1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 55 cl::desc("Dump the kernel LLVM-IR"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 /// Create the ast expressions for a ScopStmt. 60 /// 61 /// This function is a callback for to generate the ast expressions for each 62 /// of the scheduled ScopStmts. 63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 64 void *Stmt, isl_ast_build *Build, 65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 66 isl_id *Id, void *User), 67 void *UserIndex, 68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 69 void *User_expr) { 70 71 // TODO: Implement the AST expression generation. For now we just return a 72 // nullptr to ensure that we do not free uninitialized pointers. 73 74 return nullptr; 75 } 76 77 /// Generate code for a GPU specific isl AST. 78 /// 79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 80 /// generates code for general-prupose AST nodes, with special functionality 81 /// for generating GPU specific user nodes. 82 /// 83 /// @see GPUNodeBuilder::createUser 84 class GPUNodeBuilder : public IslNodeBuilder { 85 public: 86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 88 DominatorTree &DT, Scop &S, gpu_prog *Prog) 89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} 90 91 private: 92 /// A module containing GPU code. 93 /// 94 /// This pointer is only set in case we are currently generating GPU code. 95 std::unique_ptr<Module> GPUModule; 96 97 /// The GPU program we generate code for. 98 gpu_prog *Prog; 99 100 /// Class to free isl_ids. 101 class IslIdDeleter { 102 public: 103 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 104 }; 105 106 /// A set containing all isl_ids allocated in a GPU kernel. 107 /// 108 /// By releasing this set all isl_ids will be freed. 109 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 110 111 /// Create code for user-defined AST nodes. 112 /// 113 /// These AST nodes can be of type: 114 /// 115 /// - ScopStmt: A computational statement (TODO) 116 /// - Kernel: A GPU kernel call (TODO) 117 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 118 /// 119 /// @param UserStmt The ast node to generate code for. 120 virtual void createUser(__isl_take isl_ast_node *UserStmt); 121 122 /// Create GPU kernel. 123 /// 124 /// Code generate the kernel described by @p KernelStmt. 125 /// 126 /// @param KernelStmt The ast node to generate kernel code for. 127 void createKernel(__isl_take isl_ast_node *KernelStmt); 128 129 /// Create kernel function. 130 /// 131 /// Create a kernel function located in a newly created module that can serve 132 /// as target for device code generation. Set the Builder to point to the 133 /// start block of this newly created function. 134 /// 135 /// @param Kernel The kernel to generate code for. 136 void createKernelFunction(ppcg_kernel *Kernel); 137 138 /// Create the declaration of a kernel function. 139 /// 140 /// The kernel function takes as arguments: 141 /// 142 /// - One i8 pointer for each external array reference used in the kernel. 143 /// - Host iterators 144 /// - Parameters 145 /// - Other LLVM Value references (TODO) 146 /// 147 /// @param Kernel The kernel to generate the function declaration for. 148 /// @returns The newly declared function. 149 Function *createKernelFunctionDecl(ppcg_kernel *Kernel); 150 151 /// Insert intrinsic functions to obtain thread and block ids. 152 /// 153 /// @param The kernel to generate the intrinsic functions for. 154 void insertKernelIntrinsics(ppcg_kernel *Kernel); 155 156 /// Finalize the generation of the kernel function. 157 /// 158 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 159 /// dump its IR to stderr. 160 void finalizeKernelFunction(); 161 }; 162 163 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 164 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 165 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 166 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 167 isl_id_free(Id); 168 isl_ast_expr_free(StmtExpr); 169 170 const char *Str = isl_id_get_name(Id); 171 if (!strcmp(Str, "kernel")) { 172 createKernel(UserStmt); 173 isl_ast_expr_free(Expr); 174 return; 175 } 176 177 isl_ast_expr_free(Expr); 178 isl_ast_node_free(UserStmt); 179 return; 180 } 181 182 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 183 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 184 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 185 isl_id_free(Id); 186 isl_ast_node_free(KernelStmt); 187 188 assert(Kernel->tree && "Device AST of kernel node is empty"); 189 190 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 191 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 192 193 createKernelFunction(Kernel); 194 195 Builder.SetInsertPoint(&HostInsertPoint); 196 IDToValue = HostIDs; 197 198 finalizeKernelFunction(); 199 } 200 201 /// Compute the DataLayout string for the NVPTX backend. 