1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/IntrinsicsNVPTX.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Linker/Linker.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "isl/union_map.h" 40 #include <algorithm> 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/ppcg.h" 46 } 47 48 #include "llvm/Support/Debug.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen-ppcg" 54 55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 56 cl::desc("Dump the computed GPU Schedule"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, 58 cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 71 cl::desc("Dump the kernel assembly code"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> FastMath("polly-acc-fastmath", 76 cl::desc("Allow unsafe math optimizations"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 80 cl::desc("Use shared memory"), cl::Hidden, 81 cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 84 cl::desc("Use private memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 88 bool polly::PollyManagedMemory; 89 static cl::opt<bool, true> 90 XManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::location(PollyManagedMemory), cl::Hidden, 95 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> CUDALibDevice( 106 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 107 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 108 cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<std::string> 111 CudaVersion("polly-acc-cuda-version", 112 cl::desc("The CUDA version to compile for"), cl::Hidden, 113 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 114 115 static cl::opt<int> 116 MinCompute("polly-acc-mincompute", 117 cl::desc("Minimal number of compute statements to run on GPU."), 118 cl::Hidden, cl::init(10 * 512 * 512)); 119 120 GPURuntime polly::GPURuntimeChoice; 121 static cl::opt<GPURuntime, true> XGPURuntimeChoice( 122 "polly-gpu-runtime", cl::desc("The GPU Runtime API to target"), 123 cl::values(clEnumValN(GPURuntime::CUDA, "libcudart", 124 "use the CUDA Runtime API"), 125 clEnumValN(GPURuntime::OpenCL, "libopencl", 126 "use the OpenCL Runtime API")), 127 cl::location(polly::GPURuntimeChoice), cl::init(GPURuntime::CUDA), 128 cl::ZeroOrMore, cl::cat(PollyCategory)); 129 130 GPUArch polly::GPUArchChoice; 131 static cl::opt<GPUArch, true> 132 XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"), 133 cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64", 134 "target NVIDIA 64-bit architecture"), 135 clEnumValN(GPUArch::SPIR32, "spir32", 136 "target SPIR 32-bit architecture"), 137 clEnumValN(GPUArch::SPIR64, "spir64", 138 "target SPIR 64-bit architecture")), 139 cl::location(polly::GPUArchChoice), 140 cl::init(GPUArch::NVPTX64), cl::ZeroOrMore, 141 cl::cat(PollyCategory)); 142 143 extern bool polly::PerfMonitoring; 144 145 /// Return a unique name for a Scop, which is the scop region with the 146 /// function name. 147 std::string getUniqueScopName(const Scop *S) { 148 return "Scop Region: " + S->getNameStr() + 149 " | Function: " + std::string(S->getFunction().getName()); 150 } 151 152 /// Used to store information PPCG wants for kills. This information is 153 /// used by live range reordering. 154 /// 155 /// @see computeLiveRangeReordering 156 /// @see GPUNodeBuilder::createPPCGScop 157 /// @see GPUNodeBuilder::createPPCGProg 158 struct MustKillsInfo { 159 /// Collection of all kill statements that will be sequenced at the end of 160 /// PPCGScop->schedule. 161 /// 162 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 163 /// which merges schedules in *arbitrary* order. 164 /// (we don't care about the order of the kills anyway). 165 isl::schedule KillsSchedule; 166 /// Map from kill statement instances to scalars that need to be 167 /// killed. 168 /// 169 /// We currently derive kill information for: 170 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 171 /// consequently all be killed. 172 /// 2. Scalar arrays that are not used outside the Scop. This is 173 /// checked by `isScalarUsesContainedInScop`. 174 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 175 isl::union_map TaggedMustKills; 176 177 /// Tagged must kills stripped of the tags. 178 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 179 isl::union_map MustKills; 180 181 MustKillsInfo() : KillsSchedule(nullptr) {} 182 }; 183 184 /// Check if SAI's uses are entirely contained within Scop S. 185 /// If a scalar is used only with a Scop, we are free to kill it, as no data 186 /// can flow in/out of the value any more. 187 /// @see computeMustKillsInfo 188 static bool isScalarUsesContainedInScop(const Scop &S, 189 const ScopArrayInfo *SAI) { 190 assert(SAI->isValueKind() && "this function only deals with scalars." 191 " Dealing with arrays required alias analysis"); 192 193 const Region &R = S.getRegion(); 194 for (User *U : SAI->getBasePtr()->users()) { 195 Instruction *I = dyn_cast<Instruction>(U); 196 assert(I && "invalid user of scop array info"); 197 if (!R.contains(I)) 198 return false; 199 } 200 return true; 201 } 202 203 /// Compute must-kills needed to enable live range reordering with PPCG. 204 /// 205 /// @params S The Scop to compute live range reordering information 206 /// @returns live range reordering information that can be used to setup 207 /// PPCG. 208 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 209 const isl::space ParamSpace = S.getParamSpace(); 210 MustKillsInfo Info; 211 212 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 213 // 1.1 phi nodes in scop. 214 // 1.2 scalars that are only used within the scop 215 SmallVector<isl::id, 4> KillMemIds; 216 for (ScopArrayInfo *SAI : S.arrays()) { 217 if (SAI->isPHIKind() || 218 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 219 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 220 } 221 222 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 223 Info.MustKills = isl::union_map::empty(ParamSpace); 224 225 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 226 // schedule: 227 // - filter: "[control] -> { }" 228 // So, we choose to not create this to keep the output a little nicer, 229 // at the cost of some code complexity. 230 Info.KillsSchedule = nullptr; 231 232 for (isl::id &ToKillId : KillMemIds) { 233 isl::id KillStmtId = isl::id::alloc( 234 S.getIslCtx(), 235 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 236 237 // NOTE: construction of tagged_must_kill: 238 // 2. We need to construct a map: 239 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 240 // To construct this, we use `isl_map_domain_product` on 2 maps`: 241 // 2a. StmtToScalar: 242 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 243 // 2b. PhantomRefToScalar: 244 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 245 // 246 // Combining these with `isl_map_domain_product` gives us 247 // TaggedMustKill: 248 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 249 250 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 251 isl::map StmtToScalar = isl::map::universe(ParamSpace); 252 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 253 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 254 255 isl::id PhantomRefId = isl::id::alloc( 256 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 257 nullptr); 258 259 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 260 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 261 PhantomRefToScalar = 262 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 263 PhantomRefToScalar = 264 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 265 266 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 267 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 268 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 269 270 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 271 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 272 273 // 3. Create the kill schedule of the form: 274 // "[param] -> { Stmt_phantom[] }" 275 // Then add this to Info.KillsSchedule. 276 isl::space KillStmtSpace = ParamSpace; 277 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 278 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 279 280 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 281 if (Info.KillsSchedule) 282 Info.KillsSchedule = isl::manage( 283 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 284 else 285 Info.KillsSchedule = KillSchedule; 286 } 287 288 return Info; 289 } 290 291 /// Create the ast expressions for a ScopStmt. 292 /// 293 /// This function is a callback for to generate the ast expressions for each 294 /// of the scheduled ScopStmts. 295 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 296 void *StmtT, __isl_take isl_ast_build *Build_C, 297 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 298 isl_id *Id, void *User), 299 void *UserIndex, 300 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 301 void *UserExpr) { 302 303 ScopStmt *Stmt = (ScopStmt *)StmtT; 304 305 if (!Stmt || !Build_C) 306 return NULL; 307 308 isl::ast_build Build = isl::manage_copy(Build_C); 309 isl::ctx Ctx = Build.get_ctx(); 310 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 311 312 Stmt->setAstBuild(Build); 313 314 for (MemoryAccess *Acc : *Stmt) { 315 isl::map AddrFunc = Acc->getAddressFunction(); 316 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 317 318 isl::id RefId = Acc->getId(); 319 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 320 321 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 322 MPA = MPA.coalesce(); 323 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 324 325 isl::ast_expr Access = Build.access_from(MPA); 326 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 327 RefToExpr = RefToExpr.set(RefId, Access); 328 } 329 330 return RefToExpr.release(); 331 } 332 333 /// Given a LLVM Type, compute its size in bytes, 334 static int computeSizeInBytes(const Type *T) { 335 int bytes = T->getPrimitiveSizeInBits() / 8; 336 if (bytes == 0) 337 bytes = T->getScalarSizeInBits() / 8; 338 return bytes; 339 } 340 341 /// Generate code for a GPU specific isl AST. 342 /// 343 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 344 /// generates code for general-purpose AST nodes, with special functionality 345 /// for generating GPU specific user nodes. 346 /// 347 /// @see GPUNodeBuilder::createUser 348 class GPUNodeBuilder : public IslNodeBuilder { 349 public: 350 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 351 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 352 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 353 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 354 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 355 Prog(Prog), Runtime(Runtime), Arch(Arch) { 356 getExprBuilder().setIDToSAI(&IDToSAI); 357 } 358 359 /// Create after-run-time-check initialization code. 360 void initializeAfterRTH(); 361 362 /// Finalize the generated scop. 363 void finalize() override; 364 365 /// Track if the full build process was successful. 366 /// 367 /// This value is set to false, if throughout the build process an error 368 /// occurred which prevents us from generating valid GPU code. 369 bool BuildSuccessful = true; 370 371 /// The maximal number of loops surrounding a sequential kernel. 372 unsigned DeepestSequential = 0; 373 374 /// The maximal number of loops surrounding a parallel kernel. 375 unsigned DeepestParallel = 0; 376 377 /// Return the name to set for the ptx_kernel. 378 std::string getKernelFuncName(int Kernel_id); 379 380 private: 381 /// A vector of array base pointers for which a new ScopArrayInfo was created. 382 /// 383 /// This vector is used to delete the ScopArrayInfo when it is not needed any 384 /// more. 385 std::vector<Value *> LocalArrays; 386 387 /// A map from ScopArrays to their corresponding device allocations. 388 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 389 390 /// The current GPU context. 391 Value *GPUContext; 392 393 /// The set of isl_ids allocated in the kernel 394 std::vector<isl_id *> KernelIds; 395 396 /// A module containing GPU code. 397 /// 398 /// This pointer is only set in case we are currently generating GPU code. 399 std::unique_ptr<Module> GPUModule; 400 401 /// The GPU program we generate code for. 402 gpu_prog *Prog; 403 404 /// The GPU Runtime implementation to use (OpenCL or CUDA). 405 GPURuntime Runtime; 406 407 /// The GPU Architecture to target. 408 GPUArch Arch; 409 410 /// Class to free isl_ids. 411 class IslIdDeleter { 412 public: 413 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 414 }; 415 416 /// A set containing all isl_ids allocated in a GPU kernel. 417 /// 418 /// By releasing this set all isl_ids will be freed. 419 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 420 421 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 422 423 /// Create code for user-defined AST nodes. 424 /// 425 /// These AST nodes can be of type: 426 /// 427 /// - ScopStmt: A computational statement (TODO) 428 /// - Kernel: A GPU kernel call (TODO) 429 /// - Data-Transfer: A GPU <-> CPU data-transfer 430 /// - In-kernel synchronization 431 /// - In-kernel memory copy statement 432 /// 433 /// @param UserStmt The ast node to generate code for. 434 void createUser(__isl_take isl_ast_node *UserStmt) override; 435 436 void createFor(__isl_take isl_ast_node *Node) override; 437 438 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 439 440 /// Create code for a data transfer statement 441 /// 442 /// @param TransferStmt The data transfer statement. 443 /// @param Direction The direction in which to transfer data. 444 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 445 enum DataDirection Direction); 446 447 /// Find llvm::Values referenced in GPU kernel. 448 /// 449 /// @param Kernel The kernel to scan for llvm::Values 450 /// 451 /// @returns A tuple, whose: 452 /// - First element contains the set of values referenced by the 453 /// kernel 454 /// - Second element contains the set of functions referenced by the 455 /// kernel. All functions in the set satisfy 456 /// `isValidFunctionInKernel`. 457 /// - Third element contains loops that have induction variables 458 /// which are used in the kernel, *and* these loops are *neither* 459 /// in the scop, nor do they immediately surroung the Scop. 460 /// See [Code generation of induction variables of loops outside 461 /// Scops] 462 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 463 isl::space> 464 getReferencesInKernel(ppcg_kernel *Kernel); 465 466 /// Compute the sizes of the execution grid for a given kernel. 467 /// 468 /// @param Kernel The kernel to compute grid sizes for. 469 /// 470 /// @returns A tuple with grid sizes for X and Y dimension 471 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 472 473 /// Get the managed array pointer for sending host pointers to the device. 474 /// \note 475 /// This is to be used only with managed memory 476 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 477 478 /// Compute the sizes of the thread blocks for a given kernel. 479 /// 480 /// @param Kernel The kernel to compute thread block sizes for. 481 /// 482 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 483 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 484 485 /// Store a specific kernel launch parameter in the array of kernel launch 486 /// parameters. 487 /// 488 /// @param Parameters The list of parameters in which to store. 489 /// @param Param The kernel launch parameter to store. 490 /// @param Index The index in the parameter list, at which to store the 491 /// parameter. 492 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 493 int Index); 494 495 /// Create kernel launch parameters. 496 /// 497 /// @param Kernel The kernel to create parameters for. 498 /// @param F The kernel function that has been created. 