1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/PerfMonitor.h" 20 #include "polly/CodeGen/Utils.h" 21 #include "polly/DependenceInfo.h" 22 #include "polly/LinkAllPasses.h" 23 #include "polly/Options.h" 24 #include "polly/ScopDetection.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/BasicAliasAnalysis.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/IR/LegacyPassManager.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/IRReader/IRReader.h" 37 #include "llvm/Linker/Linker.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/TargetSelect.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 44 #include "isl/union_map.h" 45 46 extern "C" { 47 #include "ppcg/cuda.h" 48 #include "ppcg/gpu.h" 49 #include "ppcg/gpu_print.h" 50 #include "ppcg/ppcg.h" 51 #include "ppcg/schedule.h" 52 } 53 54 #include "llvm/Support/Debug.h" 55 56 using namespace polly; 57 using namespace llvm; 58 59 #define DEBUG_TYPE "polly-codegen-ppcg" 60 61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 62 cl::desc("Dump the computed GPU Schedule"), 63 cl::Hidden, cl::init(false), cl::ZeroOrMore, 64 cl::cat(PollyCategory)); 65 66 static cl::opt<bool> 67 DumpCode("polly-acc-dump-code", 68 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 69 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 70 71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 72 cl::desc("Dump the kernel LLVM-IR"), 73 cl::Hidden, cl::init(false), cl::ZeroOrMore, 74 cl::cat(PollyCategory)); 75 76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 77 cl::desc("Dump the kernel assembly code"), 78 cl::Hidden, cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 81 static cl::opt<bool> FastMath("polly-acc-fastmath", 82 cl::desc("Allow unsafe math optimizations"), 83 cl::Hidden, cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 86 cl::desc("Use shared memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 90 cl::desc("Use private memory"), cl::Hidden, 91 cl::init(false), cl::ZeroOrMore, 92 cl::cat(PollyCategory)); 93 94 bool polly::PollyManagedMemory; 95 static cl::opt<bool, true> 96 XManagedMemory("polly-acc-codegen-managed-memory", 97 cl::desc("Generate Host kernel code assuming" 98 " that all memory has been" 99 " declared as managed memory"), 100 cl::location(PollyManagedMemory), cl::Hidden, 101 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 102 103 static cl::opt<bool> 104 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 105 cl::desc("Fail and generate a backtrace if" 106 " verifyModule fails on the GPU " 107 " kernel module."), 108 cl::Hidden, cl::init(false), cl::ZeroOrMore, 109 cl::cat(PollyCategory)); 110 111 static cl::opt<std::string> CUDALibDevice( 112 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 113 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 114 cl::ZeroOrMore, cl::cat(PollyCategory)); 115 116 static cl::opt<std::string> 117 CudaVersion("polly-acc-cuda-version", 118 cl::desc("The CUDA version to compile for"), cl::Hidden, 119 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 120 121 static cl::opt<int> 122 MinCompute("polly-acc-mincompute", 123 cl::desc("Minimal number of compute statements to run on GPU."), 124 cl::Hidden, cl::init(10 * 512 * 512)); 125 126 extern bool polly::PerfMonitoring; 127 128 /// Return a unique name for a Scop, which is the scop region with the 129 /// function name. 130 std::string getUniqueScopName(const Scop *S) { 131 return "Scop Region: " + S->getNameStr() + 132 " | Function: " + std::string(S->getFunction().getName()); 133 } 134 135 /// Used to store information PPCG wants for kills. This information is 136 /// used by live range reordering. 137 /// 138 /// @see computeLiveRangeReordering 139 /// @see GPUNodeBuilder::createPPCGScop 140 /// @see GPUNodeBuilder::createPPCGProg 141 struct MustKillsInfo { 142 /// Collection of all kill statements that will be sequenced at the end of 143 /// PPCGScop->schedule. 144 /// 145 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 146 /// which merges schedules in *arbitrary* order. 147 /// (we don't care about the order of the kills anyway). 148 isl::schedule KillsSchedule; 149 /// Map from kill statement instances to scalars that need to be 150 /// killed. 151 /// 152 /// We currently derive kill information for: 153 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 154 /// consequently all be killed. 155 /// 2. Scalar arrays that are not used outside the Scop. This is 156 /// checked by `isScalarUsesContainedInScop`. 157 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 158 isl::union_map TaggedMustKills; 159 160 /// Tagged must kills stripped of the tags. 161 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 162 isl::union_map MustKills; 163 164 MustKillsInfo() : KillsSchedule(nullptr) {} 165 }; 166 167 /// Check if SAI's uses are entirely contained within Scop S. 168 /// If a scalar is used only with a Scop, we are free to kill it, as no data 169 /// can flow in/out of the value any more. 170 /// @see computeMustKillsInfo 171 static bool isScalarUsesContainedInScop(const Scop &S, 172 const ScopArrayInfo *SAI) { 173 assert(SAI->isValueKind() && "this function only deals with scalars." 174 " Dealing with arrays required alias analysis"); 175 176 const Region &R = S.getRegion(); 177 for (User *U : SAI->getBasePtr()->users()) { 178 Instruction *I = dyn_cast<Instruction>(U); 179 assert(I && "invalid user of scop array info"); 180 if (!R.contains(I)) 181 return false; 182 } 183 return true; 184 } 185 186 /// Compute must-kills needed to enable live range reordering with PPCG. 187 /// 188 /// @params S The Scop to compute live range reordering information 189 /// @returns live range reordering information that can be used to setup 190 /// PPCG. 191 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 192 const isl::space ParamSpace = S.getParamSpace(); 193 MustKillsInfo Info; 194 195 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 196 // 1.1 phi nodes in scop. 197 // 1.2 scalars that are only used within the scop 198 SmallVector<isl::id, 4> KillMemIds; 199 for (ScopArrayInfo *SAI : S.arrays()) { 200 if (SAI->isPHIKind() || 201 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 202 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 203 } 204 205 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 206 Info.MustKills = isl::union_map::empty(ParamSpace); 207 208 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 209 // schedule: 210 // - filter: "[control] -> { }" 211 // So, we choose to not create this to keep the output a little nicer, 212 // at the cost of some code complexity. 213 Info.KillsSchedule = nullptr; 214 215 for (isl::id &ToKillId : KillMemIds) { 216 isl::id KillStmtId = isl::id::alloc( 217 S.getIslCtx(), 218 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 219 220 // NOTE: construction of tagged_must_kill: 221 // 2. We need to construct a map: 222 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 223 // To construct this, we use `isl_map_domain_product` on 2 maps`: 224 // 2a. StmtToScalar: 225 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 226 // 2b. PhantomRefToScalar: 227 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 228 // 229 // Combining these with `isl_map_domain_product` gives us 230 // TaggedMustKill: 231 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 232 233 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 234 isl::map StmtToScalar = isl::map::universe(ParamSpace); 235 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 236 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 237 238 isl::id PhantomRefId = isl::id::alloc( 239 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 240 nullptr); 241 242 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 243 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 244 PhantomRefToScalar = 245 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 246 PhantomRefToScalar = 247 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 248 249 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 250 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 251 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 252 253 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 254 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 255 256 // 3. Create the kill schedule of the form: 257 // "[param] -> { Stmt_phantom[] }" 258 // Then add this to Info.KillsSchedule. 259 isl::space KillStmtSpace = ParamSpace; 260 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 261 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 262 263 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 264 if (Info.KillsSchedule) 265 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 266 else 267 Info.KillsSchedule = KillSchedule; 268 } 269 270 return Info; 271 } 272 273 /// Create the ast expressions for a ScopStmt. 274 /// 275 /// This function is a callback for to generate the ast expressions for each 276 /// of the scheduled ScopStmts. 277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 278 void *StmtT, __isl_take isl_ast_build *Build_C, 279 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 280 isl_id *Id, void *User), 281 void *UserIndex, 282 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 283 void *UserExpr) { 284 285 ScopStmt *Stmt = (ScopStmt *)StmtT; 286 287 if (!Stmt || !Build_C) 288 return NULL; 289 290 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 291 isl::ctx Ctx = Build.get_ctx(); 292 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 293 294 Stmt->setAstBuild(Build); 295 296 for (MemoryAccess *Acc : *Stmt) { 297 isl::map AddrFunc = Acc->getAddressFunction(); 298 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 299 300 isl::id RefId = Acc->getId(); 301 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 302 303 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 304 MPA = MPA.coalesce(); 305 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 306 307 isl::ast_expr Access = Build.access_from(MPA); 308 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 309 RefToExpr = RefToExpr.set(RefId, Access); 310 } 311 312 return RefToExpr.release(); 313 } 314 315 /// Given a LLVM Type, compute its size in bytes, 316 static int computeSizeInBytes(const Type *T) { 317 int bytes = T->getPrimitiveSizeInBits() / 8; 318 if (bytes == 0) 319 bytes = T->getScalarSizeInBits() / 8; 320 return bytes; 321 } 322 323 /// Generate code for a GPU specific isl AST. 324 /// 325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 326 /// generates code for general-purpose AST nodes, with special functionality 327 /// for generating GPU specific user nodes. 328 /// 329 /// @see GPUNodeBuilder::createUser 330 class GPUNodeBuilder : public IslNodeBuilder { 331 public: 332 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 333 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 334 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 335 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 336 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 337 Prog(Prog), Runtime(Runtime), Arch(Arch) { 338 getExprBuilder().setIDToSAI(&IDToSAI); 339 } 340 341 /// Create after-run-time-check initialization code. 342 void initializeAfterRTH(); 343 344 /// Finalize the generated scop. 345 virtual void finalize(); 346 347 /// Track if the full build process was successful. 348 /// 349 /// This value is set to false, if throughout the build process an error 350 /// occurred which prevents us from generating valid GPU code. 351 bool BuildSuccessful = true; 352 353 /// The maximal number of loops surrounding a sequential kernel. 354 unsigned DeepestSequential = 0; 355 356 /// The maximal number of loops surrounding a parallel kernel. 357 unsigned DeepestParallel = 0; 358 359 /// Return the name to set for the ptx_kernel. 360 std::string getKernelFuncName(int Kernel_id); 361 362 private: 363 /// A vector of array base pointers for which a new ScopArrayInfo was created. 364 /// 365 /// This vector is used to delete the ScopArrayInfo when it is not needed any 366 /// more. 367 std::vector<Value *> LocalArrays; 368 369 /// A map from ScopArrays to their corresponding device allocations. 370 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 371 372 /// The current GPU context. 373 Value *GPUContext; 374 375 /// The set of isl_ids allocated in the kernel 376 std::vector<isl_id *> KernelIds; 377 378 /// A module containing GPU code. 379 /// 380 /// This pointer is only set in case we are currently generating GPU code. 381 std::unique_ptr<Module> GPUModule; 382 383 /// The GPU program we generate code for. 384 gpu_prog *Prog; 385 386 /// The GPU Runtime implementation to use (OpenCL or CUDA). 387 GPURuntime Runtime; 388 389 /// The GPU Architecture to target. 390 GPUArch Arch; 391 392 /// Class to free isl_ids. 393 class IslIdDeleter { 394 public: 395 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 396 }; 397 398 /// A set containing all isl_ids allocated in a GPU kernel. 399 /// 400 /// By releasing this set all isl_ids will be freed. 401 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 402 403 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 404 405 /// Create code for user-defined AST nodes. 406 /// 407 /// These AST nodes can be of type: 408 /// 409 /// - ScopStmt: A computational statement (TODO) 410 /// - Kernel: A GPU kernel call (TODO) 411 /// - Data-Transfer: A GPU <-> CPU data-transfer 412 /// - In-kernel synchronization 413 /// - In-kernel memory copy statement 414 /// 415 /// @param UserStmt The ast node to generate code for. 416 virtual void createUser(__isl_take isl_ast_node *UserStmt); 417 418 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 419 420 /// Create code for a data transfer statement 421 /// 422 /// @param TransferStmt The data transfer statement. 423 /// @param Direction The direction in which to transfer data. 424 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 425 enum DataDirection Direction); 426 427 /// Find llvm::Values referenced in GPU kernel. 428 /// 429 /// @param Kernel The kernel to scan for llvm::Values 430 /// 431 /// @returns A tuple, whose: 432 /// - First element contains the set of values referenced by the 433 /// kernel 434 /// - Second element contains the set of functions referenced by the 435 /// kernel. All functions in the set satisfy 436 /// `isValidFunctionInKernel`. 