1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/IRReader/IRReader.h" 36 #include "llvm/Linker/Linker.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/TargetSelect.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 43 #include "isl/union_map.h" 44 45 extern "C" { 46 #include "ppcg/cuda.h" 47 #include "ppcg/gpu.h" 48 #include "ppcg/gpu_print.h" 49 #include "ppcg/ppcg.h" 50 #include "ppcg/schedule.h" 51 } 52 53 #include "llvm/Support/Debug.h" 54 55 using namespace polly; 56 using namespace llvm; 57 58 #define DEBUG_TYPE "polly-codegen-ppcg" 59 60 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 61 cl::desc("Dump the computed GPU Schedule"), 62 cl::Hidden, cl::init(false), cl::ZeroOrMore, 63 cl::cat(PollyCategory)); 64 65 static cl::opt<bool> 66 DumpCode("polly-acc-dump-code", 67 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 71 cl::desc("Dump the kernel LLVM-IR"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 76 cl::desc("Dump the kernel assembly code"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 80 static cl::opt<bool> FastMath("polly-acc-fastmath", 81 cl::desc("Allow unsafe math optimizations"), 82 cl::Hidden, cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 85 cl::desc("Use shared memory"), cl::Hidden, 86 cl::init(false), cl::ZeroOrMore, 87 cl::cat(PollyCategory)); 88 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 89 cl::desc("Use private memory"), cl::Hidden, 90 cl::init(false), cl::ZeroOrMore, 91 cl::cat(PollyCategory)); 92 93 bool polly::PollyManagedMemory; 94 static cl::opt<bool, true> 95 XManagedMemory("polly-acc-codegen-managed-memory", 96 cl::desc("Generate Host kernel code assuming" 97 " that all memory has been" 98 " declared as managed memory"), 99 cl::location(PollyManagedMemory), cl::Hidden, 100 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 101 102 static cl::opt<bool> 103 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 104 cl::desc("Fail and generate a backtrace if" 105 " verifyModule fails on the GPU " 106 " kernel module."), 107 cl::Hidden, cl::init(false), cl::ZeroOrMore, 108 cl::cat(PollyCategory)); 109 110 static cl::opt<std::string> CUDALibDevice( 111 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 112 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 113 cl::ZeroOrMore, cl::cat(PollyCategory)); 114 115 static cl::opt<std::string> 116 CudaVersion("polly-acc-cuda-version", 117 cl::desc("The CUDA version to compile for"), cl::Hidden, 118 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 119 120 static cl::opt<int> 121 MinCompute("polly-acc-mincompute", 122 cl::desc("Minimal number of compute statements to run on GPU."), 123 cl::Hidden, cl::init(10 * 512 * 512)); 124 125 /// Return a unique name for a Scop, which is the scop region with the 126 /// function name. 127 std::string getUniqueScopName(const Scop *S) { 128 return "Scop Region: " + S->getNameStr() + 129 " | Function: " + std::string(S->getFunction().getName()); 130 } 131 132 /// Used to store information PPCG wants for kills. This information is 133 /// used by live range reordering. 134 /// 135 /// @see computeLiveRangeReordering 136 /// @see GPUNodeBuilder::createPPCGScop 137 /// @see GPUNodeBuilder::createPPCGProg 138 struct MustKillsInfo { 139 /// Collection of all kill statements that will be sequenced at the end of 140 /// PPCGScop->schedule. 141 /// 142 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 143 /// which merges schedules in *arbitrary* order. 144 /// (we don't care about the order of the kills anyway). 145 isl::schedule KillsSchedule; 146 /// Map from kill statement instances to scalars that need to be 147 /// killed. 148 /// 149 /// We currently derive kill information for: 150 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 151 /// consequently all be killed. 152 /// 2. Scalar arrays that are not used outside the Scop. This is 153 /// checked by `isScalarUsesContainedInScop`. 154 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 155 isl::union_map TaggedMustKills; 156 157 /// Tagged must kills stripped of the tags. 158 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 159 isl::union_map MustKills; 160 161 MustKillsInfo() : KillsSchedule(nullptr) {} 162 }; 163 164 /// Check if SAI's uses are entirely contained within Scop S. 165 /// If a scalar is used only with a Scop, we are free to kill it, as no data 166 /// can flow in/out of the value any more. 167 /// @see computeMustKillsInfo 168 static bool isScalarUsesContainedInScop(const Scop &S, 169 const ScopArrayInfo *SAI) { 170 assert(SAI->isValueKind() && "this function only deals with scalars." 171 " Dealing with arrays required alias analysis"); 172 173 const Region &R = S.getRegion(); 174 for (User *U : SAI->getBasePtr()->users()) { 175 Instruction *I = dyn_cast<Instruction>(U); 176 assert(I && "invalid user of scop array info"); 177 if (!R.contains(I)) 178 return false; 179 } 180 return true; 181 } 182 183 /// Compute must-kills needed to enable live range reordering with PPCG. 184 /// 185 /// @params S The Scop to compute live range reordering information 186 /// @returns live range reordering information that can be used to setup 187 /// PPCG. 188 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 189 const isl::space ParamSpace = S.getParamSpace(); 190 MustKillsInfo Info; 191 192 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 193 // 1.1 phi nodes in scop. 194 // 1.2 scalars that are only used within the scop 195 SmallVector<isl::id, 4> KillMemIds; 196 for (ScopArrayInfo *SAI : S.arrays()) { 197 if (SAI->isPHIKind() || 198 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 199 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 200 } 201 202 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 203 Info.MustKills = isl::union_map::empty(ParamSpace); 204 205 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 206 // schedule: 207 // - filter: "[control] -> { }" 208 // So, we choose to not create this to keep the output a little nicer, 209 // at the cost of some code complexity. 210 Info.KillsSchedule = nullptr; 211 212 for (isl::id &ToKillId : KillMemIds) { 213 isl::id KillStmtId = isl::id::alloc( 214 S.getIslCtx(), 215 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 216 217 // NOTE: construction of tagged_must_kill: 218 // 2. We need to construct a map: 219 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 220 // To construct this, we use `isl_map_domain_product` on 2 maps`: 221 // 2a. StmtToScalar: 222 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 223 // 2b. PhantomRefToScalar: 224 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 225 // 226 // Combining these with `isl_map_domain_product` gives us 227 // TaggedMustKill: 228 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 229 230 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 231 isl::map StmtToScalar = isl::map::universe(ParamSpace); 232 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 233 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 234 235 isl::id PhantomRefId = isl::id::alloc( 236 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 237 nullptr); 238 239 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 240 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 241 PhantomRefToScalar = 242 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 243 PhantomRefToScalar = 244 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 245 246 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 247 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 248 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 249 250 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 251 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 252 253 // 3. Create the kill schedule of the form: 254 // "[param] -> { Stmt_phantom[] }" 255 // Then add this to Info.KillsSchedule. 256 isl::space KillStmtSpace = ParamSpace; 257 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 258 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 259 260 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 261 if (Info.KillsSchedule) 262 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 263 else 264 Info.KillsSchedule = KillSchedule; 265 } 266 267 return Info; 268 } 269 270 /// Create the ast expressions for a ScopStmt. 271 /// 272 /// This function is a callback for to generate the ast expressions for each 273 /// of the scheduled ScopStmts. 274 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 275 void *StmtT, __isl_take isl_ast_build *Build_C, 276 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 277 isl_id *Id, void *User), 278 void *UserIndex, 279 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 280 void *UserExpr) { 281 282 ScopStmt *Stmt = (ScopStmt *)StmtT; 283 284 if (!Stmt || !Build_C) 285 return NULL; 286 287 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 288 isl::ctx Ctx = Build.get_ctx(); 289 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 290 291 for (MemoryAccess *Acc : *Stmt) { 292 isl::map AddrFunc = Acc->getAddressFunction(); 293 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 294 295 isl::id RefId = Acc->getId(); 296 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 297 298 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 299 MPA = MPA.coalesce(); 300 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 301 302 isl::ast_expr Access = Build.access_from(MPA); 303 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 304 RefToExpr = RefToExpr.set(RefId, Access); 305 } 306 307 return RefToExpr.release(); 308 } 309 310 /// Given a LLVM Type, compute its size in bytes, 311 static int computeSizeInBytes(const Type *T) { 312 int bytes = T->getPrimitiveSizeInBits() / 8; 313 if (bytes == 0) 314 bytes = T->getScalarSizeInBits() / 8; 315 return bytes; 316 } 317 318 /// Generate code for a GPU specific isl AST. 319 /// 320 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 321 /// generates code for general-purpose AST nodes, with special functionality 322 /// for generating GPU specific user nodes. 323 /// 324 /// @see GPUNodeBuilder::createUser 325 class GPUNodeBuilder : public IslNodeBuilder { 326 public: 327 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 328 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 329 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 330 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 331 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 332 Prog(Prog), Runtime(Runtime), Arch(Arch) { 333 getExprBuilder().setIDToSAI(&IDToSAI); 334 } 335 336 /// Create after-run-time-check initialization code. 337 void initializeAfterRTH(); 338 339 /// Finalize the generated scop. 340 virtual void finalize(); 341 342 /// Track if the full build process was successful. 343 /// 344 /// This value is set to false, if throughout the build process an error 345 /// occurred which prevents us from generating valid GPU code. 346 bool BuildSuccessful = true; 347 348 /// The maximal number of loops surrounding a sequential kernel. 349 unsigned DeepestSequential = 0; 350 351 /// The maximal number of loops surrounding a parallel kernel. 352 unsigned DeepestParallel = 0; 353 354 /// Return the name to set for the ptx_kernel. 355 std::string getKernelFuncName(int Kernel_id); 356 357 private: 358 /// A vector of array base pointers for which a new ScopArrayInfo was created. 359 /// 360 /// This vector is used to delete the ScopArrayInfo when it is not needed any 361 /// more. 362 std::vector<Value *> LocalArrays; 363 364 /// A map from ScopArrays to their corresponding device allocations. 365 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 366 367 /// The current GPU context. 368 Value *GPUContext; 369 370 /// The set of isl_ids allocated in the kernel 371 std::vector<isl_id *> KernelIds; 372 373 /// A module containing GPU code. 374 /// 375 /// This pointer is only set in case we are currently generating GPU code. 376 std::unique_ptr<Module> GPUModule; 377 378 /// The GPU program we generate code for. 379 gpu_prog *Prog; 380 381 /// The GPU Runtime implementation to use (OpenCL or CUDA). 382 GPURuntime Runtime; 383 384 /// The GPU Architecture to target. 385 GPUArch Arch; 386 387 /// Class to free isl_ids. 388 class IslIdDeleter { 389 public: 390 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 391 }; 392 393 /// A set containing all isl_ids allocated in a GPU kernel. 394 /// 395 /// By releasing this set all isl_ids will be freed. 396 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 397 398 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 399 400 /// Create code for user-defined AST nodes. 401 /// 402 /// These AST nodes can be of type: 403 /// 404 /// - ScopStmt: A computational statement (TODO) 405 /// - Kernel: A GPU kernel call (TODO) 406 /// - Data-Transfer: A GPU <-> CPU data-transfer 407 /// - In-kernel synchronization 408 /// - In-kernel memory copy statement 409 /// 410 /// @param UserStmt The ast node to generate code for. 411 virtual void createUser(__isl_take isl_ast_node *UserStmt); 412 413 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 414 415 /// Create code for a data transfer statement 416 /// 417 /// @param TransferStmt The data transfer statement. 418 /// @param Direction The direction in which to transfer data. 419 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 420 enum DataDirection Direction); 421 422 /// Find llvm::Values referenced in GPU kernel. 423 /// 424 /// @param Kernel The kernel to scan for llvm::Values 425 /// 426 /// @returns A tuple, whose: 427 /// - First element contains the set of values referenced by the 428 /// kernel 429 /// - Second element contains the set of functions referenced by the 430 /// kernel. All functions in the set satisfy 431 /// `isValidFunctionInKernel`. 432 /// - Third element contains loops that have induction variables 433 /// which are used in the kernel, *and* these loops are *neither* 434 /// in the scop, nor do they immediately surroung the Scop. 435 /// See [Code generation of induction variables of loops outside 436 /// Scops] 437 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 438 getReferencesInKernel(ppcg_kernel *Kernel); 439 440 /// Compute the sizes of the execution grid for a given kernel. 441 /// 442 /// @param Kernel The kernel to compute grid sizes for. 443 /// 444 /// @returns A tuple with grid sizes for X and Y dimension 445 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 446 447 /// Get the managed array pointer for sending host pointers to the device. 448 /// \note 449 /// This is to be used only with managed memory 450 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 451 452 /// Compute the sizes of the thread blocks for a given kernel. 453 /// 454 /// @param Kernel The kernel to compute thread block sizes for. 455 /// 456 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 457 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 458 459 /// Store a specific kernel launch parameter in the array of kernel launch 460 /// parameters. 461 /// 462 /// @param Parameters The list of parameters in which to store. 463 /// @param Param The kernel launch parameter to store. 