2052 std::distance(S->begin(), S->end())); 2053 2054 int i = 0; 2055 for (auto &Stmt : *S) { 2056 gpu_stmt *GPUStmt = &Stmts[i]; 2057 2058 GPUStmt->id = Stmt.getDomainId(); 2059 2060 // We use the pet stmt pointer to keep track of the Polly statements. 2061 GPUStmt->stmt = (pet_stmt *)&Stmt; 2062 GPUStmt->accesses = getStmtAccesses(Stmt); 2063 i++; 2064 } 2065 2066 return Stmts; 2067 } 2068 2069 /// Derive the extent of an array. 2070 /// 2071 /// The extent of an array is the set of elements that are within the 2072 /// accessed array. For the inner dimensions, the extent constraints are 2073 /// 0 and the size of the corresponding array dimension. For the first 2074 /// (outermost) dimension, the extent constraints are the minimal and maximal 2075 /// subscript value for the first dimension. 2076 /// 2077 /// @param Array The array to derive the extent for. 2078 /// 2079 /// @returns An isl_set describing the extent of the array. 2080 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2081 unsigned NumDims = Array->getNumberOfDimensions(); 2082 isl_union_map *Accesses = S->getAccesses(); 2083 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2084 Accesses = isl_union_map_detect_equalities(Accesses); 2085 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2086 AccessUSet = isl_union_set_coalesce(AccessUSet); 2087 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2088 AccessUSet = isl_union_set_coalesce(AccessUSet); 2089 2090 if (isl_union_set_is_empty(AccessUSet)) { 2091 isl_union_set_free(AccessUSet); 2092 return isl_set_empty(Array->getSpace()); 2093 } 2094 2095 if (Array->getNumberOfDimensions() == 0) { 2096 isl_union_set_free(AccessUSet); 2097 return isl_set_universe(Array->getSpace()); 2098 } 2099 2100 isl_set *AccessSet = 2101 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 2102 2103 isl_union_set_free(AccessUSet); 2104 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 2105 2106 isl_pw_aff *Val = 2107 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2108 2109 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2110 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2111 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2112 isl_pw_aff_dim(Val, isl_dim_in)); 2113 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2114 isl_pw_aff_dim(Val, isl_dim_in)); 2115 OuterMin = 2116 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 2117 OuterMax = 2118 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 2119 2120 isl_set *Extent = isl_set_universe(Array->getSpace()); 2121 2122 Extent = isl_set_intersect( 2123 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2124 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2125 2126 for (unsigned i = 1; i < NumDims; ++i) 2127 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2128 2129 for (unsigned i = 1; i < NumDims; ++i) { 2130 isl_pw_aff *PwAff = 2131 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 2132 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2133 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 2134 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2135 isl_pw_aff_dim(Val, isl_dim_in)); 2136 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2137 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2138 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2139 Extent = isl_set_intersect(Set, Extent); 2140 } 2141 2142 return Extent; 2143 } 2144 2145 /// Derive the bounds of an array. 2146 /// 2147 /// For the first dimension we derive the bound of the array from the extent 2148 /// of this dimension. For inner dimensions we obtain their size directly from 2149 /// ScopArrayInfo. 2150 /// 2151 /// @param PPCGArray The array to compute bounds for. 2152 /// @param Array The polly array from which to take the information. 2153 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2154 if (PPCGArray.n_index > 0) { 2155 if (isl_set_is_empty(PPCGArray.extent)) { 2156 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2157 isl_local_space *LS = isl_local_space_from_space( 2158 isl_space_params(isl_set_get_space(Dom))); 2159 isl_set_free(Dom); 2160 isl_aff *Zero = isl_aff_zero_on_domain(LS); 2161 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 2162 } else { 2163 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2164 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2165 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2166 isl_set_free(Dom); 2167 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2168 isl_local_space *LS = 2169 isl_local_space_from_space(isl_set_get_space(Dom)); 2170 isl_aff *One = isl_aff_zero_on_domain(LS); 2171 One = isl_aff_add_constant_si(One, 1); 2172 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2173 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2174 PPCGArray.bound[0] = Bound; 2175 } 2176 } 2177 2178 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2179 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2180 auto LS = isl_pw_aff_get_domain_space(Bound); 2181 auto Aff = isl_multi_aff_zero(LS); 2182 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2183 PPCGArray.bound[i] = Bound; 2184 } 2185 } 2186 2187 /// Create the arrays for @p PPCGProg. 