499 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 500 /// 501 /// @returns A stack allocated array with pointers to the parameter 502 /// values that are passed to the kernel. 503 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 504 SetVector<Value *> SubtreeValues); 505 506 /// Create declarations for kernel variable. 507 /// 508 /// This includes shared memory declarations. 509 /// 510 /// @param Kernel The kernel definition to create variables for. 511 /// @param FN The function into which to generate the variables. 512 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 513 514 /// Add CUDA annotations to module. 515 /// 516 /// Add a set of CUDA annotations that declares the maximal block dimensions 517 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 518 /// PTX compiler to bound the number of allocated registers to ensure the 519 /// resulting kernel is known to run with up to as many block dimensions 520 /// as specified here. 521 /// 522 /// @param M The module to add the annotations to. 523 /// @param BlockDimX The size of block dimension X. 524 /// @param BlockDimY The size of block dimension Y. 525 /// @param BlockDimZ The size of block dimension Z. 526 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 527 Value *BlockDimZ); 528 529 /// Create GPU kernel. 530 /// 531 /// Code generate the kernel described by @p KernelStmt. 532 /// 533 /// @param KernelStmt The ast node to generate kernel code for. 534 void createKernel(__isl_take isl_ast_node *KernelStmt); 535 536 /// Generate code that computes the size of an array. 537 /// 538 /// @param Array The array for which to compute a size. 539 Value *getArraySize(gpu_array_info *Array); 540 541 /// Generate code to compute the minimal offset at which an array is accessed. 542 /// 543 /// The offset of an array is the minimal array location accessed in a scop. 544 /// 545 /// Example: 546 /// 547 /// for (long i = 0; i < 100; i++) 548 /// A[i + 42] += ... 549 /// 550 /// getArrayOffset(A) results in 42. 551 /// 552 /// @param Array The array for which to compute the offset. 553 /// @returns An llvm::Value that contains the offset of the array. 554 Value *getArrayOffset(gpu_array_info *Array); 555 556 /// Prepare the kernel arguments for kernel code generation 557 /// 558 /// @param Kernel The kernel to generate code for. 559 /// @param FN The function created for the kernel. 560 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 561 562 /// Create kernel function. 563 /// 564 /// Create a kernel function located in a newly created module that can serve 565 /// as target for device code generation. Set the Builder to point to the 566 /// start block of this newly created function. 567 /// 568 /// @param Kernel The kernel to generate code for. 569 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 570 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 571 /// kernel. 572 void createKernelFunction(ppcg_kernel *Kernel, 573 SetVector<Value *> &SubtreeValues, 574 SetVector<Function *> &SubtreeFunctions); 575 576 /// Create the declaration of a kernel function. 577 /// 578 /// The kernel function takes as arguments: 579 /// 580 /// - One i8 pointer for each external array reference used in the kernel. 581 /// - Host iterators 582 /// - Parameters 583 /// - Other LLVM Value references (TODO) 584 /// 585 /// @param Kernel The kernel to generate the function declaration for. 586 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 587 /// 588 /// @returns The newly declared function. 589 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 590 SetVector<Value *> &SubtreeValues); 591 592 /// Insert intrinsic functions to obtain thread and block ids. 593 /// 594 /// @param The kernel to generate the intrinsic functions for. 595 void insertKernelIntrinsics(ppcg_kernel *Kernel); 596 597 /// Insert function calls to retrieve the SPIR group/local ids. 598 /// 599 /// @param Kernel The kernel to generate the function calls for. 600 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 601 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 602 603 /// Setup the creation of functions referenced by the GPU kernel. 604 /// 605 /// 1. Create new function declarations in GPUModule which are the same as 606 /// SubtreeFunctions. 607 /// 608 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 609 /// old functions (that come from the original module) to new functions 610 /// (that are created within GPUModule). That way, we generate references 611 /// to the correct function (in GPUModule) in BlockGenerator. 612 /// 613 /// @see IslNodeBuilder::ValueMap 614 /// @see BlockGenerator::GlobalMap 615 /// @see BlockGenerator::getNewValue 616 /// @see GPUNodeBuilder::getReferencesInKernel. 617 /// 618 /// @param SubtreeFunctions The set of llvm::Functions referenced by 619 /// this kernel. 620 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 621 622 /// Create a global-to-shared or shared-to-global copy statement. 623 /// 624 /// @param CopyStmt The copy statement to generate code for 625 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 626 627 /// Create code for a ScopStmt called in @p Expr. 628 /// 629 /// @param Expr The expression containing the call. 630 /// @param KernelStmt The kernel statement referenced in the call. 631 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 632 633 /// Create an in-kernel synchronization call. 634 void createKernelSync(); 635 636 /// Create a PTX assembly string for the current GPU kernel. 637 /// 638 /// @returns A string containing the corresponding PTX assembly code. 639 std::string createKernelASM(); 640 641 /// Remove references from the dominator tree to the kernel function @p F. 642 /// 643 /// @param F The function to remove references to. 644 void clearDominators(Function *F); 645 646 /// Remove references from scalar evolution to the kernel function @p F. 647 /// 648 /// @param F The function to remove references to. 649 void clearScalarEvolution(Function *F); 650 651 /// Remove references from loop info to the kernel function @p F. 652 /// 653 /// @param F The function to remove references to. 654 void clearLoops(Function *F); 655 656 /// Check if the scop requires to be linked with CUDA's libdevice. 657 bool requiresCUDALibDevice(); 658 659 /// Link with the NVIDIA libdevice library (if needed and available). 660 void addCUDALibDevice(); 661 662 /// Finalize the generation of the kernel function. 663 /// 664 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 665 /// dump its IR to stderr. 666 /// 667 /// @returns The Assembly string of the kernel. 668 std::string finalizeKernelFunction(); 669 670 /// Finalize the generation of the kernel arguments. 671 /// 672 /// This function ensures that not-read-only scalars used in a kernel are 673 /// stored back to the global memory location they are backed with before 674 /// the kernel terminates. 675 /// 676 /// @params Kernel The kernel to finalize kernel arguments for. 677 void finalizeKernelArguments(ppcg_kernel *Kernel); 678 679 /// Create code that allocates memory to store arrays on device. 680 void allocateDeviceArrays(); 681 682 /// Create code to prepare the managed device pointers. 683 void prepareManagedDeviceArrays(); 684 685 /// Free all allocated device arrays. 686 void freeDeviceArrays(); 687 688 /// Create a call to initialize the GPU context. 689 /// 690 /// @returns A pointer to the newly initialized context. 691 Value *createCallInitContext(); 692 693 /// Create a call to get the device pointer for a kernel allocation. 694 /// 695 /// @param Allocation The Polly GPU allocation 696 /// 697 /// @returns The device parameter corresponding to this allocation. 698 Value *createCallGetDevicePtr(Value *Allocation); 699 700 /// Create a call to free the GPU context. 701 /// 702 /// @param Context A pointer to an initialized GPU context. 703 void createCallFreeContext(Value *Context); 704 705 /// Create a call to allocate memory on the device. 706 /// 707 /// @param Size The size of memory to allocate 708 /// 709 /// @returns A pointer that identifies this allocation. 710 Value *createCallAllocateMemoryForDevice(Value *Size); 711 712 /// Create a call to free a device array. 713 /// 714 /// @param Array The device array to free. 715 void createCallFreeDeviceMemory(Value *Array); 716 717 /// Create a call to copy data from host to device. 718 /// 719 /// @param HostPtr A pointer to the host data that should be copied. 720 /// @param DevicePtr A device pointer specifying the location to copy to. 721 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 722 Value *Size); 723 724 /// Create a call to copy data from device to host. 725 /// 726 /// @param DevicePtr A pointer to the device data that should be copied. 727 /// @param HostPtr A host pointer specifying the location to copy to. 728 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 729 Value *Size); 730 731 /// Create a call to synchronize Host & Device. 732 /// \note 733 /// This is to be used only with managed memory. 734 void createCallSynchronizeDevice(); 735 736 /// Create a call to get a kernel from an assembly string. 737 /// 738 /// @param Buffer The string describing the kernel. 739 /// @param Entry The name of the kernel function to call. 740 /// 741 /// @returns A pointer to a kernel object 742 Value *createCallGetKernel(Value *Buffer, Value *Entry); 743 744 /// Create a call to free a GPU kernel. 745 /// 746 /// @param GPUKernel THe kernel to free. 747 void createCallFreeKernel(Value *GPUKernel); 748 749 /// Create a call to launch a GPU kernel. 750 /// 751 /// @param GPUKernel The kernel to launch. 752 /// @param GridDimX The size of the first grid dimension. 753 /// @param GridDimY The size of the second grid dimension. 754 /// @param GridBlockX The size of the first block dimension. 755 /// @param GridBlockY The size of the second block dimension. 756 /// @param GridBlockZ The size of the third block dimension. 757 /// @param Parameters A pointer to an array that contains itself pointers to 758 /// the parameter values passed for each kernel argument. 759 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 760 Value *GridDimY, Value *BlockDimX, 761 Value *BlockDimY, Value *BlockDimZ, 762 Value *Parameters); 763 }; 764 765 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 766 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 767 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 768 } 769 770 void GPUNodeBuilder::initializeAfterRTH() { 771 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 772 &*Builder.GetInsertPoint(), &DT, &LI); 773 NewBB->setName("polly.acc.initialize"); 774 Builder.SetInsertPoint(&NewBB->front()); 775 776 GPUContext = createCallInitContext(); 777 778 if (!PollyManagedMemory) 779 allocateDeviceArrays(); 780 else 781 prepareManagedDeviceArrays(); 782 } 783 784 void GPUNodeBuilder::finalize() { 785 if (!PollyManagedMemory) 786 freeDeviceArrays(); 787 788 createCallFreeContext(GPUContext); 789 IslNodeBuilder::finalize(); 790 } 791 792 void GPUNodeBuilder::allocateDeviceArrays() { 793 assert(!PollyManagedMemory && 794 "Managed memory will directly send host pointers " 795 "to the kernel. There is no need for device arrays"); 796 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 797 798 for (int i = 0; i < Prog->n_array; ++i) { 799 gpu_array_info *Array = &Prog->array[i]; 800 auto *ScopArray = (ScopArrayInfo *)Array->user; 801 std::string DevArrayName("p_dev_array_"); 802 DevArrayName.append(Array->name); 803 804 Value *ArraySize = getArraySize(Array); 805 Value *Offset = getArrayOffset(Array); 806 if (Offset) 807 ArraySize = Builder.CreateSub( 808 ArraySize, 809 Builder.CreateMul(Offset, 810 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 811 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 812 // It makes no sense to have an array of size 0. The CUDA API will 813 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 814 // choose to be defensive and catch this at the compile phase. It is 815 // most likely that we are doing something wrong with size computation. 816 if (SizeSCEV->isZero()) { 817 errs() << getUniqueScopName(&S) 818 << " has computed array size 0: " << *ArraySize 819 << " | for array: " << *(ScopArray->getBasePtr()) 820 << ". This is illegal, exiting.\n"; 821 report_fatal_error("array size was computed to be 0"); 822 } 823 824 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 825 DevArray->setName(DevArrayName); 826 DeviceAllocations[ScopArray] = DevArray; 827 } 828 829 isl_ast_build_free(Build); 830 } 831 832 void GPUNodeBuilder::prepareManagedDeviceArrays() { 833 assert(PollyManagedMemory && 834 "Device array most only be prepared in managed-memory mode"); 835 for (int i = 0; i < Prog->n_array; ++i) { 836 gpu_array_info *Array = &Prog->array[i]; 837 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 838 Value *HostPtr; 839 840 if (gpu_array_is_scalar(Array)) 841 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 842 else 843 HostPtr = ScopArray->getBasePtr(); 844 HostPtr = getLatestValue(HostPtr); 845 846 Value *Offset = getArrayOffset(Array); 847 if (Offset) { 848 HostPtr = Builder.CreatePointerCast( 849 HostPtr, ScopArray->getElementType()->getPointerTo()); 850 HostPtr = Builder.CreateGEP(HostPtr, Offset); 851 } 852 853 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 854 DeviceAllocations[ScopArray] = HostPtr; 855 } 856 } 857 858 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 859 Value *BlockDimY, Value *BlockDimZ) { 860 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 861 862 for (auto &F : *M) { 863 if (F.getCallingConv() != CallingConv::PTX_Kernel) 864 continue; 865 866 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 867 868 Metadata *Elements[] = { 869 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 870 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 871 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 872 ValueAsMetadata::get(V[2]), 873 }; 874 MDNode *Node = MDNode::get(M->getContext(), Elements); 875 AnnotationNode->addOperand(Node); 876 } 877 } 878 879 void GPUNodeBuilder::freeDeviceArrays() { 880 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 881 for (auto &Array : DeviceAllocations) 882 createCallFreeDeviceMemory(Array.second); 883 } 884 885 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 886 const char *Name = "polly_getKernel"; 887 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 888 Function *F = M->getFunction(Name); 889 890 // If F is not available, declare it. 891 if (!F) { 892 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 893 std::vector<Type *> Args; 894 Args.push_back(Builder.getInt8PtrTy()); 895 Args.push_back(Builder.getInt8PtrTy()); 896 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 897 F = Function::Create(Ty, Linkage, Name, M); 898 } 899 900 return Builder.CreateCall(F, {Buffer, Entry}); 901 } 902 903 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 904 const char *Name = "polly_getDevicePtr"; 905 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 906 Function *F = M->getFunction(Name); 907 908 // If F is not available, declare it. 909 if (!F) { 910 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 911 std::vector<Type *> Args; 912 Args.push_back(Builder.getInt8PtrTy()); 913 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 914 F = Function::Create(Ty, Linkage, Name, M); 915 } 916 917 return Builder.CreateCall(F, {Allocation}); 918 } 919 920 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 921 Value *GridDimY, Value *BlockDimX, 922 Value *BlockDimY, Value *BlockDimZ, 923 Value *Parameters) { 924 const char *Name = "polly_launchKernel"; 925 