464 /// @param Index The index in the parameter list, at which to store the 465 /// parameter. 466 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 467 int Index); 468 469 /// Create kernel launch parameters. 470 /// 471 /// @param Kernel The kernel to create parameters for. 472 /// @param F The kernel function that has been created. 473 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 474 /// 475 /// @returns A stack allocated array with pointers to the parameter 476 /// values that are passed to the kernel. 477 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 478 SetVector<Value *> SubtreeValues); 479 480 /// Create declarations for kernel variable. 481 /// 482 /// This includes shared memory declarations. 483 /// 484 /// @param Kernel The kernel definition to create variables for. 485 /// @param FN The function into which to generate the variables. 486 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 487 488 /// Add CUDA annotations to module. 489 /// 490 /// Add a set of CUDA annotations that declares the maximal block dimensions 491 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 492 /// PTX compiler to bound the number of allocated registers to ensure the 493 /// resulting kernel is known to run with up to as many block dimensions 494 /// as specified here. 495 /// 496 /// @param M The module to add the annotations to. 497 /// @param BlockDimX The size of block dimension X. 498 /// @param BlockDimY The size of block dimension Y. 499 /// @param BlockDimZ The size of block dimension Z. 500 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 501 Value *BlockDimZ); 502 503 /// Create GPU kernel. 504 /// 505 /// Code generate the kernel described by @p KernelStmt. 506 /// 507 /// @param KernelStmt The ast node to generate kernel code for. 508 void createKernel(__isl_take isl_ast_node *KernelStmt); 509 510 /// Generate code that computes the size of an array. 511 /// 512 /// @param Array The array for which to compute a size. 513 Value *getArraySize(gpu_array_info *Array); 514 515 /// Generate code to compute the minimal offset at which an array is accessed. 516 /// 517 /// The offset of an array is the minimal array location accessed in a scop. 518 /// 519 /// Example: 520 /// 521 /// for (long i = 0; i < 100; i++) 522 /// A[i + 42] += ... 523 /// 524 /// getArrayOffset(A) results in 42. 525 /// 526 /// @param Array The array for which to compute the offset. 527 /// @returns An llvm::Value that contains the offset of the array. 528 Value *getArrayOffset(gpu_array_info *Array); 529 530 /// Prepare the kernel arguments for kernel code generation 531 /// 532 /// @param Kernel The kernel to generate code for. 533 /// @param FN The function created for the kernel. 534 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 535 536 /// Create kernel function. 537 /// 538 /// Create a kernel function located in a newly created module that can serve 539 /// as target for device code generation. Set the Builder to point to the 540 /// start block of this newly created function. 541 /// 542 /// @param Kernel The kernel to generate code for. 543 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 544 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 545 /// kernel. 546 void createKernelFunction(ppcg_kernel *Kernel, 547 SetVector<Value *> &SubtreeValues, 548 SetVector<Function *> &SubtreeFunctions); 549 550 /// Create the declaration of a kernel function. 551 /// 552 /// The kernel function takes as arguments: 553 /// 554 /// - One i8 pointer for each external array reference used in the kernel. 555 /// - Host iterators 556 /// - Parameters 557 /// - Other LLVM Value references (TODO) 558 /// 559 /// @param Kernel The kernel to generate the function declaration for. 560 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 561 /// 562 /// @returns The newly declared function. 563 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 564 SetVector<Value *> &SubtreeValues); 565 566 /// Insert intrinsic functions to obtain thread and block ids. 567 /// 568 /// @param The kernel to generate the intrinsic functions for. 569 void insertKernelIntrinsics(ppcg_kernel *Kernel); 570 571 /// Insert function calls to retrieve the SPIR group/local ids. 572 /// 573 /// @param The kernel to generate the function calls for. 574 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 575 576 /// Setup the creation of functions referenced by the GPU kernel. 577 /// 578 /// 1. Create new function declarations in GPUModule which are the same as 579 /// SubtreeFunctions. 580 /// 581 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 582 /// old functions (that come from the original module) to new functions 583 /// (that are created within GPUModule). That way, we generate references 584 /// to the correct function (in GPUModule) in BlockGenerator. 585 /// 586 /// @see IslNodeBuilder::ValueMap 587 /// @see BlockGenerator::GlobalMap 588 /// @see BlockGenerator::getNewValue 589 /// @see GPUNodeBuilder::getReferencesInKernel. 590 /// 591 /// @param SubtreeFunctions The set of llvm::Functions referenced by 592 /// this kernel. 593 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 594 595 /// Create a global-to-shared or shared-to-global copy statement. 596 /// 597 /// @param CopyStmt The copy statement to generate code for 598 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 599 600 /// Create code for a ScopStmt called in @p Expr. 601 /// 602 /// @param Expr The expression containing the call. 603 /// @param KernelStmt The kernel statement referenced in the call. 604 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 605 606 /// Create an in-kernel synchronization call. 607 void createKernelSync(); 608 609 /// Create a PTX assembly string for the current GPU kernel. 610 /// 611 /// @returns A string containing the corresponding PTX assembly code. 612 std::string createKernelASM(); 613 614 /// Remove references from the dominator tree to the kernel function @p F. 615 /// 616 /// @param F The function to remove references to. 617 void clearDominators(Function *F); 618 619 /// Remove references from scalar evolution to the kernel function @p F. 620 /// 621 /// @param F The function to remove references to. 622 void clearScalarEvolution(Function *F); 623 624 /// Remove references from loop info to the kernel function @p F. 625 /// 626 /// @param F The function to remove references to. 627 void clearLoops(Function *F); 628 629 /// Check if the scop requires to be linked with CUDA's libdevice. 630 bool requiresCUDALibDevice(); 631 632 /// Link with the NVIDIA libdevice library (if needed and available). 633 void addCUDALibDevice(); 634 635 /// Finalize the generation of the kernel function. 636 /// 637 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 638 /// dump its IR to stderr. 639 /// 640 /// @returns The Assembly string of the kernel. 641 std::string finalizeKernelFunction(); 642 643 /// Finalize the generation of the kernel arguments. 644 /// 645 /// This function ensures that not-read-only scalars used in a kernel are 646 /// stored back to the global memory location they are backed with before 647 /// the kernel terminates. 648 /// 649 /// @params Kernel The kernel to finalize kernel arguments for. 650 void finalizeKernelArguments(ppcg_kernel *Kernel); 651 652 /// Create code that allocates memory to store arrays on device. 653 void allocateDeviceArrays(); 654 655 /// Create code to prepare the managed device pointers. 656 void prepareManagedDeviceArrays(); 657 658 /// Free all allocated device arrays. 659 void freeDeviceArrays(); 660 661 /// Create a call to initialize the GPU context. 662 /// 663 /// @returns A pointer to the newly initialized context. 664 Value *createCallInitContext(); 665 666 /// Create a call to get the device pointer for a kernel allocation. 667 /// 668 /// @param Allocation The Polly GPU allocation 669 /// 670 /// @returns The device parameter corresponding to this allocation. 671 Value *createCallGetDevicePtr(Value *Allocation); 672 673 /// Create a call to free the GPU context. 674 /// 675 /// @param Context A pointer to an initialized GPU context. 676 void createCallFreeContext(Value *Context); 677 678 /// Create a call to allocate memory on the device. 679 /// 680 /// @param Size The size of memory to allocate 681 /// 682 /// @returns A pointer that identifies this allocation. 683 Value *createCallAllocateMemoryForDevice(Value *Size); 684 685 /// Create a call to free a device array. 686 /// 687 /// @param Array The device array to free. 688 void createCallFreeDeviceMemory(Value *Array); 689 690 /// Create a call to copy data from host to device. 691 /// 692 /// @param HostPtr A pointer to the host data that should be copied. 693 /// @param DevicePtr A device pointer specifying the location to copy to. 694 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 695 Value *Size); 696 697 /// Create a call to copy data from device to host. 698 /// 699 /// @param DevicePtr A pointer to the device data that should be copied. 700 /// @param HostPtr A host pointer specifying the location to copy to. 701 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 702 Value *Size); 703 704 /// Create a call to synchronize Host & Device. 705 /// \note 706 /// This is to be used only with managed memory. 707 void createCallSynchronizeDevice(); 708 709 /// Create a call to get a kernel from an assembly string. 710 /// 711 /// @param Buffer The string describing the kernel. 712 /// @param Entry The name of the kernel function to call. 713 /// 714 /// @returns A pointer to a kernel object 715 Value *createCallGetKernel(Value *Buffer, Value *Entry); 716 717 /// Create a call to free a GPU kernel. 718 /// 719 /// @param GPUKernel THe kernel to free. 720 void createCallFreeKernel(Value *GPUKernel); 721 722 /// Create a call to launch a GPU kernel. 723 /// 724 /// @param GPUKernel The kernel to launch. 725 /// @param GridDimX The size of the first grid dimension. 726 /// @param GridDimY The size of the second grid dimension. 727 /// @param GridBlockX The size of the first block dimension. 728 /// @param GridBlockY The size of the second block dimension. 729 /// @param GridBlockZ The size of the third block dimension. 730 /// @param Parameters A pointer to an array that contains itself pointers to 731 /// the parameter values passed for each kernel argument. 732 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 733 Value *GridDimY, Value *BlockDimX, 734 Value *BlockDimY, Value *BlockDimZ, 735 Value *Parameters); 736 }; 737 738 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 739 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 740 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 741 } 742 743 void GPUNodeBuilder::initializeAfterRTH() { 744 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 745 &*Builder.GetInsertPoint(), &DT, &LI); 746 NewBB->setName("polly.acc.initialize"); 747 Builder.SetInsertPoint(&NewBB->front()); 748 749 GPUContext = createCallInitContext(); 750 751 if (!PollyManagedMemory) 752 allocateDeviceArrays(); 753 else 754 prepareManagedDeviceArrays(); 755 } 756 757 void GPUNodeBuilder::finalize() { 758 if (!PollyManagedMemory) 759 freeDeviceArrays(); 760 761 createCallFreeContext(GPUContext); 762 IslNodeBuilder::finalize(); 763 } 764 765 void GPUNodeBuilder::allocateDeviceArrays() { 766 assert(!PollyManagedMemory && 767 "Managed memory will directly send host pointers " 768 "to the kernel. There is no need for device arrays"); 769 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 770 771 for (int i = 0; i < Prog->n_array; ++i) { 772 gpu_array_info *Array = &Prog->array[i]; 773 auto *ScopArray = (ScopArrayInfo *)Array->user; 774 std::string DevArrayName("p_dev_array_"); 775 DevArrayName.append(Array->name); 776 777 Value *ArraySize = getArraySize(Array); 778 Value *Offset = getArrayOffset(Array); 779 if (Offset) 780 ArraySize = Builder.CreateSub( 781 ArraySize, 782 Builder.CreateMul(Offset, 783 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 784 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 785 // It makes no sense to have an array of size 0. The CUDA API will 786 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 787 // choose to be defensive and catch this at the compile phase. It is 788 // most likely that we are doing something wrong with size computation. 789 if (SizeSCEV->isZero()) { 790 errs() << getUniqueScopName(&S) 791 << " has computed array size 0: " << *ArraySize 792 << " | for array: " << *(ScopArray->getBasePtr()) 793 << ". This is illegal, exiting.\n"; 794 report_fatal_error("array size was computed to be 0"); 795 } 796 797 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 798 DevArray->setName(DevArrayName); 799 DeviceAllocations[ScopArray] = DevArray; 800 } 801 802 isl_ast_build_free(Build); 803 } 804 805 void GPUNodeBuilder::prepareManagedDeviceArrays() { 806 assert(PollyManagedMemory && 807 "Device array most only be prepared in managed-memory mode"); 808 for (int i = 0; i < Prog->n_array; ++i) { 809 gpu_array_info *Array = &Prog->array[i]; 810 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 811 Value *HostPtr; 812 813 if (gpu_array_is_scalar(Array)) 814 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 815 else 816 HostPtr = ScopArray->getBasePtr(); 817 HostPtr = getLatestValue(HostPtr); 818 819 Value *Offset = getArrayOffset(Array); 820 if (Offset) { 821 HostPtr = Builder.CreatePointerCast( 822 HostPtr, ScopArray->getElementType()->getPointerTo()); 823 HostPtr = Builder.CreateGEP(HostPtr, Offset); 824 } 825 826 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 827 DeviceAllocations[ScopArray] = HostPtr; 828 } 829 } 830 831 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 832 Value *BlockDimY, Value *BlockDimZ) { 833 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 834 835 for (auto &F : *M) { 836 if (F.getCallingConv() != CallingConv::PTX_Kernel) 837 continue; 838 839 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 840 841 Metadata *Elements[] = { 842 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 843 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 844 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 845 ValueAsMetadata::get(V[2]), 846 }; 847 MDNode *Node = MDNode::get(M->getContext(), Elements); 848 AnnotationNode->addOperand(Node); 849 } 850 } 851 852 void GPUNodeBuilder::freeDeviceArrays() { 853 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 854 for (auto &Array : DeviceAllocations) 855 createCallFreeDeviceMemory(Array.second); 856 } 857 858 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 859 const char *Name = "polly_getKernel"; 860 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 861 Function *F = M->getFunction(Name); 862 863 // If F is not available, declare it. 864 if (!F) { 865 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 866 std::vector<Type *> Args; 867 Args.push_back(Builder.getInt8PtrTy()); 868 Args.push_back(Builder.getInt8PtrTy()); 869 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 870 F = Function::Create(Ty, Linkage, Name, M); 871 } 872 873 return