437 /// - Third element contains loops that have induction variables 438 /// which are used in the kernel, *and* these loops are *neither* 439 /// in the scop, nor do they immediately surroung the Scop. 440 /// See [Code generation of induction variables of loops outside 441 /// Scops] 442 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 443 isl::space> 444 getReferencesInKernel(ppcg_kernel *Kernel); 445 446 /// Compute the sizes of the execution grid for a given kernel. 447 /// 448 /// @param Kernel The kernel to compute grid sizes for. 449 /// 450 /// @returns A tuple with grid sizes for X and Y dimension 451 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 452 453 /// Get the managed array pointer for sending host pointers to the device. 454 /// \note 455 /// This is to be used only with managed memory 456 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 457 458 /// Compute the sizes of the thread blocks for a given kernel. 459 /// 460 /// @param Kernel The kernel to compute thread block sizes for. 461 /// 462 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 463 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 464 465 /// Store a specific kernel launch parameter in the array of kernel launch 466 /// parameters. 467 /// 468 /// @param Parameters The list of parameters in which to store. 469 /// @param Param The kernel launch parameter to store. 470 /// @param Index The index in the parameter list, at which to store the 471 /// parameter. 472 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 473 int Index); 474 475 /// Create kernel launch parameters. 476 /// 477 /// @param Kernel The kernel to create parameters for. 478 /// @param F The kernel function that has been created. 479 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 480 /// 481 /// @returns A stack allocated array with pointers to the parameter 482 /// values that are passed to the kernel. 483 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 484 SetVector<Value *> SubtreeValues); 485 486 /// Create declarations for kernel variable. 487 /// 488 /// This includes shared memory declarations. 489 /// 490 /// @param Kernel The kernel definition to create variables for. 491 /// @param FN The function into which to generate the variables. 492 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 493 494 /// Add CUDA annotations to module. 495 /// 496 /// Add a set of CUDA annotations that declares the maximal block dimensions 497 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 498 /// PTX compiler to bound the number of allocated registers to ensure the 499 /// resulting kernel is known to run with up to as many block dimensions 500 /// as specified here. 501 /// 502 /// @param M The module to add the annotations to. 503 /// @param BlockDimX The size of block dimension X. 504 /// @param BlockDimY The size of block dimension Y. 505 /// @param BlockDimZ The size of block dimension Z. 506 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 507 Value *BlockDimZ); 508 509 /// Create GPU kernel. 510 /// 511 /// Code generate the kernel described by @p KernelStmt. 512 /// 513 /// @param KernelStmt The ast node to generate kernel code for. 514 void createKernel(__isl_take isl_ast_node *KernelStmt); 515 516 /// Generate code that computes the size of an array. 517 /// 518 /// @param Array The array for which to compute a size. 519 Value *getArraySize(gpu_array_info *Array); 520 521 /// Generate code to compute the minimal offset at which an array is accessed. 522 /// 523 /// The offset of an array is the minimal array location accessed in a scop. 524 /// 525 /// Example: 526 /// 527 /// for (long i = 0; i < 100; i++) 528 /// A[i + 42] += ... 529 /// 530 /// getArrayOffset(A) results in 42. 531 /// 532 /// @param Array The array for which to compute the offset. 533 /// @returns An llvm::Value that contains the offset of the array. 534 Value *getArrayOffset(gpu_array_info *Array); 535 536 /// Prepare the kernel arguments for kernel code generation 537 /// 538 /// @param Kernel The kernel to generate code for. 539 /// @param FN The function created for the kernel. 540 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 541 542 /// Create kernel function. 543 /// 544 /// Create a kernel function located in a newly created module that can serve 545 /// as target for device code generation. Set the Builder to point to the 546 /// start block of this newly created function. 547 /// 548 /// @param Kernel The kernel to generate code for. 549 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 550 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 551 /// kernel. 552 void createKernelFunction(ppcg_kernel *Kernel, 553 SetVector<Value *> &SubtreeValues, 554 SetVector<Function *> &SubtreeFunctions); 555 556 /// Create the declaration of a kernel function. 557 /// 558 /// The kernel function takes as arguments: 559 /// 560 /// - One i8 pointer for each external array reference used in the kernel. 561 /// - Host iterators 562 /// - Parameters 563 /// - Other LLVM Value references (TODO) 564 /// 565 /// @param Kernel The kernel to generate the function declaration for. 566 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 567 /// 568 /// @returns The newly declared function. 569 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 570 SetVector<Value *> &SubtreeValues); 571 572 /// Insert intrinsic functions to obtain thread and block ids. 573 /// 574 /// @param The kernel to generate the intrinsic functions for. 575 void insertKernelIntrinsics(ppcg_kernel *Kernel); 576 577 /// Insert function calls to retrieve the SPIR group/local ids. 578 /// 579 /// @param The kernel to generate the function calls for. 580 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 581 582 /// Setup the creation of functions referenced by the GPU kernel. 583 /// 584 /// 1. Create new function declarations in GPUModule which are the same as 585 /// SubtreeFunctions. 586 /// 587 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 588 /// old functions (that come from the original module) to new functions 589 /// (that are created within GPUModule). That way, we generate references 590 /// to the correct function (in GPUModule) in BlockGenerator. 591 /// 592 /// @see IslNodeBuilder::ValueMap 593 /// @see BlockGenerator::GlobalMap 594 /// @see BlockGenerator::getNewValue 595 /// @see GPUNodeBuilder::getReferencesInKernel. 596 /// 597 /// @param SubtreeFunctions The set of llvm::Functions referenced by 598 /// this kernel. 599 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 600 601 /// Create a global-to-shared or shared-to-global copy statement. 602 /// 603 /// @param CopyStmt The copy statement to generate code for 604 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 605 606 /// Create code for a ScopStmt called in @p Expr. 607 /// 608 /// @param Expr The expression containing the call. 609 /// @param KernelStmt The kernel statement referenced in the call. 610 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 611 612 /// Create an in-kernel synchronization call. 613 void createKernelSync(); 614 615 /// Create a PTX assembly string for the current GPU kernel. 616 /// 617 /// @returns A string containing the corresponding PTX assembly code. 618 std::string createKernelASM(); 619 620 /// Remove references from the dominator tree to the kernel function @p F. 621 /// 622 /// @param F The function to remove references to. 623 void clearDominators(Function *F); 624 625 /// Remove references from scalar evolution to the kernel function @p F. 626 /// 627 /// @param F The function to remove references to. 628 void clearScalarEvolution(Function *F); 629 630 /// Remove references from loop info to the kernel function @p F. 631 /// 632 /// @param F The function to remove references to. 633 void clearLoops(Function *F); 634 635 /// Check if the scop requires to be linked with CUDA's libdevice. 636 bool requiresCUDALibDevice(); 637 638 /// Link with the NVIDIA libdevice library (if needed and available). 639 void addCUDALibDevice(); 640 641 /// Finalize the generation of the kernel function. 642 /// 643 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 644 /// dump its IR to stderr. 645 /// 646 /// @returns The Assembly string of the kernel. 647 std::string finalizeKernelFunction(); 648 649 /// Finalize the generation of the kernel arguments. 650 /// 651 /// This function ensures that not-read-only scalars used in a kernel are 652 /// stored back to the global memory location they are backed with before 653 /// the kernel terminates. 654 /// 655 /// @params Kernel The kernel to finalize kernel arguments for. 656 void finalizeKernelArguments(ppcg_kernel *Kernel); 657 658 /// Create code that allocates memory to store arrays on device. 659 void allocateDeviceArrays(); 660 661 /// Create code to prepare the managed device pointers. 662 void prepareManagedDeviceArrays(); 663 664 /// Free all allocated device arrays. 665 void freeDeviceArrays(); 666 667 /// Create a call to initialize the GPU context. 668 /// 669 /// @returns A pointer to the newly initialized context. 670 Value *createCallInitContext(); 671 672 /// Create a call to get the device pointer for a kernel allocation. 673 /// 674 /// @param Allocation The Polly GPU allocation 675 /// 676 /// @returns The device parameter corresponding to this allocation. 677 Value *createCallGetDevicePtr(Value *Allocation); 678 679 /// Create a call to free the GPU context. 680 /// 681 /// @param Context A pointer to an initialized GPU context. 682 void createCallFreeContext(Value *Context); 683 684 /// Create a call to allocate memory on the device. 685 /// 686 /// @param Size The size of memory to allocate 687 /// 688 /// @returns A pointer that identifies this allocation. 689 Value *createCallAllocateMemoryForDevice(Value *Size); 690 691 /// Create a call to free a device array. 692 /// 693 /// @param Array The device array to free. 694 void createCallFreeDeviceMemory(Value *Array); 695 696 /// Create a call to copy data from host to device. 697 /// 698 /// @param HostPtr A pointer to the host data that should be copied. 699 /// @param DevicePtr A device pointer specifying the location to copy to. 700 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 701 Value *Size); 702 703 /// Create a call to copy data from device to host. 704 /// 705 /// @param DevicePtr A pointer to the device data that should be copied. 706 /// @param HostPtr A host pointer specifying the location to copy to. 707 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 708 Value *Size); 709 710 /// Create a call to synchronize Host & Device. 711 /// \note 712 /// This is to be used only with managed memory. 713 void createCallSynchronizeDevice(); 714 715 /// Create a call to get a kernel from an assembly string. 716 /// 717 /// @param Buffer The string describing the kernel. 718 /// @param Entry The name of the kernel function to call. 719 /// 720 /// @returns A pointer to a kernel object 721 Value *createCallGetKernel(Value *Buffer, Value *Entry); 722 723 /// Create a call to free a GPU kernel. 724 /// 725 /// @param GPUKernel THe kernel to free. 726 void createCallFreeKernel(Value *GPUKernel); 727 728 /// Create a call to launch a GPU kernel. 729 /// 730 /// @param GPUKernel The kernel to launch. 731 /// @param GridDimX The size of the first grid dimension. 732 /// @param GridDimY The size of the second grid dimension. 733 /// @param GridBlockX The size of the first block dimension. 734 /// @param GridBlockY The size of the second block dimension. 735 /// @param GridBlockZ The size of the third block dimension. 736 /// @param Parameters A pointer to an array that contains itself pointers to 737 /// the parameter values passed for each kernel argument. 738 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 739 Value *GridDimY, Value *BlockDimX, 740 Value *BlockDimY, Value *BlockDimZ, 741 Value *Parameters); 742 }; 743 744 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 745 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 746 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 747 } 748 749 void GPUNodeBuilder::initializeAfterRTH() { 750 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 751 &*Builder.GetInsertPoint(), &DT, &LI); 752 NewBB->setName("polly.acc.initialize"); 753 Builder.SetInsertPoint(&NewBB->front()); 754 755 GPUContext = createCallInitContext(); 756 757 if (!PollyManagedMemory) 758 allocateDeviceArrays(); 759 else 760 prepareManagedDeviceArrays(); 761 } 762 763 void GPUNodeBuilder::finalize() { 764 if (!PollyManagedMemory) 765 freeDeviceArrays(); 766 767 createCallFreeContext(GPUContext); 768 IslNodeBuilder::finalize(); 769 } 770 771 void GPUNodeBuilder::allocateDeviceArrays() { 772 assert(!PollyManagedMemory && 773 "Managed memory will directly send host pointers " 774 "to the kernel. There is no need for device arrays"); 775 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 776 777 for (int i = 0; i < Prog->n_array; ++i) { 778 gpu_array_info *Array = &Prog->array[i]; 779 auto *ScopArray = (ScopArrayInfo *)Array->user; 780 std::string DevArrayName("p_dev_array_"); 781 DevArrayName.append(Array->name); 782 783 Value *ArraySize = getArraySize(Array); 784 Value *Offset = getArrayOffset(Array); 785 if (Offset) 786 ArraySize = Builder.CreateSub( 787 ArraySize, 788 Builder.CreateMul(Offset, 789 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 790 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 791 // It makes no sense to have an array of size 0. The CUDA API will 792 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 793 // choose to be defensive and catch this at the compile phase. It is 794 // most likely that we are doing something wrong with size computation. 795 if (SizeSCEV->isZero()) { 796 errs() << getUniqueScopName(&S) 797 << " has computed array size 0: " << *ArraySize 798 << " | for array: " << *(ScopArray->getBasePtr()) 799 << ". This is illegal, exiting.