2188 /// 2189 /// @param PPCGProg The program to compute the arrays for. 2190 void createArrays(gpu_prog *PPCGProg) { 2191 int i = 0; 2192 for (auto &Array : S->arrays()) { 2193 std::string TypeName; 2194 raw_string_ostream OS(TypeName); 2195 2196 OS << *Array->getElementType(); 2197 TypeName = OS.str(); 2198 2199 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2200 2201 PPCGArray.space = Array->getSpace(); 2202 PPCGArray.type = strdup(TypeName.c_str()); 2203 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2204 PPCGArray.name = strdup(Array->getName().c_str()); 2205 PPCGArray.extent = nullptr; 2206 PPCGArray.n_index = Array->getNumberOfDimensions(); 2207 PPCGArray.bound = 2208 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 2209 PPCGArray.extent = getExtent(Array); 2210 PPCGArray.n_ref = 0; 2211 PPCGArray.refs = nullptr; 2212 PPCGArray.accessed = true; 2213 PPCGArray.read_only_scalar = 2214 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2215 PPCGArray.has_compound_element = false; 2216 PPCGArray.local = false; 2217 PPCGArray.declare_local = false; 2218 PPCGArray.global = false; 2219 PPCGArray.linearize = false; 2220 PPCGArray.dep_order = nullptr; 2221 PPCGArray.user = Array; 2222 2223 setArrayBounds(PPCGArray, Array); 2224 i++; 2225 2226 collect_references(PPCGProg, &PPCGArray); 2227 } 2228 } 2229 2230 /// Create an identity map between the arrays in the scop. 2231 /// 2232 /// @returns An identity map between the arrays in the scop. 2233 isl_union_map *getArrayIdentity() { 2234 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2235 2236 for (auto &Array : S->arrays()) { 2237 isl_space *Space = Array->getSpace(); 2238 Space = isl_space_map_from_set(Space); 2239 isl_map *Identity = isl_map_identity(Space); 2240 Maps = isl_union_map_add_map(Maps, Identity); 2241 } 2242 2243 return Maps; 2244 } 2245 2246 /// Create a default-initialized PPCG GPU program. 2247 /// 2248 /// @returns A new gpu grogram description. 2249 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2250 2251 if (!PPCGScop) 2252 return nullptr; 2253 2254 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2255 2256 PPCGProg->ctx = S->getIslCtx(); 2257 PPCGProg->scop = PPCGScop; 2258 PPCGProg->context = isl_set_copy(PPCGScop->context); 2259 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2260 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2261 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2262 PPCGProg->tagged_must_kill = 2263 isl_union_map_copy(PPCGScop->tagged_must_kills); 2264 PPCGProg->to_inner = getArrayIdentity(); 2265 PPCGProg->to_outer = getArrayIdentity(); 2266 PPCGProg->any_to_outer = nullptr; 2267 PPCGProg->array_order = nullptr; 2268 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2269 PPCGProg->stmts = getStatements(); 2270 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2271 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2272 PPCGProg->n_array); 2273 2274 createArrays(PPCGProg); 2275 2276 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2277 2278 return PPCGProg; 2279 } 2280 2281 struct PrintGPUUserData { 2282 struct cuda_info *CudaInfo; 2283 struct gpu_prog *PPCGProg; 2284 std::vector<ppcg_kernel *> Kernels; 2285 }; 2286 2287 /// Print a user statement node in the host code. 2288 /// 2289 /// We use ppcg's printing facilities to print the actual statement and 2290 /// additionally build up a list of all kernels that are encountered in the 2291 /// host ast. 2292 /// 2293 /// @param P The printer to print to 2294 /// @param Options The printing options to use 2295 /// @param Node The node to print 2296 /// @param User A user pointer to carry additional data. This pointer is 2297 /// expected to be of type PrintGPUUserData. 2298 /// 2299 /// @returns A printer to which the output has been printed. 2300 static __isl_give isl_printer * 2301 printHostUser(__isl_take isl_printer *P, 2302 __isl_take isl_ast_print_options *Options, 2303 __isl_take isl_ast_node *Node, void *User) { 2304 auto Data = (struct PrintGPUUserData *)User; 2305 auto Id = isl_ast_node_get_annotation(Node); 2306 2307 if (Id) { 2308 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2309 2310 // If this is a user statement, format it ourselves as ppcg would 2311 // otherwise try to call pet functionality that is not available in 2312 // Polly. 