Builder.CreateCall(F, {Buffer, Entry}); 874 } 875 876 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 877 const char *Name = "polly_getDevicePtr"; 878 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 879 Function *F = M->getFunction(Name); 880 881 // If F is not available, declare it. 882 if (!F) { 883 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 884 std::vector<Type *> Args; 885 Args.push_back(Builder.getInt8PtrTy()); 886 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 887 F = Function::Create(Ty, Linkage, Name, M); 888 } 889 890 return Builder.CreateCall(F, {Allocation}); 891 } 892 893 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 894 Value *GridDimY, Value *BlockDimX, 895 Value *BlockDimY, Value *BlockDimZ, 896 Value *Parameters) { 897 const char *Name = "polly_launchKernel"; 898 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 899 Function *F = M->getFunction(Name); 900 901 // If F is not available, declare it. 902 if (!F) { 903 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 904 std::vector<Type *> Args; 905 Args.push_back(Builder.getInt8PtrTy()); 906 Args.push_back(Builder.getInt32Ty()); 907 Args.push_back(Builder.getInt32Ty()); 908 Args.push_back(Builder.getInt32Ty()); 909 Args.push_back(Builder.getInt32Ty()); 910 Args.push_back(Builder.getInt32Ty()); 911 Args.push_back(Builder.getInt8PtrTy()); 912 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 913 F = Function::Create(Ty, Linkage, Name, M); 914 } 915 916 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 917 BlockDimZ, Parameters}); 918 } 919 920 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 921 const char *Name = "polly_freeKernel"; 922 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 923 Function *F = M->getFunction(Name); 924 925 // If F is not available, declare it. 926 if (!F) { 927 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 928 std::vector<Type *> Args; 929 Args.push_back(Builder.getInt8PtrTy()); 930 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 931 F = Function::Create(Ty, Linkage, Name, M); 932 } 933 934 Builder.CreateCall(F, {GPUKernel}); 935 } 936 937 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 938 assert(!PollyManagedMemory && 939 "Managed memory does not allocate or free memory " 940 "for device"); 941 const char *Name = "polly_freeDeviceMemory"; 942 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 943 Function *F = M->getFunction(Name); 944 945 // If F is not available, declare it. 946 if (!F) { 947 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 948 std::vector<Type *> Args; 949 Args.push_back(Builder.getInt8PtrTy()); 950 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 951 F = Function::Create(Ty, Linkage, Name, M); 952 } 953 954 Builder.CreateCall(F, {Array}); 955 } 956 957 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 958 assert(!PollyManagedMemory && 959 "Managed memory does not allocate or free memory " 960 "for device"); 961 const char *Name = "polly_allocateMemoryForDevice"; 962 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 963 Function *F = M->getFunction(Name); 964 965 // If F is not available, declare it. 966 if (!F) { 967 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 968 std::vector<Type *> Args; 969 Args.push_back(Builder.getInt64Ty()); 970 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 971 F = Function::Create(Ty, Linkage, Name, M); 972 } 973 974 return Builder.CreateCall(F, {Size}); 975 } 976 977 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 978 Value *DeviceData, 979 Value *Size) { 980 assert(!PollyManagedMemory && 981 "Managed memory does not transfer memory between " 982 "device and host"); 983 const char *Name = "polly_copyFromHostToDevice"; 984 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 985 Function *F = M->getFunction(Name); 986 987 // If F is not available, declare it. 988 if (!F) { 989 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 990 std::vector<Type *> Args; 991 Args.push_back(Builder.getInt8PtrTy()); 992 Args.push_back(Builder.getInt8PtrTy()); 993 Args.push_back(Builder.getInt64Ty()); 994 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 995 F = Function::Create(Ty, Linkage, Name, M); 996 } 997 998 Builder.CreateCall(F, {HostData, DeviceData, Size}); 999 } 1000 1001 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1002 Value *HostData, 1003 Value *Size) { 1004 assert(!PollyManagedMemory && 1005 "Managed memory does not transfer memory between " 1006 "device and host"); 1007 const char *Name = "polly_copyFromDeviceToHost"; 1008 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1009 Function *F = M->getFunction(Name); 1010 1011 // If F is not available, declare it. 1012 if (!F) { 1013 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1014 std::vector<Type *> Args; 1015 Args.push_back(Builder.getInt8PtrTy()); 1016 Args.push_back(Builder.getInt8PtrTy()); 1017 Args.push_back(Builder.getInt64Ty()); 1018 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1019 F = Function::Create(Ty, Linkage, Name, M); 1020 } 1021 1022 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1023 } 1024 1025 void GPUNodeBuilder::createCallSynchronizeDevice() { 1026 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1027 "managed memory"); 1028 const char *Name = "polly_synchronizeDevice"; 1029 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1030 Function *F = M->getFunction(Name); 1031 1032 // If F is not available, declare it. 1033 if (!F) { 1034 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1035 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1036 F = Function::Create(Ty, Linkage, Name, M); 1037 } 1038 1039 Builder.CreateCall(F); 1040 } 1041 1042 Value *GPUNodeBuilder::createCallInitContext() { 1043 const char *Name; 1044 1045 switch (Runtime) { 1046 case GPURuntime::CUDA: 1047 Name = "polly_initContextCUDA"; 1048 break; 1049 case GPURuntime::OpenCL: 1050 Name = "polly_initContextCL"; 1051 break; 1052 } 1053 1054 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1055 Function *F = M->getFunction(Name); 1056 1057 // If F is not available, declare it. 1058 if (!F) { 1059 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1060 std::vector<Type *> Args; 1061 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1062 F = Function::Create(Ty, Linkage, Name, M); 1063 } 1064 1065 return Builder.CreateCall(F, {}); 1066 } 1067 1068 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1069 const char *Name = "polly_freeContext"; 1070 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1071 Function *F = M->getFunction(Name); 1072 1073 // If F is not available, declare it. 1074 if (!F) { 1075 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1076 std::vector<Type *> Args; 1077 Args.push_back(Builder.getInt8PtrTy()); 1078 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1079 F = Function::Create(Ty, Linkage, Name, M); 1080 } 1081 1082 Builder.CreateCall(F, {Context}); 1083 } 1084 1085 /// Check if one string is a prefix of another. 1086 /// 1087 /// @param String The string in which to look for the prefix. 1088 /// @param Prefix The prefix to look for. 1089 static bool isPrefix(std::string String, std::string Prefix) { 1090 return String.find(Prefix) == 0; 1091 } 1092 1093 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1094 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1095 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1096 1097 if (!gpu_array_is_scalar(Array)) { 1098 isl::multi_pw_aff ArrayBound = 1099 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1100 1101 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1102 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1103 1104 for (unsigned int i = 1; i < Array->n_index; i++) { 1105 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1106 isl::ast_expr Expr = Build.expr_from(Bound_I); 1107 Res = Res.mul(Expr); 1108 } 1109 1110 Value *NumElements = ExprBuilder.create(Res.release()); 1111 if (NumElements->getType() != ArraySize->getType()) 1112 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1113 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1114 } 1115 return ArraySize; 1116 } 1117 1118 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1119 if (gpu_array_is_scalar(Array)) 1120 return nullptr; 1121 1122 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1123 1124 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1125 1126 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1127 1128 for (long i = 0; i < Min.dim(isl::dim::set); i++) 1129 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1130 1131 if (Min.is_subset(ZeroSet)) { 1132 return nullptr; 1133 } 1134 1135 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1136 1137 for (long i = 0; i < Min.dim(isl::dim::set); i++) { 1138 if (i > 0) { 1139 isl::pw_aff Bound_I = 1140 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1141 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1142 Result = Result.mul(BExpr); 1143 } 1144 isl::pw_aff DimMin = Min.dim_min(i); 1145 isl::ast_expr MExpr = Build.expr_from(DimMin); 1146 Result = Result.add(MExpr); 1147 } 1148 1149 return ExprBuilder.create(Result.release()); 1150 } 1151 1152 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1153 ScopArrayInfo *ArrayInfo) { 1154 assert(PollyManagedMemory && "Only used when you wish to get a host " 1155 "pointer for sending data to the kernel, " 1156 "with managed memory"); 1157 std::map<ScopArrayInfo *, Value *>::iterator it; 1158 it = DeviceAllocations.find(ArrayInfo); 1159 assert(it != DeviceAllocations.end() && 1160 "Device array expected to be available"); 1161 return it->second; 1162 } 1163 1164 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1165 enum DataDirection Direction) { 1166 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1167 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1168 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1169 isl_id *Id = isl_ast_expr_get_id(Arg); 1170 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1171 auto ScopArray = (ScopArrayInfo *)(Array->user); 1172 1173 Value *Size = getArraySize(Array); 1174 Value *Offset = getArrayOffset(Array); 1175 Value *DevPtr = DeviceAllocations[ScopArray]; 1176 1177 Value *HostPtr; 1178 1179 if (gpu_array_is_scalar(Array)) 1180 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1181 else 1182 HostPtr = ScopArray->getBasePtr(); 1183 HostPtr = getLatestValue(HostPtr); 1184 1185 if (Offset) { 1186 HostPtr = Builder.CreatePointerCast( 1187 HostPtr, ScopArray->getElementType()->getPointerTo()); 1188 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1189 } 1190 1191 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1192 1193 if (Offset) { 1194 Size = Builder.CreateSub( 1195 Size, Builder.CreateMul( 1196 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1197 } 1198 1199 if (Direction == HOST_TO_DEVICE) 1200 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1201 else 1202 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1203 1204 isl_id_free(Id); 1205 isl_ast_expr_free(Arg); 1206 isl_ast_expr_free(Expr); 1207 isl_ast_node_free(TransferStmt); 1208 } 1209 1210 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1211 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1212 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1213 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1214 isl_id_free(Id); 1215 isl_ast_expr_free(StmtExpr); 1216 1217 const char *Str = isl_id_get_name(Id); 1218 if (!strcmp(Str, "kernel")) { 1219 createKernel(UserStmt); 1220 isl_ast_expr_free(Expr); 1221 return; 1222 } 1223 if (!strcmp(Str, "init_device")) { 1224 initializeAfterRTH(); 1225 isl_ast_node_free(UserStmt); 1226 isl_ast_expr_free(Expr); 1227 return; 1228 } 1229 if (!strcmp(Str, "clear_device")) { 1230 finalize(); 1231 isl_ast_node_free(UserStmt); 1232 isl_ast_expr_free(Expr); 1233 return; 1234 } 1235 if (isPrefix(Str, "to_device")) { 1236 if (!PollyManagedMemory) 1237 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1238 else 1239 isl_ast_node_free(UserStmt); 1240 1241 isl_ast_expr_free(Expr); 1242 return; 1243 } 1244 1245 if (isPrefix(Str, "from_device")) { 1246 if (!PollyManagedMemory) { 1247 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1248 } else { 1249 createCallSynchronizeDevice(); 1250 isl_ast_node_free(UserStmt); 1251 } 1252 isl_ast_expr_free(Expr); 1253 return; 1254 } 1255 1256 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1257 struct ppcg_kernel_stmt *KernelStmt = 1258 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1259 isl_id_free(Anno); 1260 1261 switch (KernelStmt->type) { 1262 case ppcg_kernel_domain: 1263 createScopStmt(Expr, KernelStmt); 1264 isl_ast_node_free(UserStmt); 1265 return; 1266 case ppcg_kernel_copy: 1267 createKernelCopy(KernelStmt); 1268 isl_ast_expr_free(Expr); 1269 isl_ast_node_free(UserStmt); 1270 return; 1271 case ppcg_kernel_sync: 1272 createKernelSync(); 1273 isl_ast_expr_free(Expr); 1274 isl_ast_node_free(UserStmt); 1275 return; 1276 } 1277 1278 isl_ast_expr_free(Expr); 1279 isl_ast_node_free(UserStmt); 1280 return; 1281 } 1282 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1283 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1284 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1285 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1286 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1287 Index = isl_ast_expr_address_of(Index); 1288 Value *GlobalAddr = ExprBuilder.create(Index); 1289 1290 if (KernelStmt->u.c.read) { 1291 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1292 Builder.CreateStore(Load, LocalAddr); 1293 } else { 1294 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1295 Builder.CreateStore(Load, GlobalAddr); 1296 } 1297 } 1298 1299 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1300 ppcg_kernel_stmt *KernelStmt) { 1301 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1302 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1303 1304 LoopToScevMapT LTS; 1305 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1306 1307 createSubstitutions(Expr, Stmt, LTS); 1308 1309 if (Stmt->isBlockStmt()) 1310 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1311 else 1312 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1313 } 1314 1315 void GPUNodeBuilder::createKernelSync() { 1316 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1317 const char *SpirName = "__gen_ocl_barrier_global"; 1318 1319 Function *Sync; 1320 1321 switch (Arch) { 1322 case GPUArch::SPIR64: 1323 case GPUArch::SPIR32: 1324 Sync = M->getFunction(SpirName); 1325 1326 // If Sync is not available, declare it. 1327 if (!Sync) { 1328 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1329 std::vector<Type *> Args; 1330 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1331 Sync = Function::Create(Ty, Linkage, SpirName, M); 1332 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1333 } 1334 break; 1335 case GPUArch::NVPTX64: 1336 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1337 break; 1338 } 1339 1340 Builder.CreateCall(Sync, {}); 1341 } 1342 1343 /// Collect llvm::Values referenced from @p Node 1344 /// 1345 /// This function only applies to isl_ast_nodes that are user_nodes referring 1346 /// to a ScopStmt. All other node types are ignore. 