202 /// 203 /// @param is64Bit Are we looking for a 64 bit architecture? 204 static std::string computeNVPTXDataLayout(bool is64Bit) { 205 std::string Ret = "e"; 206 207 if (!is64Bit) 208 Ret += "-p:32:32"; 209 210 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 211 212 return Ret; 213 } 214 215 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { 216 std::vector<Type *> Args; 217 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 218 219 for (long i = 0; i < Prog->n_array; i++) { 220 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 221 continue; 222 223 Args.push_back(Builder.getInt8PtrTy()); 224 } 225 226 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 227 228 for (long i = 0; i < NumHostIters; i++) 229 Args.push_back(Builder.getInt64Ty()); 230 231 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 232 233 for (long i = 0; i < NumVars; i++) 234 Args.push_back(Builder.getInt64Ty()); 235 236 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 237 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 238 GPUModule.get()); 239 FN->setCallingConv(CallingConv::PTX_Kernel); 240 241 auto Arg = FN->arg_begin(); 242 for (long i = 0; i < Kernel->n_array; i++) { 243 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 244 continue; 245 246 Arg->setName(Prog->array[i].name); 247 Arg++; 248 } 249 250 for (long i = 0; i < NumHostIters; i++) { 251 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 252 Arg->setName(isl_id_get_name(Id)); 253 IDToValue[Id] = &*Arg; 254 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 255 Arg++; 256 } 257 258 for (long i = 0; i < NumVars; i++) { 259 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 260 Arg->setName(isl_id_get_name(Id)); 261 IDToValue[Id] = &*Arg; 262 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 263 Arg++; 264 } 265 266 return FN; 267 } 268 269 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 270 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 271 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 272 273 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 274 Intrinsic::nvvm_read_ptx_sreg_tid_y, 275 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 276 277 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 278 std::string Name = isl_id_get_name(Id); 279 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 280 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 281 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 282 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 283 IDToValue[Id] = Val; 284 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 285 }; 286 287 for (int i = 0; i < Kernel->n_grid; ++i) { 288 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 289 addId(Id, IntrinsicsBID[i]); 290 } 291 292 for (int i = 0; i < Kernel->n_block; ++i) { 293 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 294 addId(Id, IntrinsicsTID[i]); 295 } 296 } 297 298 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { 299 300 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 301 GPUModule.reset(new Module(Identifier, Builder.getContext())); 302 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 303 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 304 305 Function *FN = createKernelFunctionDecl(Kernel); 306 307 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 308 309 Builder.SetInsertPoint(EntryBlock); 310 Builder.CreateRetVoid(); 311 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 312 313 insertKernelIntrinsics(Kernel); 314 } 315 316 void GPUNodeBuilder::finalizeKernelFunction() { 317 318 if (DumpKernelIR) 319 outs() << *GPUModule << "\n"; 320 321 GPUModule.release(); 322 KernelIDs.clear(); 323 } 324 325 namespace { 326 class PPCGCodeGeneration : public ScopPass { 327 public: 328 static char ID; 329 330 /// The scop that is currently processed. 331 Scop *S; 332 333 LoopInfo *LI; 334 DominatorTree *DT; 335 ScalarEvolution *SE; 336 const DataLayout *DL; 337 RegionInfo *RI; 338 339 PPCGCodeGeneration() : ScopPass(ID) {} 340 341 /// Construct compilation options for PPCG. 342 /// 343 /// @returns The compilation options. 