\n"; 800 report_fatal_error("array size was computed to be 0"); 801 } 802 803 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 804 DevArray->setName(DevArrayName); 805 DeviceAllocations[ScopArray] = DevArray; 806 } 807 808 isl_ast_build_free(Build); 809 } 810 811 void GPUNodeBuilder::prepareManagedDeviceArrays() { 812 assert(PollyManagedMemory && 813 "Device array most only be prepared in managed-memory mode"); 814 for (int i = 0; i < Prog->n_array; ++i) { 815 gpu_array_info *Array = &Prog->array[i]; 816 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 817 Value *HostPtr; 818 819 if (gpu_array_is_scalar(Array)) 820 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 821 else 822 HostPtr = ScopArray->getBasePtr(); 823 HostPtr = getLatestValue(HostPtr); 824 825 Value *Offset = getArrayOffset(Array); 826 if (Offset) { 827 HostPtr = Builder.CreatePointerCast( 828 HostPtr, ScopArray->getElementType()->getPointerTo()); 829 HostPtr = Builder.CreateGEP(HostPtr, Offset); 830 } 831 832 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 833 DeviceAllocations[ScopArray] = HostPtr; 834 } 835 } 836 837 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 838 Value *BlockDimY, Value *BlockDimZ) { 839 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 840 841 for (auto &F : *M) { 842 if (F.getCallingConv() != CallingConv::PTX_Kernel) 843 continue; 844 845 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 846 847 Metadata *Elements[] = { 848 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 849 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 850 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 851 ValueAsMetadata::get(V[2]), 852 }; 853 MDNode *Node = MDNode::get(M->getContext(), Elements); 854 AnnotationNode->addOperand(Node); 855 } 856 } 857 858 void GPUNodeBuilder::freeDeviceArrays() { 859 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 860 for (auto &Array : DeviceAllocations) 861 createCallFreeDeviceMemory(Array.second); 862 } 863 864 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 865 const char *Name = "polly_getKernel"; 866 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 867 Function *F = M->getFunction(Name); 868 869 // If F is not available, declare it. 870 if (!F) { 871 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 872 std::vector<Type *> Args; 873 Args.push_back(Builder.getInt8PtrTy()); 874 Args.push_back(Builder.getInt8PtrTy()); 875 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 876 F = Function::Create(Ty, Linkage, Name, M); 877 } 878 879 return Builder.CreateCall(F, {Buffer, Entry}); 880 } 881 882 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 883 const char *Name = "polly_getDevicePtr"; 884 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 885 Function *F = M->getFunction(Name); 886 887 // If F is not available, declare it. 888 if (!F) { 889 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 890 std::vector<Type *> Args; 891 Args.push_back(Builder.getInt8PtrTy()); 892 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 893 F = Function::Create(Ty, Linkage, Name, M); 894 } 895 896 return Builder.CreateCall(F, {Allocation}); 897 } 898 899 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 900 Value *GridDimY, Value *BlockDimX, 901 Value *BlockDimY, Value *BlockDimZ, 902 Value *Parameters) { 903 const char *Name = "polly_launchKernel"; 904 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 905 Function *F = M->getFunction(Name); 906 907 // If F is not available, declare it. 908 if (!F) { 909 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 910 std::vector<Type *> Args; 911 Args.push_back(Builder.getInt8PtrTy()); 912 Args.push_back(Builder.getInt32Ty()); 913 Args.push_back(Builder.getInt32Ty()); 914 Args.push_back(Builder.getInt32Ty()); 915 Args.push_back(Builder.getInt32Ty()); 916 Args.push_back(Builder.getInt32Ty()); 917 Args.push_back(Builder.getInt8PtrTy()); 918 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 919 F = Function::Create(Ty, Linkage, Name, M); 920 } 921 922 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 923 BlockDimZ, Parameters}); 924 } 925 926 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 927 const char *Name = "polly_freeKernel"; 928 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 929 Function *F = M->getFunction(Name); 930 931 // If F is not available, declare it. 932 if (!F) { 933 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 934 std::vector<Type *> Args; 935 Args.push_back(Builder.getInt8PtrTy()); 936 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 937 F = Function::Create(Ty, Linkage, Name, M); 938 } 939 940 Builder.CreateCall(F, {GPUKernel}); 941 } 942 943 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 944 assert(!PollyManagedMemory && 945 "Managed memory does not allocate or free memory " 946 "for device"); 947 const char *Name = "polly_freeDeviceMemory"; 948 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 949 Function *F = M->getFunction(Name); 950 951 // If F is not available, declare it. 952 if (!F) { 953 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 954 std::vector<Type *> Args; 955 Args.push_back(Builder.getInt8PtrTy()); 956 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 957 F = Function::Create(Ty, Linkage, Name, M); 958 } 959 960 Builder.CreateCall(F, {Array}); 961 } 962 963 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 964 assert(!PollyManagedMemory && 965 "Managed memory does not allocate or free memory " 966 "for device"); 967 const char *Name = "polly_allocateMemoryForDevice"; 968 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 969 Function *F = M->getFunction(Name); 970 971 // If F is not available, declare it. 972 if (!F) { 973 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 974 std::vector<Type *> Args; 975 Args.push_back(Builder.getInt64Ty()); 976 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 977 F = Function::Create(Ty, Linkage, Name, M); 978 } 979 980 return Builder.CreateCall(F, {Size}); 981 } 982 983 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 984 Value *DeviceData, 985 Value *Size) { 986 assert(!PollyManagedMemory && 987 "Managed memory does not transfer memory between " 988 "device and host"); 989 const char *Name = "polly_copyFromHostToDevice"; 990 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 991 Function *F = M->getFunction(Name); 992 993 // If F is not available, declare it. 994 if (!F) { 995 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 996 std::vector<Type *> Args; 997 Args.push_back(Builder.getInt8PtrTy()); 998 Args.push_back(Builder.getInt8PtrTy()); 999 Args.push_back(Builder.getInt64Ty()); 1000 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1001 F = Function::Create(Ty, Linkage, Name, M); 1002 } 1003 1004 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1005 } 1006 1007 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1008 Value *HostData, 1009 Value *Size) { 1010 assert(!PollyManagedMemory && 1011 "Managed memory does not transfer memory between " 1012 "device and host"); 1013 const char *Name = "polly_copyFromDeviceToHost"; 1014 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1015 Function *F = M->getFunction(Name); 1016 1017 // If F is not available, declare it. 1018 if (!F) { 1019 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1020 std::vector<Type *> Args; 1021 Args.push_back(Builder.getInt8PtrTy()); 1022 Args.push_back(Builder.getInt8PtrTy()); 1023 Args.push_back(Builder.getInt64Ty()); 1024 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1025 F = Function::Create(Ty, Linkage, Name, M); 1026 } 1027 1028 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1029 } 1030 1031 void GPUNodeBuilder::createCallSynchronizeDevice() { 1032 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1033 "managed memory"); 1034 const char *Name = "polly_synchronizeDevice"; 1035 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1036 Function *F = M->getFunction(Name); 1037 1038 // If F is not available, declare it. 1039 if (!F) { 1040 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1041 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1042 F = Function::Create(Ty, Linkage, Name, M); 1043 } 1044 1045 Builder.CreateCall(F); 1046 } 1047 1048 Value *GPUNodeBuilder::createCallInitContext() { 1049 const char *Name; 1050 1051 switch (Runtime) { 1052 case GPURuntime::CUDA: 1053 Name = "polly_initContextCUDA"; 1054 break; 1055 case GPURuntime::OpenCL: 1056 Name = "polly_initContextCL"; 1057 break; 1058 } 1059 1060 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1061 Function *F = M->getFunction(Name); 1062 1063 // If F is not available, declare it. 1064 if (!F) { 1065 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1066 std::vector<Type *> Args; 1067 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1068 F = Function::Create(Ty, Linkage, Name, M); 1069 } 1070 1071 return Builder.CreateCall(F, {}); 1072 } 1073 1074 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1075 const char *Name = "polly_freeContext"; 1076 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1077 Function *F = M->getFunction(Name); 1078 1079 // If F is not available, declare it. 1080 if (!F) { 1081 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1082 std::vector<Type *> Args; 1083 Args.push_back(Builder.getInt8PtrTy()); 1084 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1085 F = Function::Create(Ty, Linkage, Name, M); 1086 } 1087 1088 Builder.CreateCall(F, {Context}); 1089 } 1090 1091 /// Check if one string is a prefix of another. 1092 /// 1093 /// @param String The string in which to look for the prefix. 1094 /// @param Prefix The prefix to look for. 1095 static bool isPrefix(std::string String, std::string Prefix) { 1096 return String.find(Prefix) == 0; 1097 } 1098 1099 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1100 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1101 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1102 1103 if (!gpu_array_is_scalar(Array)) { 1104 isl::multi_pw_aff ArrayBound = 1105 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1106 1107 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1108 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1109 1110 for (unsigned int i = 1; i < Array->n_index; i++) { 1111 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1112 isl::ast_expr Expr = Build.expr_from(Bound_I); 1113 Res = Res.mul(Expr); 1114 } 1115 1116 Value *NumElements = ExprBuilder.create(Res.release()); 1117 if (NumElements->getType() != ArraySize->getType()) 1118 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1119 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1120 } 1121 return ArraySize; 1122 } 1123 1124 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1125 if (gpu_array_is_scalar(Array)) 1126 return nullptr; 1127 1128 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1129 1130 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1131 1132 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1133 1134 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1135 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1136 1137 if (Min.is_subset(ZeroSet)) { 1138 return nullptr; 1139 } 1140 1141 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1142 1143 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1144 if (i > 0) { 1145 isl::pw_aff Bound_I = 1146 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1147 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1148 Result = Result.mul(BExpr); 1149 } 1150 isl::pw_aff DimMin = Min.dim_min(i); 1151 isl::ast_expr MExpr = Build.expr_from(DimMin); 1152 Result = Result.add(MExpr); 1153 } 1154 1155 return ExprBuilder.create(Result.release()); 1156 } 1157 1158 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1159 ScopArrayInfo *ArrayInfo) { 1160 assert(PollyManagedMemory && "Only used when you wish to get a host " 1161 "pointer for sending data to the kernel, " 1162 "with managed memory"); 1163 std::map<ScopArrayInfo *, Value *>::iterator it; 1164 it = DeviceAllocations.find(ArrayInfo); 1165 assert(it != DeviceAllocations.end() && 1166 "Device array expected to be available"); 1167 return it->second; 1168 } 1169 1170 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1171 enum DataDirection Direction) { 1172 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1173 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1174 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1175 isl_id *Id = isl_ast_expr_get_id(Arg); 1176 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1177 auto ScopArray = (ScopArrayInfo *)(Array->user); 1178 1179 Value *Size = getArraySize(Array); 1180 Value *Offset = getArrayOffset(Array); 1181 Value *DevPtr = DeviceAllocations[ScopArray]; 1182 1183 Value *HostPtr; 1184 1185 if (gpu_array_is_scalar(Array)) 1186 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1187 else 1188 HostPtr = ScopArray->getBasePtr(); 1189 HostPtr = getLatestValue(HostPtr); 1190 1191 if (Offset) { 1192 HostPtr = Builder.CreatePointerCast( 1193 HostPtr, ScopArray->getElementType()->getPointerTo()); 1194 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1195 } 1196 1197 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1198 1199 if (Offset) { 1200 Size = Builder.CreateSub( 1201 Size, Builder.CreateMul( 1202 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1203 } 1204 1205 if (Direction == HOST_TO_DEVICE) 1206 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1207 else 1208 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1209 1210 isl_id_free(Id); 1211 isl_ast_expr_free(Arg); 1212 isl_ast_expr_free(Expr); 1213 isl_ast_node_free(TransferStmt); 1214 } 1215 1216 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1217 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1218 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1219 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1220 isl_id_free(Id); 1221 isl_ast_expr_free(StmtExpr); 1222 1223 const char *Str = isl_id_get_name(Id); 1224 if (!strcmp(Str, "kernel")) { 1225 createKernel(UserStmt); 1226 if (PollyManagedMemory) 1227 createCallSynchronizeDevice(); 1228 isl_ast_expr_free(Expr); 1229 return; 1230 } 1231 if (!strcmp(Str, "init_device")) { 1232 initializeAfterRTH(); 1233 isl_ast_node_free(UserStmt); 1234 isl_ast_expr_free(Expr); 1235 return; 1236 } 1237 if (!strcmp(Str, "clear_device")) { 1238 finalize(); 1239 isl_ast_node_free(UserStmt); 1240 isl_ast_expr_free(Expr); 1241 return; 1242 } 1243 if (isPrefix(Str, "to_device")) { 1244 if (!PollyManagedMemory) 1245 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1246 else 1247 isl_ast_node_free(UserStmt); 1248 1249 isl_ast_expr_free(Expr); 1250 return; 1251 } 1252 1253 if (isPrefix(Str, "from_device")) { 1254 if (!PollyManagedMemory) { 1255 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1256 } else { 1257 isl_ast_node_free(UserStmt); 1258 } 1259 isl_ast_expr_free(Expr); 1260 return; 1261 } 1262 1263 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1264 struct ppcg_kernel_stmt *KernelStmt = 1265 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1266 isl_id_free(Anno); 1267 