1347 /// 1348 /// @param Node The node to collect references for. 1349 /// @param User A user pointer used as storage for the data that is collected. 1350 /// 1351 /// @returns isl_bool_true if data could be collected successfully. 1352 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1353 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1354 return isl_bool_true; 1355 1356 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1357 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1358 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1359 const char *Str = isl_id_get_name(Id); 1360 isl_id_free(Id); 1361 isl_ast_expr_free(StmtExpr); 1362 isl_ast_expr_free(Expr); 1363 1364 if (!isPrefix(Str, "Stmt")) 1365 return isl_bool_true; 1366 1367 Id = isl_ast_node_get_annotation(Node); 1368 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1369 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1370 isl_id_free(Id); 1371 1372 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1373 1374 return isl_bool_true; 1375 } 1376 1377 /// A list of functions that are available in NVIDIA's libdevice. 1378 const std::set<std::string> CUDALibDeviceFunctions = { 1379 "exp", "expf", "expl", "cos", "cosf", 1380 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"}; 1381 1382 /// Return the corresponding CUDA libdevice function name for @p F. 1383 /// 1384 /// Return "" if we are not compiling for CUDA. 1385 std::string getCUDALibDeviceFuntion(Function *F) { 1386 if (CUDALibDeviceFunctions.count(F->getName())) 1387 return std::string("__nv_") + std::string(F->getName()); 1388 1389 return ""; 1390 } 1391 1392 /// Check if F is a function that we can code-generate in a GPU kernel. 1393 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1394 assert(F && "F is an invalid pointer"); 1395 // We string compare against the name of the function to allow 1396 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1397 // "llvm.copysign". 1398 const StringRef Name = F->getName(); 1399 1400 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1401 return true; 1402 1403 return F->isIntrinsic() && 1404 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1405 Name.startswith("llvm.copysign")); 1406 } 1407 1408 /// Do not take `Function` as a subtree value. 1409 /// 1410 /// We try to take the reference of all subtree values and pass them along 1411 /// to the kernel from the host. Taking an address of any function and 1412 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1413 /// `Function`s. 1414 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1415 1416 /// Return `Function`s from `RawSubtreeValues`. 1417 static SetVector<Function *> 1418 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1419 bool AllowCUDALibDevice) { 1420 SetVector<Function *> SubtreeFunctions; 1421 for (Value *It : RawSubtreeValues) { 1422 Function *F = dyn_cast<Function>(It); 1423 if (F) { 1424 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1425 "Code should have bailed out by " 1426 "this point if an invalid function " 1427 "were present in a kernel."); 1428 SubtreeFunctions.insert(F); 1429 } 1430 } 1431 return SubtreeFunctions; 1432 } 1433 1434 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 1435 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1436 SetVector<Value *> SubtreeValues; 1437 SetVector<const SCEV *> SCEVs; 1438 SetVector<const Loop *> Loops; 1439 SubtreeReferences References = { 1440 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1441 1442 for (const auto &I : IDToValue) 1443 SubtreeValues.insert(I.second); 1444 1445 // NOTE: this is populated in IslNodeBuilder::addParameters 1446 // See [Code generation of induction variables of loops outside Scops]. 1447 for (const auto &I : OutsideLoopIterations) 1448 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1449 1450 isl_ast_node_foreach_descendant_top_down( 1451 Kernel->tree, collectReferencesInGPUStmt, &References); 1452 1453 for (const SCEV *Expr : SCEVs) { 1454 findValues(Expr, SE, SubtreeValues); 1455 findLoops(Expr, Loops); 1456 } 1457 1458 Loops.remove_if([this](const Loop *L) { 1459 return S.contains(L) || L->contains(S.getEntry()); 1460 }); 1461 1462 for (auto &SAI : S.arrays()) 1463 SubtreeValues.remove(SAI->getBasePtr()); 1464 1465 isl_space *Space = S.getParamSpace().release(); 1466 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1467 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1468 assert(IDToValue.count(Id)); 1469 Value *Val = IDToValue[Id]; 1470 SubtreeValues.remove(Val); 1471 isl_id_free(Id); 1472 } 1473 isl_space_free(Space); 1474 1475 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1476 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1477 assert(IDToValue.count(Id)); 1478 Value *Val = IDToValue[Id]; 1479 SubtreeValues.remove(Val); 1480 isl_id_free(Id); 1481 } 1482 1483 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1484 // SubtreeValues. This is important, because we should not lose any 1485 // SubtreeValues in the process of constructing the 1486 // "ValidSubtree{Values, Functions} sets. Nor should the set 1487 // ValidSubtree{Values, Functions} have any common element. 1488 auto ValidSubtreeValuesIt = 1489 make_filter_range(SubtreeValues, isValidSubtreeValue); 1490 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1491 ValidSubtreeValuesIt.end()); 1492 1493 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1494 1495 SetVector<Function *> ValidSubtreeFunctions( 1496 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1497 1498 // @see IslNodeBuilder::getReferencesInSubtree 1499 SetVector<Value *> ReplacedValues; 1500 for (Value *V : ValidSubtreeValues) { 1501 auto It = ValueMap.find(V); 1502 if (It == ValueMap.end()) 1503 ReplacedValues.insert(V); 1504 else 1505 ReplacedValues.insert(It->second); 1506 } 1507 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops); 1508 } 1509 1510 void GPUNodeBuilder::clearDominators(Function *F) { 1511 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1512 std::vector<BasicBlock *> Nodes; 1513 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1514 Nodes.push_back(I->getBlock()); 1515 1516 for (BasicBlock *BB : Nodes) 1517 DT.eraseNode(BB); 1518 } 1519 1520 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1521 for (BasicBlock &BB : *F) { 1522 Loop *L = LI.getLoopFor(&BB); 1523 if (L) 1524 SE.forgetLoop(L); 1525 } 1526 } 1527 1528 void GPUNodeBuilder::clearLoops(Function *F) { 1529 for (BasicBlock &BB : *F) { 1530 Loop *L = LI.getLoopFor(&BB); 1531 if (L) 1532 SE.forgetLoop(L); 1533 LI.removeBlock(&BB); 1534 } 1535 } 1536 1537 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1538 std::vector<Value *> Sizes; 1539 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1540 1541 isl::multi_pw_aff GridSizePwAffs = 1542 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1543 for (long i = 0; i < Kernel->n_grid; i++) { 1544 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1545 isl::ast_expr GridSize = Context.expr_from(Size); 1546 Value *Res = ExprBuilder.create(GridSize.release()); 1547 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1548 Sizes.push_back(Res); 1549 } 1550 1551 for (long i = Kernel->n_grid; i < 3; i++) 1552 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1553 1554 return std::make_tuple(Sizes[0], Sizes[1]); 1555 } 1556 1557 std::tuple<Value *, Value *, Value *> 1558 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1559 std::vector<Value *> Sizes; 1560 1561 for (long i = 0; i < Kernel->n_block; i++) { 1562 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1563 Sizes.push_back(Res); 1564 } 1565 1566 for (long i = Kernel->n_block; i < 3; i++) 1567 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1568 1569 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1570 } 1571 1572 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1573 Instruction *Param, int Index) { 1574 Value *Slot = Builder.CreateGEP( 1575 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1576 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1577 Builder.CreateStore(ParamTyped, Slot); 1578 } 1579 1580 Value * 1581 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1582 SetVector<Value *> SubtreeValues) { 1583 const int NumArgs = F->arg_size(); 1584 std::vector<int> ArgSizes(NumArgs); 1585 1586 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1587 1588 BasicBlock *EntryBlock = 1589 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1590 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1591 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1592 Instruction *Parameters = new AllocaInst( 1593 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1594 1595 int Index = 0; 1596 for (long i = 0; i < Prog->n_array; i++) { 1597 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1598 continue; 1599 1600 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1601 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1602 1603 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1604 1605 Value *DevArray = nullptr; 1606 if (PollyManagedMemory) { 1607 DevArray = getManagedDeviceArray(&Prog->array[i], 1608 const_cast<ScopArrayInfo *>(SAI)); 1609 } else { 1610 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1611 DevArray = createCallGetDevicePtr(DevArray); 1612 } 1613 assert(DevArray != nullptr && "Array to be offloaded to device not " 1614 "initialized"); 1615 Value *Offset = getArrayOffset(&Prog->array[i]); 1616 1617 if (Offset) { 1618 DevArray = Builder.CreatePointerCast( 1619 DevArray, SAI->getElementType()->getPointerTo()); 1620 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1621 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1622 } 1623 Value *Slot = Builder.CreateGEP( 1624 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1625 1626 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1627 Value *ValPtr = nullptr; 1628 if (PollyManagedMemory) 1629 ValPtr = DevArray; 1630 else 1631 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1632 1633 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1634 " to be stored into Parameters"); 1635 Value *ValPtrCast = 1636 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1637 Builder.CreateStore(ValPtrCast, Slot); 1638 } else { 1639 Instruction *Param = 1640 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1641 Launch + "_param_" + std::to_string(Index), 1642 EntryBlock->getTerminator()); 1643 Builder.CreateStore(DevArray, Param); 1644 Value *ParamTyped = 1645 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1646 Builder.CreateStore(ParamTyped, Slot); 1647 } 1648 Index++; 1649 } 1650 1651 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1652 1653 for (long i = 0; i < NumHostIters; i++) { 1654 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1655 Value *Val = IDToValue[Id]; 1656 isl_id_free(Id); 1657 1658 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1659 1660 Instruction *Param = 1661 new AllocaInst(Val->getType(), AddressSpace, 1662 Launch + "_param_" + std::to_string(Index), 1663 EntryBlock->getTerminator()); 1664 Builder.CreateStore(Val, Param); 1665 insertStoreParameter(Parameters, Param, Index); 1666 Index++; 1667 } 1668 1669 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1670 1671 for (long i = 0; i < NumVars; i++) { 1672 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1673 Value *Val = IDToValue[Id]; 1674 if (ValueMap.count(Val)) 1675 Val = ValueMap[Val]; 1676 isl_id_free(Id); 1677 1678 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1679 1680 Instruction *Param = 1681 new AllocaInst(Val->getType(), AddressSpace, 1682 Launch + "_param_" + std::to_string(Index), 1683 EntryBlock->getTerminator()); 1684 Builder.CreateStore(Val, Param); 1685 insertStoreParameter(Parameters, Param, Index); 1686 Index++; 1687 } 1688 1689 for (auto Val : SubtreeValues) { 1690 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1691 1692 Instruction *Param = 1693 new AllocaInst(Val->getType(), AddressSpace, 1694 Launch + "_param_" + std::to_string(Index), 1695 EntryBlock->getTerminator()); 1696 Builder.CreateStore(Val, Param); 1697 insertStoreParameter(Parameters, Param, Index); 1698 Index++; 1699 } 1700 1701 for (int i = 0; i < NumArgs; i++) { 1702 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1703 Instruction *Param = 1704 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1705 Launch + "_param_size_" + std::to_string(i), 1706 EntryBlock->getTerminator()); 1707 Builder.CreateStore(Val, Param); 1708 insertStoreParameter(Parameters, Param, Index); 1709 Index++; 1710 } 1711 1712 auto Location = EntryBlock->getTerminator(); 1713 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1714 Launch + "_params_i8ptr", Location); 1715 } 1716 1717 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1718 SetVector<Function *> SubtreeFunctions) { 1719 for (auto Fn : SubtreeFunctions) { 1720 const std::string ClonedFnName = Fn->getName(); 1721 Function *Clone = GPUModule->getFunction(ClonedFnName); 1722 if (!Clone) 1723 Clone = 1724 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1725 ClonedFnName, GPUModule.get()); 1726 assert(Clone && "Expected cloned function to be initialized."); 1727 assert(ValueMap.find(Fn) == ValueMap.end() && 1728 "Fn already present in ValueMap"); 1729 ValueMap[Fn] = Clone; 1730 } 1731 } 1732 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1733 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1734 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1735 isl_id_free(Id); 1736 isl_ast_node_free(KernelStmt); 1737 1738 if (Kernel->n_grid > 1) 1739 DeepestParallel = 1740 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1741 else 1742 DeepestSequential = 1743 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1744 1745 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1746 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1747 1748 SetVector<Value *> SubtreeValues; 1749 SetVector<Function *> SubtreeFunctions; 1750 SetVector<const Loop *> Loops; 1751 std::tie(SubtreeValues, SubtreeFunctions, Loops) = 1752 getReferencesInKernel(Kernel); 1753 1754 assert(Kernel->tree && "Device AST of kernel node is empty"); 1755 1756 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1757 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1758 ValueMapT HostValueMap = ValueMap; 1759 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1760 ScalarMap.clear(); 1761 1762 // Create for all loops we depend on values that contain the current loop 1763 // iteration. These values are necessary to generate code for SCEVs that 1764 // depend on such loops. As a result we need to pass them to the subfunction. 