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 926 Function *F = M->getFunction(Name); 927 928 // If F is not available, declare it. 929 if (!F) { 930 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 931 std::vector<Type *> Args; 932 Args.push_back(Builder.getInt8PtrTy()); 933 Args.push_back(Builder.getInt32Ty()); 934 Args.push_back(Builder.getInt32Ty()); 935 Args.push_back(Builder.getInt32Ty()); 936 Args.push_back(Builder.getInt32Ty()); 937 Args.push_back(Builder.getInt32Ty()); 938 Args.push_back(Builder.getInt8PtrTy()); 939 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 940 F = Function::Create(Ty, Linkage, Name, M); 941 } 942 943 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 944 BlockDimZ, Parameters}); 945 } 946 947 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 948 const char *Name = "polly_freeKernel"; 949 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 950 Function *F = M->getFunction(Name); 951 952 // If F is not available, declare it. 953 if (!F) { 954 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 955 std::vector<Type *> Args; 956 Args.push_back(Builder.getInt8PtrTy()); 957 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 958 F = Function::Create(Ty, Linkage, Name, M); 959 } 960 961 Builder.CreateCall(F, {GPUKernel}); 962 } 963 964 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 965 assert(!PollyManagedMemory && 966 "Managed memory does not allocate or free memory " 967 "for device"); 968 const char *Name = "polly_freeDeviceMemory"; 969 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 970 Function *F = M->getFunction(Name); 971 972 // If F is not available, declare it. 973 if (!F) { 974 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 975 std::vector<Type *> Args; 976 Args.push_back(Builder.getInt8PtrTy()); 977 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 978 F = Function::Create(Ty, Linkage, Name, M); 979 } 980 981 Builder.CreateCall(F, {Array}); 982 } 983 984 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 985 assert(!PollyManagedMemory && 986 "Managed memory does not allocate or free memory " 987 "for device"); 988 const char *Name = "polly_allocateMemoryForDevice"; 989 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 990 Function *F = M->getFunction(Name); 991 992 // If F is not available, declare it. 993 if (!F) { 994 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 995 std::vector<Type *> Args; 996 Args.push_back(Builder.getInt64Ty()); 997 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 998 F = Function::Create(Ty, Linkage, Name, M); 999 } 1000 1001 return Builder.CreateCall(F, {Size}); 1002 } 1003 1004 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 1005 Value *DeviceData, 1006 Value *Size) { 1007 assert(!PollyManagedMemory && 1008 "Managed memory does not transfer memory between " 1009 "device and host"); 1010 const char *Name = "polly_copyFromHostToDevice"; 1011 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1012 Function *F = M->getFunction(Name); 1013 1014 // If F is not available, declare it. 1015 if (!F) { 1016 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1017 std::vector<Type *> Args; 1018 Args.push_back(Builder.getInt8PtrTy()); 1019 Args.push_back(Builder.getInt8PtrTy()); 1020 Args.push_back(Builder.getInt64Ty()); 1021 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1022 F = Function::Create(Ty, Linkage, Name, M); 1023 } 1024 1025 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1026 } 1027 1028 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1029 Value *HostData, 1030 Value *Size) { 1031 assert(!PollyManagedMemory && 1032 "Managed memory does not transfer memory between " 1033 "device and host"); 1034 const char *Name = "polly_copyFromDeviceToHost"; 1035 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1036 Function *F = M->getFunction(Name); 1037 1038 // If F is not available, declare it. 1039 if (!F) { 1040 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1041 std::vector<Type *> Args; 1042 Args.push_back(Builder.getInt8PtrTy()); 1043 Args.push_back(Builder.getInt8PtrTy()); 1044 Args.push_back(Builder.getInt64Ty()); 1045 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1046 F = Function::Create(Ty, Linkage, Name, M); 1047 } 1048 1049 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1050 } 1051 1052 void GPUNodeBuilder::createCallSynchronizeDevice() { 1053 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1054 "managed memory"); 1055 const char *Name = "polly_synchronizeDevice"; 1056 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1057 Function *F = M->getFunction(Name); 1058 1059 // If F is not available, declare it. 1060 if (!F) { 1061 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1062 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1063 F = Function::Create(Ty, Linkage, Name, M); 1064 } 1065 1066 Builder.CreateCall(F); 1067 } 1068 1069 Value *GPUNodeBuilder::createCallInitContext() { 1070 const char *Name; 1071 1072 switch (Runtime) { 1073 case GPURuntime::CUDA: 1074 Name = "polly_initContextCUDA"; 1075 break; 1076 case GPURuntime::OpenCL: 1077 Name = "polly_initContextCL"; 1078 break; 1079 } 1080 1081 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1082 Function *F = M->getFunction(Name); 1083 1084 // If F is not available, declare it. 1085 if (!F) { 1086 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1087 std::vector<Type *> Args; 1088 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1089 F = Function::Create(Ty, Linkage, Name, M); 1090 } 1091 1092 return Builder.CreateCall(F, {}); 1093 } 1094 1095 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1096 const char *Name = "polly_freeContext"; 1097 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1098 Function *F = M->getFunction(Name); 1099 1100 // If F is not available, declare it. 1101 if (!F) { 1102 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1103 std::vector<Type *> Args; 1104 Args.push_back(Builder.getInt8PtrTy()); 1105 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1106 F = Function::Create(Ty, Linkage, Name, M); 1107 } 1108 1109 Builder.CreateCall(F, {Context}); 1110 } 1111 1112 /// Check if one string is a prefix of another. 1113 /// 1114 /// @param String The string in which to look for the prefix. 1115 /// @param Prefix The prefix to look for. 1116 static bool isPrefix(std::string String, std::string Prefix) { 1117 return String.find(Prefix) == 0; 1118 } 1119 1120 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1121 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1122 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1123 1124 if (!gpu_array_is_scalar(Array)) { 1125 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1126 1127 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1128 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1129 1130 for (unsigned int i = 1; i < Array->n_index; i++) { 1131 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1132 isl::ast_expr Expr = Build.expr_from(Bound_I); 1133 Res = Res.mul(Expr); 1134 } 1135 1136 Value *NumElements = ExprBuilder.create(Res.release()); 1137 if (NumElements->getType() != ArraySize->getType()) 1138 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1139 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1140 } 1141 return ArraySize; 1142 } 1143 1144 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1145 if (gpu_array_is_scalar(Array)) 1146 return nullptr; 1147 1148 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1149 1150 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1151 1152 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1153 1154 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1155 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1156 1157 if (Min.is_subset(ZeroSet)) { 1158 return nullptr; 1159 } 1160 1161 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1162 1163 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1164 if (i > 0) { 1165 isl::pw_aff Bound_I = 1166 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1167 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1168 Result = Result.mul(BExpr); 1169 } 1170 isl::pw_aff DimMin = Min.dim_min(i); 1171 isl::ast_expr MExpr = Build.expr_from(DimMin); 1172 Result = Result.add(MExpr); 1173 } 1174 1175 return ExprBuilder.create(Result.release()); 1176 } 1177 1178 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1179 ScopArrayInfo *ArrayInfo) { 1180 assert(PollyManagedMemory && "Only used when you wish to get a host " 1181 "pointer for sending data to the kernel, " 1182 "with managed memory"); 1183 std::map<ScopArrayInfo *, Value *>::iterator it; 1184 it = DeviceAllocations.find(ArrayInfo); 1185 assert(it != DeviceAllocations.end() && 1186 "Device array expected to be available"); 1187 return it->second; 1188 } 1189 1190 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1191 enum DataDirection Direction) { 1192 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1193 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1194 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1195 isl_id *Id = isl_ast_expr_get_id(Arg); 1196 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1197 auto ScopArray = (ScopArrayInfo *)(Array->user); 1198 1199 Value *Size = getArraySize(Array); 1200 Value *Offset = getArrayOffset(Array); 1201 Value *DevPtr = DeviceAllocations[ScopArray]; 1202 1203 Value *HostPtr; 1204 1205 if (gpu_array_is_scalar(Array)) 1206 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1207 else 1208 HostPtr = ScopArray->getBasePtr(); 1209 HostPtr = getLatestValue(HostPtr); 1210 1211 if (Offset) { 1212 HostPtr = Builder.CreatePointerCast( 1213 HostPtr, ScopArray->getElementType()->getPointerTo()); 1214 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1215 } 1216 1217 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1218 1219 if (Offset) { 1220 Size = Builder.CreateSub( 1221 Size, Builder.CreateMul( 1222 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1223 } 1224 1225 if (Direction == HOST_TO_DEVICE) 1226 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1227 else 1228 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1229 1230 isl_id_free(Id); 1231 isl_ast_expr_free(Arg); 1232 isl_ast_expr_free(Expr); 1233 isl_ast_node_free(TransferStmt); 1234 } 1235 1236 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1237 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1238 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1239 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1240 isl_id_free(Id); 1241 isl_ast_expr_free(StmtExpr); 1242 1243 const char *Str = isl_id_get_name(Id); 1244 if (!strcmp(Str, "kernel")) { 1245 createKernel(UserStmt); 1246 if (PollyManagedMemory) 1247 createCallSynchronizeDevice(); 1248 isl_ast_expr_free(Expr); 1249 return; 1250 } 1251 if (!strcmp(Str, "init_device")) { 1252 initializeAfterRTH(); 1253 isl_ast_node_free(UserStmt); 1254 isl_ast_expr_free(Expr); 1255 return; 1256 } 1257 if (!strcmp(Str, "clear_device")) { 1258 finalize(); 1259 isl_ast_node_free(UserStmt); 1260 isl_ast_expr_free(Expr); 1261 return; 1262 } 1263 if (isPrefix(Str, "to_device")) { 1264 if (!PollyManagedMemory) 1265 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1266 else 1267 isl_ast_node_free(UserStmt); 1268 1269 isl_ast_expr_free(Expr); 1270 return; 1271 } 1272 1273 if (isPrefix(Str, "from_device")) { 1274 if (!PollyManagedMemory) { 1275 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1276 } else { 1277 isl_ast_node_free(UserStmt); 1278 } 1279 isl_ast_expr_free(Expr); 1280 return; 1281 } 1282 1283 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1284 struct ppcg_kernel_stmt *KernelStmt = 1285 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1286 isl_id_free(Anno); 1287 1288 switch (KernelStmt->type) { 1289 case ppcg_kernel_domain: 1290 createScopStmt(Expr, KernelStmt); 1291 isl_ast_node_free(UserStmt); 1292 return; 1293 case ppcg_kernel_copy: 1294 createKernelCopy(KernelStmt); 1295 isl_ast_expr_free(Expr); 1296 isl_ast_node_free(UserStmt); 1297 return; 1298 case ppcg_kernel_sync: 1299 createKernelSync(); 1300 isl_ast_expr_free(Expr); 1301 isl_ast_node_free(UserStmt); 1302 return; 1303 } 1304 1305 isl_ast_expr_free(Expr); 1306 isl_ast_node_free(UserStmt); 1307 } 1308 1309 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1310 createForSequential(isl::manage(Node), false); 1311 } 1312 1313 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1314 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1315 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1316 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1317 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1318 Index = isl_ast_expr_address_of(Index); 1319 Value *GlobalAddr = ExprBuilder.create(Index); 1320 1321 if (KernelStmt->u.c.read) { 1322 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1323 Builder.CreateStore(Load, LocalAddr); 1324 } else { 1325 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1326 Builder.CreateStore(Load, GlobalAddr); 1327 } 1328 } 1329 1330 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1331 ppcg_kernel_stmt *KernelStmt) { 1332 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1333 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1334 1335 LoopToScevMapT LTS; 1336 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1337 1338 createSubstitutions(Expr, Stmt, LTS); 1339 1340 if (Stmt->isBlockStmt()) 1341 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1342 else 1343 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1344 } 1345 1346 void GPUNodeBuilder::createKernelSync() { 1347 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1348 const char *SpirName = "__gen_ocl_barrier_global"; 1349 1350 Function *Sync; 1351 1352 switch (Arch) { 1353 case GPUArch::SPIR64: 1354 case GPUArch::SPIR32: 1355 Sync = M->getFunction(SpirName); 1356 1357 // If Sync is not available, declare it. 1358 if (!Sync) { 1359 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1360 std::vector<Type *> Args; 1361 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1362 Sync = Function::Create(Ty, Linkage, SpirName, M); 1363 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1364 } 1365 break; 1366 case GPUArch::NVPTX64: 1367 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1368 break; 1369 } 1370 1371 Builder.CreateCall(Sync, {}); 1372 } 1373 1374 /// Collect llvm::Values referenced from @p Node 1375 /// 1376 /// This function only applies to isl_ast_nodes that are user_nodes referring 1377 /// to a ScopStmt. All other node types are ignore. 1378 /// 1379 /// @param Node The node to collect references for. 1380 /// @param User A user pointer used as storage for the data that is collected. 1381 /// 1382 /// @returns isl_bool_true if data could be collected successfully. 1383 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1384 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1385 return isl_bool_true; 1386 1387 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1388 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1389 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1390 const char *Str = isl_id_get_name(Id); 1391 isl_id_free(Id); 1392 isl_ast_expr_free(StmtExpr); 1393 isl_ast_expr_free(Expr); 1394 1395 if (!isPrefix(Str, "Stmt")) 1396 return isl_bool_true; 1397 1398 Id = isl_ast_node_get_annotation(Node); 1399 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1400 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1401 isl_id_free(Id); 1402 1403 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1404 1405 return isl_bool_true; 1406 } 1407 1408 /// A list of functions that are available in NVIDIA's libdevice. 