1268 switch (KernelStmt->type) { 1269 case ppcg_kernel_domain: 1270 createScopStmt(Expr, KernelStmt); 1271 isl_ast_node_free(UserStmt); 1272 return; 1273 case ppcg_kernel_copy: 1274 createKernelCopy(KernelStmt); 1275 isl_ast_expr_free(Expr); 1276 isl_ast_node_free(UserStmt); 1277 return; 1278 case ppcg_kernel_sync: 1279 createKernelSync(); 1280 isl_ast_expr_free(Expr); 1281 isl_ast_node_free(UserStmt); 1282 return; 1283 } 1284 1285 isl_ast_expr_free(Expr); 1286 isl_ast_node_free(UserStmt); 1287 return; 1288 } 1289 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1290 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1291 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1292 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1293 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1294 Index = isl_ast_expr_address_of(Index); 1295 Value *GlobalAddr = ExprBuilder.create(Index); 1296 1297 if (KernelStmt->u.c.read) { 1298 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1299 Builder.CreateStore(Load, LocalAddr); 1300 } else { 1301 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1302 Builder.CreateStore(Load, GlobalAddr); 1303 } 1304 } 1305 1306 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1307 ppcg_kernel_stmt *KernelStmt) { 1308 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1309 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1310 1311 LoopToScevMapT LTS; 1312 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1313 1314 createSubstitutions(Expr, Stmt, LTS); 1315 1316 if (Stmt->isBlockStmt()) 1317 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1318 else 1319 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1320 } 1321 1322 void GPUNodeBuilder::createKernelSync() { 1323 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1324 const char *SpirName = "__gen_ocl_barrier_global"; 1325 1326 Function *Sync; 1327 1328 switch (Arch) { 1329 case GPUArch::SPIR64: 1330 case GPUArch::SPIR32: 1331 Sync = M->getFunction(SpirName); 1332 1333 // If Sync is not available, declare it. 1334 if (!Sync) { 1335 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1336 std::vector<Type *> Args; 1337 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1338 Sync = Function::Create(Ty, Linkage, SpirName, M); 1339 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1340 } 1341 break; 1342 case GPUArch::NVPTX64: 1343 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1344 break; 1345 } 1346 1347 Builder.CreateCall(Sync, {}); 1348 } 1349 1350 /// Collect llvm::Values referenced from @p Node 1351 /// 1352 /// This function only applies to isl_ast_nodes that are user_nodes referring 1353 /// to a ScopStmt. All other node types are ignore. 1354 /// 1355 /// @param Node The node to collect references for. 1356 /// @param User A user pointer used as storage for the data that is collected. 1357 /// 1358 /// @returns isl_bool_true if data could be collected successfully. 1359 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1360 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1361 return isl_bool_true; 1362 1363 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1364 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1365 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1366 const char *Str = isl_id_get_name(Id); 1367 isl_id_free(Id); 1368 isl_ast_expr_free(StmtExpr); 1369 isl_ast_expr_free(Expr); 1370 1371 if (!isPrefix(Str, "Stmt")) 1372 return isl_bool_true; 1373 1374 Id = isl_ast_node_get_annotation(Node); 1375 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1376 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1377 isl_id_free(Id); 1378 1379 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1380 1381 return isl_bool_true; 1382 } 1383 1384 /// A list of functions that are available in NVIDIA's libdevice. 1385 const std::set<std::string> CUDALibDeviceFunctions = { 1386 "exp", "expf", "expl", "cos", "cosf", "sqrt", 1387 "sqrtf", "copysign", "copysignf", "copysignl", "log", "logf"}; 1388 1389 /// Return the corresponding CUDA libdevice function name for @p F. 1390 /// 1391 /// Return "" if we are not compiling for CUDA. 1392 std::string getCUDALibDeviceFuntion(Function *F) { 1393 if (CUDALibDeviceFunctions.count(F->getName())) 1394 return std::string("__nv_") + std::string(F->getName()); 1395 1396 return ""; 1397 } 1398 1399 /// Check if F is a function that we can code-generate in a GPU kernel. 1400 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1401 assert(F && "F is an invalid pointer"); 1402 // We string compare against the name of the function to allow 1403 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1404 // "llvm.copysign". 1405 const StringRef Name = F->getName(); 1406 1407 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1408 return true; 1409 1410 return F->isIntrinsic() && 1411 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1412 Name.startswith("llvm.copysign") || Name.startswith("llvm.powi")); 1413 } 1414 1415 /// Do not take `Function` as a subtree value. 1416 /// 1417 /// We try to take the reference of all subtree values and pass them along 1418 /// to the kernel from the host. Taking an address of any function and 1419 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1420 /// `Function`s. 1421 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1422 1423 /// Return `Function`s from `RawSubtreeValues`. 1424 static SetVector<Function *> 1425 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1426 bool AllowCUDALibDevice) { 1427 SetVector<Function *> SubtreeFunctions; 1428 for (Value *It : RawSubtreeValues) { 1429 Function *F = dyn_cast<Function>(It); 1430 if (F) { 1431 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1432 "Code should have bailed out by " 1433 "this point if an invalid function " 1434 "were present in a kernel."); 1435 SubtreeFunctions.insert(F); 1436 } 1437 } 1438 return SubtreeFunctions; 1439 } 1440 1441 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1442 isl::space> 1443 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1444 SetVector<Value *> SubtreeValues; 1445 SetVector<const SCEV *> SCEVs; 1446 SetVector<const Loop *> Loops; 1447 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1448 SubtreeReferences References = { 1449 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1450 &ParamSpace}; 1451 1452 for (const auto &I : IDToValue) 1453 SubtreeValues.insert(I.second); 1454 1455 // NOTE: this is populated in IslNodeBuilder::addParameters 1456 // See [Code generation of induction variables of loops outside Scops]. 1457 for (const auto &I : OutsideLoopIterations) 1458 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1459 1460 isl_ast_node_foreach_descendant_top_down( 1461 Kernel->tree, collectReferencesInGPUStmt, &References); 1462 1463 for (const SCEV *Expr : SCEVs) { 1464 findValues(Expr, SE, SubtreeValues); 1465 findLoops(Expr, Loops); 1466 } 1467 1468 Loops.remove_if([this](const Loop *L) { 1469 return S.contains(L) || L->contains(S.getEntry()); 1470 }); 1471 1472 for (auto &SAI : S.arrays()) 1473 SubtreeValues.remove(SAI->getBasePtr()); 1474 1475 isl_space *Space = S.getParamSpace().release(); 1476 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1477 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1478 assert(IDToValue.count(Id)); 1479 Value *Val = IDToValue[Id]; 1480 SubtreeValues.remove(Val); 1481 isl_id_free(Id); 1482 } 1483 isl_space_free(Space); 1484 1485 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1486 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1487 assert(IDToValue.count(Id)); 1488 Value *Val = IDToValue[Id]; 1489 SubtreeValues.remove(Val); 1490 isl_id_free(Id); 1491 } 1492 1493 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1494 // SubtreeValues. This is important, because we should not lose any 1495 // SubtreeValues in the process of constructing the 1496 // "ValidSubtree{Values, Functions} sets. Nor should the set 1497 // ValidSubtree{Values, Functions} have any common element. 1498 auto ValidSubtreeValuesIt = 1499 make_filter_range(SubtreeValues, isValidSubtreeValue); 1500 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1501 ValidSubtreeValuesIt.end()); 1502 1503 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1504 1505 SetVector<Function *> ValidSubtreeFunctions( 1506 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1507 1508 // @see IslNodeBuilder::getReferencesInSubtree 1509 SetVector<Value *> ReplacedValues; 1510 for (Value *V : ValidSubtreeValues) { 1511 auto It = ValueMap.find(V); 1512 if (It == ValueMap.end()) 1513 ReplacedValues.insert(V); 1514 else 1515 ReplacedValues.insert(It->second); 1516 } 1517 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1518 ParamSpace); 1519 } 1520 1521 void GPUNodeBuilder::clearDominators(Function *F) { 1522 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1523 std::vector<BasicBlock *> Nodes; 1524 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1525 Nodes.push_back(I->getBlock()); 1526 1527 for (BasicBlock *BB : Nodes) 1528 DT.eraseNode(BB); 1529 } 1530 1531 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1532 for (BasicBlock &BB : *F) { 1533 Loop *L = LI.getLoopFor(&BB); 1534 if (L) 1535 SE.forgetLoop(L); 1536 } 1537 } 1538 1539 void GPUNodeBuilder::clearLoops(Function *F) { 1540 for (BasicBlock &BB : *F) { 1541 Loop *L = LI.getLoopFor(&BB); 1542 if (L) 1543 SE.forgetLoop(L); 1544 LI.removeBlock(&BB); 1545 } 1546 } 1547 1548 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1549 std::vector<Value *> Sizes; 1550 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1551 1552 isl::multi_pw_aff GridSizePwAffs = 1553 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1554 for (long i = 0; i < Kernel->n_grid; i++) { 1555 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1556 isl::ast_expr GridSize = Context.expr_from(Size); 1557 Value *Res = ExprBuilder.create(GridSize.release()); 1558 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1559 Sizes.push_back(Res); 1560 } 1561 1562 for (long i = Kernel->n_grid; i < 3; i++) 1563 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1564 1565 return std::make_tuple(Sizes[0], Sizes[1]); 1566 } 1567 1568 std::tuple<Value *, Value *, Value *> 1569 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1570 std::vector<Value *> Sizes; 1571 1572 for (long i = 0; i < Kernel->n_block; i++) { 1573 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1574 Sizes.push_back(Res); 1575 } 1576 1577 for (long i = Kernel->n_block; i < 3; i++) 1578 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1579 1580 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1581 } 1582 1583 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1584 Instruction *Param, int Index) { 1585 Value *Slot = Builder.CreateGEP( 1586 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1587 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1588 Builder.CreateStore(ParamTyped, Slot); 1589 } 1590 1591 Value * 1592 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1593 SetVector<Value *> SubtreeValues) { 1594 const int NumArgs = F->arg_size(); 1595 std::vector<int> ArgSizes(NumArgs); 1596 1597 // If we are using the OpenCL Runtime, we need to add the kernel argument 1598 // sizes to the end of the launch-parameter list, so OpenCL can determine 1599 // how big the respective kernel arguments are. 1600 // Here we need to reserve adequate space for that. 1601 Type *ArrayTy; 1602 if (Runtime == GPURuntime::OpenCL) 1603 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1604 else 1605 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1606 1607 BasicBlock *EntryBlock = 1608 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1609 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1610 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1611 Instruction *Parameters = new AllocaInst( 1612 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1613 1614 int Index = 0; 1615 for (long i = 0; i < Prog->n_array; i++) { 1616 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1617 continue; 1618 1619 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1620 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1621 1622 if (Runtime == GPURuntime::OpenCL) 1623 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1624 1625 Value *DevArray = nullptr; 1626 if (PollyManagedMemory) { 1627 DevArray = getManagedDeviceArray(&Prog->array[i], 1628 const_cast<ScopArrayInfo *>(SAI)); 1629 } else { 1630 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1631 DevArray = createCallGetDevicePtr(DevArray); 1632 } 1633 assert(DevArray != nullptr && "Array to be offloaded to device not " 1634 "initialized"); 1635 Value *Offset = getArrayOffset(&Prog->array[i]); 1636 1637 if (Offset) { 1638 DevArray = Builder.CreatePointerCast( 1639 DevArray, SAI->getElementType()->getPointerTo()); 1640 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1641 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1642 } 1643 Value *Slot = Builder.CreateGEP( 1644 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1645 1646 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1647 Value *ValPtr = nullptr; 1648 if (PollyManagedMemory) 1649 ValPtr = DevArray; 1650 else 1651 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1652 1653 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1654 " to be stored into Parameters"); 1655 Value *ValPtrCast = 1656 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1657 Builder.CreateStore(ValPtrCast, Slot); 1658 } else { 1659 Instruction *Param = 1660 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1661 Launch + "_param_" + std::to_string(Index), 1662 EntryBlock->getTerminator()); 1663 Builder.CreateStore(DevArray, Param); 1664 Value *ParamTyped = 1665 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1666 Builder.CreateStore(ParamTyped, Slot); 1667 } 1668 Index++; 1669 } 1670 1671 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1672 1673 for (long i = 0; i < NumHostIters; i++) { 1674 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1675 Value *Val = IDToValue[Id]; 1676 isl_id_free(Id); 1677 1678 if (Runtime == GPURuntime::OpenCL) 1679 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1680 1681 Instruction *Param = 1682 new AllocaInst(Val->getType(), AddressSpace, 1683 Launch + "_param_" + std::to_string(Index), 1684 EntryBlock->getTerminator()); 1685 Builder.CreateStore(Val, Param); 1686 insertStoreParameter(Parameters, Param, Index); 1687 Index++; 1688 } 1689 1690 