1765 for (const Loop *L : Loops) { 1766 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1767 SE.getUnknown(Builder.getInt64(1)), 1768 L, SCEV::FlagAnyWrap); 1769 Value *V = generateSCEV(OuterLIV); 1770 OutsideLoopIterations[L] = SE.getUnknown(V); 1771 SubtreeValues.insert(V); 1772 } 1773 1774 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1775 setupKernelSubtreeFunctions(SubtreeFunctions); 1776 1777 create(isl_ast_node_copy(Kernel->tree)); 1778 1779 finalizeKernelArguments(Kernel); 1780 Function *F = Builder.GetInsertBlock()->getParent(); 1781 if (Arch == GPUArch::NVPTX64) 1782 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1783 clearDominators(F); 1784 clearScalarEvolution(F); 1785 clearLoops(F); 1786 1787 IDToValue = HostIDs; 1788 1789 ValueMap = std::move(HostValueMap); 1790 ScalarMap = std::move(HostScalarMap); 1791 EscapeMap.clear(); 1792 IDToSAI.clear(); 1793 Annotator.resetAlternativeAliasBases(); 1794 for (auto &BasePtr : LocalArrays) 1795 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1796 LocalArrays.clear(); 1797 1798 std::string ASMString = finalizeKernelFunction(); 1799 Builder.SetInsertPoint(&HostInsertPoint); 1800 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1801 1802 std::string Name = getKernelFuncName(Kernel->id); 1803 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1804 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1805 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1806 1807 Value *GridDimX, *GridDimY; 1808 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1809 1810 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1811 BlockDimZ, Parameters); 1812 createCallFreeKernel(GPUKernel); 1813 1814 for (auto Id : KernelIds) 1815 isl_id_free(Id); 1816 1817 KernelIds.clear(); 1818 } 1819 1820 /// Compute the DataLayout string for the NVPTX backend. 1821 /// 1822 /// @param is64Bit Are we looking for a 64 bit architecture? 1823 static std::string computeNVPTXDataLayout(bool is64Bit) { 1824 std::string Ret = ""; 1825 1826 if (!is64Bit) { 1827 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1828 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1829 "64-v128:128:128-n16:32:64"; 1830 } else { 1831 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1832 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1833 "64-v128:128:128-n16:32:64"; 1834 } 1835 1836 return Ret; 1837 } 1838 1839 /// Compute the DataLayout string for a SPIR kernel. 1840 /// 1841 /// @param is64Bit Are we looking for a 64 bit architecture? 1842 static std::string computeSPIRDataLayout(bool is64Bit) { 1843 std::string Ret = ""; 1844 1845 if (!is64Bit) { 1846 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1847 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1848 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1849 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1850 } else { 1851 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1852 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1853 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1854 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1855 } 1856 1857 return Ret; 1858 } 1859 1860 Function * 1861 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1862 SetVector<Value *> &SubtreeValues) { 1863 std::vector<Type *> Args; 1864 std::string Identifier = getKernelFuncName(Kernel->id); 1865 1866 std::vector<Metadata *> MemoryType; 1867 1868 for (long i = 0; i < Prog->n_array; i++) { 1869 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1870 continue; 1871 1872 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1873 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1874 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1875 Args.push_back(SAI->getElementType()); 1876 MemoryType.push_back( 1877 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1878 } else { 1879 static const int UseGlobalMemory = 1; 1880 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1881 MemoryType.push_back( 1882 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1883 } 1884 } 1885 1886 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1887 1888 for (long i = 0; i < NumHostIters; i++) { 1889 Args.push_back(Builder.getInt64Ty()); 1890 MemoryType.push_back( 1891 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1892 } 1893 1894 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1895 1896 for (long i = 0; i < NumVars; i++) { 1897 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1898 Value *Val = IDToValue[Id]; 1899 isl_id_free(Id); 1900 Args.push_back(Val->getType()); 1901 MemoryType.push_back( 1902 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1903 } 1904 1905 for (auto *V : SubtreeValues) { 1906 Args.push_back(V->getType()); 1907 MemoryType.push_back( 1908 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1909 } 1910 1911 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1912 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1913 GPUModule.get()); 1914 1915 std::vector<Metadata *> EmptyStrings; 1916 1917 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1918 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1919 } 1920 1921 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1922 FN->setMetadata("kernel_arg_addr_space", 1923 MDNode::get(FN->getContext(), MemoryType)); 1924 FN->setMetadata("kernel_arg_name", 1925 MDNode::get(FN->getContext(), EmptyStrings)); 1926 FN->setMetadata("kernel_arg_access_qual", 1927 MDNode::get(FN->getContext(), EmptyStrings)); 1928 FN->setMetadata("kernel_arg_type", 1929 MDNode::get(FN->getContext(), EmptyStrings)); 1930 FN->setMetadata("kernel_arg_type_qual", 1931 MDNode::get(FN->getContext(), EmptyStrings)); 1932 FN->setMetadata("kernel_arg_base_type", 1933 MDNode::get(FN->getContext(), EmptyStrings)); 1934 } 1935 1936 switch (Arch) { 1937 case GPUArch::NVPTX64: 1938 FN->setCallingConv(CallingConv::PTX_Kernel); 1939 break; 1940 case GPUArch::SPIR32: 1941 case GPUArch::SPIR64: 1942 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1943 break; 1944 } 1945 1946 auto Arg = FN->arg_begin(); 1947 for (long i = 0; i < Kernel->n_array; i++) { 1948 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1949 continue; 1950 1951 Arg->setName(Kernel->array[i].array->name); 1952 1953 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1954 const ScopArrayInfo *SAI = 1955 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1956 Type *EleTy = SAI->getElementType(); 1957 Value *Val = &*Arg; 1958 SmallVector<const SCEV *, 4> Sizes; 1959 isl_ast_build *Build = 1960 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1961 Sizes.push_back(nullptr); 1962 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1963 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1964 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1965 auto V = ExprBuilder.create(DimSize); 1966 Sizes.push_back(SE.getSCEV(V)); 1967 } 1968 const ScopArrayInfo *SAIRep = 1969 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1970 LocalArrays.push_back(Val); 1971 1972 isl_ast_build_free(Build); 1973 KernelIds.push_back(Id); 1974 IDToSAI[Id] = SAIRep; 1975 Arg++; 1976 } 1977 1978 for (long i = 0; i < NumHostIters; i++) { 1979 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1980 Arg->setName(isl_id_get_name(Id)); 1981 IDToValue[Id] = &*Arg; 1982 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1983 Arg++; 1984 } 1985 1986 for (long i = 0; i < NumVars; i++) { 1987 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1988 Arg->setName(isl_id_get_name(Id)); 1989 Value *Val = IDToValue[Id]; 1990 ValueMap[Val] = &*Arg; 1991 IDToValue[Id] = &*Arg; 1992 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1993 Arg++; 1994 } 1995 1996 for (auto *V : SubtreeValues) { 1997 Arg->setName(V->getName()); 1998 ValueMap[V] = &*Arg; 1999 Arg++; 2000 } 2001 2002 return FN; 2003 } 2004 2005 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2006 Intrinsic::ID IntrinsicsBID[2]; 2007 Intrinsic::ID IntrinsicsTID[3]; 2008 2009 switch (Arch) { 2010 case GPUArch::SPIR64: 2011 case GPUArch::SPIR32: 2012 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2013 case GPUArch::NVPTX64: 2014 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2015 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2016 2017 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2018 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2019 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2020 break; 2021 } 2022 2023 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2024 std::string Name = isl_id_get_name(Id); 2025 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2026 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2027 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2028 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2029 IDToValue[Id] = Val; 2030 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2031 }; 2032 2033 for (int i = 0; i < Kernel->n_grid; ++i) { 2034 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2035 addId(Id, IntrinsicsBID[i]); 2036 } 2037 2038 for (int i = 0; i < Kernel->n_block; ++i) { 2039 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2040 addId(Id, IntrinsicsTID[i]); 2041 } 2042 } 2043 2044 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2045 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2046 "__gen_ocl_get_group_id1", 2047 "__gen_ocl_get_group_id2"}; 2048 2049 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2050 "__gen_ocl_get_local_id1", 2051 "__gen_ocl_get_local_id2"}; 2052 2053 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2054 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2055 Function *FN = M->getFunction(Name); 2056 2057 // If FN is not available, declare it. 2058 if (!FN) { 2059 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2060 std::vector<Type *> Args; 2061 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2062 FN = Function::Create(Ty, Linkage, Name, M); 2063 FN->setCallingConv(CallingConv::SPIR_FUNC); 2064 } 2065 2066 Value *Val = Builder.CreateCall(FN, {}); 2067 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2068 IDToValue[Id] = Val; 2069 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2070 }; 2071 2072 for (int i = 0; i < Kernel->n_grid; ++i) 2073 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2074 2075 for (int i = 0; i < Kernel->n_block; ++i) 2076 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2077 } 2078 2079 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2080 auto Arg = FN->arg_begin(); 2081 for (long i = 0; i < Kernel->n_array; i++) { 2082 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2083 continue; 2084 2085 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2086 const ScopArrayInfo *SAI = 2087 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2088 isl_id_free(Id); 2089 2090 if (SAI->getNumberOfDimensions() > 0) { 2091 Arg++; 2092 continue; 2093 } 2094 2095 Value *Val = &*Arg; 2096 2097 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2098 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2099 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2100 Val = Builder.CreateLoad(TypedArgPtr); 2101 } 2102 2103 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2104 Builder.CreateStore(Val, Alloca); 2105 2106 Arg++; 2107 } 2108 } 2109 2110 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2111 auto *FN = Builder.GetInsertBlock()->getParent(); 2112 auto Arg = FN->arg_begin(); 2113 2114 bool StoredScalar = false; 2115 for (long i = 0; i < Kernel->n_array; i++) { 2116 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2117 continue; 2118 2119 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2120 const ScopArrayInfo *SAI = 2121 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2122 isl_id_free(Id); 2123 2124 if (SAI->getNumberOfDimensions() > 0) { 2125 Arg++; 2126 continue; 2127 } 2128 2129 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2130 Arg++; 2131 continue; 2132 } 2133 2134 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2135 Value *ArgPtr = &*Arg; 2136 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2137 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2138 Value *Val = Builder.CreateLoad(Alloca); 2139 Builder.CreateStore(Val, TypedArgPtr); 2140 StoredScalar = true; 2141 2142 Arg++; 2143 } 2144 2145 if (StoredScalar) { 2146 /// In case more than one thread contains scalar stores, the generated 2147 /// code might be incorrect, if we only store at the end of the kernel. 2148 /// To support this case we need to store these scalars back at each 2149 /// memory store or at least before each kernel barrier. 2150 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2151 BuildSuccessful = 0; 2152 DEBUG( 2153 dbgs() << getUniqueScopName(&S) 2154 << " has a store to a scalar value that" 2155 " would be undefined to run in parallel. Bailing out.\n";); 2156 } 2157 } 2158 } 2159 2160 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2161 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2162 2163 for (int i = 0; i < Kernel->n_var; ++i) { 2164 struct ppcg_kernel_var &Var = Kernel->var[i]; 2165 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2166 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2167 2168 Type *ArrayTy = EleTy; 2169 SmallVector<const SCEV *, 4> Sizes; 2170 2171 Sizes.push_back(nullptr); 2172 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2173 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2174 long Bound = isl_val_get_num_si(Val); 2175 isl_val_free(Val); 2176 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2177 } 2178 2179 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2180 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2181 long Bound = isl_val_get_num_si(Val); 2182 isl_val_free(Val); 2183 ArrayTy = ArrayType::get(ArrayTy, Bound); 2184 } 2185 2186 const ScopArrayInfo *SAI; 2187 Value *Allocation; 2188 if (Var.type == ppcg_access_shared) { 2189 auto GlobalVar = new GlobalVariable( 2190 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2191 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2192 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2193 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2194 2195 Allocation = GlobalVar; 2196 } else if (Var.type == ppcg_access_private) { 2197 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2198 } else { 2199 llvm_unreachable("unknown variable type"); 2200 } 2201 SAI = 2202 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2203 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2204 IDToValue[Id] = Allocation; 2205 LocalArrays.push_back(Allocation); 2206 KernelIds.push_back(Id); 2207 IDToSAI[Id] = SAI; 2208 } 2209 } 2210 2211 void GPUNodeBuilder::createKernelFunction( 2212 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2213 SetVector<Function *> &SubtreeFunctions) { 2214 std::string Identifier = getKernelFuncName(Kernel->id); 2215 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2216 2217 switch (Arch) { 2218 case GPUArch::NVPTX64: 2219 if (Runtime == GPURuntime::CUDA) 2220 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2221 else if (Runtime == GPURuntime::OpenCL) 2222 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2223 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2224 break; 2225 case GPUArch::SPIR32: 2226 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2227 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2228 break; 2229 case GPUArch::SPIR64: 2230 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2231 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2232 