344 ppcg_options *createPPCGOptions() { 345 auto DebugOptions = 346 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 347 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 348 349 DebugOptions->dump_schedule_constraints = false; 350 DebugOptions->dump_schedule = false; 351 DebugOptions->dump_final_schedule = false; 352 DebugOptions->dump_sizes = false; 353 354 Options->debug = DebugOptions; 355 356 Options->reschedule = true; 357 Options->scale_tile_loops = false; 358 Options->wrap = false; 359 360 Options->non_negative_parameters = false; 361 Options->ctx = nullptr; 362 Options->sizes = nullptr; 363 364 Options->tile_size = 32; 365 366 Options->use_private_memory = false; 367 Options->use_shared_memory = false; 368 Options->max_shared_memory = 0; 369 370 Options->target = PPCG_TARGET_CUDA; 371 Options->openmp = false; 372 Options->linearize_device_arrays = true; 373 Options->live_range_reordering = false; 374 375 Options->opencl_compiler_options = nullptr; 376 Options->opencl_use_gpu = false; 377 Options->opencl_n_include_file = 0; 378 Options->opencl_include_files = nullptr; 379 Options->opencl_print_kernel_types = false; 380 Options->opencl_embed_kernel_code = false; 381 382 Options->save_schedule_file = nullptr; 383 Options->load_schedule_file = nullptr; 384 385 return Options; 386 } 387 388 /// Get a tagged access relation containing all accesses of type @p AccessTy. 389 /// 390 /// Instead of a normal access of the form: 391 /// 392 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 393 /// 394 /// a tagged access has the form 395 /// 396 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 397 /// 398 /// where 'id' is an additional space that references the memory access that 399 /// triggered the access. 400 /// 401 /// @param AccessTy The type of the memory accesses to collect. 402 /// 403 /// @return The relation describing all tagged memory accesses. 404 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 405 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 406 407 for (auto &Stmt : *S) 408 for (auto &Acc : Stmt) 409 if (Acc->getType() == AccessTy) { 410 isl_map *Relation = Acc->getAccessRelation(); 411 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 412 413 isl_space *Space = isl_map_get_space(Relation); 414 Space = isl_space_range(Space); 415 Space = isl_space_from_range(Space); 416 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 417 isl_map *Universe = isl_map_universe(Space); 418 Relation = isl_map_domain_product(Relation, Universe); 419 Accesses = isl_union_map_add_map(Accesses, Relation); 420 } 421 422 return Accesses; 423 } 424 425 /// Get the set of all read accesses, tagged with the access id. 426 /// 427 /// @see getTaggedAccesses 428 isl_union_map *getTaggedReads() { 429 return getTaggedAccesses(MemoryAccess::READ); 430 } 431 432 /// Get the set of all may (and must) accesses, tagged with the access id. 433 /// 434 /// @see getTaggedAccesses 435 isl_union_map *getTaggedMayWrites() { 436 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 437 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 438 } 439 440 /// Get the set of all must accesses, tagged with the access id. 441 /// 442 /// @see getTaggedAccesses 443 isl_union_map *getTaggedMustWrites() { 444 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 445 } 446 447 /// Collect parameter and array names as isl_ids. 448 /// 449 /// To reason about the different parameters and arrays used, ppcg requires 450 /// a list of all isl_ids in use. As PPCG traditionally performs 451 /// source-to-source compilation each of these isl_ids is mapped to the 452 /// expression that represents it. As we do not have a corresponding 453 /// expression in Polly, we just map each id to a 'zero' expression to match 454 /// the data format that ppcg expects. 455 /// 456 /// @returns Retun a map from collected ids to 'zero' ast expressions. 457 __isl_give isl_id_to_ast_expr *getNames() { 458 auto *Names = isl_id_to_ast_expr_alloc( 459 S->getIslCtx(), 460 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 461 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 462 auto *Space = S->getParamSpace(); 463 464 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 465 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 466 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 467 } 468 469 for (auto &Array : S->arrays()) { 470 auto Id = Array.second->getBasePtrId(); 471 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 472 } 473 474 isl_space_free(Space); 475 isl_ast_expr_free(Zero); 476 477 return Names; 478 } 479 480 /// Create a new PPCG scop from the current scop. 481 /// 482 /// The PPCG scop is initialized with data from the current polly::Scop. From 483 /// this initial data, the data-dependences in the PPCG scop are initialized. 