1409 const std::set<std::string> CUDALibDeviceFunctions = { 1410 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1411 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1412 1413 // A map from intrinsics to their corresponding libdevice functions. 1414 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1415 {"llvm.exp.f64", "exp"}, 1416 {"llvm.exp.f32", "expf"}, 1417 {"llvm.powi.f64", "powi"}, 1418 {"llvm.powi.f32", "powif"}}; 1419 1420 /// Return the corresponding CUDA libdevice function name @p Name. 1421 /// Note that this function will try to convert instrinsics in the list 1422 /// IntrinsicToLibdeviceFunc into libdevice functions. 1423 /// This is because some intrinsics such as `exp` 1424 /// are not supported by the NVPTX backend. 1425 /// If this restriction of the backend is lifted, we should refactor our code 1426 /// so that we use intrinsics whenever possible. 1427 /// 1428 /// Return "" if we are not compiling for CUDA. 1429 std::string getCUDALibDeviceFuntion(StringRef NameRef) { 1430 std::string Name = NameRef.str(); 1431 auto It = IntrinsicToLibdeviceFunc.find(Name); 1432 if (It != IntrinsicToLibdeviceFunc.end()) 1433 return getCUDALibDeviceFuntion(It->second); 1434 1435 if (CUDALibDeviceFunctions.count(Name)) 1436 return ("__nv_" + Name); 1437 1438 return ""; 1439 } 1440 1441 /// Check if F is a function that we can code-generate in a GPU kernel. 1442 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1443 assert(F && "F is an invalid pointer"); 1444 // We string compare against the name of the function to allow 1445 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1446 // "llvm.copysign". 1447 const StringRef Name = F->getName(); 1448 1449 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1450 return true; 1451 1452 return F->isIntrinsic() && 1453 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1454 Name.startswith("llvm.copysign")); 1455 } 1456 1457 /// Do not take `Function` as a subtree value. 1458 /// 1459 /// We try to take the reference of all subtree values and pass them along 1460 /// to the kernel from the host. Taking an address of any function and 1461 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1462 /// `Function`s. 1463 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1464 1465 /// Return `Function`s from `RawSubtreeValues`. 1466 static SetVector<Function *> 1467 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1468 bool AllowCUDALibDevice) { 1469 SetVector<Function *> SubtreeFunctions; 1470 for (Value *It : RawSubtreeValues) { 1471 Function *F = dyn_cast<Function>(It); 1472 if (F) { 1473 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1474 "Code should have bailed out by " 1475 "this point if an invalid function " 1476 "were present in a kernel."); 1477 SubtreeFunctions.insert(F); 1478 } 1479 } 1480 return SubtreeFunctions; 1481 } 1482 1483 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1484 isl::space> 1485 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1486 SetVector<Value *> SubtreeValues; 1487 SetVector<const SCEV *> SCEVs; 1488 SetVector<const Loop *> Loops; 1489 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1490 SubtreeReferences References = { 1491 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1492 &ParamSpace}; 1493 1494 for (const auto &I : IDToValue) 1495 SubtreeValues.insert(I.second); 1496 1497 // NOTE: this is populated in IslNodeBuilder::addParameters 1498 // See [Code generation of induction variables of loops outside Scops]. 1499 for (const auto &I : OutsideLoopIterations) 1500 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1501 1502 isl_ast_node_foreach_descendant_top_down( 1503 Kernel->tree, collectReferencesInGPUStmt, &References); 1504 1505 for (const SCEV *Expr : SCEVs) { 1506 findValues(Expr, SE, SubtreeValues); 1507 findLoops(Expr, Loops); 1508 } 1509 1510 Loops.remove_if([this](const Loop *L) { 1511 return S.contains(L) || L->contains(S.getEntry()); 1512 }); 1513 1514 for (auto &SAI : S.arrays()) 1515 SubtreeValues.remove(SAI->getBasePtr()); 1516 1517 isl_space *Space = S.getParamSpace().release(); 1518 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1519 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1520 assert(IDToValue.count(Id)); 1521 Value *Val = IDToValue[Id]; 1522 SubtreeValues.remove(Val); 1523 isl_id_free(Id); 1524 } 1525 isl_space_free(Space); 1526 1527 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1528 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1529 assert(IDToValue.count(Id)); 1530 Value *Val = IDToValue[Id]; 1531 SubtreeValues.remove(Val); 1532 isl_id_free(Id); 1533 } 1534 1535 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1536 // SubtreeValues. This is important, because we should not lose any 1537 // SubtreeValues in the process of constructing the 1538 // "ValidSubtree{Values, Functions} sets. Nor should the set 1539 // ValidSubtree{Values, Functions} have any common element. 1540 auto ValidSubtreeValuesIt = 1541 make_filter_range(SubtreeValues, isValidSubtreeValue); 1542 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1543 ValidSubtreeValuesIt.end()); 1544 1545 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1546 1547 SetVector<Function *> ValidSubtreeFunctions( 1548 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1549 1550 // @see IslNodeBuilder::getReferencesInSubtree 1551 SetVector<Value *> ReplacedValues; 1552 for (Value *V : ValidSubtreeValues) { 1553 auto It = ValueMap.find(V); 1554 if (It == ValueMap.end()) 1555 ReplacedValues.insert(V); 1556 else 1557 ReplacedValues.insert(It->second); 1558 } 1559 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1560 ParamSpace); 1561 } 1562 1563 void GPUNodeBuilder::clearDominators(Function *F) { 1564 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1565 std::vector<BasicBlock *> Nodes; 1566 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1567 Nodes.push_back(I->getBlock()); 1568 1569 for (BasicBlock *BB : Nodes) 1570 DT.eraseNode(BB); 1571 } 1572 1573 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1574 for (BasicBlock &BB : *F) { 1575 Loop *L = LI.getLoopFor(&BB); 1576 if (L) 1577 SE.forgetLoop(L); 1578 } 1579 } 1580 1581 void GPUNodeBuilder::clearLoops(Function *F) { 1582 SmallSet<Loop *, 1> WorkList; 1583 for (BasicBlock &BB : *F) { 1584 Loop *L = LI.getLoopFor(&BB); 1585 if (L) 1586 WorkList.insert(L); 1587 } 1588 for (auto *L : WorkList) 1589 LI.erase(L); 1590 } 1591 1592 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1593 std::vector<Value *> Sizes; 1594 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1595 1596 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1597 for (long i = 0; i < Kernel->n_grid; i++) { 1598 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1599 isl::ast_expr GridSize = Context.expr_from(Size); 1600 Value *Res = ExprBuilder.create(GridSize.release()); 1601 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1602 Sizes.push_back(Res); 1603 } 1604 1605 for (long i = Kernel->n_grid; i < 3; i++) 1606 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1607 1608 return std::make_tuple(Sizes[0], Sizes[1]); 1609 } 1610 1611 std::tuple<Value *, Value *, Value *> 1612 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1613 std::vector<Value *> Sizes; 1614 1615 for (long i = 0; i < Kernel->n_block; i++) { 1616 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1617 Sizes.push_back(Res); 1618 } 1619 1620 for (long i = Kernel->n_block; i < 3; i++) 1621 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1622 1623 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1624 } 1625 1626 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1627 Instruction *Param, int Index) { 1628 Value *Slot = Builder.CreateGEP( 1629 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1630 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1631 Builder.CreateStore(ParamTyped, Slot); 1632 } 1633 1634 Value * 1635 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1636 SetVector<Value *> SubtreeValues) { 1637 const int NumArgs = F->arg_size(); 1638 std::vector<int> ArgSizes(NumArgs); 1639 1640 // If we are using the OpenCL Runtime, we need to add the kernel argument 1641 // sizes to the end of the launch-parameter list, so OpenCL can determine 1642 // how big the respective kernel arguments are. 1643 // Here we need to reserve adequate space for that. 1644 Type *ArrayTy; 1645 if (Runtime == GPURuntime::OpenCL) 1646 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1647 else 1648 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1649 1650 BasicBlock *EntryBlock = 1651 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1652 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1653 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1654 Instruction *Parameters = new AllocaInst( 1655 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1656 1657 int Index = 0; 1658 for (long i = 0; i < Prog->n_array; i++) { 1659 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1660 continue; 1661 1662 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1663 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1664 1665 if (Runtime == GPURuntime::OpenCL) 1666 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1667 1668 Value *DevArray = nullptr; 1669 if (PollyManagedMemory) { 1670 DevArray = getManagedDeviceArray(&Prog->array[i], 1671 const_cast<ScopArrayInfo *>(SAI)); 1672 } else { 1673 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1674 DevArray = createCallGetDevicePtr(DevArray); 1675 } 1676 assert(DevArray != nullptr && "Array to be offloaded to device not " 1677 "initialized"); 1678 Value *Offset = getArrayOffset(&Prog->array[i]); 1679 1680 if (Offset) { 1681 DevArray = Builder.CreatePointerCast( 1682 DevArray, SAI->getElementType()->getPointerTo()); 1683 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1684 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1685 } 1686 Value *Slot = Builder.CreateGEP( 1687 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1688 1689 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1690 Value *ValPtr = nullptr; 1691 if (PollyManagedMemory) 1692 ValPtr = DevArray; 1693 else 1694 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1695 1696 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1697 " to be stored into Parameters"); 1698 Value *ValPtrCast = 1699 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1700 Builder.CreateStore(ValPtrCast, Slot); 1701 } else { 1702 Instruction *Param = 1703 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1704 Launch + "_param_" + std::to_string(Index), 1705 EntryBlock->getTerminator()); 1706 Builder.CreateStore(DevArray, Param); 1707 Value *ParamTyped = 1708 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1709 Builder.CreateStore(ParamTyped, Slot); 1710 } 1711 Index++; 1712 } 1713 1714 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1715 1716 for (long i = 0; i < NumHostIters; i++) { 1717 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1718 Value *Val = IDToValue[Id]; 1719 isl_id_free(Id); 1720 1721 if (Runtime == GPURuntime::OpenCL) 1722 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1723 1724 Instruction *Param = 1725 new AllocaInst(Val->getType(), AddressSpace, 1726 Launch + "_param_" + std::to_string(Index), 1727 EntryBlock->getTerminator()); 1728 Builder.CreateStore(Val, Param); 1729 insertStoreParameter(Parameters, Param, Index); 1730 Index++; 1731 } 1732 1733 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1734 1735 for (long i = 0; i < NumVars; i++) { 1736 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1737 Value *Val = IDToValue[Id]; 1738 if (ValueMap.count(Val)) 1739 Val = ValueMap[Val]; 1740 isl_id_free(Id); 1741 1742 if (Runtime == GPURuntime::OpenCL) 1743 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1744 1745 Instruction *Param = 1746 new AllocaInst(Val->getType(), AddressSpace, 1747 Launch + "_param_" + std::to_string(Index), 1748 EntryBlock->getTerminator()); 1749 Builder.CreateStore(Val, Param); 1750 insertStoreParameter(Parameters, Param, Index); 1751 Index++; 1752 } 1753 1754 for (auto Val : SubtreeValues) { 1755 if (Runtime == GPURuntime::OpenCL) 1756 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1757 1758 Instruction *Param = 1759 new AllocaInst(Val->getType(), AddressSpace, 1760 Launch + "_param_" + std::to_string(Index), 1761 EntryBlock->getTerminator()); 1762 Builder.CreateStore(Val, Param); 1763 insertStoreParameter(Parameters, Param, Index); 1764 Index++; 1765 } 1766 1767 if (Runtime == GPURuntime::OpenCL) { 1768 for (int i = 0; i < NumArgs; i++) { 1769 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1770 Instruction *Param = 1771 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1772 Launch + "_param_size_" + std::to_string(i), 1773 EntryBlock->getTerminator()); 1774 Builder.CreateStore(Val, Param); 1775 insertStoreParameter(Parameters, Param, Index); 1776 Index++; 1777 } 1778 } 1779 1780 auto Location = EntryBlock->getTerminator(); 1781 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1782 Launch + "_params_i8ptr", Location); 1783 } 1784 1785 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1786 SetVector<Function *> SubtreeFunctions) { 1787 for (auto Fn : SubtreeFunctions) { 1788 const std::string ClonedFnName = Fn->getName().str(); 1789 Function *Clone = GPUModule->getFunction(ClonedFnName); 1790 if (!Clone) 1791 Clone = 1792 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1793 ClonedFnName, GPUModule.get()); 1794 assert(Clone && "Expected cloned function to be initialized."); 1795 assert(ValueMap.find(Fn) == ValueMap.end() && 1796 "Fn already present in ValueMap"); 1797 ValueMap[Fn] = Clone; 1798 } 1799 } 1800 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1801 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1802 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1803 isl_id_free(Id); 1804 isl_ast_node_free(KernelStmt); 1805 1806 if (Kernel->n_grid > 1) 1807 DeepestParallel = std::max( 1808 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1809 else 1810 DeepestSequential = std::max( 1811 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1812 1813 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1814 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1815 1816 SetVector<Value *> SubtreeValues; 1817 SetVector<Function *> SubtreeFunctions; 1818 SetVector<const Loop *> Loops; 1819 isl::space ParamSpace; 1820 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1821 getReferencesInKernel(Kernel); 1822 1823 // Add parameters that appear only in the access function to the kernel 1824 // space. This is important to make sure that all isl_ids are passed as 1825 // parameters to the kernel, even though we may not have all parameters 1826 // in the context to improve compile time. 1827 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1828 1829 assert(Kernel->tree && "Device AST of kernel node is empty"); 1830 1831 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1832 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1833 ValueMapT HostValueMap = ValueMap; 1834 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1835 ScalarMap.clear(); 1836 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1837 EscapeMap.clear(); 1838 1839 // Create for all loops we depend on values that contain the current loop 1840 // iteration. These values are necessary to generate code for SCEVs that 1841 // depend on such loops. As a result we need to pass them to the subfunction. 