2313 if (IsUser) { 2314 P = isl_printer_start_line(P); 2315 P = isl_printer_print_ast_node(P, Node); 2316 P = isl_printer_end_line(P); 2317 isl_id_free(Id); 2318 isl_ast_print_options_free(Options); 2319 return P; 2320 } 2321 2322 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2323 isl_id_free(Id); 2324 Data->Kernels.push_back(Kernel); 2325 } 2326 2327 return print_host_user(P, Options, Node, User); 2328 } 2329 2330 /// Print C code corresponding to the control flow in @p Kernel. 2331 /// 2332 /// @param Kernel The kernel to print 2333 void printKernel(ppcg_kernel *Kernel) { 2334 auto *P = isl_printer_to_str(S->getIslCtx()); 2335 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2336 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2337 P = isl_ast_node_print(Kernel->tree, P, Options); 2338 char *String = isl_printer_get_str(P); 2339 printf("%s\n", String); 2340 free(String); 2341 isl_printer_free(P); 2342 } 2343 2344 /// Print C code corresponding to the GPU code described by @p Tree. 2345 /// 2346 /// @param Tree An AST describing GPU code 2347 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2348 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2349 auto *P = isl_printer_to_str(S->getIslCtx()); 2350 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2351 2352 PrintGPUUserData Data; 2353 Data.PPCGProg = PPCGProg; 2354 2355 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2356 Options = 2357 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2358 P = isl_ast_node_print(Tree, P, Options); 2359 char *String = isl_printer_get_str(P); 2360 printf("# host\n"); 2361 printf("%s\n", String); 2362 free(String); 2363 isl_printer_free(P); 2364 2365 for (auto Kernel : Data.Kernels) { 2366 printf("# kernel%d\n", Kernel->id); 2367 printKernel(Kernel); 2368 } 2369 } 2370 2371 // Generate a GPU program using PPCG. 2372 // 2373 // GPU mapping consists of multiple steps: 2374 // 2375 // 1) Compute new schedule for the program. 2376 // 2) Map schedule to GPU (TODO) 2377 // 3) Generate code for new schedule (TODO) 2378 // 2379 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2380 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2381 // strategy directly from this pass. 2382 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2383 2384 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2385 2386 PPCGGen->ctx = S->getIslCtx(); 2387 PPCGGen->options = PPCGScop->options; 2388 PPCGGen->print = nullptr; 2389 PPCGGen->print_user = nullptr; 2390 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2391 PPCGGen->prog = PPCGProg; 2392 PPCGGen->tree = nullptr; 2393 PPCGGen->types.n = 0; 2394 PPCGGen->types.name = nullptr; 2395 PPCGGen->sizes = nullptr; 2396 PPCGGen->used_sizes = nullptr; 2397 PPCGGen->kernel_id = 0; 2398 2399 // Set scheduling strategy to same strategy PPCG is using. 2400 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2401 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2402 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2403 2404 isl_schedule *Schedule = get_schedule(PPCGGen); 2405 2406 int has_permutable = has_any_permutable_node(Schedule); 2407 2408 if (!has_permutable || has_permutable < 0) { 2409 Schedule = isl_schedule_free(Schedule); 2410 } else { 2411 Schedule = map_to_device(PPCGGen, Schedule); 2412 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2413 } 2414 2415 if (DumpSchedule) { 2416 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2417 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2418 P = isl_printer_print_str(P, "Schedule\n"); 2419 P = isl_printer_print_str(P, "========\n"); 2420 if (Schedule) 2421 P = isl_printer_print_schedule(P, Schedule); 2422 else 2423 P = isl_printer_print_str(P, "No schedule found\n"); 2424 2425 printf("%s\n", isl_printer_get_str(P)); 2426 isl_printer_free(P); 2427 } 2428 2429 if (DumpCode) { 2430 printf("Code\n"); 2431 printf("====\n"); 2432 if (PPCGGen->tree) 2433 printGPUTree(PPCGGen->tree, PPCGProg); 2434 else 2435 printf("No code generated\n"); 2436 } 2437 2438 isl_schedule_free(Schedule); 2439 2440 return PPCGGen; 2441 } 2442 2443 /// Free gpu_gen structure. 2444 /// 2445 /// @param PPCGGen The ppcg_gen object to free. 2446 void freePPCGGen(gpu_gen *PPCGGen) { 2447 isl_ast_node_free(PPCGGen->tree); 2448 isl_union_map_free(PPCGGen->sizes); 2449 isl_union_map_free(PPCGGen->used_sizes); 2450 free(PPCGGen); 2451 } 2452 2453 /// Free the options in the ppcg scop structure. 