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1691 1692 for (long i = 0; i < NumVars; i++) { 1693 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1694 Value *Val = IDToValue[Id]; 1695 if (ValueMap.count(Val)) 1696 Val = ValueMap[Val]; 1697 isl_id_free(Id); 1698 1699 if (Runtime == GPURuntime::OpenCL) 1700 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1701 1702 Instruction *Param = 1703 new AllocaInst(Val->getType(), AddressSpace, 1704 Launch + "_param_" + std::to_string(Index), 1705 EntryBlock->getTerminator()); 1706 Builder.CreateStore(Val, Param); 1707 insertStoreParameter(Parameters, Param, Index); 1708 Index++; 1709 } 1710 1711 for (auto Val : SubtreeValues) { 1712 if (Runtime == GPURuntime::OpenCL) 1713 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1714 1715 Instruction *Param = 1716 new AllocaInst(Val->getType(), AddressSpace, 1717 Launch + "_param_" + std::to_string(Index), 1718 EntryBlock->getTerminator()); 1719 Builder.CreateStore(Val, Param); 1720 insertStoreParameter(Parameters, Param, Index); 1721 Index++; 1722 } 1723 1724 if (Runtime == GPURuntime::OpenCL) { 1725 for (int i = 0; i < NumArgs; i++) { 1726 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1727 Instruction *Param = 1728 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1729 Launch + "_param_size_" + std::to_string(i), 1730 EntryBlock->getTerminator()); 1731 Builder.CreateStore(Val, Param); 1732 insertStoreParameter(Parameters, Param, Index); 1733 Index++; 1734 } 1735 } 1736 1737 auto Location = EntryBlock->getTerminator(); 1738 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1739 Launch + "_params_i8ptr", Location); 1740 } 1741 1742 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1743 SetVector<Function *> SubtreeFunctions) { 1744 for (auto Fn : SubtreeFunctions) { 1745 const std::string ClonedFnName = Fn->getName(); 1746 Function *Clone = GPUModule->getFunction(ClonedFnName); 1747 if (!Clone) 1748 Clone = 1749 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1750 ClonedFnName, GPUModule.get()); 1751 assert(Clone && "Expected cloned function to be initialized."); 1752 assert(ValueMap.find(Fn) == ValueMap.end() && 1753 "Fn already present in ValueMap"); 1754 ValueMap[Fn] = Clone; 1755 } 1756 } 1757 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1758 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1759 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1760 isl_id_free(Id); 1761 isl_ast_node_free(KernelStmt); 1762 1763 if (Kernel->n_grid > 1) 1764 DeepestParallel = 1765 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1766 else 1767 DeepestSequential = 1768 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1769 1770 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1771 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1772 1773 SetVector<Value *> SubtreeValues; 1774 SetVector<Function *> SubtreeFunctions; 1775 SetVector<const Loop *> Loops; 1776 isl::space ParamSpace; 1777 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1778 getReferencesInKernel(Kernel); 1779 1780 // Add parameters that appear only in the access function to the kernel 1781 // space. This is important to make sure that all isl_ids are passed as 1782 // parameters to the kernel, even though we may not have all parameters 1783 // in the context to improve compile time. 1784 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1785 1786 assert(Kernel->tree && "Device AST of kernel node is empty"); 1787 1788 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1789 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1790 ValueMapT HostValueMap = ValueMap; 1791 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1792 ScalarMap.clear(); 1793 1794 // Create for all loops we depend on values that contain the current loop 1795 // iteration. These values are necessary to generate code for SCEVs that 1796 // depend on such loops. As a result we need to pass them to the subfunction. 1797 for (const Loop *L : Loops) { 1798 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1799 SE.getUnknown(Builder.getInt64(1)), 1800 L, SCEV::FlagAnyWrap); 1801 Value *V = generateSCEV(OuterLIV); 1802 OutsideLoopIterations[L] = SE.getUnknown(V); 1803 SubtreeValues.insert(V); 1804 } 1805 1806 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1807 setupKernelSubtreeFunctions(SubtreeFunctions); 1808 1809 create(isl_ast_node_copy(Kernel->tree)); 1810 1811 finalizeKernelArguments(Kernel); 1812 Function *F = Builder.GetInsertBlock()->getParent(); 1813 if (Arch == GPUArch::NVPTX64) 1814 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1815 clearDominators(F); 1816 clearScalarEvolution(F); 1817 clearLoops(F); 1818 1819 IDToValue = HostIDs; 1820 1821 ValueMap = std::move(HostValueMap); 1822 ScalarMap = std::move(HostScalarMap); 1823 EscapeMap.clear(); 1824 IDToSAI.clear(); 1825 Annotator.resetAlternativeAliasBases(); 1826 for (auto &BasePtr : LocalArrays) 1827 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1828 LocalArrays.clear(); 1829 1830 std::string ASMString = finalizeKernelFunction(); 1831 Builder.SetInsertPoint(&HostInsertPoint); 1832 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1833 1834 std::string Name = getKernelFuncName(Kernel->id); 1835 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1836 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1837 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1838 1839 Value *GridDimX, *GridDimY; 1840 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1841 1842 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1843 BlockDimZ, Parameters); 1844 createCallFreeKernel(GPUKernel); 1845 1846 for (auto Id : KernelIds) 1847 isl_id_free(Id); 1848 1849 KernelIds.clear(); 1850 } 1851 1852 /// Compute the DataLayout string for the NVPTX backend. 1853 /// 1854 /// @param is64Bit Are we looking for a 64 bit architecture? 1855 static std::string computeNVPTXDataLayout(bool is64Bit) { 1856 std::string Ret = ""; 1857 1858 if (!is64Bit) { 1859 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1860 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1861 "64-v128:128:128-n16:32:64"; 1862 } else { 1863 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1864 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1865 "64-v128:128:128-n16:32:64"; 1866 } 1867 1868 return Ret; 1869 } 1870 1871 /// Compute the DataLayout string for a SPIR kernel. 1872 /// 1873 /// @param is64Bit Are we looking for a 64 bit architecture? 1874 static std::string computeSPIRDataLayout(bool is64Bit) { 1875 std::string Ret = ""; 1876 1877 if (!is64Bit) { 1878 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1879 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1880 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1881 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1882 } else { 1883 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1884 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1885 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1886 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1887 } 1888 1889 return Ret; 1890 } 1891 1892 Function * 1893 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1894 SetVector<Value *> &SubtreeValues) { 1895 std::vector<Type *> Args; 1896 std::string Identifier = getKernelFuncName(Kernel->id); 1897 1898 std::vector<Metadata *> MemoryType; 1899 1900 for (long i = 0; i < Prog->n_array; i++) { 1901 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1902 continue; 1903 1904 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1905 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1906 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1907 Args.push_back(SAI->getElementType()); 1908 MemoryType.push_back( 1909 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1910 } else { 1911 static const int UseGlobalMemory = 1; 1912 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1913 MemoryType.push_back( 1914 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1915 } 1916 } 1917 1918 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1919 1920 for (long i = 0; i < NumHostIters; i++) { 1921 Args.push_back(Builder.getInt64Ty()); 1922 MemoryType.push_back( 1923 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1924 } 1925 1926 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1927 1928 for (long i = 0; i < NumVars; i++) { 1929 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1930 Value *Val = IDToValue[Id]; 1931 isl_id_free(Id); 1932 Args.push_back(Val->getType()); 1933 MemoryType.push_back( 1934 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1935 } 1936 1937 for (auto *V : SubtreeValues) { 1938 Args.push_back(V->getType()); 1939 MemoryType.push_back( 1940 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1941 } 1942 1943 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1944 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1945 GPUModule.get()); 1946 1947 std::vector<Metadata *> EmptyStrings; 1948 1949 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1950 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1951 } 1952 1953 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1954 FN->setMetadata("kernel_arg_addr_space", 1955 MDNode::get(FN->getContext(), MemoryType)); 1956 FN->setMetadata("kernel_arg_name", 1957 MDNode::get(FN->getContext(), EmptyStrings)); 1958 FN->setMetadata("kernel_arg_access_qual", 1959 MDNode::get(FN->getContext(), EmptyStrings)); 1960 FN->setMetadata("kernel_arg_type", 1961 MDNode::get(FN->getContext(), EmptyStrings)); 1962 FN->setMetadata("kernel_arg_type_qual", 1963 MDNode::get(FN->getContext(), EmptyStrings)); 1964 FN->setMetadata("kernel_arg_base_type", 1965 MDNode::get(FN->getContext(), EmptyStrings)); 1966 } 1967 1968 switch (Arch) { 1969 case GPUArch::NVPTX64: 1970 FN->setCallingConv(CallingConv::PTX_Kernel); 1971 break; 1972 case GPUArch::SPIR32: 1973 case GPUArch::SPIR64: 1974 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1975 break; 1976 } 1977 1978 auto Arg = FN->arg_begin(); 1979 for (long i = 0; i < Kernel->n_array; i++) { 1980 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1981 continue; 1982 1983 Arg->setName(Kernel->array[i].array->name); 1984 1985 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1986 const ScopArrayInfo *SAI = 1987 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1988 Type *EleTy = SAI->getElementType(); 1989 Value *Val = &*Arg; 1990 SmallVector<const SCEV *, 4> Sizes; 1991 isl_ast_build *Build = 1992 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1993 Sizes.push_back(nullptr); 1994 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 1995 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1996 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1997 auto V = ExprBuilder.create(DimSize); 1998 Sizes.push_back(SE.getSCEV(V)); 1999 } 2000 const ScopArrayInfo *SAIRep = 2001 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2002 LocalArrays.push_back(Val); 2003 2004 isl_ast_build_free(Build); 2005 KernelIds.push_back(Id); 2006 IDToSAI[Id] = SAIRep; 2007 Arg++; 2008 } 2009 2010 for (long i = 0; i < NumHostIters; i++) { 2011 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2012 Arg->setName(isl_id_get_name(Id)); 2013 IDToValue[Id] = &*Arg; 2014 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2015 Arg++; 2016 } 2017 2018 for (long i = 0; i < NumVars; i++) { 2019 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2020 Arg->setName(isl_id_get_name(Id)); 2021 Value *Val = IDToValue[Id]; 2022 ValueMap[Val] = &*Arg; 2023 IDToValue[Id] = &*Arg; 2024 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2025 Arg++; 2026 } 2027 2028 for (auto *V : SubtreeValues) { 2029 Arg->setName(V->getName()); 2030 ValueMap[V] = &*Arg; 2031 Arg++; 2032 } 2033 2034 return FN; 2035 } 2036 2037 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2038 Intrinsic::ID IntrinsicsBID[2]; 2039 Intrinsic::ID IntrinsicsTID[3]; 2040 2041 switch (Arch) { 2042 case GPUArch::SPIR64: 2043 case GPUArch::SPIR32: 2044 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2045 case GPUArch::NVPTX64: 2046 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2047 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2048 2049 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2050 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2051 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2052 break; 2053 } 2054 2055 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2056 std::string Name = isl_id_get_name(Id); 2057 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2058 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2059 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2060 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2061 IDToValue[Id] = Val; 2062 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2063 }; 2064 2065 for (int i = 0; i < Kernel->n_grid; ++i) { 2066 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2067 addId(Id, IntrinsicsBID[i]); 2068 } 2069 2070 for (int i = 0; i < Kernel->n_block; ++i) { 2071 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2072 addId(Id, IntrinsicsTID[i]); 2073 } 2074 } 2075 2076 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2077 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2078 "__gen_ocl_get_group_id1", 2079 "__gen_ocl_get_group_id2"}; 2080 2081 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2082 "__gen_ocl_get_local_id1", 2083 "__gen_ocl_get_local_id2"}; 2084 2085 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2086 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2087 Function *FN = M->getFunction(Name); 2088 2089 // If FN is not available, declare it. 2090 if (!FN) { 2091 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2092 std::vector<Type *> Args; 2093 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2094 FN = Function::Create(Ty, Linkage, Name, M); 2095 FN->setCallingConv(CallingConv::SPIR_FUNC); 2096 } 2097 2098 Value *Val = Builder.CreateCall(FN, {}); 2099 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2100 IDToValue[Id] = Val; 2101 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2102 }; 2103 2104 for (int i = 0; i < Kernel->n_grid; ++i) 2105 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2106 2107 for (int i = 0; i < Kernel->n_block; ++i) 2108 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2109 } 2110 2111 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2112 auto Arg = FN->arg_begin(); 2113 for (long i = 0; i < Kernel->n_array; i++) { 2114 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2115 continue; 2116 2117 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2118 const ScopArrayInfo *SAI = 2119 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2120 isl_id_free(Id); 2121 2122 if (SAI->getNumberOfDimensions() > 0) { 2123 Arg++; 2124 continue; 2125 } 2126 2127 Value *Val = &*Arg; 2128 2129 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2130 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2131 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2132 Val = Builder.CreateLoad(TypedArgPtr); 2133 } 2134 2135 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2136 Builder.CreateStore(Val, Alloca); 2137 2138 Arg++; 2139 } 2140 } 2141 2142 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2143 auto *FN = Builder.GetInsertBlock()->getParent(); 2144 auto Arg = FN->arg_begin(); 2145 2146 bool StoredScalar = false; 2147 for (long i = 0; i < Kernel->n_array; i++) { 2148 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2149 continue; 2150 2151 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2152 const ScopArrayInfo *SAI = 2153 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2154 isl_id_free(Id); 2155 2156 if (SAI->getNumberOfDimensions() > 0) { 2157 Arg++; 2158 continue; 2159 } 2160 2161 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2162 Arg++; 2163 continue; 2164 } 2165 2166 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2167 Value *ArgPtr = &*Arg; 2168 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2169 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2170 Value *Val = Builder.CreateLoad(Alloca); 2171 Builder.CreateStore(Val, TypedArgPtr); 2172 StoredScalar = true; 2173 2174 Arg++; 2175 } 2176 2177 if (StoredScalar) { 2178 /// In case more than one thread contains scalar stores, the generated 2179 /// code might be incorrect, if we only store at the end of the kernel. 