1842 for (const Loop *L : Loops) { 1843 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1844 SE.getUnknown(Builder.getInt64(1)), 1845 L, SCEV::FlagAnyWrap); 1846 Value *V = generateSCEV(OuterLIV); 1847 OutsideLoopIterations[L] = SE.getUnknown(V); 1848 SubtreeValues.insert(V); 1849 } 1850 1851 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1852 setupKernelSubtreeFunctions(SubtreeFunctions); 1853 1854 create(isl_ast_node_copy(Kernel->tree)); 1855 1856 finalizeKernelArguments(Kernel); 1857 Function *F = Builder.GetInsertBlock()->getParent(); 1858 if (Arch == GPUArch::NVPTX64) 1859 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1860 clearDominators(F); 1861 clearScalarEvolution(F); 1862 clearLoops(F); 1863 1864 IDToValue = HostIDs; 1865 1866 ValueMap = std::move(HostValueMap); 1867 ScalarMap = std::move(HostScalarMap); 1868 EscapeMap = std::move(HostEscapeMap); 1869 IDToSAI.clear(); 1870 Annotator.resetAlternativeAliasBases(); 1871 for (auto &BasePtr : LocalArrays) 1872 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1873 LocalArrays.clear(); 1874 1875 std::string ASMString = finalizeKernelFunction(); 1876 Builder.SetInsertPoint(&HostInsertPoint); 1877 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1878 1879 std::string Name = getKernelFuncName(Kernel->id); 1880 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1881 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1882 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1883 1884 Value *GridDimX, *GridDimY; 1885 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1886 1887 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1888 BlockDimZ, Parameters); 1889 createCallFreeKernel(GPUKernel); 1890 1891 for (auto Id : KernelIds) 1892 isl_id_free(Id); 1893 1894 KernelIds.clear(); 1895 } 1896 1897 /// Compute the DataLayout string for the NVPTX backend. 1898 /// 1899 /// @param is64Bit Are we looking for a 64 bit architecture? 1900 static std::string computeNVPTXDataLayout(bool is64Bit) { 1901 std::string Ret = ""; 1902 1903 if (!is64Bit) { 1904 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1905 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1906 "64-v128:128:128-n16:32:64"; 1907 } else { 1908 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1909 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1910 "64-v128:128:128-n16:32:64"; 1911 } 1912 1913 return Ret; 1914 } 1915 1916 /// Compute the DataLayout string for a SPIR kernel. 1917 /// 1918 /// @param is64Bit Are we looking for a 64 bit architecture? 1919 static std::string computeSPIRDataLayout(bool is64Bit) { 1920 std::string Ret = ""; 1921 1922 if (!is64Bit) { 1923 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1924 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1925 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1926 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1927 } else { 1928 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1929 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1930 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1931 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1932 } 1933 1934 return Ret; 1935 } 1936 1937 Function * 1938 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1939 SetVector<Value *> &SubtreeValues) { 1940 std::vector<Type *> Args; 1941 std::string Identifier = getKernelFuncName(Kernel->id); 1942 1943 std::vector<Metadata *> MemoryType; 1944 1945 for (long i = 0; i < Prog->n_array; i++) { 1946 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1947 continue; 1948 1949 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1950 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1951 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1952 Args.push_back(SAI->getElementType()); 1953 MemoryType.push_back( 1954 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1955 } else { 1956 static const int UseGlobalMemory = 1; 1957 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1958 MemoryType.push_back( 1959 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1960 } 1961 } 1962 1963 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1964 1965 for (long i = 0; i < NumHostIters; i++) { 1966 Args.push_back(Builder.getInt64Ty()); 1967 MemoryType.push_back( 1968 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1969 } 1970 1971 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1972 1973 for (long i = 0; i < NumVars; i++) { 1974 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1975 Value *Val = IDToValue[Id]; 1976 isl_id_free(Id); 1977 Args.push_back(Val->getType()); 1978 MemoryType.push_back( 1979 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1980 } 1981 1982 for (auto *V : SubtreeValues) { 1983 Args.push_back(V->getType()); 1984 MemoryType.push_back( 1985 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1986 } 1987 1988 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1989 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1990 GPUModule.get()); 1991 1992 std::vector<Metadata *> EmptyStrings; 1993 1994 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1995 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1996 } 1997 1998 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1999 FN->setMetadata("kernel_arg_addr_space", 2000 MDNode::get(FN->getContext(), MemoryType)); 2001 FN->setMetadata("kernel_arg_name", 2002 MDNode::get(FN->getContext(), EmptyStrings)); 2003 FN->setMetadata("kernel_arg_access_qual", 2004 MDNode::get(FN->getContext(), EmptyStrings)); 2005 FN->setMetadata("kernel_arg_type", 2006 MDNode::get(FN->getContext(), EmptyStrings)); 2007 FN->setMetadata("kernel_arg_type_qual", 2008 MDNode::get(FN->getContext(), EmptyStrings)); 2009 FN->setMetadata("kernel_arg_base_type", 2010 MDNode::get(FN->getContext(), EmptyStrings)); 2011 } 2012 2013 switch (Arch) { 2014 case GPUArch::NVPTX64: 2015 FN->setCallingConv(CallingConv::PTX_Kernel); 2016 break; 2017 case GPUArch::SPIR32: 2018 case GPUArch::SPIR64: 2019 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2020 break; 2021 } 2022 2023 auto Arg = FN->arg_begin(); 2024 for (long i = 0; i < Kernel->n_array; i++) { 2025 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2026 continue; 2027 2028 Arg->setName(Kernel->array[i].array->name); 2029 2030 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2031 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2032 Type *EleTy = SAI->getElementType(); 2033 Value *Val = &*Arg; 2034 SmallVector<const SCEV *, 4> Sizes; 2035 isl_ast_build *Build = 2036 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2037 Sizes.push_back(nullptr); 2038 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2039 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2040 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2041 auto V = ExprBuilder.create(DimSize); 2042 Sizes.push_back(SE.getSCEV(V)); 2043 } 2044 const ScopArrayInfo *SAIRep = 2045 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2046 LocalArrays.push_back(Val); 2047 2048 isl_ast_build_free(Build); 2049 KernelIds.push_back(Id); 2050 IDToSAI[Id] = SAIRep; 2051 Arg++; 2052 } 2053 2054 for (long i = 0; i < NumHostIters; i++) { 2055 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2056 Arg->setName(isl_id_get_name(Id)); 2057 IDToValue[Id] = &*Arg; 2058 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2059 Arg++; 2060 } 2061 2062 for (long i = 0; i < NumVars; i++) { 2063 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2064 Arg->setName(isl_id_get_name(Id)); 2065 Value *Val = IDToValue[Id]; 2066 ValueMap[Val] = &*Arg; 2067 IDToValue[Id] = &*Arg; 2068 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2069 Arg++; 2070 } 2071 2072 for (auto *V : SubtreeValues) { 2073 Arg->setName(V->getName()); 2074 ValueMap[V] = &*Arg; 2075 Arg++; 2076 } 2077 2078 return FN; 2079 } 2080 2081 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2082 Intrinsic::ID IntrinsicsBID[2]; 2083 Intrinsic::ID IntrinsicsTID[3]; 2084 2085 switch (Arch) { 2086 case GPUArch::SPIR64: 2087 case GPUArch::SPIR32: 2088 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2089 case GPUArch::NVPTX64: 2090 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2091 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2092 2093 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2094 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2095 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2096 break; 2097 } 2098 2099 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2100 std::string Name = isl_id_get_name(Id); 2101 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2102 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2103 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2104 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2105 IDToValue[Id] = Val; 2106 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2107 }; 2108 2109 for (int i = 0; i < Kernel->n_grid; ++i) { 2110 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2111 addId(Id, IntrinsicsBID[i]); 2112 } 2113 2114 for (int i = 0; i < Kernel->n_block; ++i) { 2115 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2116 addId(Id, IntrinsicsTID[i]); 2117 } 2118 } 2119 2120 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2121 bool SizeTypeIs64bit) { 2122 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2123 "__gen_ocl_get_group_id1", 2124 "__gen_ocl_get_group_id2"}; 2125 2126 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2127 "__gen_ocl_get_local_id1", 2128 "__gen_ocl_get_local_id2"}; 2129 IntegerType *SizeT = 2130 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2131 2132 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2133 IntegerType *SizeT) mutable { 2134 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2135 Function *FN = M->getFunction(Name); 2136 2137 // If FN is not available, declare it. 2138 if (!FN) { 2139 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2140 std::vector<Type *> Args; 2141 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2142 FN = Function::Create(Ty, Linkage, Name, M); 2143 FN->setCallingConv(CallingConv::SPIR_FUNC); 2144 } 2145 2146 Value *Val = Builder.CreateCall(FN, {}); 2147 if (SizeT == Builder.getInt32Ty()) 2148 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2149 IDToValue[Id] = Val; 2150 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2151 }; 2152 2153 for (int i = 0; i < Kernel->n_grid; ++i) 2154 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2155 2156 for (int i = 0; i < Kernel->n_block; ++i) 2157 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2158 } 2159 2160 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2161 auto Arg = FN->arg_begin(); 2162 for (long i = 0; i < Kernel->n_array; i++) { 2163 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2164 continue; 2165 2166 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2167 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2168 isl_id_free(Id); 2169 2170 if (SAI->getNumberOfDimensions() > 0) { 2171 Arg++; 2172 continue; 2173 } 2174 2175 Value *Val = &*Arg; 2176 2177 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2178 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2179 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2180 Val = Builder.CreateLoad(TypedArgPtr); 2181 } 2182 2183 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2184 Builder.CreateStore(Val, Alloca); 2185 2186 Arg++; 2187 } 2188 } 2189 2190 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2191 auto *FN = Builder.GetInsertBlock()->getParent(); 2192 auto Arg = FN->arg_begin(); 2193 2194 bool StoredScalar = false; 2195 for (long i = 0; i < Kernel->n_array; i++) { 2196 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2197 continue; 2198 2199 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2200 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2201 isl_id_free(Id); 2202 2203 if (SAI->getNumberOfDimensions() > 0) { 2204 Arg++; 2205 continue; 2206 } 2207 2208 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2209 Arg++; 2210 continue; 2211 } 2212 2213 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2214 Value *ArgPtr = &*Arg; 2215 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2216 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2217 Value *Val = Builder.CreateLoad(Alloca); 2218 Builder.CreateStore(Val, TypedArgPtr); 2219 StoredScalar = true; 2220 2221 Arg++; 2222 } 2223 2224 if (StoredScalar) { 2225 /// In case more than one thread contains scalar stores, the generated 2226 /// code might be incorrect, if we only store at the end of the kernel. 2227 /// To support this case we need to store these scalars back at each 2228 /// memory store or at least before each kernel barrier. 2229 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2230 BuildSuccessful = 0; 2231 LLVM_DEBUG( 2232 dbgs() << getUniqueScopName(&S) 2233 << " has a store to a scalar value that" 2234 " would be undefined to run in parallel. Bailing out.\n";); 2235 } 2236 } 2237 } 2238 2239 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2240 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2241 2242 for (int i = 0; i < Kernel->n_var; ++i) { 2243 struct ppcg_kernel_var &Var = Kernel->var[i]; 2244 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2245 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2246 2247 Type *ArrayTy = EleTy; 2248 SmallVector<const SCEV *, 4> Sizes; 2249 2250 Sizes.push_back(nullptr); 2251 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2252 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2253 long Bound = isl_val_get_num_si(Val); 2254 isl_val_free(Val); 2255 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2256 } 2257 2258 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2259 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2260 long Bound = isl_val_get_num_si(Val); 2261 isl_val_free(Val); 2262 ArrayTy = ArrayType::get(ArrayTy, Bound); 2263 } 2264 2265 const ScopArrayInfo *SAI; 2266 Value *Allocation; 2267 if (Var.type == ppcg_access_shared) { 2268 auto GlobalVar = new GlobalVariable( 2269 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2270 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2271 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); 2272 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2273 2274 Allocation = GlobalVar; 2275 } else if (Var.type == ppcg_access_private) { 2276 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2277 } else { 2278 llvm_unreachable("unknown variable type"); 2279 } 2280 SAI = 2281 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2282 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2283 IDToValue[Id] = Allocation; 2284 LocalArrays.push_back(Allocation); 2285 KernelIds.push_back(Id); 2286 IDToSAI[Id] = SAI; 2287 } 2288 } 2289 2290 void GPUNodeBuilder::createKernelFunction( 2291 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2292 SetVector<Function *> &SubtreeFunctions) { 2293 std::string Identifier = getKernelFuncName(Kernel->id); 2294 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2295 2296 switch (Arch) { 2297 case GPUArch::NVPTX64: 2298 if (Runtime == GPURuntime::CUDA) 2299 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2300 else if (Runtime == GPURuntime::OpenCL) 2301 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2302 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2303 break; 2304 case GPUArch::SPIR32: 2305 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2306 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2307 break; 2308 case GPUArch::SPIR64: 2309 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2310 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2311 break; 2312 } 2313 2314 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2315 2316 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2317 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2318 2319 DT.addNewBlock(EntryBlock, PrevBlock); 2320 2321 Builder.SetInsertPoint(EntryBlock); 2322 Builder.CreateRetVoid(); 2323 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2324 2325 ScopDetection::markFunctionAsInvalid(FN); 2326 2327 prepareKernelArguments(Kernel, FN); 2328 createKernelVariables(Kernel, FN); 2329 2330 switch (Arch) { 2331 case GPUArch::NVPTX64: 2332 insertKernelIntrinsics(Kernel); 2333 break; 2334 case GPUArch::SPIR32: 2335 insertKernelCallsSPIR(Kernel, false); 2336 break; 2337 case GPUArch::SPIR64: 2338 insertKernelCallsSPIR(Kernel, true); 2339 break; 2340 } 2341 } 2342 2343 std::string GPUNodeBuilder::createKernelASM() { 2344 llvm::Triple GPUTriple; 2345 2346 switch (Arch) { 2347 case GPUArch::NVPTX64: 2348 switch (Runtime) { 2349 case GPURuntime::CUDA: 2350 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2351 break; 2352 case GPURuntime::OpenCL: 2353 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2354 break; 2355 } 2356 break; 2357 case GPUArch::SPIR64: 2358 case GPUArch::SPIR32: 2359 std::string SPIRAssembly; 2360 raw_string_ostream IROstream(SPIRAssembly); 2361 IROstream << *GPUModule; 2362 IROstream.flush(); 2363 return SPIRAssembly; 2364 } 2365 2366 std::string ErrMsg; 2367 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2368 2369 if (!GPUTarget) { 2370 errs() << ErrMsg << "\n"; 2371 return ""; 2372 } 2373 2374 TargetOptions Options; 2375 Options.UnsafeFPMath = FastMath; 2376 2377 std::string subtarget; 2378 2379 switch (Arch) { 2380 case GPUArch::NVPTX64: 2381 subtarget = CudaVersion; 2382 break; 2383 case GPUArch::SPIR32: 2384 case GPUArch::SPIR64: 2385 llvm_unreachable("No subtarget for SPIR architecture"); 2386 } 2387 2388 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2389 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2390 2391 SmallString<0> ASMString; 2392 raw_svector_ostream ASMStream(ASMString); 2393 llvm::legacy::PassManager PM; 2394 2395 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2396 2397 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, 2398 true /* verify */)) { 2399 errs() << "The target does not support generation of this file type!