2454 /// 2455 /// ppcg is not freeing these options for us. To avoid leaks we do this 2456 /// ourselves. 2457 /// 2458 /// @param PPCGScop The scop referencing the options to free. 2459 void freeOptions(ppcg_scop *PPCGScop) { 2460 free(PPCGScop->options->debug); 2461 PPCGScop->options->debug = nullptr; 2462 free(PPCGScop->options); 2463 PPCGScop->options = nullptr; 2464 } 2465 2466 /// Approximate the number of points in the set. 2467 /// 2468 /// This function returns an ast expression that overapproximates the number 2469 /// of points in an isl set through the rectangular hull surrounding this set. 2470 /// 2471 /// @param Set The set to count. 2472 /// @param Build The isl ast build object to use for creating the ast 2473 /// expression. 2474 /// 2475 /// @returns An approximation of the number of points in the set. 2476 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2477 __isl_keep isl_ast_build *Build) { 2478 2479 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2480 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2481 2482 isl_space *Space = isl_set_get_space(Set); 2483 Space = isl_space_params(Space); 2484 auto *Univ = isl_set_universe(Space); 2485 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2486 2487 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2488 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2489 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2490 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2491 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2492 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2493 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2494 } 2495 2496 isl_set_free(Set); 2497 isl_pw_aff_free(OneAff); 2498 2499 return Expr; 2500 } 2501 2502 /// Approximate a number of dynamic instructions executed by a given 2503 /// statement. 2504 /// 2505 /// @param Stmt The statement for which to compute the number of dynamic 2506 /// instructions. 2507 /// @param Build The isl ast build object to use for creating the ast 2508 /// expression. 2509 /// @returns An approximation of the number of dynamic instructions executed 2510 /// by @p Stmt. 2511 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2512 __isl_keep isl_ast_build *Build) { 2513 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2514 2515 long InstCount = 0; 2516 2517 if (Stmt.isBlockStmt()) { 2518 auto *BB = Stmt.getBasicBlock(); 2519 InstCount = std::distance(BB->begin(), BB->end()); 2520 } else { 2521 auto *R = Stmt.getRegion(); 2522 2523 for (auto *BB : R->blocks()) { 2524 InstCount += std::distance(BB->begin(), BB->end()); 2525 } 2526 } 2527 2528 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2529 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2530 return isl_ast_expr_mul(InstExpr, Iterations); 2531 } 2532 2533 /// Approximate dynamic instructions executed in scop. 2534 /// 2535 /// @param S The scop for which to approximate dynamic instructions. 2536 /// @param Build The isl ast build object to use for creating the ast 2537 /// expression. 2538 /// @returns An approximation of the number of dynamic instructions executed 2539 /// in @p S. 2540 __isl_give isl_ast_expr * 2541 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2542 isl_ast_expr *Instructions; 2543 2544 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2545 Instructions = isl_ast_expr_from_val(Zero); 2546 2547 for (ScopStmt &Stmt : S) { 2548 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2549 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2550 } 2551 return Instructions; 2552 } 2553 2554 /// Create a check that ensures sufficient compute in scop. 2555 /// 2556 /// @param S The scop for which to ensure sufficient compute. 2557 /// @param Build The isl ast build object to use for creating the ast 2558 /// expression. 2559 /// @returns An expression that evaluates to TRUE in case of sufficient 2560 /// compute and to FALSE, otherwise. 2561 __isl_give isl_ast_expr * 2562 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2563 auto Iterations = getNumberOfIterations(S, Build); 2564 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2565 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2566 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2567 } 2568 2569 /// Generate code for a given GPU AST described by @p Root. 2570 /// 2571 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2572 /// @param Prog The GPU Program to generate code for. 2573 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2574 ScopAnnotator Annotator; 2575 Annotator.buildAliasScopes(*S); 2576 2577 Region *R = &S->getRegion(); 2578 2579 simplifyRegion(R, DT, LI, RI); 