break; 2233 } 2234 2235 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2236 2237 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2238 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2239 2240 DT.addNewBlock(EntryBlock, PrevBlock); 2241 2242 Builder.SetInsertPoint(EntryBlock); 2243 Builder.CreateRetVoid(); 2244 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2245 2246 ScopDetection::markFunctionAsInvalid(FN); 2247 2248 prepareKernelArguments(Kernel, FN); 2249 createKernelVariables(Kernel, FN); 2250 2251 switch (Arch) { 2252 case GPUArch::NVPTX64: 2253 insertKernelIntrinsics(Kernel); 2254 break; 2255 case GPUArch::SPIR32: 2256 case GPUArch::SPIR64: 2257 insertKernelCallsSPIR(Kernel); 2258 break; 2259 } 2260 } 2261 2262 std::string GPUNodeBuilder::createKernelASM() { 2263 llvm::Triple GPUTriple; 2264 2265 switch (Arch) { 2266 case GPUArch::NVPTX64: 2267 switch (Runtime) { 2268 case GPURuntime::CUDA: 2269 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2270 break; 2271 case GPURuntime::OpenCL: 2272 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2273 break; 2274 } 2275 break; 2276 case GPUArch::SPIR64: 2277 case GPUArch::SPIR32: 2278 std::string SPIRAssembly; 2279 raw_string_ostream IROstream(SPIRAssembly); 2280 IROstream << *GPUModule; 2281 IROstream.flush(); 2282 return SPIRAssembly; 2283 } 2284 2285 std::string ErrMsg; 2286 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2287 2288 if (!GPUTarget) { 2289 errs() << ErrMsg << "\n"; 2290 return ""; 2291 } 2292 2293 TargetOptions Options; 2294 Options.UnsafeFPMath = FastMath; 2295 2296 std::string subtarget; 2297 2298 switch (Arch) { 2299 case GPUArch::NVPTX64: 2300 subtarget = CudaVersion; 2301 break; 2302 case GPUArch::SPIR32: 2303 case GPUArch::SPIR64: 2304 llvm_unreachable("No subtarget for SPIR architecture"); 2305 } 2306 2307 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2308 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2309 2310 SmallString<0> ASMString; 2311 raw_svector_ostream ASMStream(ASMString); 2312 llvm::legacy::PassManager PM; 2313 2314 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2315 2316 if (TargetM->addPassesToEmitFile( 2317 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2318 errs() << "The target does not support generation of this file type!\n"; 2319 return ""; 2320 } 2321 2322 PM.run(*GPUModule); 2323 2324 return ASMStream.str(); 2325 } 2326 2327 bool GPUNodeBuilder::requiresCUDALibDevice() { 2328 bool RequiresLibDevice = false; 2329 for (Function &F : GPUModule->functions()) { 2330 if (!F.isDeclaration()) 2331 continue; 2332 2333 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2334 if (CUDALibDeviceFunc.length() != 0) { 2335 F.setName(CUDALibDeviceFunc); 2336 RequiresLibDevice = true; 2337 } 2338 } 2339 2340 return RequiresLibDevice; 2341 } 2342 2343 void GPUNodeBuilder::addCUDALibDevice() { 2344 if (Arch != GPUArch::NVPTX64) 2345 return; 2346 2347 if (requiresCUDALibDevice()) { 2348 SMDiagnostic Error; 2349 2350 errs() << CUDALibDevice << "\n"; 2351 auto LibDeviceModule = 2352 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2353 2354 if (!LibDeviceModule) { 2355 BuildSuccessful = false; 2356 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2357 "kernel generation. Please set -polly-acc-libdevice " 2358 "accordingly.\n"); 2359 return; 2360 } 2361 2362 Linker L(*GPUModule); 2363 2364 // Set an nvptx64 target triple to avoid linker warnings. The original 2365 // triple of the libdevice files are nvptx-unknown-unknown. 2366 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2367 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2368 } 2369 } 2370 2371 std::string GPUNodeBuilder::finalizeKernelFunction() { 2372 2373 if (verifyModule(*GPUModule)) { 2374 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2375 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2376 DEBUG(dbgs() << "verifyModule Error:\n"; 2377 verifyModule(*GPUModule, &dbgs());); 2378 2379 if (FailOnVerifyModuleFailure) 2380 llvm_unreachable("VerifyModule failed."); 2381 2382 BuildSuccessful = false; 2383 return ""; 2384 } 2385 2386 addCUDALibDevice(); 2387 2388 if (DumpKernelIR) 2389 outs() << *GPUModule << "\n"; 2390 2391 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2392 // Optimize module. 2393 llvm::legacy::PassManager OptPasses; 2394 PassManagerBuilder PassBuilder; 2395 PassBuilder.OptLevel = 3; 2396 PassBuilder.SizeLevel = 0; 2397 PassBuilder.populateModulePassManager(OptPasses); 2398 OptPasses.run(*GPUModule); 2399 } 2400 2401 std::string Assembly = createKernelASM(); 2402 2403 if (DumpKernelASM) 2404 outs() << Assembly << "\n"; 2405 2406 GPUModule.release(); 2407 KernelIDs.clear(); 2408 2409 return Assembly; 2410 } 2411 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2412 /// @param PwAffs The list of piecewise affine functions to create an 2413 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2414 /// all the isl_pw_aff are used up by this function. 2415 /// 2416 /// @returns The `isl_pw_aff_list`. 2417 __isl_give isl_pw_aff_list * 2418 createPwAffList(isl_ctx *Context, 2419 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2420 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2421 2422 for (unsigned i = 0; i < PwAffs.size(); i++) { 2423 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2424 } 2425 return List; 2426 } 2427 2428 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2429 /// 2430 /// We loop over all `pw_aff` and align all of their spaces together to 2431 /// create a common space for all the `pw_aff`. This common space is the 2432 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2433 /// with the given `SeedSpace`. 2434 /// @param PwAffs The list of piecewise affine functions we want to align. 2435 /// This is an rvalue reference because the entire vector is 2436 /// used up by the end of the operation. 2437 /// @param SeedSpace The space to start the alignment process with. 2438 /// @returns A std::pair, whose first element is the aligned space, 2439 /// whose second element is the vector of aligned piecewise 2440 /// affines. 2441 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2442 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2443 __isl_take isl_space *SeedSpace) { 2444 assert(SeedSpace && "Invalid seed space given."); 2445 2446 isl_space *AlignSpace = SeedSpace; 2447 for (isl_pw_aff *PwAff : PwAffs) { 2448 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2449 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2450 } 2451 std::vector<isl_pw_aff *> AdjustedPwAffs; 2452 2453 for (unsigned i = 0; i < PwAffs.size(); i++) { 2454 isl_pw_aff *Adjusted = PwAffs[i]; 2455 assert(Adjusted && "Invalid pw_aff given."); 2456 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2457 AdjustedPwAffs.push_back(Adjusted); 2458 } 2459 return std::make_pair(AlignSpace, AdjustedPwAffs); 2460 } 2461 2462 namespace { 2463 class PPCGCodeGeneration : public ScopPass { 2464 public: 2465 static char ID; 2466 2467 GPURuntime Runtime = GPURuntime::CUDA; 2468 2469 GPUArch Architecture = GPUArch::NVPTX64; 2470 2471 /// The scop that is currently processed. 2472 Scop *S; 2473 2474 LoopInfo *LI; 2475 DominatorTree *DT; 2476 ScalarEvolution *SE; 2477 const DataLayout *DL; 2478 RegionInfo *RI; 2479 2480 PPCGCodeGeneration() : ScopPass(ID) {} 2481 2482 /// Construct compilation options for PPCG. 2483 /// 2484 /// @returns The compilation options. 2485 ppcg_options *createPPCGOptions() { 2486 auto DebugOptions = 2487 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2488 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2489 2490 DebugOptions->dump_schedule_constraints = false; 2491 DebugOptions->dump_schedule = false; 2492 DebugOptions->dump_final_schedule = false; 2493 DebugOptions->dump_sizes = false; 2494 DebugOptions->verbose = false; 2495 2496 Options->debug = DebugOptions; 2497 2498 Options->group_chains = false; 2499 Options->reschedule = true; 2500 Options->scale_tile_loops = false; 2501 Options->wrap = false; 2502 2503 Options->non_negative_parameters = false; 2504 Options->ctx = nullptr; 2505 Options->sizes = nullptr; 2506 2507 Options->tile = true; 2508 Options->tile_size = 32; 2509 2510 Options->isolate_full_tiles = false; 2511 2512 Options->use_private_memory = PrivateMemory; 2513 Options->use_shared_memory = SharedMemory; 2514 Options->max_shared_memory = 48 * 1024; 2515 2516 Options->target = PPCG_TARGET_CUDA; 2517 Options->openmp = false; 2518 Options->linearize_device_arrays = true; 2519 Options->allow_gnu_extensions = false; 2520 2521 Options->unroll_copy_shared = false; 2522 Options->unroll_gpu_tile = false; 2523 Options->live_range_reordering = true; 2524 2525 Options->live_range_reordering = true; 2526 Options->hybrid = false; 2527 Options->opencl_compiler_options = nullptr; 2528 Options->opencl_use_gpu = false; 2529 Options->opencl_n_include_file = 0; 2530 Options->opencl_include_files = nullptr; 2531 Options->opencl_print_kernel_types = false; 2532 Options->opencl_embed_kernel_code = false; 2533 2534 Options->save_schedule_file = nullptr; 2535 Options->load_schedule_file = nullptr; 2536 2537 return Options; 2538 } 2539 2540 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2541 /// 2542 /// Instead of a normal access of the form: 2543 /// 2544 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2545 /// 2546 /// a tagged access has the form 2547 /// 2548 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2549 /// 2550 /// where 'id' is an additional space that references the memory access that 2551 /// triggered the access. 2552 /// 2553 /// @param AccessTy The type of the memory accesses to collect. 2554 /// 2555 /// @return The relation describing all tagged memory accesses. 2556 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2557 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2558 2559 for (auto &Stmt : *S) 2560 for (auto &Acc : Stmt) 2561 if (Acc->getType() == AccessTy) { 2562 isl_map *Relation = Acc->getAccessRelation().release(); 2563 Relation = 2564 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2565 2566 isl_space *Space = isl_map_get_space(Relation); 2567 Space = isl_space_range(Space); 2568 Space = isl_space_from_range(Space); 2569 Space = 2570 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2571 isl_map *Universe = isl_map_universe(Space); 2572 Relation = isl_map_domain_product(Relation, Universe); 2573 Accesses = isl_union_map_add_map(Accesses, Relation); 2574 } 2575 2576 return Accesses; 2577 } 2578 2579 /// Get the set of all read accesses, tagged with the access id. 2580 /// 2581 /// @see getTaggedAccesses 2582 isl_union_map *getTaggedReads() { 2583 return getTaggedAccesses(MemoryAccess::READ); 2584 } 2585 2586 /// Get the set of all may (and must) accesses, tagged with the access id. 2587 /// 2588 /// @see getTaggedAccesses 2589 isl_union_map *getTaggedMayWrites() { 2590 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2591 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2592 } 2593 2594 /// Get the set of all must accesses, tagged with the access id. 2595 /// 2596 /// @see getTaggedAccesses 2597 isl_union_map *getTaggedMustWrites() { 2598 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2599 } 2600 2601 /// Collect parameter and array names as isl_ids. 2602 /// 2603 /// To reason about the different parameters and arrays used, ppcg requires 2604 /// a list of all isl_ids in use. As PPCG traditionally performs 2605 /// source-to-source compilation each of these isl_ids is mapped to the 2606 /// expression that represents it. As we do not have a corresponding 2607 /// expression in Polly, we just map each id to a 'zero' expression to match 2608 /// the data format that ppcg expects. 2609 /// 2610 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2611 __isl_give isl_id_to_ast_expr *getNames() { 2612 auto *Names = isl_id_to_ast_expr_alloc( 2613 S->getIslCtx(), 2614 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2615 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2616 2617 for (const SCEV *P : S->parameters()) { 2618 isl_id *Id = S->getIdForParam(P).release(); 2619 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2620 } 2621 2622 for (auto &Array : S->arrays()) { 2623 auto Id = Array->getBasePtrId().release(); 2624 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2625 } 2626 2627 isl_ast_expr_free(Zero); 2628 2629 return Names; 2630 } 2631 2632 /// Create a new PPCG scop from the current scop. 2633 /// 2634 /// The PPCG scop is initialized with data from the current polly::Scop. From 2635 /// this initial data, the data-dependences in the PPCG scop are initialized. 2636 /// We do not use Polly's dependence analysis for now, to ensure we match 2637 /// the PPCG default behaviour more closely. 2638 /// 2639 /// @returns A new ppcg scop. 2640 ppcg_scop *createPPCGScop() { 2641 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2642 2643 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2644 2645 PPCGScop->options = createPPCGOptions(); 2646 // enable live range reordering 2647 PPCGScop->options->live_range_reordering = 1; 2648 2649 PPCGScop->start = 0; 2650 PPCGScop->end = 0; 2651 2652 PPCGScop->context = S->getContext().release(); 2653 PPCGScop->domain = S->getDomains().release(); 2654 // TODO: investigate this further. PPCG calls collect_call_domains. 2655 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2656 PPCGScop->tagged_reads = getTaggedReads(); 2657 PPCGScop->reads = S->getReads().release(); 2658 PPCGScop->live_in = nullptr; 2659 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2660 PPCGScop->may_writes = S->getWrites().release(); 2661 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2662 PPCGScop->must_writes = S->getMustWrites().release(); 2663 PPCGScop->live_out = nullptr; 2664 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2665 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2666 2667 PPCGScop->tagger = nullptr; 2668 PPCGScop->independence = 2669 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2670 PPCGScop->dep_flow = nullptr; 2671 PPCGScop->tagged_dep_flow = nullptr; 2672 PPCGScop->dep_false = nullptr; 2673 PPCGScop->dep_forced = nullptr; 2674 PPCGScop->dep_order = nullptr; 2675 PPCGScop->tagged_dep_order = nullptr; 2676 2677 PPCGScop->schedule = S->getScheduleTree().release(); 2678 // If we have something non-trivial to kill, add it to the schedule 2679 if (KillsInfo.KillsSchedule.get()) 2680 PPCGScop->schedule = isl_schedule_sequence( 2681 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2682 2683 PPCGScop->names = getNames(); 2684 PPCGScop->pet = nullptr; 2685 2686 compute_tagger(PPCGScop); 2687 compute_dependences(PPCGScop); 2688 eliminate_dead_code(PPCGScop); 2689 2690 return PPCGScop; 2691 } 2692 2693 /// Collect the array accesses in a statement. 2694 /// 2695 /// @param Stmt The statement for which to collect the accesses. 2696 /// 2697 /// @returns A list of array accesses. 