\n"; 2400 return ""; 2401 } 2402 2403 PM.run(*GPUModule); 2404 2405 return ASMStream.str().str(); 2406 } 2407 2408 bool GPUNodeBuilder::requiresCUDALibDevice() { 2409 bool RequiresLibDevice = false; 2410 for (Function &F : GPUModule->functions()) { 2411 if (!F.isDeclaration()) 2412 continue; 2413 2414 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2415 if (CUDALibDeviceFunc.length() != 0) { 2416 // We need to handle the case where a module looks like this: 2417 // @expf(..) 2418 // @llvm.exp.f64(..) 2419 // Both of these functions would be renamed to `__nv_expf`. 2420 // 2421 // So, we must first check for the existence of the libdevice function. 2422 // If this exists, we replace our current function with it. 2423 // 2424 // If it does not exist, we rename the current function to the 2425 // libdevice functiono name. 2426 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2427 F.replaceAllUsesWith(Replacement); 2428 else 2429 F.setName(CUDALibDeviceFunc); 2430 RequiresLibDevice = true; 2431 } 2432 } 2433 2434 return RequiresLibDevice; 2435 } 2436 2437 void GPUNodeBuilder::addCUDALibDevice() { 2438 if (Arch != GPUArch::NVPTX64) 2439 return; 2440 2441 if (requiresCUDALibDevice()) { 2442 SMDiagnostic Error; 2443 2444 errs() << CUDALibDevice << "\n"; 2445 auto LibDeviceModule = 2446 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2447 2448 if (!LibDeviceModule) { 2449 BuildSuccessful = false; 2450 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2451 "kernel generation. Please set -polly-acc-libdevice " 2452 "accordingly.\n"); 2453 return; 2454 } 2455 2456 Linker L(*GPUModule); 2457 2458 // Set an nvptx64 target triple to avoid linker warnings. The original 2459 // triple of the libdevice files are nvptx-unknown-unknown. 2460 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2461 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2462 } 2463 } 2464 2465 std::string GPUNodeBuilder::finalizeKernelFunction() { 2466 2467 if (verifyModule(*GPUModule)) { 2468 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2469 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2470 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2471 verifyModule(*GPUModule, &dbgs());); 2472 2473 if (FailOnVerifyModuleFailure) 2474 llvm_unreachable("VerifyModule failed."); 2475 2476 BuildSuccessful = false; 2477 return ""; 2478 } 2479 2480 addCUDALibDevice(); 2481 2482 if (DumpKernelIR) 2483 outs() << *GPUModule << "\n"; 2484 2485 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2486 // Optimize module. 2487 llvm::legacy::PassManager OptPasses; 2488 PassManagerBuilder PassBuilder; 2489 PassBuilder.OptLevel = 3; 2490 PassBuilder.SizeLevel = 0; 2491 PassBuilder.populateModulePassManager(OptPasses); 2492 OptPasses.run(*GPUModule); 2493 } 2494 2495 std::string Assembly = createKernelASM(); 2496 2497 if (DumpKernelASM) 2498 outs() << Assembly << "\n"; 2499 2500 GPUModule.release(); 2501 KernelIDs.clear(); 2502 2503 return Assembly; 2504 } 2505 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2506 /// @param PwAffs The list of piecewise affine functions to create an 2507 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2508 /// all the isl_pw_aff are used up by this function. 2509 /// 2510 /// @returns The `isl_pw_aff_list`. 2511 __isl_give isl_pw_aff_list * 2512 createPwAffList(isl_ctx *Context, 2513 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2514 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2515 2516 for (unsigned i = 0; i < PwAffs.size(); i++) { 2517 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2518 } 2519 return List; 2520 } 2521 2522 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2523 /// 2524 /// We loop over all `pw_aff` and align all of their spaces together to 2525 /// create a common space for all the `pw_aff`. This common space is the 2526 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2527 /// with the given `SeedSpace`. 2528 /// @param PwAffs The list of piecewise affine functions we want to align. 2529 /// This is an rvalue reference because the entire vector is 2530 /// used up by the end of the operation. 2531 /// @param SeedSpace The space to start the alignment process with. 2532 /// @returns A std::pair, whose first element is the aligned space, 2533 /// whose second element is the vector of aligned piecewise 2534 /// affines. 2535 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2536 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2537 __isl_take isl_space *SeedSpace) { 2538 assert(SeedSpace && "Invalid seed space given."); 2539 2540 isl_space *AlignSpace = SeedSpace; 2541 for (isl_pw_aff *PwAff : PwAffs) { 2542 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2543 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2544 } 2545 std::vector<isl_pw_aff *> AdjustedPwAffs; 2546 2547 for (unsigned i = 0; i < PwAffs.size(); i++) { 2548 isl_pw_aff *Adjusted = PwAffs[i]; 2549 assert(Adjusted && "Invalid pw_aff given."); 2550 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2551 AdjustedPwAffs.push_back(Adjusted); 2552 } 2553 return std::make_pair(AlignSpace, AdjustedPwAffs); 2554 } 2555 2556 namespace { 2557 class PPCGCodeGeneration : public ScopPass { 2558 public: 2559 static char ID; 2560 2561 GPURuntime Runtime = GPURuntime::CUDA; 2562 2563 GPUArch Architecture = GPUArch::NVPTX64; 2564 2565 /// The scop that is currently processed. 2566 Scop *S; 2567 2568 LoopInfo *LI; 2569 DominatorTree *DT; 2570 ScalarEvolution *SE; 2571 const DataLayout *DL; 2572 RegionInfo *RI; 2573 2574 PPCGCodeGeneration() : ScopPass(ID) { 2575 // Apply defaults. 2576 Runtime = GPURuntimeChoice; 2577 Architecture = GPUArchChoice; 2578 } 2579 2580 /// Construct compilation options for PPCG. 2581 /// 2582 /// @returns The compilation options. 2583 ppcg_options *createPPCGOptions() { 2584 auto DebugOptions = 2585 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2586 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2587 2588 DebugOptions->dump_schedule_constraints = false; 2589 DebugOptions->dump_schedule = false; 2590 DebugOptions->dump_final_schedule = false; 2591 DebugOptions->dump_sizes = false; 2592 DebugOptions->verbose = false; 2593 2594 Options->debug = DebugOptions; 2595 2596 Options->group_chains = false; 2597 Options->reschedule = true; 2598 Options->scale_tile_loops = false; 2599 Options->wrap = false; 2600 2601 Options->non_negative_parameters = false; 2602 Options->ctx = nullptr; 2603 Options->sizes = nullptr; 2604 2605 Options->tile = true; 2606 Options->tile_size = 32; 2607 2608 Options->isolate_full_tiles = false; 2609 2610 Options->use_private_memory = PrivateMemory; 2611 Options->use_shared_memory = SharedMemory; 2612 Options->max_shared_memory = 48 * 1024; 2613 2614 Options->target = PPCG_TARGET_CUDA; 2615 Options->openmp = false; 2616 Options->linearize_device_arrays = true; 2617 Options->allow_gnu_extensions = false; 2618 2619 Options->unroll_copy_shared = false; 2620 Options->unroll_gpu_tile = false; 2621 Options->live_range_reordering = true; 2622 2623 Options->live_range_reordering = true; 2624 Options->hybrid = false; 2625 Options->opencl_compiler_options = nullptr; 2626 Options->opencl_use_gpu = false; 2627 Options->opencl_n_include_file = 0; 2628 Options->opencl_include_files = nullptr; 2629 Options->opencl_print_kernel_types = false; 2630 Options->opencl_embed_kernel_code = false; 2631 2632 Options->save_schedule_file = nullptr; 2633 Options->load_schedule_file = nullptr; 2634 2635 return Options; 2636 } 2637 2638 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2639 /// 2640 /// Instead of a normal access of the form: 2641 /// 2642 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2643 /// 2644 /// a tagged access has the form 2645 /// 2646 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2647 /// 2648 /// where 'id' is an additional space that references the memory access that 2649 /// triggered the access. 2650 /// 2651 /// @param AccessTy The type of the memory accesses to collect. 2652 /// 2653 /// @return The relation describing all tagged memory accesses. 2654 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2655 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2656 2657 for (auto &Stmt : *S) 2658 for (auto &Acc : Stmt) 2659 if (Acc->getType() == AccessTy) { 2660 isl_map *Relation = Acc->getAccessRelation().release(); 2661 Relation = 2662 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2663 2664 isl_space *Space = isl_map_get_space(Relation); 2665 Space = isl_space_range(Space); 2666 Space = isl_space_from_range(Space); 2667 Space = 2668 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2669 isl_map *Universe = isl_map_universe(Space); 2670 Relation = isl_map_domain_product(Relation, Universe); 2671 Accesses = isl_union_map_add_map(Accesses, Relation); 2672 } 2673 2674 return Accesses; 2675 } 2676 2677 /// Get the set of all read accesses, tagged with the access id. 2678 /// 2679 /// @see getTaggedAccesses 2680 isl_union_map *getTaggedReads() { 2681 return getTaggedAccesses(MemoryAccess::READ); 2682 } 2683 2684 /// Get the set of all may (and must) accesses, tagged with the access id. 2685 /// 2686 /// @see getTaggedAccesses 2687 isl_union_map *getTaggedMayWrites() { 2688 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2689 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2690 } 2691 2692 /// Get the set of all must accesses, tagged with the access id. 2693 /// 2694 /// @see getTaggedAccesses 2695 isl_union_map *getTaggedMustWrites() { 2696 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2697 } 2698 2699 /// Collect parameter and array names as isl_ids. 2700 /// 2701 /// To reason about the different parameters and arrays used, ppcg requires 2702 /// a list of all isl_ids in use. As PPCG traditionally performs 2703 /// source-to-source compilation each of these isl_ids is mapped to the 2704 /// expression that represents it. As we do not have a corresponding 2705 /// expression in Polly, we just map each id to a 'zero' expression to match 2706 /// the data format that ppcg expects. 2707 /// 2708 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2709 __isl_give isl_id_to_ast_expr *getNames() { 2710 auto *Names = isl_id_to_ast_expr_alloc( 2711 S->getIslCtx().get(), 2712 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2713 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2714 2715 for (const SCEV *P : S->parameters()) { 2716 isl_id *Id = S->getIdForParam(P).release(); 2717 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2718 } 2719 2720 for (auto &Array : S->arrays()) { 2721 auto Id = Array->getBasePtrId().release(); 2722 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2723 } 2724 2725 isl_ast_expr_free(Zero); 2726 2727 return Names; 2728 } 2729 2730 /// Create a new PPCG scop from the current scop. 2731 /// 2732 /// The PPCG scop is initialized with data from the current polly::Scop. From 2733 /// this initial data, the data-dependences in the PPCG scop are initialized. 2734 /// We do not use Polly's dependence analysis for now, to ensure we match 2735 /// the PPCG default behaviour more closely. 2736 /// 2737 /// @returns A new ppcg scop. 2738 ppcg_scop *createPPCGScop() { 2739 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2740 2741 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2742 2743 PPCGScop->options = createPPCGOptions(); 2744 // enable live range reordering 2745 PPCGScop->options->live_range_reordering = 1; 2746 2747 PPCGScop->start = 0; 2748 PPCGScop->end = 0; 2749 2750 PPCGScop->context = S->getContext().release(); 2751 PPCGScop->domain = S->getDomains().release(); 2752 // TODO: investigate this further. PPCG calls collect_call_domains. 2753 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2754 PPCGScop->tagged_reads = getTaggedReads(); 2755 PPCGScop->reads = S->getReads().release(); 2756 PPCGScop->live_in = nullptr; 2757 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2758 PPCGScop->may_writes = S->getWrites().release(); 2759 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2760 PPCGScop->must_writes = S->getMustWrites().release(); 2761 PPCGScop->live_out = nullptr; 2762 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2763 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2764 2765 PPCGScop->tagger = nullptr; 2766 PPCGScop->independence = 2767 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2768 PPCGScop->dep_flow = nullptr; 2769 PPCGScop->tagged_dep_flow = nullptr; 2770 PPCGScop->dep_false = nullptr; 2771 PPCGScop->dep_forced = nullptr; 2772 PPCGScop->dep_order = nullptr; 2773 PPCGScop->tagged_dep_order = nullptr; 2774 2775 PPCGScop->schedule = S->getScheduleTree().release(); 2776 // If we have something non-trivial to kill, add it to the schedule 2777 if (KillsInfo.KillsSchedule.get()) 2778 PPCGScop->schedule = isl_schedule_sequence( 2779 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2780 2781 PPCGScop->names = getNames(); 2782 PPCGScop->pet = nullptr; 2783 2784 compute_tagger(PPCGScop); 2785 compute_dependences(PPCGScop); 2786 eliminate_dead_code(PPCGScop); 2787 2788 return PPCGScop; 2789 } 2790 2791 /// Collect the array accesses in a statement. 2792 /// 2793 /// @param Stmt The statement for which to collect the accesses. 2794 /// 2795 /// @returns A list of array accesses. 