2180 /// To support this case we need to store these scalars back at each 2181 /// memory store or at least before each kernel barrier. 2182 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2183 BuildSuccessful = 0; 2184 DEBUG( 2185 dbgs() << getUniqueScopName(&S) 2186 << " has a store to a scalar value that" 2187 " would be undefined to run in parallel. Bailing out.\n";); 2188 } 2189 } 2190 } 2191 2192 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2193 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2194 2195 for (int i = 0; i < Kernel->n_var; ++i) { 2196 struct ppcg_kernel_var &Var = Kernel->var[i]; 2197 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2198 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2199 2200 Type *ArrayTy = EleTy; 2201 SmallVector<const SCEV *, 4> Sizes; 2202 2203 Sizes.push_back(nullptr); 2204 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2205 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2206 long Bound = isl_val_get_num_si(Val); 2207 isl_val_free(Val); 2208 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2209 } 2210 2211 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2212 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2213 long Bound = isl_val_get_num_si(Val); 2214 isl_val_free(Val); 2215 ArrayTy = ArrayType::get(ArrayTy, Bound); 2216 } 2217 2218 const ScopArrayInfo *SAI; 2219 Value *Allocation; 2220 if (Var.type == ppcg_access_shared) { 2221 auto GlobalVar = new GlobalVariable( 2222 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2223 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2224 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2225 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2226 2227 Allocation = GlobalVar; 2228 } else if (Var.type == ppcg_access_private) { 2229 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2230 } else { 2231 llvm_unreachable("unknown variable type"); 2232 } 2233 SAI = 2234 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2235 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2236 IDToValue[Id] = Allocation; 2237 LocalArrays.push_back(Allocation); 2238 KernelIds.push_back(Id); 2239 IDToSAI[Id] = SAI; 2240 } 2241 } 2242 2243 void GPUNodeBuilder::createKernelFunction( 2244 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2245 SetVector<Function *> &SubtreeFunctions) { 2246 std::string Identifier = getKernelFuncName(Kernel->id); 2247 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2248 2249 switch (Arch) { 2250 case GPUArch::NVPTX64: 2251 if (Runtime == GPURuntime::CUDA) 2252 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2253 else if (Runtime == GPURuntime::OpenCL) 2254 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2255 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2256 break; 2257 case GPUArch::SPIR32: 2258 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2259 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2260 break; 2261 case GPUArch::SPIR64: 2262 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2263 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2264 break; 2265 } 2266 2267 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2268 2269 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2270 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2271 2272 DT.addNewBlock(EntryBlock, PrevBlock); 2273 2274 Builder.SetInsertPoint(EntryBlock); 2275 Builder.CreateRetVoid(); 2276 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2277 2278 ScopDetection::markFunctionAsInvalid(FN); 2279 2280 prepareKernelArguments(Kernel, FN); 2281 createKernelVariables(Kernel, FN); 2282 2283 switch (Arch) { 2284 case GPUArch::NVPTX64: 2285 insertKernelIntrinsics(Kernel); 2286 break; 2287 case GPUArch::SPIR32: 2288 case GPUArch::SPIR64: 2289 insertKernelCallsSPIR(Kernel); 2290 break; 2291 } 2292 } 2293 2294 std::string GPUNodeBuilder::createKernelASM() { 2295 llvm::Triple GPUTriple; 2296 2297 switch (Arch) { 2298 case GPUArch::NVPTX64: 2299 switch (Runtime) { 2300 case GPURuntime::CUDA: 2301 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2302 break; 2303 case GPURuntime::OpenCL: 2304 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2305 break; 2306 } 2307 break; 2308 case GPUArch::SPIR64: 2309 case GPUArch::SPIR32: 2310 std::string SPIRAssembly; 2311 raw_string_ostream IROstream(SPIRAssembly); 2312 IROstream << *GPUModule; 2313 IROstream.flush(); 2314 return SPIRAssembly; 2315 } 2316 2317 std::string ErrMsg; 2318 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2319 2320 if (!GPUTarget) { 2321 errs() << ErrMsg << "\n"; 2322 return ""; 2323 } 2324 2325 TargetOptions Options; 2326 Options.UnsafeFPMath = FastMath; 2327 2328 std::string subtarget; 2329 2330 switch (Arch) { 2331 case GPUArch::NVPTX64: 2332 subtarget = CudaVersion; 2333 break; 2334 case GPUArch::SPIR32: 2335 case GPUArch::SPIR64: 2336 llvm_unreachable("No subtarget for SPIR architecture"); 2337 } 2338 2339 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2340 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2341 2342 SmallString<0> ASMString; 2343 raw_svector_ostream ASMStream(ASMString); 2344 llvm::legacy::PassManager PM; 2345 2346 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2347 2348 if (TargetM->addPassesToEmitFile( 2349 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2350 errs() << "The target does not support generation of this file type!\n"; 2351 return ""; 2352 } 2353 2354 PM.run(*GPUModule); 2355 2356 return ASMStream.str(); 2357 } 2358 2359 bool GPUNodeBuilder::requiresCUDALibDevice() { 2360 bool RequiresLibDevice = false; 2361 for (Function &F : GPUModule->functions()) { 2362 if (!F.isDeclaration()) 2363 continue; 2364 2365 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2366 if (CUDALibDeviceFunc.length() != 0) { 2367 F.setName(CUDALibDeviceFunc); 2368 RequiresLibDevice = true; 2369 } 2370 } 2371 2372 return RequiresLibDevice; 2373 } 2374 2375 void GPUNodeBuilder::addCUDALibDevice() { 2376 if (Arch != GPUArch::NVPTX64) 2377 return; 2378 2379 if (requiresCUDALibDevice()) { 2380 SMDiagnostic Error; 2381 2382 errs() << CUDALibDevice << "\n"; 2383 auto LibDeviceModule = 2384 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2385 2386 if (!LibDeviceModule) { 2387 BuildSuccessful = false; 2388 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2389 "kernel generation. Please set -polly-acc-libdevice " 2390 "accordingly.\n"); 2391 return; 2392 } 2393 2394 Linker L(*GPUModule); 2395 2396 // Set an nvptx64 target triple to avoid linker warnings. The original 2397 // triple of the libdevice files are nvptx-unknown-unknown. 2398 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2399 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2400 } 2401 } 2402 2403 std::string GPUNodeBuilder::finalizeKernelFunction() { 2404 2405 if (verifyModule(*GPUModule)) { 2406 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2407 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2408 DEBUG(dbgs() << "verifyModule Error:\n"; 2409 verifyModule(*GPUModule, &dbgs());); 2410 2411 if (FailOnVerifyModuleFailure) 2412 llvm_unreachable("VerifyModule failed."); 2413 2414 BuildSuccessful = false; 2415 return ""; 2416 } 2417 2418 addCUDALibDevice(); 2419 2420 if (DumpKernelIR) 2421 outs() << *GPUModule << "\n"; 2422 2423 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2424 // Optimize module. 2425 llvm::legacy::PassManager OptPasses; 2426 PassManagerBuilder PassBuilder; 2427 PassBuilder.OptLevel = 3; 2428 PassBuilder.SizeLevel = 0; 2429 PassBuilder.populateModulePassManager(OptPasses); 2430 OptPasses.run(*GPUModule); 2431 } 2432 2433 std::string Assembly = createKernelASM(); 2434 2435 if (DumpKernelASM) 2436 outs() << Assembly << "\n"; 2437 2438 GPUModule.release(); 2439 KernelIDs.clear(); 2440 2441 return Assembly; 2442 } 2443 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2444 /// @param PwAffs The list of piecewise affine functions to create an 2445 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2446 /// all the isl_pw_aff are used up by this function. 2447 /// 2448 /// @returns The `isl_pw_aff_list`. 2449 __isl_give isl_pw_aff_list * 2450 createPwAffList(isl_ctx *Context, 2451 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2452 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2453 2454 for (unsigned i = 0; i < PwAffs.size(); i++) { 2455 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2456 } 2457 return List; 2458 } 2459 2460 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2461 /// 2462 /// We loop over all `pw_aff` and align all of their spaces together to 2463 /// create a common space for all the `pw_aff`. This common space is the 2464 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2465 /// with the given `SeedSpace`. 2466 /// @param PwAffs The list of piecewise affine functions we want to align. 2467 /// This is an rvalue reference because the entire vector is 2468 /// used up by the end of the operation. 2469 /// @param SeedSpace The space to start the alignment process with. 2470 /// @returns A std::pair, whose first element is the aligned space, 2471 /// whose second element is the vector of aligned piecewise 2472 /// affines. 2473 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2474 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2475 __isl_take isl_space *SeedSpace) { 2476 assert(SeedSpace && "Invalid seed space given."); 2477 2478 isl_space *AlignSpace = SeedSpace; 2479 for (isl_pw_aff *PwAff : PwAffs) { 2480 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2481 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2482 } 2483 std::vector<isl_pw_aff *> AdjustedPwAffs; 2484 2485 for (unsigned i = 0; i < PwAffs.size(); i++) { 2486 isl_pw_aff *Adjusted = PwAffs[i]; 2487 assert(Adjusted && "Invalid pw_aff given."); 2488 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2489 AdjustedPwAffs.push_back(Adjusted); 2490 } 2491 return std::make_pair(AlignSpace, AdjustedPwAffs); 2492 } 2493 2494 namespace { 2495 class PPCGCodeGeneration : public ScopPass { 2496 public: 2497 static char ID; 2498 2499 GPURuntime Runtime = GPURuntime::CUDA; 2500 2501 GPUArch Architecture = GPUArch::NVPTX64; 2502 2503 /// The scop that is currently processed. 2504 Scop *S; 2505 2506 LoopInfo *LI; 2507 DominatorTree *DT; 2508 ScalarEvolution *SE; 2509 const DataLayout *DL; 2510 RegionInfo *RI; 2511 2512 PPCGCodeGeneration() : ScopPass(ID) {} 2513 2514 /// Construct compilation options for PPCG. 2515 /// 2516 /// @returns The compilation options. 2517 ppcg_options *createPPCGOptions() { 2518 auto DebugOptions = 2519 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2520 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2521 2522 DebugOptions->dump_schedule_constraints = false; 2523 DebugOptions->dump_schedule = false; 2524 DebugOptions->dump_final_schedule = false; 2525 DebugOptions->dump_sizes = false; 2526 DebugOptions->verbose = false; 2527 2528 Options->debug = DebugOptions; 2529 2530 Options->group_chains = false; 2531 Options->reschedule = true; 2532 Options->scale_tile_loops = false; 2533 Options->wrap = false; 2534 2535 Options->non_negative_parameters = false; 2536 Options->ctx = nullptr; 2537 Options->sizes = nullptr; 2538 2539 Options->tile = true; 2540 Options->tile_size = 32; 2541 2542 Options->isolate_full_tiles = false; 2543 2544 Options->use_private_memory = PrivateMemory; 2545 Options->use_shared_memory = SharedMemory; 2546 Options->max_shared_memory = 48 * 1024; 2547 2548 Options->target = PPCG_TARGET_CUDA; 2549 Options->openmp = false; 2550 Options->linearize_device_arrays = true; 2551 Options->allow_gnu_extensions = false; 2552 2553 Options->unroll_copy_shared = false; 2554 Options->unroll_gpu_tile = false; 2555 Options->live_range_reordering = true; 2556 2557 Options->live_range_reordering = true; 2558 Options->hybrid = false; 2559 Options->opencl_compiler_options = nullptr; 2560 Options->opencl_use_gpu = false; 2561 Options->opencl_n_include_file = 0; 2562 Options->opencl_include_files = nullptr; 2563 Options->opencl_print_kernel_types = false; 2564 Options->opencl_embed_kernel_code = false; 2565 2566 Options->save_schedule_file = nullptr; 2567 Options->load_schedule_file = nullptr; 2568 2569 return Options; 2570 } 2571 2572 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2573 /// 2574 /// Instead of a normal access of the form: 2575 /// 2576 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2577 /// 2578 /// a tagged access has the form 2579 /// 2580 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2581 /// 2582 /// where 'id' is an additional space that references the memory access that 2583 /// triggered the access. 