2580 2581 BasicBlock *EnteringBB = R->getEnteringBlock(); 2582 2583 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2584 2585 // Only build the run-time condition and parameters _after_ having 2586 // introduced the conditional branch. This is important as the conditional 2587 // branch will guard the original scop from new induction variables that 2588 // the SCEVExpander may introduce while code generating the parameters and 2589 // which may introduce scalar dependences that prevent us from correctly 2590 // code generating this scop. 2591 BasicBlock *StartBlock = 2592 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 2593 2594 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 2595 StartBlock, Prog, Runtime, Architecture); 2596 2597 // TODO: Handle LICM 2598 auto SplitBlock = StartBlock->getSinglePredecessor(); 2599 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2600 NodeBuilder.addParameters(S->getContext()); 2601 2602 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2603 isl_ast_expr *Condition = IslAst::buildRunCondition(S, Build); 2604 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 2605 Condition = isl_ast_expr_and(Condition, SufficientCompute); 2606 isl_ast_build_free(Build); 2607 2608 Value *RTC = NodeBuilder.createRTC(Condition); 2609 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2610 2611 Builder.SetInsertPoint(&*StartBlock->begin()); 2612 2613 NodeBuilder.initializeAfterRTH(); 2614 NodeBuilder.create(Root); 2615 NodeBuilder.finalize(); 2616 2617 /// In case a sequential kernel has more surrounding loops as any parallel 2618 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 2619 /// point in running it on a GPU. 2620 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 2621 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2622 2623 if (!NodeBuilder.BuildSuccessful) 2624 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2625 } 2626 2627 bool runOnScop(Scop &CurrentScop) override { 2628 S = &CurrentScop; 2629 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2630 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2631 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2632 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 2633 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2634 2635 // We currently do not support scops with invariant loads. 2636 if (S->hasInvariantAccesses()) 2637 return false; 2638 2639 auto PPCGScop = createPPCGScop(); 2640 auto PPCGProg = createPPCGProg(PPCGScop); 2641 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2642 2643 if (PPCGGen->tree) 2644 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2645 2646 freeOptions(PPCGScop); 2647 freePPCGGen(PPCGGen); 2648 gpu_prog_free(PPCGProg); 2649 ppcg_scop_free(PPCGScop); 2650 2651 return true; 2652 } 2653 2654 void printScop(raw_ostream &, Scop &) const override {} 2655 2656 void getAnalysisUsage(AnalysisUsage &AU) const override { 2657 AU.addRequired<DominatorTreeWrapperPass>(); 2658 AU.addRequired<RegionInfoPass>(); 2659 AU.addRequired<ScalarEvolutionWrapperPass>(); 2660 AU.addRequired<ScopDetection>(); 2661 AU.addRequired<ScopInfoRegionPass>(); 2662 AU.addRequired<LoopInfoWrapperPass>(); 2663 2664 AU.addPreserved<AAResultsWrapperPass>(); 2665 AU.addPreserved<BasicAAWrapperPass>(); 2666 AU.addPreserved<LoopInfoWrapperPass>(); 2667 AU.addPreserved<DominatorTreeWrapperPass>(); 2668 AU.addPreserved<GlobalsAAWrapperPass>(); 2669 AU.addPreserved<ScopDetection>(); 2670 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2671 AU.addPreserved<SCEVAAWrapperPass>(); 2672 2673 // FIXME: We do not yet add regions for the newly generated code to the 2674 // region tree. 2675 AU.addPreserved<RegionInfoPass>(); 2676 AU.addPreserved<ScopInfoRegionPass>(); 2677 } 2678 }; 2679 } // namespace 2680 2681 char PPCGCodeGeneration::ID = 1; 2682 2683 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 2684 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 2685 generator->Runtime = Runtime; 2686 generator->Architecture = Arch; 2687 return generator; 2688 } 2689 2690 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 2691 "Polly - Apply PPCG translation to SCOP", false, false) 2692 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2693 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 2694 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 2695 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 2696 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 2697 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 2698 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 2699 "Polly - Apply PPCG translation to SCOP", false, false) 2700