484 /// We do not use Polly's dependence analysis for now, to ensure we match 485 /// the PPCG default behaviour more closely. 486 /// 487 /// @returns A new ppcg scop. 488 ppcg_scop *createPPCGScop() { 489 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 490 491 PPCGScop->options = createPPCGOptions(); 492 493 PPCGScop->start = 0; 494 PPCGScop->end = 0; 495 496 PPCGScop->context = S->getContext(); 497 PPCGScop->domain = S->getDomains(); 498 PPCGScop->call = nullptr; 499 PPCGScop->tagged_reads = getTaggedReads(); 500 PPCGScop->reads = S->getReads(); 501 PPCGScop->live_in = nullptr; 502 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 503 PPCGScop->may_writes = S->getWrites(); 504 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 505 PPCGScop->must_writes = S->getMustWrites(); 506 PPCGScop->live_out = nullptr; 507 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 508 PPCGScop->tagger = nullptr; 509 510 PPCGScop->independence = nullptr; 511 PPCGScop->dep_flow = nullptr; 512 PPCGScop->tagged_dep_flow = nullptr; 513 PPCGScop->dep_false = nullptr; 514 PPCGScop->dep_forced = nullptr; 515 PPCGScop->dep_order = nullptr; 516 PPCGScop->tagged_dep_order = nullptr; 517 518 PPCGScop->schedule = S->getScheduleTree(); 519 PPCGScop->names = getNames(); 520 521 PPCGScop->pet = nullptr; 522 523 compute_tagger(PPCGScop); 524 compute_dependences(PPCGScop); 525 526 return PPCGScop; 527 } 528 529 /// Collect the array acesses in a statement. 530 /// 531 /// @param Stmt The statement for which to collect the accesses. 532 /// 533 /// @returns A list of array accesses. 534 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 535 gpu_stmt_access *Accesses = nullptr; 536 537 for (MemoryAccess *Acc : Stmt) { 538 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 539 Access->read = Acc->isRead(); 540 Access->write = Acc->isWrite(); 541 Access->access = Acc->getAccessRelation(); 542 isl_space *Space = isl_map_get_space(Access->access); 543 Space = isl_space_range(Space); 544 Space = isl_space_from_range(Space); 545 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 546 isl_map *Universe = isl_map_universe(Space); 547 Access->tagged_access = 548 isl_map_domain_product(Acc->getAccessRelation(), Universe); 549 Access->exact_write = Acc->isWrite(); 550 Access->ref_id = Acc->getId(); 551 Access->next = Accesses; 552 Accesses = Access; 553 } 554 555 return Accesses; 556 } 557 558 /// Collect the list of GPU statements. 559 /// 560 /// Each statement has an id, a pointer to the underlying data structure, 561 /// as well as a list with all memory accesses. 562 /// 563 /// TODO: Initialize the list of memory accesses. 564 /// 565 /// @returns A linked-list of statements. 566 gpu_stmt *getStatements() { 567 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 568 std::distance(S->begin(), S->end())); 569 570 int i = 0; 571 for (auto &Stmt : *S) { 572 gpu_stmt *GPUStmt = &Stmts[i]; 573 574 GPUStmt->id = Stmt.getDomainId(); 575 576 // We use the pet stmt pointer to keep track of the Polly statements. 577 GPUStmt->stmt = (pet_stmt *)&Stmt; 578 GPUStmt->accesses = getStmtAccesses(Stmt); 579 i++; 580 } 581 582 return Stmts; 583 } 584 585 /// Derive the extent of an array. 586 /// 587 /// The extent of an array is defined by the set of memory locations for 588 /// which a memory access in the iteration domain exists. 589 /// 590 /// @param Array The array to derive the extent for. 591 /// 592 /// @returns An isl_set describing the extent of the array. 593 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 594 isl_union_map *Accesses = S->getAccesses(); 595 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 596 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 597 isl_set *AccessSet = 598 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 599 isl_union_set_free(AccessUSet); 600 601 return AccessSet; 602 } 603 604 /// Derive the bounds of an array. 605 /// 606 /// For the first dimension we derive the bound of the array from the extent 607 /// of this dimension. For inner dimensions we obtain their size directly from 608 /// ScopArrayInfo. 609 /// 610 /// @param PPCGArray The array to compute bounds for. 611 /// @param Array The polly array from which to take the information. 