2796 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2797 gpu_stmt_access *Accesses = nullptr; 2798 2799 for (MemoryAccess *Acc : Stmt) { 2800 auto Access = 2801 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2802 Access->read = Acc->isRead(); 2803 Access->write = Acc->isWrite(); 2804 Access->access = Acc->getAccessRelation().release(); 2805 isl_space *Space = isl_map_get_space(Access->access); 2806 Space = isl_space_range(Space); 2807 Space = isl_space_from_range(Space); 2808 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2809 isl_map *Universe = isl_map_universe(Space); 2810 Access->tagged_access = 2811 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2812 Access->exact_write = !Acc->isMayWrite(); 2813 Access->ref_id = Acc->getId().release(); 2814 Access->next = Accesses; 2815 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2816 // TODO: Also mark one-element accesses to arrays as fixed-element. 2817 Access->fixed_element = 2818 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2819 Accesses = Access; 2820 } 2821 2822 return Accesses; 2823 } 2824 2825 /// Collect the list of GPU statements. 2826 /// 2827 /// Each statement has an id, a pointer to the underlying data structure, 2828 /// as well as a list with all memory accesses. 2829 /// 2830 /// TODO: Initialize the list of memory accesses. 2831 /// 2832 /// @returns A linked-list of statements. 2833 gpu_stmt *getStatements() { 2834 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2835 std::distance(S->begin(), S->end())); 2836 2837 int i = 0; 2838 for (auto &Stmt : *S) { 2839 gpu_stmt *GPUStmt = &Stmts[i]; 2840 2841 GPUStmt->id = Stmt.getDomainId().release(); 2842 2843 // We use the pet stmt pointer to keep track of the Polly statements. 2844 GPUStmt->stmt = (pet_stmt *)&Stmt; 2845 GPUStmt->accesses = getStmtAccesses(Stmt); 2846 i++; 2847 } 2848 2849 return Stmts; 2850 } 2851 2852 /// Derive the extent of an array. 2853 /// 2854 /// The extent of an array is the set of elements that are within the 2855 /// accessed array. For the inner dimensions, the extent constraints are 2856 /// 0 and the size of the corresponding array dimension. For the first 2857 /// (outermost) dimension, the extent constraints are the minimal and maximal 2858 /// subscript value for the first dimension. 2859 /// 2860 /// @param Array The array to derive the extent for. 2861 /// 2862 /// @returns An isl_set describing the extent of the array. 2863 isl::set getExtent(ScopArrayInfo *Array) { 2864 unsigned NumDims = Array->getNumberOfDimensions(); 2865 2866 if (Array->getNumberOfDimensions() == 0) 2867 return isl::set::universe(Array->getSpace()); 2868 2869 isl::union_map Accesses = S->getAccesses(Array); 2870 isl::union_set AccessUSet = Accesses.range(); 2871 AccessUSet = AccessUSet.coalesce(); 2872 AccessUSet = AccessUSet.detect_equalities(); 2873 AccessUSet = AccessUSet.coalesce(); 2874 2875 if (AccessUSet.is_empty()) 2876 return isl::set::empty(Array->getSpace()); 2877 2878 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2879 2880 isl::local_space LS = isl::local_space(Array->getSpace()); 2881 2882 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2883 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2884 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2885 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2886 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2887 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2888 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2889 2890 isl::set Extent = isl::set::universe(Array->getSpace()); 2891 2892 Extent = Extent.intersect(OuterMin.le_set(Val)); 2893 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2894 2895 for (unsigned i = 1; i < NumDims; ++i) 2896 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2897 2898 for (unsigned i = 0; i < NumDims; ++i) { 2899 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2900 2901 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2902 // Fortran array will we have a legitimate dimension. 2903 if (PwAff.is_null()) { 2904 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2905 continue; 2906 } 2907 2908 isl::pw_aff Val = isl::aff::var_on_domain( 2909 isl::local_space(Array->getSpace()), isl::dim::set, i); 2910 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2911 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2912 isl::set Set = PwAff.gt_set(Val); 2913 Extent = Set.intersect(Extent); 2914 } 2915 2916 return Extent; 2917 } 2918 2919 /// Derive the bounds of an array. 2920 /// 2921 /// For the first dimension we derive the bound of the array from the extent 2922 /// of this dimension. For inner dimensions we obtain their size directly from 2923 /// ScopArrayInfo. 2924 /// 2925 /// @param PPCGArray The array to compute bounds for. 2926 /// @param Array The polly array from which to take the information. 2927 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2928 std::vector<isl_pw_aff *> Bounds; 2929 2930 if (PPCGArray.n_index > 0) { 2931 if (isl_set_is_empty(PPCGArray.extent)) { 2932 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2933 isl_local_space *LS = isl_local_space_from_space( 2934 isl_space_params(isl_set_get_space(Dom))); 2935 isl_set_free(Dom); 2936 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2937 Bounds.push_back(Zero); 2938 } else { 2939 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2940 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2941 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2942 isl_set_free(Dom); 2943 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2944 isl_local_space *LS = 2945 isl_local_space_from_space(isl_set_get_space(Dom)); 2946 isl_aff *One = isl_aff_zero_on_domain(LS); 2947 One = isl_aff_add_constant_si(One, 1); 2948 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2949 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2950 Bounds.push_back(Bound); 2951 } 2952 } 2953 2954 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2955 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2956 auto LS = isl_pw_aff_get_domain_space(Bound); 2957 auto Aff = isl_multi_aff_zero(LS); 2958 2959 // We need types to work out, which is why we perform this weird dance 2960 // with `Aff` and `Bound`. Consider this example: 2961 2962 // LS: [p] -> { [] } 2963 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2964 // This `~` is used to denote a "null space" (which is different from 2965 // a *zero dimensional* space), which is something that ISL does not 2966 // show you when pretty printing. 2967 2968 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2969 // space, not a "null space" which does not exist at all. 2970 2971 // When we pullback (precompose) `Bound` with `Zero`, we get: 2972 // Bound . Zero = 2973 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2974 // [p] -> { ~ -> [(10p)] } = 2975 // [p] -> [(10p)] (as ISL pretty prints it) 2976 // Bound Pullback: [p] -> { [(10p)] } 2977 2978 // We want this kind of an expression for Bound, without a 2979 // zero dimensional input, but with a "null space" input for the types 2980 // to work out later on, as far as I (Siddharth Bhat) understand. 2981 // I was unable to find a reference to this in the ISL manual. 2982 // References: Tobias Grosser. 2983 2984 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2985 Bounds.push_back(Bound); 2986 } 2987 2988 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2989 /// to have the same parameter dimensions. So, we need to align them to an 2990 /// appropriate space. 2991 /// Scop::Context is _not_ an appropriate space, because when we have 2992 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2993 /// contain all parameter dimensions. 2994 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2995 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2996 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2997 2998 isl_space *AlignSpace = nullptr; 2999 std::vector<isl_pw_aff *> AlignedBounds; 3000 std::tie(AlignSpace, AlignedBounds) = 3001 alignPwAffs(std::move(Bounds), SeedAlignSpace); 3002 3003 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 3004 3005 isl_pw_aff_list *BoundsList = 3006 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 3007 3008 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 3009 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 3010 3011 assert(BoundsSpace && "Unable to access space of array."); 3012 assert(BoundsList && "Unable to access list of bounds."); 3013 3014 PPCGArray.bound = 3015 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 3016 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 3017 } 3018 3019 /// Create the arrays for @p PPCGProg. 3020 /// 3021 /// @param PPCGProg The program to compute the arrays for. 3022 void createArrays(gpu_prog *PPCGProg, 3023 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 3024 int i = 0; 3025 for (auto &Array : ValidSAIs) { 3026 std::string TypeName; 3027 raw_string_ostream OS(TypeName); 3028 3029 OS << *Array->getElementType(); 3030 TypeName = OS.str(); 3031 3032 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3033 3034 PPCGArray.space = Array->getSpace().release(); 3035 PPCGArray.type = strdup(TypeName.c_str()); 3036 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3037 PPCGArray.name = strdup(Array->getName().c_str()); 3038 PPCGArray.extent = nullptr; 3039 PPCGArray.n_index = Array->getNumberOfDimensions(); 3040 PPCGArray.extent = getExtent(Array).release(); 3041 PPCGArray.n_ref = 0; 3042 PPCGArray.refs = nullptr; 3043 PPCGArray.accessed = true; 3044 PPCGArray.read_only_scalar = 3045 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3046 PPCGArray.has_compound_element = false; 3047 PPCGArray.local = false; 3048 PPCGArray.declare_local = false; 3049 PPCGArray.global = false; 3050 PPCGArray.linearize = false; 3051 PPCGArray.dep_order = nullptr; 3052 PPCGArray.user = Array; 3053 3054 PPCGArray.bound = nullptr; 3055 setArrayBounds(PPCGArray, Array); 3056 i++; 3057 3058 collect_references(PPCGProg, &PPCGArray); 3059 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3060 } 3061 } 3062 3063 /// Create an identity map between the arrays in the scop. 3064 /// 3065 /// @returns An identity map between the arrays in the scop. 3066 isl_union_map *getArrayIdentity() { 3067 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3068 3069 for (auto &Array : S->arrays()) { 3070 isl_space *Space = Array->getSpace().release(); 3071 Space = isl_space_map_from_set(Space); 3072 isl_map *Identity = isl_map_identity(Space); 3073 Maps = isl_union_map_add_map(Maps, Identity); 3074 } 3075 3076 return Maps; 3077 } 3078 3079 /// Create a default-initialized PPCG GPU program. 3080 /// 3081 /// @returns A new gpu program description. 3082 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3083 3084 if (!PPCGScop) 3085 return nullptr; 3086 3087 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3088 3089 PPCGProg->ctx = S->getIslCtx().get(); 3090 PPCGProg->scop = PPCGScop; 3091 PPCGProg->context = isl_set_copy(PPCGScop->context); 3092 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3093 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3094 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3095 PPCGProg->tagged_must_kill = 3096 isl_union_map_copy(PPCGScop->tagged_must_kills); 3097 PPCGProg->to_inner = getArrayIdentity(); 3098 PPCGProg->to_outer = getArrayIdentity(); 3099 // TODO: verify that this assignment is correct. 3100 PPCGProg->any_to_outer = nullptr; 3101 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3102 PPCGProg->stmts = getStatements(); 3103 3104 // Only consider arrays that have a non-empty extent. 3105 // Otherwise, this will cause us to consider the following kinds of 3106 // empty arrays: 3107 // 1. Invariant loads that are represented by SAI objects. 3108 // 2. Arrays with statically known zero size. 3109 auto ValidSAIsRange = 3110 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3111 return !getExtent(SAI).is_empty(); 3112 }); 3113 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3114 ValidSAIsRange.end()); 3115 3116 PPCGProg->n_array = 3117 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3118 PPCGProg->array = isl_calloc_array( 3119 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3120 3121 createArrays(PPCGProg, ValidSAIs); 3122 3123 PPCGProg->array_order = nullptr; 3124 collect_order_dependences(PPCGProg); 3125 3126 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3127 return PPCGProg; 3128 } 3129 3130 struct PrintGPUUserData { 3131 struct cuda_info *CudaInfo; 3132 struct gpu_prog *PPCGProg; 3133 std::vector<ppcg_kernel *> Kernels; 3134 }; 3135 3136 /// Print a user statement node in the host code. 3137 /// 3138 /// We use ppcg's printing facilities to print the actual statement and 3139 /// additionally build up a list of all kernels that are encountered in the 3140 /// host ast. 3141 /// 3142 /// @param P The printer to print to 3143 /// @param Options The printing options to use 3144 /// @param Node The node to print 3145 /// @param User A user pointer to carry additional data. This pointer is 3146 /// expected to be of type PrintGPUUserData. 3147 /// 3148 /// @returns A printer to which the output has been printed. 3149 static __isl_give isl_printer * 3150 printHostUser(__isl_take isl_printer *P, 3151 __isl_take isl_ast_print_options *Options, 3152 __isl_take isl_ast_node *Node, void *User) { 3153 auto Data = (struct PrintGPUUserData *)User; 3154 auto Id = isl_ast_node_get_annotation(Node); 3155 3156 if (Id) { 3157 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3158 3159 // If this is a user statement, format it ourselves as ppcg would 3160 // otherwise try to call pet functionality that is not available in 3161 // Polly. 3162 if (IsUser) { 3163 P = isl_printer_start_line(P); 3164 P = isl_printer_print_ast_node(P, Node); 3165 P = isl_printer_end_line(P); 3166 isl_id_free(Id); 3167 isl_ast_print_options_free(Options); 3168 return P; 3169 } 3170 3171 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3172 isl_id_free(Id); 3173 Data->Kernels.push_back(Kernel); 3174 } 3175 3176 return print_host_user(P, Options, Node, User); 3177 } 3178 3179 /// Print C code corresponding to the control flow in @p Kernel. 3180 /// 3181 /// @param Kernel The kernel to print 3182 void printKernel(ppcg_kernel *Kernel) { 3183 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3184 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3185 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3186 P = isl_ast_node_print(Kernel->tree, P, Options); 3187 char *String = isl_printer_get_str(P); 3188 outs() << String << "\n"; 3189 free(String); 3190 isl_printer_free(P); 3191 } 3192 3193 /// Print C code corresponding to the GPU code described by @p Tree. 3194 /// 3195 /// @param Tree An AST describing GPU code 3196 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3197 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3198 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3199 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3200 3201 PrintGPUUserData Data; 3202 Data.PPCGProg = PPCGProg; 3203 3204 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3205 Options = 3206 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3207 P = isl_ast_node_print(Tree, P, Options); 3208 char *String = isl_printer_get_str(P); 3209 outs() << "# host\n"; 3210 outs() << String << "\n"; 3211 free(String); 3212 isl_printer_free(P); 3213 3214 for (auto Kernel : Data.Kernels) { 3215 outs() << "# kernel" << Kernel->id << "\n"; 3216 printKernel(Kernel); 3217 } 3218 } 3219 3220 // Generate a GPU program using PPCG. 3221 // 3222 // GPU mapping consists of multiple steps: 3223 // 3224 // 1) Compute new schedule for the program. 