2698 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2699 gpu_stmt_access *Accesses = nullptr; 2700 2701 for (MemoryAccess *Acc : Stmt) { 2702 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2703 Access->read = Acc->isRead(); 2704 Access->write = Acc->isWrite(); 2705 Access->access = Acc->getAccessRelation().release(); 2706 isl_space *Space = isl_map_get_space(Access->access); 2707 Space = isl_space_range(Space); 2708 Space = isl_space_from_range(Space); 2709 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2710 isl_map *Universe = isl_map_universe(Space); 2711 Access->tagged_access = 2712 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2713 Access->exact_write = !Acc->isMayWrite(); 2714 Access->ref_id = Acc->getId().release(); 2715 Access->next = Accesses; 2716 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2717 Accesses = Access; 2718 } 2719 2720 return Accesses; 2721 } 2722 2723 /// Collect the list of GPU statements. 2724 /// 2725 /// Each statement has an id, a pointer to the underlying data structure, 2726 /// as well as a list with all memory accesses. 2727 /// 2728 /// TODO: Initialize the list of memory accesses. 2729 /// 2730 /// @returns A linked-list of statements. 2731 gpu_stmt *getStatements() { 2732 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2733 std::distance(S->begin(), S->end())); 2734 2735 int i = 0; 2736 for (auto &Stmt : *S) { 2737 gpu_stmt *GPUStmt = &Stmts[i]; 2738 2739 GPUStmt->id = Stmt.getDomainId().release(); 2740 2741 // We use the pet stmt pointer to keep track of the Polly statements. 2742 GPUStmt->stmt = (pet_stmt *)&Stmt; 2743 GPUStmt->accesses = getStmtAccesses(Stmt); 2744 i++; 2745 } 2746 2747 return Stmts; 2748 } 2749 2750 /// Derive the extent of an array. 2751 /// 2752 /// The extent of an array is the set of elements that are within the 2753 /// accessed array. For the inner dimensions, the extent constraints are 2754 /// 0 and the size of the corresponding array dimension. For the first 2755 /// (outermost) dimension, the extent constraints are the minimal and maximal 2756 /// subscript value for the first dimension. 2757 /// 2758 /// @param Array The array to derive the extent for. 2759 /// 2760 /// @returns An isl_set describing the extent of the array. 2761 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2762 unsigned NumDims = Array->getNumberOfDimensions(); 2763 isl_union_map *Accesses = S->getAccesses().release(); 2764 Accesses = 2765 isl_union_map_intersect_domain(Accesses, S->getDomains().release()); 2766 Accesses = isl_union_map_detect_equalities(Accesses); 2767 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2768 AccessUSet = isl_union_set_coalesce(AccessUSet); 2769 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2770 AccessUSet = isl_union_set_coalesce(AccessUSet); 2771 2772 if (isl_union_set_is_empty(AccessUSet)) { 2773 isl_union_set_free(AccessUSet); 2774 return isl_set_empty(Array->getSpace().release()); 2775 } 2776 2777 if (Array->getNumberOfDimensions() == 0) { 2778 isl_union_set_free(AccessUSet); 2779 return isl_set_universe(Array->getSpace().release()); 2780 } 2781 2782 isl_set *AccessSet = 2783 isl_union_set_extract_set(AccessUSet, Array->getSpace().release()); 2784 2785 isl_union_set_free(AccessUSet); 2786 isl_local_space *LS = 2787 isl_local_space_from_space(Array->getSpace().release()); 2788 2789 isl_pw_aff *Val = 2790 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2791 2792 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2793 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2794 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2795 isl_pw_aff_dim(Val, isl_dim_in)); 2796 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2797 isl_pw_aff_dim(Val, isl_dim_in)); 2798 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, 2799 Array->getBasePtrId().release()); 2800 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, 2801 Array->getBasePtrId().release()); 2802 2803 isl_set *Extent = isl_set_universe(Array->getSpace().release()); 2804 2805 Extent = isl_set_intersect( 2806 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2807 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2808 2809 for (unsigned i = 1; i < NumDims; ++i) 2810 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2811 2812 for (unsigned i = 0; i < NumDims; ++i) { 2813 isl_pw_aff *PwAff = 2814 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release()); 2815 2816 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2817 // Fortran array will we have a legitimate dimension. 2818 if (!PwAff) { 2819 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2820 continue; 2821 } 2822 2823 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2824 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set, 2825 i)); 2826 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2827 isl_pw_aff_dim(Val, isl_dim_in)); 2828 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2829 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2830 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2831 Extent = isl_set_intersect(Set, Extent); 2832 } 2833 2834 return Extent; 2835 } 2836 2837 /// Derive the bounds of an array. 2838 /// 2839 /// For the first dimension we derive the bound of the array from the extent 2840 /// of this dimension. For inner dimensions we obtain their size directly from 2841 /// ScopArrayInfo. 2842 /// 2843 /// @param PPCGArray The array to compute bounds for. 2844 /// @param Array The polly array from which to take the information. 2845 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2846 std::vector<isl_pw_aff *> Bounds; 2847 2848 if (PPCGArray.n_index > 0) { 2849 if (isl_set_is_empty(PPCGArray.extent)) { 2850 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2851 isl_local_space *LS = isl_local_space_from_space( 2852 isl_space_params(isl_set_get_space(Dom))); 2853 isl_set_free(Dom); 2854 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2855 Bounds.push_back(Zero); 2856 } else { 2857 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2858 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2859 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2860 isl_set_free(Dom); 2861 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2862 isl_local_space *LS = 2863 isl_local_space_from_space(isl_set_get_space(Dom)); 2864 isl_aff *One = isl_aff_zero_on_domain(LS); 2865 One = isl_aff_add_constant_si(One, 1); 2866 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2867 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2868 Bounds.push_back(Bound); 2869 } 2870 } 2871 2872 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2873 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2874 auto LS = isl_pw_aff_get_domain_space(Bound); 2875 auto Aff = isl_multi_aff_zero(LS); 2876 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2877 Bounds.push_back(Bound); 2878 } 2879 2880 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2881 /// to have the same parameter dimensions. So, we need to align them to an 2882 /// appropriate space. 2883 /// Scop::Context is _not_ an appropriate space, because when we have 2884 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2885 /// contain all parameter dimensions. 2886 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2887 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2888 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2889 2890 isl_space *AlignSpace = nullptr; 2891 std::vector<isl_pw_aff *> AlignedBounds; 2892 std::tie(AlignSpace, AlignedBounds) = 2893 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2894 2895 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2896 2897 isl_pw_aff_list *BoundsList = 2898 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2899 2900 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2901 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2902 2903 assert(BoundsSpace && "Unable to access space of array."); 2904 assert(BoundsList && "Unable to access list of bounds."); 2905 2906 PPCGArray.bound = 2907 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2908 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2909 } 2910 2911 /// Create the arrays for @p PPCGProg. 2912 /// 2913 /// @param PPCGProg The program to compute the arrays for. 2914 void createArrays(gpu_prog *PPCGProg, 2915 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2916 int i = 0; 2917 for (auto &Array : ValidSAIs) { 2918 std::string TypeName; 2919 raw_string_ostream OS(TypeName); 2920 2921 OS << *Array->getElementType(); 2922 TypeName = OS.str(); 2923 2924 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2925 2926 PPCGArray.space = Array->getSpace().release(); 2927 PPCGArray.type = strdup(TypeName.c_str()); 2928 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 2929 PPCGArray.name = strdup(Array->getName().c_str()); 2930 PPCGArray.extent = nullptr; 2931 PPCGArray.n_index = Array->getNumberOfDimensions(); 2932 PPCGArray.extent = getExtent(Array); 2933 PPCGArray.n_ref = 0; 2934 PPCGArray.refs = nullptr; 2935 PPCGArray.accessed = true; 2936 PPCGArray.read_only_scalar = 2937 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2938 PPCGArray.has_compound_element = false; 2939 PPCGArray.local = false; 2940 PPCGArray.declare_local = false; 2941 PPCGArray.global = false; 2942 PPCGArray.linearize = false; 2943 PPCGArray.dep_order = nullptr; 2944 PPCGArray.user = Array; 2945 2946 PPCGArray.bound = nullptr; 2947 setArrayBounds(PPCGArray, Array); 2948 i++; 2949 2950 collect_references(PPCGProg, &PPCGArray); 2951 } 2952 } 2953 2954 /// Create an identity map between the arrays in the scop. 2955 /// 2956 /// @returns An identity map between the arrays in the scop. 2957 isl_union_map *getArrayIdentity() { 2958 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 2959 2960 for (auto &Array : S->arrays()) { 2961 isl_space *Space = Array->getSpace().release(); 2962 Space = isl_space_map_from_set(Space); 2963 isl_map *Identity = isl_map_identity(Space); 2964 Maps = isl_union_map_add_map(Maps, Identity); 2965 } 2966 2967 return Maps; 2968 } 2969 2970 /// Create a default-initialized PPCG GPU program. 2971 /// 2972 /// @returns A new gpu program description. 2973 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2974 2975 if (!PPCGScop) 2976 return nullptr; 2977 2978 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2979 2980 PPCGProg->ctx = S->getIslCtx(); 2981 PPCGProg->scop = PPCGScop; 2982 PPCGProg->context = isl_set_copy(PPCGScop->context); 2983 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2984 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2985 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2986 PPCGProg->tagged_must_kill = 2987 isl_union_map_copy(PPCGScop->tagged_must_kills); 2988 PPCGProg->to_inner = getArrayIdentity(); 2989 PPCGProg->to_outer = getArrayIdentity(); 2990 // TODO: verify that this assignment is correct. 2991 PPCGProg->any_to_outer = nullptr; 2992 2993 // this needs to be set when live range reordering is enabled. 2994 // NOTE: I believe that is conservatively correct. I'm not sure 2995 // what the semantics of this is. 2996 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2997 PPCGProg->array_order = 2998 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2999 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3000 PPCGProg->stmts = getStatements(); 3001 3002 // Only consider arrays that have a non-empty extent. 3003 // Otherwise, this will cause us to consider the following kinds of 3004 // empty arrays: 3005 // 1. Invariant loads that are represented by SAI objects. 3006 // 2. Arrays with statically known zero size. 3007 auto ValidSAIsRange = 3008 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3009 return !isl::manage(getExtent(SAI)).is_empty(); 3010 }); 3011 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3012 ValidSAIsRange.end()); 3013 3014 PPCGProg->n_array = 3015 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3016 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 3017 PPCGProg->n_array); 3018 3019 createArrays(PPCGProg, ValidSAIs); 3020 3021 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3022 return PPCGProg; 3023 } 3024 3025 struct PrintGPUUserData { 3026 struct cuda_info *CudaInfo; 3027 struct gpu_prog *PPCGProg; 3028 std::vector<ppcg_kernel *> Kernels; 3029 }; 3030 3031 /// Print a user statement node in the host code. 3032 /// 3033 /// We use ppcg's printing facilities to print the actual statement and 3034 /// additionally build up a list of all kernels that are encountered in the 3035 /// host ast. 3036 /// 3037 /// @param P The printer to print to 3038 /// @param Options The printing options to use 3039 /// @param Node The node to print 3040 /// @param User A user pointer to carry additional data. This pointer is 3041 /// expected to be of type PrintGPUUserData. 3042 /// 3043 /// @returns A printer to which the output has been printed. 3044 static __isl_give isl_printer * 3045 printHostUser(__isl_take isl_printer *P, 3046 __isl_take isl_ast_print_options *Options, 3047 __isl_take isl_ast_node *Node, void *User) { 3048 auto Data = (struct PrintGPUUserData *)User; 3049 auto Id = isl_ast_node_get_annotation(Node); 3050 3051 if (Id) { 3052 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3053 3054 // If this is a user statement, format it ourselves as ppcg would 3055 // otherwise try to call pet functionality that is not available in 3056 // Polly. 3057 if (IsUser) { 3058 P = isl_printer_start_line(P); 3059 P = isl_printer_print_ast_node(P, Node); 3060 P = isl_printer_end_line(P); 3061 isl_id_free(Id); 3062 isl_ast_print_options_free(Options); 3063 return P; 3064 } 3065 3066 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3067 isl_id_free(Id); 3068 Data->Kernels.push_back(Kernel); 3069 } 3070 3071 return print_host_user(P, Options, Node, User); 3072 } 3073 3074 /// Print C code corresponding to the control flow in @p Kernel. 3075 /// 3076 /// @param Kernel The kernel to print 3077 void printKernel(ppcg_kernel *Kernel) { 3078 auto *P = isl_printer_to_str(S->getIslCtx()); 3079 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3080 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3081 P = isl_ast_node_print(Kernel->tree, P, Options); 3082 char *String = isl_printer_get_str(P); 3083 printf("%s\n", String); 3084 free(String); 3085 isl_printer_free(P); 3086 } 3087 3088 /// Print C code corresponding to the GPU code described by @p Tree. 3089 /// 3090 /// @param Tree An AST describing GPU code 3091 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3092 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3093 auto *P = isl_printer_to_str(S->getIslCtx()); 3094 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3095 3096 PrintGPUUserData Data; 3097 Data.PPCGProg = PPCGProg; 3098 3099 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3100 Options = 3101 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3102 P = isl_ast_node_print(Tree, P, Options); 3103 char *String = isl_printer_get_str(P); 3104 printf("# host\n"); 3105 printf("%s\n", String); 3106 free(String); 3107 isl_printer_free(P); 3108 3109 for (auto Kernel : Data.Kernels) { 3110 printf("# kernel%d\n", Kernel->id); 3111 printKernel(Kernel); 3112 } 3113 } 3114 3115 // Generate a GPU program using PPCG. 3116 // 3117 // GPU mapping consists of multiple steps: 3118 // 3119 // 1) Compute new schedule for the program. 