612 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 613 if (PPCGArray.n_index > 0) { 614 isl_set *Dom = isl_set_copy(PPCGArray.extent); 615 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 616 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 617 isl_set_free(Dom); 618 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 619 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 620 isl_aff *One = isl_aff_zero_on_domain(LS); 621 One = isl_aff_add_constant_si(One, 1); 622 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 623 Bound = isl_pw_aff_gist(Bound, S->getContext()); 624 PPCGArray.bound[0] = Bound; 625 } 626 627 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 628 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 629 auto LS = isl_pw_aff_get_domain_space(Bound); 630 auto Aff = isl_multi_aff_zero(LS); 631 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 632 PPCGArray.bound[i] = Bound; 633 } 634 } 635 636 /// Create the arrays for @p PPCGProg. 637 /// 638 /// @param PPCGProg The program to compute the arrays for. 639 void createArrays(gpu_prog *PPCGProg) { 640 int i = 0; 641 for (auto &Element : S->arrays()) { 642 ScopArrayInfo *Array = Element.second.get(); 643 644 std::string TypeName; 645 raw_string_ostream OS(TypeName); 646 647 OS << *Array->getElementType(); 648 TypeName = OS.str(); 649 650 gpu_array_info &PPCGArray = PPCGProg->array[i]; 651 652 PPCGArray.space = Array->getSpace(); 653 PPCGArray.type = strdup(TypeName.c_str()); 654 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 655 PPCGArray.name = strdup(Array->getName().c_str()); 656 PPCGArray.extent = nullptr; 657 PPCGArray.n_index = Array->getNumberOfDimensions(); 658 PPCGArray.bound = 659 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 660 PPCGArray.extent = getExtent(Array); 661 PPCGArray.n_ref = 0; 662 PPCGArray.refs = nullptr; 663 PPCGArray.accessed = true; 664 PPCGArray.read_only_scalar = false; 665 PPCGArray.has_compound_element = false; 666 PPCGArray.local = false; 667 PPCGArray.declare_local = false; 668 PPCGArray.global = false; 669 PPCGArray.linearize = false; 670 PPCGArray.dep_order = nullptr; 671 672 setArrayBounds(PPCGArray, Array); 673 i++; 674 675 collect_references(PPCGProg, &PPCGArray); 676 } 677 } 678 679 /// Create an identity map between the arrays in the scop. 680 /// 681 /// @returns An identity map between the arrays in the scop. 682 isl_union_map *getArrayIdentity() { 683 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 684 685 for (auto &Item : S->arrays()) { 686 ScopArrayInfo *Array = Item.second.get(); 687 isl_space *Space = Array->getSpace(); 688 Space = isl_space_map_from_set(Space); 689 isl_map *Identity = isl_map_identity(Space); 690 Maps = isl_union_map_add_map(Maps, Identity); 691 } 692 693 return Maps; 694 } 695 696 /// Create a default-initialized PPCG GPU program. 697 /// 698 /// @returns A new gpu grogram description. 699 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 700 701 if (!PPCGScop) 702 return nullptr; 703 704 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 705 706 PPCGProg->ctx = S->getIslCtx(); 707 PPCGProg->scop = PPCGScop; 708 PPCGProg->context = isl_set_copy(PPCGScop->context); 709 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 710 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 711 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 712 PPCGProg->tagged_must_kill = 713 isl_union_map_copy(PPCGScop->tagged_must_kills); 714 PPCGProg->to_inner = getArrayIdentity(); 715 PPCGProg->to_outer = getArrayIdentity(); 716 PPCGProg->may_persist = compute_may_persist(PPCGProg); 717 PPCGProg->any_to_outer = nullptr; 718 PPCGProg->array_order = nullptr; 719 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 720 PPCGProg->stmts = getStatements(); 721 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 722 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 723 PPCGProg->n_array); 724 725 createArrays(PPCGProg); 726 727 return PPCGProg; 728 } 729 730 struct PrintGPUUserData { 731 struct cuda_info *CudaInfo; 732 struct gpu_prog *PPCGProg; 733 std::vector<ppcg_kernel *> Kernels; 734 }; 735 736 /// Print a user statement node in the host code. 737 /// 738 /// We use ppcg's printing facilities to print the actual statement and 739 /// additionally build up a list of all kernels that are encountered in the 740 /// host ast. 741 /// 742 /// @param P The printer to print to 743 /// @param Options The printing options to use 744 /// @param Node The node to print 745 /// @param User A user pointer to carry additional data. This pointer is 746 /// expected to be of type PrintGPUUserData. 747 /// 748 /// @returns A printer to which the output has been printed. 