2584 /// 2585 /// @param AccessTy The type of the memory accesses to collect. 2586 /// 2587 /// @return The relation describing all tagged memory accesses. 2588 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2589 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2590 2591 for (auto &Stmt : *S) 2592 for (auto &Acc : Stmt) 2593 if (Acc->getType() == AccessTy) { 2594 isl_map *Relation = Acc->getAccessRelation().release(); 2595 Relation = 2596 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2597 2598 isl_space *Space = isl_map_get_space(Relation); 2599 Space = isl_space_range(Space); 2600 Space = isl_space_from_range(Space); 2601 Space = 2602 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2603 isl_map *Universe = isl_map_universe(Space); 2604 Relation = isl_map_domain_product(Relation, Universe); 2605 Accesses = isl_union_map_add_map(Accesses, Relation); 2606 } 2607 2608 return Accesses; 2609 } 2610 2611 /// Get the set of all read accesses, tagged with the access id. 2612 /// 2613 /// @see getTaggedAccesses 2614 isl_union_map *getTaggedReads() { 2615 return getTaggedAccesses(MemoryAccess::READ); 2616 } 2617 2618 /// Get the set of all may (and must) accesses, tagged with the access id. 2619 /// 2620 /// @see getTaggedAccesses 2621 isl_union_map *getTaggedMayWrites() { 2622 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2623 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2624 } 2625 2626 /// Get the set of all must accesses, tagged with the access id. 2627 /// 2628 /// @see getTaggedAccesses 2629 isl_union_map *getTaggedMustWrites() { 2630 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2631 } 2632 2633 /// Collect parameter and array names as isl_ids. 2634 /// 2635 /// To reason about the different parameters and arrays used, ppcg requires 2636 /// a list of all isl_ids in use. As PPCG traditionally performs 2637 /// source-to-source compilation each of these isl_ids is mapped to the 2638 /// expression that represents it. As we do not have a corresponding 2639 /// expression in Polly, we just map each id to a 'zero' expression to match 2640 /// the data format that ppcg expects. 2641 /// 2642 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2643 __isl_give isl_id_to_ast_expr *getNames() { 2644 auto *Names = isl_id_to_ast_expr_alloc( 2645 S->getIslCtx(), 2646 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2647 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2648 2649 for (const SCEV *P : S->parameters()) { 2650 isl_id *Id = S->getIdForParam(P).release(); 2651 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2652 } 2653 2654 for (auto &Array : S->arrays()) { 2655 auto Id = Array->getBasePtrId().release(); 2656 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2657 } 2658 2659 isl_ast_expr_free(Zero); 2660 2661 return Names; 2662 } 2663 2664 /// Create a new PPCG scop from the current scop. 2665 /// 2666 /// The PPCG scop is initialized with data from the current polly::Scop. From 2667 /// this initial data, the data-dependences in the PPCG scop are initialized. 2668 /// We do not use Polly's dependence analysis for now, to ensure we match 2669 /// the PPCG default behaviour more closely. 2670 /// 2671 /// @returns A new ppcg scop. 2672 ppcg_scop *createPPCGScop() { 2673 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2674 2675 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2676 2677 PPCGScop->options = createPPCGOptions(); 2678 // enable live range reordering 2679 PPCGScop->options->live_range_reordering = 1; 2680 2681 PPCGScop->start = 0; 2682 PPCGScop->end = 0; 2683 2684 PPCGScop->context = S->getContext().release(); 2685 PPCGScop->domain = S->getDomains().release(); 2686 // TODO: investigate this further. PPCG calls collect_call_domains. 2687 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2688 PPCGScop->tagged_reads = getTaggedReads(); 2689 PPCGScop->reads = S->getReads().release(); 2690 PPCGScop->live_in = nullptr; 2691 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2692 PPCGScop->may_writes = S->getWrites().release(); 2693 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2694 PPCGScop->must_writes = S->getMustWrites().release(); 2695 PPCGScop->live_out = nullptr; 2696 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2697 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2698 2699 PPCGScop->tagger = nullptr; 2700 PPCGScop->independence = 2701 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2702 PPCGScop->dep_flow = nullptr; 2703 PPCGScop->tagged_dep_flow = nullptr; 2704 PPCGScop->dep_false = nullptr; 2705 PPCGScop->dep_forced = nullptr; 2706 PPCGScop->dep_order = nullptr; 2707 PPCGScop->tagged_dep_order = nullptr; 2708 2709 PPCGScop->schedule = S->getScheduleTree().release(); 2710 // If we have something non-trivial to kill, add it to the schedule 2711 if (KillsInfo.KillsSchedule.get()) 2712 PPCGScop->schedule = isl_schedule_sequence( 2713 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2714 2715 PPCGScop->names = getNames(); 2716 PPCGScop->pet = nullptr; 2717 2718 compute_tagger(PPCGScop); 2719 compute_dependences(PPCGScop); 2720 eliminate_dead_code(PPCGScop); 2721 2722 return PPCGScop; 2723 } 2724 2725 /// Collect the array accesses in a statement. 2726 /// 2727 /// @param Stmt The statement for which to collect the accesses. 2728 /// 2729 /// @returns A list of array accesses. 2730 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2731 gpu_stmt_access *Accesses = nullptr; 2732 2733 for (MemoryAccess *Acc : Stmt) { 2734 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2735 Access->read = Acc->isRead(); 2736 Access->write = Acc->isWrite(); 2737 Access->access = Acc->getAccessRelation().release(); 2738 isl_space *Space = isl_map_get_space(Access->access); 2739 Space = isl_space_range(Space); 2740 Space = isl_space_from_range(Space); 2741 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2742 isl_map *Universe = isl_map_universe(Space); 2743 Access->tagged_access = 2744 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2745 Access->exact_write = !Acc->isMayWrite(); 2746 Access->ref_id = Acc->getId().release(); 2747 Access->next = Accesses; 2748 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2749 // TODO: Also mark one-element accesses to arrays as fixed-element. 2750 Access->fixed_element = 2751 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2752 Accesses = Access; 2753 } 2754 2755 return Accesses; 2756 } 2757 2758 /// Collect the list of GPU statements. 2759 /// 2760 /// Each statement has an id, a pointer to the underlying data structure, 2761 /// as well as a list with all memory accesses. 2762 /// 2763 /// TODO: Initialize the list of memory accesses. 2764 /// 2765 /// @returns A linked-list of statements. 2766 gpu_stmt *getStatements() { 2767 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2768 std::distance(S->begin(), S->end())); 2769 2770 int i = 0; 2771 for (auto &Stmt : *S) { 2772 gpu_stmt *GPUStmt = &Stmts[i]; 2773 2774 GPUStmt->id = Stmt.getDomainId().release(); 2775 2776 // We use the pet stmt pointer to keep track of the Polly statements. 2777 GPUStmt->stmt = (pet_stmt *)&Stmt; 2778 GPUStmt->accesses = getStmtAccesses(Stmt); 2779 i++; 2780 } 2781 2782 return Stmts; 2783 } 2784 2785 /// Derive the extent of an array. 2786 /// 2787 /// The extent of an array is the set of elements that are within the 2788 /// accessed array. For the inner dimensions, the extent constraints are 2789 /// 0 and the size of the corresponding array dimension. For the first 2790 /// (outermost) dimension, the extent constraints are the minimal and maximal 2791 /// subscript value for the first dimension. 2792 /// 2793 /// @param Array The array to derive the extent for. 2794 /// 2795 /// @returns An isl_set describing the extent of the array. 2796 isl::set getExtent(ScopArrayInfo *Array) { 2797 unsigned NumDims = Array->getNumberOfDimensions(); 2798 2799 if (Array->getNumberOfDimensions() == 0) 2800 return isl::set::universe(Array->getSpace()); 2801 2802 isl::union_map Accesses = S->getAccesses(Array); 2803 isl::union_set AccessUSet = Accesses.range(); 2804 AccessUSet = AccessUSet.coalesce(); 2805 AccessUSet = AccessUSet.detect_equalities(); 2806 AccessUSet = AccessUSet.coalesce(); 2807 2808 if (AccessUSet.is_empty()) 2809 return isl::set::empty(Array->getSpace()); 2810 2811 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2812 2813 isl::local_space LS = isl::local_space(Array->getSpace()); 2814 2815 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2816 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2817 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2818 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2819 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2820 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2821 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2822 2823 isl::set Extent = isl::set::universe(Array->getSpace()); 2824 2825 Extent = Extent.intersect(OuterMin.le_set(Val)); 2826 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2827 2828 for (unsigned i = 1; i < NumDims; ++i) 2829 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2830 2831 for (unsigned i = 0; i < NumDims; ++i) { 2832 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2833 2834 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2835 // Fortran array will we have a legitimate dimension. 2836 if (PwAff.is_null()) { 2837 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2838 continue; 2839 } 2840 2841 isl::pw_aff Val = isl::aff::var_on_domain( 2842 isl::local_space(Array->getSpace()), isl::dim::set, i); 2843 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2844 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2845 isl::set Set = PwAff.gt_set(Val); 2846 Extent = Set.intersect(Extent); 2847 } 2848 2849 return Extent; 2850 } 2851 2852 /// Derive the bounds of an array. 2853 /// 2854 /// For the first dimension we derive the bound of the array from the extent 2855 /// of this dimension. For inner dimensions we obtain their size directly from 2856 /// ScopArrayInfo. 2857 /// 2858 /// @param PPCGArray The array to compute bounds for. 2859 /// @param Array The polly array from which to take the information. 2860 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2861 std::vector<isl_pw_aff *> Bounds; 2862 2863 if (PPCGArray.n_index > 0) { 2864 if (isl_set_is_empty(PPCGArray.extent)) { 2865 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2866 isl_local_space *LS = isl_local_space_from_space( 2867 isl_space_params(isl_set_get_space(Dom))); 2868 isl_set_free(Dom); 2869 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2870 Bounds.push_back(Zero); 2871 } else { 2872 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2873 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2874 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2875 isl_set_free(Dom); 2876 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2877 isl_local_space *LS = 2878 isl_local_space_from_space(isl_set_get_space(Dom)); 2879 isl_aff *One = isl_aff_zero_on_domain(LS); 2880 One = isl_aff_add_constant_si(One, 1); 2881 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2882 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2883 Bounds.push_back(Bound); 2884 } 2885 } 2886 2887 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2888 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2889 auto LS = isl_pw_aff_get_domain_space(Bound); 2890 auto Aff = isl_multi_aff_zero(LS); 2891 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2892 Bounds.push_back(Bound); 2893 } 2894 2895 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2896 /// to have the same parameter dimensions. So, we need to align them to an 2897 /// appropriate space. 2898 /// Scop::Context is _not_ an appropriate space, because when we have 2899 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2900 /// contain all parameter dimensions. 2901 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2902 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2903 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2904 2905 isl_space *AlignSpace = nullptr; 2906 std::vector<isl_pw_aff *> AlignedBounds; 2907 std::tie(AlignSpace, AlignedBounds) = 2908 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2909 2910 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2911 2912 isl_pw_aff_list *BoundsList = 2913 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2914 2915 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2916 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2917 2918 assert(BoundsSpace && "Unable to access space of array."); 2919 assert(BoundsList && "Unable to access list of bounds."); 2920 2921 PPCGArray.bound = 2922 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2923 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2924 } 2925 2926 /// Create the arrays for @p PPCGProg. 2927 /// 2928 /// @param PPCGProg The program to compute the arrays for. 2929 void createArrays(gpu_prog *PPCGProg, 2930 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2931 int i = 0; 2932 for (auto &Array : ValidSAIs) { 2933 std::string TypeName; 2934 raw_string_ostream OS(TypeName); 2935 2936 OS << *Array->getElementType(); 2937 TypeName = OS.str(); 2938 2939 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2940 2941 PPCGArray.space = Array->getSpace().release(); 2942 PPCGArray.type = strdup(TypeName.c_str()); 2943 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 2944 PPCGArray.name = strdup(Array->getName().c_str()); 2945 PPCGArray.extent = nullptr; 2946 PPCGArray.n_index = Array->getNumberOfDimensions(); 2947 PPCGArray.extent = getExtent(Array).release(); 2948 PPCGArray.n_ref = 0; 2949 PPCGArray.refs = nullptr; 2950 PPCGArray.accessed = true; 2951 PPCGArray.read_only_scalar = 2952 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2953 PPCGArray.has_compound_element = false; 2954 PPCGArray.local = false; 2955 PPCGArray.declare_local = false; 2956 PPCGArray.global = false; 2957 PPCGArray.linearize = false; 2958 PPCGArray.dep_order = nullptr; 2959 PPCGArray.user = Array; 2960 2961 PPCGArray.bound = nullptr; 2962 setArrayBounds(PPCGArray, Array); 2963 i++; 2964 2965 collect_references(PPCGProg, &PPCGArray); 2966 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 2967 } 2968 } 2969 2970 /// Create an identity map between the arrays in the scop. 2971 /// 2972 /// @returns An identity map between the arrays in the scop. 2973 isl_union_map *getArrayIdentity() { 2974 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 2975 2976 for (auto &Array : S->arrays()) { 2977 isl_space *Space = Array->getSpace().release(); 2978 Space = isl_space_map_from_set(Space); 2979 isl_map *Identity = isl_map_identity(Space); 2980 Maps = isl_union_map_add_map(Maps, Identity); 2981 } 2982 2983 return Maps; 2984 } 2985 2986 /// Create a default-initialized PPCG GPU program. 