3120 // 2) Map schedule to GPU (TODO) 3121 // 3) Generate code for new schedule (TODO) 3122 // 3123 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3124 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3125 // strategy directly from this pass. 3126 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3127 3128 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3129 3130 PPCGGen->ctx = S->getIslCtx(); 3131 PPCGGen->options = PPCGScop->options; 3132 PPCGGen->print = nullptr; 3133 PPCGGen->print_user = nullptr; 3134 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3135 PPCGGen->prog = PPCGProg; 3136 PPCGGen->tree = nullptr; 3137 PPCGGen->types.n = 0; 3138 PPCGGen->types.name = nullptr; 3139 PPCGGen->sizes = nullptr; 3140 PPCGGen->used_sizes = nullptr; 3141 PPCGGen->kernel_id = 0; 3142 3143 // Set scheduling strategy to same strategy PPCG is using. 3144 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3145 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3146 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3147 3148 isl_schedule *Schedule = get_schedule(PPCGGen); 3149 3150 int has_permutable = has_any_permutable_node(Schedule); 3151 3152 Schedule = 3153 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3154 3155 if (!has_permutable || has_permutable < 0) { 3156 Schedule = isl_schedule_free(Schedule); 3157 DEBUG(dbgs() << getUniqueScopName(S) 3158 << " does not have permutable bands. Bailing out\n";); 3159 } else { 3160 Schedule = map_to_device(PPCGGen, Schedule); 3161 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3162 } 3163 3164 if (DumpSchedule) { 3165 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3166 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3167 P = isl_printer_print_str(P, "Schedule\n"); 3168 P = isl_printer_print_str(P, "========\n"); 3169 if (Schedule) 3170 P = isl_printer_print_schedule(P, Schedule); 3171 else 3172 P = isl_printer_print_str(P, "No schedule found\n"); 3173 3174 printf("%s\n", isl_printer_get_str(P)); 3175 isl_printer_free(P); 3176 } 3177 3178 if (DumpCode) { 3179 printf("Code\n"); 3180 printf("====\n"); 3181 if (PPCGGen->tree) 3182 printGPUTree(PPCGGen->tree, PPCGProg); 3183 else 3184 printf("No code generated\n"); 3185 } 3186 3187 isl_schedule_free(Schedule); 3188 3189 return PPCGGen; 3190 } 3191 3192 /// Free gpu_gen structure. 3193 /// 3194 /// @param PPCGGen The ppcg_gen object to free. 3195 void freePPCGGen(gpu_gen *PPCGGen) { 3196 isl_ast_node_free(PPCGGen->tree); 3197 isl_union_map_free(PPCGGen->sizes); 3198 isl_union_map_free(PPCGGen->used_sizes); 3199 free(PPCGGen); 3200 } 3201 3202 /// Free the options in the ppcg scop structure. 3203 /// 3204 /// ppcg is not freeing these options for us. To avoid leaks we do this 3205 /// ourselves. 3206 /// 3207 /// @param PPCGScop The scop referencing the options to free. 3208 void freeOptions(ppcg_scop *PPCGScop) { 3209 free(PPCGScop->options->debug); 3210 PPCGScop->options->debug = nullptr; 3211 free(PPCGScop->options); 3212 PPCGScop->options = nullptr; 3213 } 3214 3215 /// Approximate the number of points in the set. 3216 /// 3217 /// This function returns an ast expression that overapproximates the number 3218 /// of points in an isl set through the rectangular hull surrounding this set. 3219 /// 3220 /// @param Set The set to count. 3221 /// @param Build The isl ast build object to use for creating the ast 3222 /// expression. 3223 /// 3224 /// @returns An approximation of the number of points in the set. 3225 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3226 __isl_keep isl_ast_build *Build) { 3227 3228 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3229 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3230 3231 isl_space *Space = isl_set_get_space(Set); 3232 Space = isl_space_params(Space); 3233 auto *Univ = isl_set_universe(Space); 3234 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3235 3236 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 3237 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3238 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3239 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3240 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3241 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3242 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3243 } 3244 3245 isl_set_free(Set); 3246 isl_pw_aff_free(OneAff); 3247 3248 return Expr; 3249 } 3250 3251 /// Approximate a number of dynamic instructions executed by a given 3252 /// statement. 3253 /// 3254 /// @param Stmt The statement for which to compute the number of dynamic 3255 /// instructions. 3256 /// @param Build The isl ast build object to use for creating the ast 3257 /// expression. 3258 /// @returns An approximation of the number of dynamic instructions executed 3259 /// by @p Stmt. 3260 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3261 __isl_keep isl_ast_build *Build) { 3262 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3263 3264 long InstCount = 0; 3265 3266 if (Stmt.isBlockStmt()) { 3267 auto *BB = Stmt.getBasicBlock(); 3268 InstCount = std::distance(BB->begin(), BB->end()); 3269 } else { 3270 auto *R = Stmt.getRegion(); 3271 3272 for (auto *BB : R->blocks()) { 3273 InstCount += std::distance(BB->begin(), BB->end()); 3274 } 3275 } 3276 3277 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3278 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3279 return isl_ast_expr_mul(InstExpr, Iterations); 3280 } 3281 3282 /// Approximate dynamic instructions executed in scop. 3283 /// 3284 /// @param S The scop for which to approximate dynamic instructions. 3285 /// @param Build The isl ast build object to use for creating the ast 3286 /// expression. 3287 /// @returns An approximation of the number of dynamic instructions executed 3288 /// in @p S. 3289 __isl_give isl_ast_expr * 3290 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3291 isl_ast_expr *Instructions; 3292 3293 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3294 Instructions = isl_ast_expr_from_val(Zero); 3295 3296 for (ScopStmt &Stmt : S) { 3297 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3298 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3299 } 3300 return Instructions; 3301 } 3302 3303 /// Create a check that ensures sufficient compute in scop. 3304 /// 3305 /// @param S The scop for which to ensure sufficient compute. 3306 /// @param Build The isl ast build object to use for creating the ast 3307 /// expression. 3308 /// @returns An expression that evaluates to TRUE in case of sufficient 3309 /// compute and to FALSE, otherwise. 3310 __isl_give isl_ast_expr * 3311 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3312 auto Iterations = getNumberOfIterations(S, Build); 3313 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3314 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3315 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3316 } 3317 3318 /// Check if the basic block contains a function we cannot codegen for GPU 3319 /// kernels. 3320 /// 3321 /// If this basic block does something with a `Function` other than calling 3322 /// a function that we support in a kernel, return true. 3323 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3324 bool AllowCUDALibDevice) { 3325 for (const Instruction &Inst : *BB) { 3326 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3327 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3328 AllowCUDALibDevice)) { 3329 continue; 3330 } 3331 3332 for (Value *SrcVal : Inst.operands()) { 3333 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 3334 if (!p) 3335 continue; 3336 if (isa<FunctionType>(p->getElementType())) 3337 return true; 3338 } 3339 } 3340 return false; 3341 } 3342 3343 /// Return whether the Scop S uses functions in a way that we do not support. 3344 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3345 for (auto &Stmt : S) { 3346 if (Stmt.isBlockStmt()) { 3347 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3348 AllowCUDALibDevice)) 3349 return true; 3350 } else { 3351 assert(Stmt.isRegionStmt() && 3352 "Stmt was neither block nor region statement"); 3353 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3354 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3355 return true; 3356 } 3357 } 3358 return false; 3359 } 3360 3361 /// Generate code for a given GPU AST described by @p Root. 3362 /// 3363 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3364 /// @param Prog The GPU Program to generate code for. 3365 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3366 ScopAnnotator Annotator; 3367 Annotator.buildAliasScopes(*S); 3368 3369 Region *R = &S->getRegion(); 3370 3371 simplifyRegion(R, DT, LI, RI); 3372 3373 BasicBlock *EnteringBB = R->getEnteringBlock(); 3374 3375 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3376 3377 // Only build the run-time condition and parameters _after_ having 3378 // introduced the conditional branch. This is important as the conditional 3379 // branch will guard the original scop from new induction variables that 3380 // the SCEVExpander may introduce while code generating the parameters and 3381 // which may introduce scalar dependences that prevent us from correctly 3382 // code generating this scop. 3383 BBPair StartExitBlocks; 3384 BranchInst *CondBr = nullptr; 3385 std::tie(StartExitBlocks, CondBr) = 3386 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3387 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3388 3389 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3390 3391 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3392 StartBlock, Prog, Runtime, Architecture); 3393 3394 // TODO: Handle LICM 3395 auto SplitBlock = StartBlock->getSinglePredecessor(); 3396 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3397 3398 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3399 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3400 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3401 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3402 isl_ast_build_free(Build); 3403 3404 // preload invariant loads. Note: This should happen before the RTC 3405 // because the RTC may depend on values that are invariant load hoisted. 3406 if (!NodeBuilder.preloadInvariantLoads()) { 3407 DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3408 S->getFunction().getName() + 3409 " | Scop Region: " + S->getNameStr()); 3410 // adjust the dominator tree accordingly. 3411 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3412 assert(ExitingBlock); 3413 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3414 assert(MergeBlock); 3415 polly::markBlockUnreachable(*StartBlock, Builder); 3416 polly::markBlockUnreachable(*ExitingBlock, Builder); 3417 auto *ExitingBB = S->getExitingBlock(); 3418 assert(ExitingBB); 3419 3420 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3421 DT->eraseNode(ExitingBlock); 3422 isl_ast_expr_free(Condition); 3423 isl_ast_node_free(Root); 3424 } else { 3425 3426 NodeBuilder.addParameters(S->getContext().release()); 3427 Value *RTC = NodeBuilder.createRTC(Condition); 3428 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3429 3430 Builder.SetInsertPoint(&*StartBlock->begin()); 3431 3432 NodeBuilder.create(Root); 3433 } 3434 3435 /// In case a sequential kernel has more surrounding loops as any parallel 3436 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3437 /// point in running it on a GPU. 3438 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3439 CondBr->setOperand(0, Builder.getFalse()); 3440 3441 if (!NodeBuilder.BuildSuccessful) 3442 CondBr->setOperand(0, Builder.getFalse()); 3443 } 3444 3445 bool runOnScop(Scop &CurrentScop) override { 3446 S = &CurrentScop; 3447 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3448 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3449 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3450 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3451 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3452 3453 // We currently do not support functions other than intrinsics inside 3454 // kernels, as code generation will need to offload function calls to the 3455 // kernel. This may lead to a kernel trying to call a function on the host. 3456 // This also allows us to prevent codegen from trying to take the 3457 // address of an intrinsic function to send to the kernel. 3458 if (containsInvalidKernelFunction(CurrentScop, 3459 Architecture == GPUArch::NVPTX64)) { 3460 DEBUG( 3461 dbgs() << getUniqueScopName(S) 3462 << " contains function which cannot be materialised in a GPU " 3463 "kernel. Bailing out.\n";); 3464 return false; 3465 } 3466 3467 auto PPCGScop = createPPCGScop(); 3468 auto PPCGProg = createPPCGProg(PPCGScop); 3469 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3470 3471 if (PPCGGen->tree) { 3472 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3473 CurrentScop.markAsToBeSkipped(); 3474 } else { 3475 DEBUG(dbgs() << getUniqueScopName(S) 3476 << " has empty PPCGGen->tree. Bailing out.\n"); 3477 } 3478 3479 freeOptions(PPCGScop); 3480 freePPCGGen(PPCGGen); 3481 gpu_prog_free(PPCGProg); 3482 ppcg_scop_free(PPCGScop); 3483 3484 return true; 3485 } 3486 3487 void printScop(raw_ostream &, Scop &) const override {} 3488 3489 void getAnalysisUsage(AnalysisUsage &AU) const override { 3490 AU.addRequired<DominatorTreeWrapperPass>(); 3491 AU.addRequired<RegionInfoPass>(); 3492 AU.addRequired<ScalarEvolutionWrapperPass>(); 3493 AU.addRequired<ScopDetectionWrapperPass>(); 3494 AU.addRequired<ScopInfoRegionPass>(); 3495 AU.addRequired<LoopInfoWrapperPass>(); 3496 3497 AU.addPreserved<AAResultsWrapperPass>(); 3498 AU.addPreserved<BasicAAWrapperPass>(); 3499 AU.addPreserved<LoopInfoWrapperPass>(); 3500 AU.addPreserved<DominatorTreeWrapperPass>(); 3501 AU.addPreserved<GlobalsAAWrapperPass>(); 3502 AU.addPreserved<ScopDetectionWrapperPass>(); 3503 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3504 AU.addPreserved<SCEVAAWrapperPass>(); 3505 3506 // FIXME: We do not yet add regions for the newly generated code to the 3507 // region tree. 3508 AU.addPreserved<RegionInfoPass>(); 3509 AU.addPreserved<ScopInfoRegionPass>(); 3510 } 3511 }; 3512 } // namespace 3513 3514 char PPCGCodeGeneration::ID = 1; 3515 3516 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3517 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3518 generator->Runtime = Runtime; 3519 generator->Architecture = Arch; 3520 return generator; 3521 } 3522 3523 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3524 "Polly - Apply PPCG translation to SCOP", false, false) 3525 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3526 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3527 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3528 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3529 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3530 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3531 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3532 "Polly - Apply PPCG translation to SCOP", false, false) 3533