749 static __isl_give isl_printer * 750 printHostUser(__isl_take isl_printer *P, 751 __isl_take isl_ast_print_options *Options, 752 __isl_take isl_ast_node *Node, void *User) { 753 auto Data = (struct PrintGPUUserData *)User; 754 auto Id = isl_ast_node_get_annotation(Node); 755 756 if (Id) { 757 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 758 759 // If this is a user statement, format it ourselves as ppcg would 760 // otherwise try to call pet functionality that is not available in 761 // Polly. 762 if (IsUser) { 763 P = isl_printer_start_line(P); 764 P = isl_printer_print_ast_node(P, Node); 765 P = isl_printer_end_line(P); 766 isl_id_free(Id); 767 isl_ast_print_options_free(Options); 768 return P; 769 } 770 771 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 772 isl_id_free(Id); 773 Data->Kernels.push_back(Kernel); 774 } 775 776 return print_host_user(P, Options, Node, User); 777 } 778 779 /// Print C code corresponding to the control flow in @p Kernel. 780 /// 781 /// @param Kernel The kernel to print 782 void printKernel(ppcg_kernel *Kernel) { 783 auto *P = isl_printer_to_str(S->getIslCtx()); 784 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 785 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 786 P = isl_ast_node_print(Kernel->tree, P, Options); 787 char *String = isl_printer_get_str(P); 788 printf("%s\n", String); 789 free(String); 790 isl_printer_free(P); 791 } 792 793 /// Print C code corresponding to the GPU code described by @p Tree. 794 /// 795 /// @param Tree An AST describing GPU code 796 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 797 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 798 auto *P = isl_printer_to_str(S->getIslCtx()); 799 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 800 801 PrintGPUUserData Data; 802 Data.PPCGProg = PPCGProg; 803 804 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 805 Options = 806 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 807 P = isl_ast_node_print(Tree, P, Options); 808 char *String = isl_printer_get_str(P); 809 printf("# host\n"); 810 printf("%s\n", String); 811 free(String); 812 isl_printer_free(P); 813 814 for (auto Kernel : Data.Kernels) { 815 printf("# kernel%d\n", Kernel->id); 816 printKernel(Kernel); 817 } 818 } 819 820 // Generate a GPU program using PPCG. 821 // 822 // GPU mapping consists of multiple steps: 823 // 824 // 1) Compute new schedule for the program. 825 // 2) Map schedule to GPU (TODO) 826 // 3) Generate code for new schedule (TODO) 827 // 828 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 829 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 830 // strategy directly from this pass. 831 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 832 833 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 834 835 PPCGGen->ctx = S->getIslCtx(); 836 PPCGGen->options = PPCGScop->options; 837 PPCGGen->print = nullptr; 838 PPCGGen->print_user = nullptr; 839 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 840 PPCGGen->prog = PPCGProg; 841 PPCGGen->tree = nullptr; 842 PPCGGen->types.n = 0; 843 PPCGGen->types.name = nullptr; 844 PPCGGen->sizes = nullptr; 845 PPCGGen->used_sizes = nullptr; 846 PPCGGen->kernel_id = 0; 847 848 // Set scheduling strategy to same strategy PPCG is using. 849 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 850 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 851 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 852 853 isl_schedule *Schedule = get_schedule(PPCGGen); 854 855 int has_permutable = has_any_permutable_node(Schedule); 856 857 if (!has_permutable || has_permutable < 0) { 858 Schedule = isl_schedule_free(Schedule); 859 } else { 860 Schedule = map_to_device(PPCGGen, Schedule); 861 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 862 } 863 864 if (DumpSchedule) { 865 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 866 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 867 P = isl_printer_print_str(P, "Schedule\n"); 868 P = isl_printer_print_str(P, "========\n"); 869 if (Schedule) 870 P = isl_printer_print_schedule(P, Schedule); 871 else 872 P = isl_printer_print_str(P, "No schedule found\n"); 873 874 printf("%s\n", isl_printer_get_str(P)); 875 isl_printer_free(P); 876 } 877 878 if (DumpCode) { 879 printf("Code\n"); 880 printf("====\n"); 881 if (PPCGGen->tree) 882 printGPUTree(PPCGGen->tree, PPCGProg); 883 else 884 printf("No code generated\n"); 885 } 886 887 isl_schedule_free(Schedule); 888 889 return PPCGGen; 890 } 891 892 /// Free gpu_gen structure. 