3225 // 2) Map schedule to GPU (TODO) 3226 // 3) Generate code for new schedule (TODO) 3227 // 3228 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3229 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3230 // strategy directly from this pass. 3231 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3232 3233 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3234 3235 PPCGGen->ctx = S->getIslCtx().get(); 3236 PPCGGen->options = PPCGScop->options; 3237 PPCGGen->print = nullptr; 3238 PPCGGen->print_user = nullptr; 3239 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3240 PPCGGen->prog = PPCGProg; 3241 PPCGGen->tree = nullptr; 3242 PPCGGen->types.n = 0; 3243 PPCGGen->types.name = nullptr; 3244 PPCGGen->sizes = nullptr; 3245 PPCGGen->used_sizes = nullptr; 3246 PPCGGen->kernel_id = 0; 3247 3248 // Set scheduling strategy to same strategy PPCG is using. 3249 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3250 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3251 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3252 3253 isl_schedule *Schedule = get_schedule(PPCGGen); 3254 3255 int has_permutable = has_any_permutable_node(Schedule); 3256 3257 Schedule = 3258 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3259 3260 if (!has_permutable || has_permutable < 0) { 3261 Schedule = isl_schedule_free(Schedule); 3262 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3263 << " does not have permutable bands. Bailing out\n";); 3264 } else { 3265 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3266 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3267 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3268 } 3269 3270 if (DumpSchedule) { 3271 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3272 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3273 P = isl_printer_print_str(P, "Schedule\n"); 3274 P = isl_printer_print_str(P, "========\n"); 3275 if (Schedule) 3276 P = isl_printer_print_schedule(P, Schedule); 3277 else 3278 P = isl_printer_print_str(P, "No schedule found\n"); 3279 3280 outs() << isl_printer_get_str(P) << "\n"; 3281 isl_printer_free(P); 3282 } 3283 3284 if (DumpCode) { 3285 outs() << "Code\n"; 3286 outs() << "====\n"; 3287 if (PPCGGen->tree) 3288 printGPUTree(PPCGGen->tree, PPCGProg); 3289 else 3290 outs() << "No code generated\n"; 3291 } 3292 3293 isl_schedule_free(Schedule); 3294 3295 return PPCGGen; 3296 } 3297 3298 /// Free gpu_gen structure. 3299 /// 3300 /// @param PPCGGen The ppcg_gen object to free. 3301 void freePPCGGen(gpu_gen *PPCGGen) { 3302 isl_ast_node_free(PPCGGen->tree); 3303 isl_union_map_free(PPCGGen->sizes); 3304 isl_union_map_free(PPCGGen->used_sizes); 3305 free(PPCGGen); 3306 } 3307 3308 /// Free the options in the ppcg scop structure. 3309 /// 3310 /// ppcg is not freeing these options for us. To avoid leaks we do this 3311 /// ourselves. 3312 /// 3313 /// @param PPCGScop The scop referencing the options to free. 3314 void freeOptions(ppcg_scop *PPCGScop) { 3315 free(PPCGScop->options->debug); 3316 PPCGScop->options->debug = nullptr; 3317 free(PPCGScop->options); 3318 PPCGScop->options = nullptr; 3319 } 3320 3321 /// Approximate the number of points in the set. 3322 /// 3323 /// This function returns an ast expression that overapproximates the number 3324 /// of points in an isl set through the rectangular hull surrounding this set. 3325 /// 3326 /// @param Set The set to count. 3327 /// @param Build The isl ast build object to use for creating the ast 3328 /// expression. 3329 /// 3330 /// @returns An approximation of the number of points in the set. 3331 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3332 __isl_keep isl_ast_build *Build) { 3333 3334 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3335 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3336 3337 isl_space *Space = isl_set_get_space(Set); 3338 Space = isl_space_params(Space); 3339 auto *Univ = isl_set_universe(Space); 3340 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3341 3342 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3343 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3344 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3345 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3346 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3347 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3348 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3349 } 3350 3351 isl_set_free(Set); 3352 isl_pw_aff_free(OneAff); 3353 3354 return Expr; 3355 } 3356 3357 /// Approximate a number of dynamic instructions executed by a given 3358 /// statement. 3359 /// 3360 /// @param Stmt The statement for which to compute the number of dynamic 3361 /// instructions. 3362 /// @param Build The isl ast build object to use for creating the ast 3363 /// expression. 3364 /// @returns An approximation of the number of dynamic instructions executed 3365 /// by @p Stmt. 3366 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3367 __isl_keep isl_ast_build *Build) { 3368 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3369 3370 long InstCount = 0; 3371 3372 if (Stmt.isBlockStmt()) { 3373 auto *BB = Stmt.getBasicBlock(); 3374 InstCount = std::distance(BB->begin(), BB->end()); 3375 } else { 3376 auto *R = Stmt.getRegion(); 3377 3378 for (auto *BB : R->blocks()) { 3379 InstCount += std::distance(BB->begin(), BB->end()); 3380 } 3381 } 3382 3383 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3384 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3385 return isl_ast_expr_mul(InstExpr, Iterations); 3386 } 3387 3388 /// Approximate dynamic instructions executed in scop. 3389 /// 3390 /// @param S The scop for which to approximate dynamic instructions. 3391 /// @param Build The isl ast build object to use for creating the ast 3392 /// expression. 3393 /// @returns An approximation of the number of dynamic instructions executed 3394 /// in @p S. 3395 __isl_give isl_ast_expr * 3396 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3397 isl_ast_expr *Instructions; 3398 3399 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3400 Instructions = isl_ast_expr_from_val(Zero); 3401 3402 for (ScopStmt &Stmt : S) { 3403 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3404 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3405 } 3406 return Instructions; 3407 } 3408 3409 /// Create a check that ensures sufficient compute in scop. 3410 /// 3411 /// @param S The scop for which to ensure sufficient compute. 3412 /// @param Build The isl ast build object to use for creating the ast 3413 /// expression. 3414 /// @returns An expression that evaluates to TRUE in case of sufficient 3415 /// compute and to FALSE, otherwise. 3416 __isl_give isl_ast_expr * 3417 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3418 auto Iterations = getNumberOfIterations(S, Build); 3419 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3420 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3421 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3422 } 3423 3424 /// Check if the basic block contains a function we cannot codegen for GPU 3425 /// kernels. 3426 /// 3427 /// If this basic block does something with a `Function` other than calling 3428 /// a function that we support in a kernel, return true. 3429 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3430 bool AllowCUDALibDevice) { 3431 for (const Instruction &Inst : *BB) { 3432 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3433 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3434 AllowCUDALibDevice)) 3435 continue; 3436 3437 for (Value *Op : Inst.operands()) 3438 // Look for (<func-type>*) among operands of Inst 3439 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3440 if (isa<FunctionType>(PtrTy->getElementType())) { 3441 LLVM_DEBUG(dbgs() 3442 << Inst << " has illegal use of function in kernel.\n"); 3443 return true; 3444 } 3445 } 3446 } 3447 return false; 3448 } 3449 3450 /// Return whether the Scop S uses functions in a way that we do not support. 3451 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3452 for (auto &Stmt : S) { 3453 if (Stmt.isBlockStmt()) { 3454 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3455 AllowCUDALibDevice)) 3456 return true; 3457 } else { 3458 assert(Stmt.isRegionStmt() && 3459 "Stmt was neither block nor region statement"); 3460 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3461 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3462 return true; 3463 } 3464 } 3465 return false; 3466 } 3467 3468 /// Generate code for a given GPU AST described by @p Root. 3469 /// 3470 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3471 /// @param Prog The GPU Program to generate code for. 3472 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3473 ScopAnnotator Annotator; 3474 Annotator.buildAliasScopes(*S); 3475 3476 Region *R = &S->getRegion(); 3477 3478 simplifyRegion(R, DT, LI, RI); 3479 3480 BasicBlock *EnteringBB = R->getEnteringBlock(); 3481 3482 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 3483 IRInserter(Annotator)); 3484 Builder.SetInsertPoint(EnteringBB->getTerminator()); 3485 3486 // Only build the run-time condition and parameters _after_ having 3487 // introduced the conditional branch. This is important as the conditional 3488 // branch will guard the original scop from new induction variables that 3489 // the SCEVExpander may introduce while code generating the parameters and 3490 // which may introduce scalar dependences that prevent us from correctly 3491 // code generating this scop. 3492 BBPair StartExitBlocks; 3493 BranchInst *CondBr = nullptr; 3494 std::tie(StartExitBlocks, CondBr) = 3495 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3496 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3497 3498 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3499 3500 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3501 StartBlock, Prog, Runtime, Architecture); 3502 3503 // TODO: Handle LICM 3504 auto SplitBlock = StartBlock->getSinglePredecessor(); 3505 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3506 3507 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3508 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3509 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3510 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3511 isl_ast_build_free(Build); 3512 3513 // preload invariant loads. Note: This should happen before the RTC 3514 // because the RTC may depend on values that are invariant load hoisted. 3515 if (!NodeBuilder.preloadInvariantLoads()) { 3516 // Patch the introduced branch condition to ensure that we always execute 3517 // the original SCoP. 3518 auto *FalseI1 = Builder.getFalse(); 3519 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3520 SplitBBTerm->setOperand(0, FalseI1); 3521 3522 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3523 S->getFunction().getName() + 3524 " | Scop Region: " + S->getNameStr()); 3525 // adjust the dominator tree accordingly. 3526 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3527 assert(ExitingBlock); 3528 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3529 assert(MergeBlock); 3530 polly::markBlockUnreachable(*StartBlock, Builder); 3531 polly::markBlockUnreachable(*ExitingBlock, Builder); 3532 auto *ExitingBB = S->getExitingBlock(); 3533 assert(ExitingBB); 3534 3535 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3536 DT->eraseNode(ExitingBlock); 3537 isl_ast_expr_free(Condition); 3538 isl_ast_node_free(Root); 3539 } else { 3540 3541 if (polly::PerfMonitoring) { 3542 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3543 P.initialize(); 3544 P.insertRegionStart(SplitBlock->getTerminator()); 3545 3546 // TODO: actually think if this is the correct exiting block to place 3547 // the `end` performance marker. Invariant load hoisting changes 3548 // the CFG in a way that I do not precisely understand, so I 3549 // (Siddharth<[email protected]>) should come back to this and 3550 // think about which exiting block to use. 3551 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3552 assert(ExitingBlock); 3553 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3554 P.insertRegionEnd(MergeBlock->getTerminator()); 3555 } 3556 3557 NodeBuilder.addParameters(S->getContext().release()); 3558 Value *RTC = NodeBuilder.createRTC(Condition); 3559 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3560 3561 Builder.SetInsertPoint(&*StartBlock->begin()); 3562 3563 NodeBuilder.create(Root); 3564 } 3565 3566 /// In case a sequential kernel has more surrounding loops as any parallel 3567 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3568 /// point in running it on a GPU. 3569 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3570 CondBr->setOperand(0, Builder.getFalse()); 3571 3572 if (!NodeBuilder.BuildSuccessful) 3573 CondBr->setOperand(0, Builder.getFalse()); 3574 } 3575 3576 bool runOnScop(Scop &CurrentScop) override { 3577 S = &CurrentScop; 3578 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3579 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3580 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3581 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3582 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3583 3584 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3585 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3586 3587 // We currently do not support functions other than intrinsics inside 3588 // kernels, as code generation will need to offload function calls to the 3589 // kernel. This may lead to a kernel trying to call a function on the host. 3590 // This also allows us to prevent codegen from trying to take the 3591 // address of an intrinsic function to send to the kernel. 3592 if (containsInvalidKernelFunction(CurrentScop, 3593 Architecture == GPUArch::NVPTX64)) { 3594 LLVM_DEBUG( 3595 dbgs() << getUniqueScopName(S) 3596 << " contains function which cannot be materialised in a GPU " 3597 "kernel. Bailing out.\n";); 3598 return false; 3599 } 3600 3601 auto PPCGScop = createPPCGScop(); 3602 auto PPCGProg = createPPCGProg(PPCGScop); 3603 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3604 3605 if (PPCGGen->tree) { 3606 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3607 CurrentScop.markAsToBeSkipped(); 3608 } else { 3609 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3610 << " has empty PPCGGen->tree. Bailing out.\n"); 3611 } 3612 3613 freeOptions(PPCGScop); 3614 freePPCGGen(PPCGGen); 3615 gpu_prog_free(PPCGProg); 3616 ppcg_scop_free(PPCGScop); 3617 3618 return true; 3619 } 3620 3621 void printScop(raw_ostream &, Scop &) const override {} 3622 3623 void getAnalysisUsage(AnalysisUsage &AU) const override { 3624 ScopPass::getAnalysisUsage(AU); 3625 3626 AU.addRequired<DominatorTreeWrapperPass>(); 3627 AU.addRequired<RegionInfoPass>(); 3628 AU.addRequired<ScalarEvolutionWrapperPass>(); 3629 AU.addRequired<ScopDetectionWrapperPass>(); 3630 AU.addRequired<ScopInfoRegionPass>(); 3631 AU.addRequired<LoopInfoWrapperPass>(); 3632 3633 // FIXME: We do not yet add regions for the newly generated code to the 3634 // region tree. 3635 } 3636 }; 3637 } // namespace 3638 3639 char PPCGCodeGeneration::ID = 1; 3640 3641 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3642 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3643 generator->Runtime = Runtime; 3644 generator->Architecture = Arch; 3645 return generator; 3646 } 3647 3648 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3649 "Polly - Apply PPCG translation to SCOP", false, false) 3650 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3651 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3652 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3653 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3655 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3656 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3657 "Polly - Apply PPCG translation to SCOP", false, false) 3658