893 /// 894 /// @param PPCGGen The ppcg_gen object to free. 895 void freePPCGGen(gpu_gen *PPCGGen) { 896 isl_ast_node_free(PPCGGen->tree); 897 isl_union_map_free(PPCGGen->sizes); 898 isl_union_map_free(PPCGGen->used_sizes); 899 free(PPCGGen); 900 } 901 902 /// Free the options in the ppcg scop structure. 903 /// 904 /// ppcg is not freeing these options for us. To avoid leaks we do this 905 /// ourselves. 906 /// 907 /// @param PPCGScop The scop referencing the options to free. 908 void freeOptions(ppcg_scop *PPCGScop) { 909 free(PPCGScop->options->debug); 910 PPCGScop->options->debug = nullptr; 911 free(PPCGScop->options); 912 PPCGScop->options = nullptr; 913 } 914 915 /// Generate code for a given GPU AST described by @p Root. 916 /// 917 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 918 /// @param Prog The GPU Program to generate code for. 919 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 920 ScopAnnotator Annotator; 921 Annotator.buildAliasScopes(*S); 922 923 Region *R = &S->getRegion(); 924 925 simplifyRegion(R, DT, LI, RI); 926 927 BasicBlock *EnteringBB = R->getEnteringBlock(); 928 929 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 930 931 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 932 Prog); 933 934 // Only build the run-time condition and parameters _after_ having 935 // introduced the conditional branch. This is important as the conditional 936 // branch will guard the original scop from new induction variables that 937 // the SCEVExpander may introduce while code generating the parameters and 938 // which may introduce scalar dependences that prevent us from correctly 939 // code generating this scop. 940 BasicBlock *StartBlock = 941 executeScopConditionally(*S, this, Builder.getTrue()); 942 943 // TODO: Handle LICM 944 // TODO: Verify run-time checks 945 auto SplitBlock = StartBlock->getSinglePredecessor(); 946 Builder.SetInsertPoint(SplitBlock->getTerminator()); 947 NodeBuilder.addParameters(S->getContext()); 948 Builder.SetInsertPoint(&*StartBlock->begin()); 949 NodeBuilder.create(Root); 950 NodeBuilder.finalizeSCoP(*S); 951 } 952 953 bool runOnScop(Scop &CurrentScop) override { 954 S = &CurrentScop; 955 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 956 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 957 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 958 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 959 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 960 961 auto PPCGScop = createPPCGScop(); 962 auto PPCGProg = createPPCGProg(PPCGScop); 963 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 964 965 if (PPCGGen->tree) 966 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 967 968 freeOptions(PPCGScop); 969 freePPCGGen(PPCGGen); 970 gpu_prog_free(PPCGProg); 971 ppcg_scop_free(PPCGScop); 972 973 return true; 974 } 975 976 void printScop(raw_ostream &, Scop &) const override {} 977 978 void getAnalysisUsage(AnalysisUsage &AU) const override { 979 AU.addRequired<DominatorTreeWrapperPass>(); 980 AU.addRequired<RegionInfoPass>(); 981 AU.addRequired<ScalarEvolutionWrapperPass>(); 982 AU.addRequired<ScopDetection>(); 983 AU.addRequired<ScopInfoRegionPass>(); 984 AU.addRequired<LoopInfoWrapperPass>(); 985 986 AU.addPreserved<AAResultsWrapperPass>(); 987 AU.addPreserved<BasicAAWrapperPass>(); 988 AU.addPreserved<LoopInfoWrapperPass>(); 989 AU.addPreserved<DominatorTreeWrapperPass>(); 990 AU.addPreserved<GlobalsAAWrapperPass>(); 991 AU.addPreserved<PostDominatorTreeWrapperPass>(); 992 AU.addPreserved<ScopDetection>(); 993 AU.addPreserved<ScalarEvolutionWrapperPass>(); 994 AU.addPreserved<SCEVAAWrapperPass>(); 995 996 // FIXME: We do not yet add regions for the newly generated code to the 997 // region tree. 998 AU.addPreserved<RegionInfoPass>(); 999 AU.addPreserved<ScopInfoRegionPass>(); 1000 } 1001 }; 1002 } 1003 1004 char PPCGCodeGeneration::ID = 1; 1005 1006 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1007 1008 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1009 "Polly - Apply PPCG translation to SCOP", false, false) 1010 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1011 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1012 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1013 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1014 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1015 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1016 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1017 "Polly - Apply PPCG translation to SCOP", false, false) 1018