2987 /// 2988 /// @returns A new gpu program description. 2989 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2990 2991 if (!PPCGScop) 2992 return nullptr; 2993 2994 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2995 2996 PPCGProg->ctx = S->getIslCtx(); 2997 PPCGProg->scop = PPCGScop; 2998 PPCGProg->context = isl_set_copy(PPCGScop->context); 2999 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3000 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3001 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3002 PPCGProg->tagged_must_kill = 3003 isl_union_map_copy(PPCGScop->tagged_must_kills); 3004 PPCGProg->to_inner = getArrayIdentity(); 3005 PPCGProg->to_outer = getArrayIdentity(); 3006 // TODO: verify that this assignment is correct. 3007 PPCGProg->any_to_outer = nullptr; 3008 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3009 PPCGProg->stmts = getStatements(); 3010 3011 // Only consider arrays that have a non-empty extent. 3012 // Otherwise, this will cause us to consider the following kinds of 3013 // empty arrays: 3014 // 1. Invariant loads that are represented by SAI objects. 3015 // 2. Arrays with statically known zero size. 3016 auto ValidSAIsRange = 3017 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3018 return !getExtent(SAI).is_empty(); 3019 }); 3020 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3021 ValidSAIsRange.end()); 3022 3023 PPCGProg->n_array = 3024 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3025 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 3026 PPCGProg->n_array); 3027 3028 createArrays(PPCGProg, ValidSAIs); 3029 3030 PPCGProg->array_order = nullptr; 3031 collect_order_dependences(PPCGProg); 3032 3033 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3034 return PPCGProg; 3035 } 3036 3037 struct PrintGPUUserData { 3038 struct cuda_info *CudaInfo; 3039 struct gpu_prog *PPCGProg; 3040 std::vector<ppcg_kernel *> Kernels; 3041 }; 3042 3043 /// Print a user statement node in the host code. 3044 /// 3045 /// We use ppcg's printing facilities to print the actual statement and 3046 /// additionally build up a list of all kernels that are encountered in the 3047 /// host ast. 3048 /// 3049 /// @param P The printer to print to 3050 /// @param Options The printing options to use 3051 /// @param Node The node to print 3052 /// @param User A user pointer to carry additional data. This pointer is 3053 /// expected to be of type PrintGPUUserData. 3054 /// 3055 /// @returns A printer to which the output has been printed. 3056 static __isl_give isl_printer * 3057 printHostUser(__isl_take isl_printer *P, 3058 __isl_take isl_ast_print_options *Options, 3059 __isl_take isl_ast_node *Node, void *User) { 3060 auto Data = (struct PrintGPUUserData *)User; 3061 auto Id = isl_ast_node_get_annotation(Node); 3062 3063 if (Id) { 3064 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3065 3066 // If this is a user statement, format it ourselves as ppcg would 3067 // otherwise try to call pet functionality that is not available in 3068 // Polly. 3069 if (IsUser) { 3070 P = isl_printer_start_line(P); 3071 P = isl_printer_print_ast_node(P, Node); 3072 P = isl_printer_end_line(P); 3073 isl_id_free(Id); 3074 isl_ast_print_options_free(Options); 3075 return P; 3076 } 3077 3078 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3079 isl_id_free(Id); 3080 Data->Kernels.push_back(Kernel); 3081 } 3082 3083 return print_host_user(P, Options, Node, User); 3084 } 3085 3086 /// Print C code corresponding to the control flow in @p Kernel. 3087 /// 3088 /// @param Kernel The kernel to print 3089 void printKernel(ppcg_kernel *Kernel) { 3090 auto *P = isl_printer_to_str(S->getIslCtx()); 3091 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3092 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3093 P = isl_ast_node_print(Kernel->tree, P, Options); 3094 char *String = isl_printer_get_str(P); 3095 printf("%s\n", String); 3096 free(String); 3097 isl_printer_free(P); 3098 } 3099 3100 /// Print C code corresponding to the GPU code described by @p Tree. 3101 /// 3102 /// @param Tree An AST describing GPU code 3103 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3104 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3105 auto *P = isl_printer_to_str(S->getIslCtx()); 3106 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3107 3108 PrintGPUUserData Data; 3109 Data.PPCGProg = PPCGProg; 3110 3111 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3112 Options = 3113 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3114 P = isl_ast_node_print(Tree, P, Options); 3115 char *String = isl_printer_get_str(P); 3116 printf("# host\n"); 3117 printf("%s\n", String); 3118 free(String); 3119 isl_printer_free(P); 3120 3121 for (auto Kernel : Data.Kernels) { 3122 printf("# kernel%d\n", Kernel->id); 3123 printKernel(Kernel); 3124 } 3125 } 3126 3127 // Generate a GPU program using PPCG. 3128 // 3129 // GPU mapping consists of multiple steps: 3130 // 3131 // 1) Compute new schedule for the program. 3132 // 2) Map schedule to GPU (TODO) 3133 // 3) Generate code for new schedule (TODO) 3134 // 3135 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3136 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3137 // strategy directly from this pass. 3138 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3139 3140 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3141 3142 PPCGGen->ctx = S->getIslCtx(); 3143 PPCGGen->options = PPCGScop->options; 3144 PPCGGen->print = nullptr; 3145 PPCGGen->print_user = nullptr; 3146 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3147 PPCGGen->prog = PPCGProg; 3148 PPCGGen->tree = nullptr; 3149 PPCGGen->types.n = 0; 3150 PPCGGen->types.name = nullptr; 3151 PPCGGen->sizes = nullptr; 3152 PPCGGen->used_sizes = nullptr; 3153 PPCGGen->kernel_id = 0; 3154 3155 // Set scheduling strategy to same strategy PPCG is using. 3156 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3157 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3158 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3159 3160 isl_schedule *Schedule = get_schedule(PPCGGen); 3161 3162 int has_permutable = has_any_permutable_node(Schedule); 3163 3164 Schedule = 3165 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3166 3167 if (!has_permutable || has_permutable < 0) { 3168 Schedule = isl_schedule_free(Schedule); 3169 DEBUG(dbgs() << getUniqueScopName(S) 3170 << " does not have permutable bands. Bailing out\n";); 3171 } else { 3172 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3173 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3174 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3175 } 3176 3177 if (DumpSchedule) { 3178 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3179 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3180 P = isl_printer_print_str(P, "Schedule\n"); 3181 P = isl_printer_print_str(P, "========\n"); 3182 if (Schedule) 3183 P = isl_printer_print_schedule(P, Schedule); 3184 else 3185 P = isl_printer_print_str(P, "No schedule found\n"); 3186 3187 printf("%s\n", isl_printer_get_str(P)); 3188 isl_printer_free(P); 3189 } 3190 3191 if (DumpCode) { 3192 printf("Code\n"); 3193 printf("====\n"); 3194 if (PPCGGen->tree) 3195 printGPUTree(PPCGGen->tree, PPCGProg); 3196 else 3197 printf("No code generated\n"); 3198 } 3199 3200 isl_schedule_free(Schedule); 3201 3202 return PPCGGen; 3203 } 3204 3205 /// Free gpu_gen structure. 3206 /// 3207 /// @param PPCGGen The ppcg_gen object to free. 3208 void freePPCGGen(gpu_gen *PPCGGen) { 3209 isl_ast_node_free(PPCGGen->tree); 3210 isl_union_map_free(PPCGGen->sizes); 3211 isl_union_map_free(PPCGGen->used_sizes); 3212 free(PPCGGen); 3213 } 3214 3215 /// Free the options in the ppcg scop structure. 3216 /// 3217 /// ppcg is not freeing these options for us. To avoid leaks we do this 3218 /// ourselves. 3219 /// 3220 /// @param PPCGScop The scop referencing the options to free. 3221 void freeOptions(ppcg_scop *PPCGScop) { 3222 free(PPCGScop->options->debug); 3223 PPCGScop->options->debug = nullptr; 3224 free(PPCGScop->options); 3225 PPCGScop->options = nullptr; 3226 } 3227 3228 /// Approximate the number of points in the set. 3229 /// 3230 /// This function returns an ast expression that overapproximates the number 3231 /// of points in an isl set through the rectangular hull surrounding this set. 3232 /// 3233 /// @param Set The set to count. 3234 /// @param Build The isl ast build object to use for creating the ast 3235 /// expression. 3236 /// 3237 /// @returns An approximation of the number of points in the set. 3238 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3239 __isl_keep isl_ast_build *Build) { 3240 3241 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3242 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3243 3244 isl_space *Space = isl_set_get_space(Set); 3245 Space = isl_space_params(Space); 3246 auto *Univ = isl_set_universe(Space); 3247 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3248 3249 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3250 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3251 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3252 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3253 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3254 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3255 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3256 } 3257 3258 isl_set_free(Set); 3259 isl_pw_aff_free(OneAff); 3260 3261 return Expr; 3262 } 3263 3264 /// Approximate a number of dynamic instructions executed by a given 3265 /// statement. 3266 /// 3267 /// @param Stmt The statement for which to compute the number of dynamic 3268 /// instructions. 3269 /// @param Build The isl ast build object to use for creating the ast 3270 /// expression. 3271 /// @returns An approximation of the number of dynamic instructions executed 3272 /// by @p Stmt. 3273 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3274 __isl_keep isl_ast_build *Build) { 3275 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3276 3277 long InstCount = 0; 3278 3279 if (Stmt.isBlockStmt()) { 3280 auto *BB = Stmt.getBasicBlock(); 3281 InstCount = std::distance(BB->begin(), BB->end()); 3282 } else { 3283 auto *R = Stmt.getRegion(); 3284 3285 for (auto *BB : R->blocks()) { 3286 InstCount += std::distance(BB->begin(), BB->end()); 3287 } 3288 } 3289 3290 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3291 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3292 return isl_ast_expr_mul(InstExpr, Iterations); 3293 } 3294 3295 /// Approximate dynamic instructions executed in scop. 3296 /// 3297 /// @param S The scop for which to approximate dynamic instructions. 3298 /// @param Build The isl ast build object to use for creating the ast 3299 /// expression. 3300 /// @returns An approximation of the number of dynamic instructions executed 3301 /// in @p S. 3302 __isl_give isl_ast_expr * 3303 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3304 isl_ast_expr *Instructions; 3305 3306 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3307 Instructions = isl_ast_expr_from_val(Zero); 3308 3309 for (ScopStmt &Stmt : S) { 3310 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3311 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3312 } 3313 return Instructions; 3314 } 3315 3316 /// Create a check that ensures sufficient compute in scop. 3317 /// 3318 /// @param S The scop for which to ensure sufficient compute. 3319 /// @param Build The isl ast build object to use for creating the ast 3320 /// expression. 3321 /// @returns An expression that evaluates to TRUE in case of sufficient 3322 /// compute and to FALSE, otherwise. 3323 __isl_give isl_ast_expr * 3324 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3325 auto Iterations = getNumberOfIterations(S, Build); 3326 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3327 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3328 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3329 } 3330 3331 /// Check if the basic block contains a function we cannot codegen for GPU 3332 /// kernels. 3333 /// 3334 /// If this basic block does something with a `Function` other than calling 3335 /// a function that we support in a kernel, return true. 3336 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3337 bool AllowCUDALibDevice) { 3338 for (const Instruction &Inst : *BB) { 3339 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3340 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3341 AllowCUDALibDevice)) 3342 continue; 3343 3344 for (Value *Op : Inst.operands()) 3345 // Look for (<func-type>*) among operands of Inst 3346 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3347 if (isa<FunctionType>(PtrTy->getElementType())) { 3348 DEBUG(dbgs() << Inst 3349 << " has illegal use of function in kernel.\n"); 3350 return true; 3351 } 3352 } 3353 } 3354 return false; 3355 } 3356 3357 /// Return whether the Scop S uses functions in a way that we do not support. 3358 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3359 for (auto &Stmt : S) { 3360 if (Stmt.isBlockStmt()) { 3361 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3362 AllowCUDALibDevice)) 3363 return true; 3364 } else { 3365 assert(Stmt.isRegionStmt() && 3366 "Stmt was neither block nor region statement"); 3367 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3368 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3369 return true; 3370 } 3371 } 3372 return false; 3373 } 3374 3375 /// Generate code for a given GPU AST described by @p Root. 3376 /// 3377 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3378 /// @param Prog The GPU Program to generate code for. 3379 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3380 ScopAnnotator Annotator; 3381 Annotator.buildAliasScopes(*S); 3382 3383 Region *R = &S->getRegion(); 3384 3385 simplifyRegion(R, DT, LI, RI); 3386 3387 BasicBlock *EnteringBB = R->getEnteringBlock(); 3388 3389 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3390 3391 // Only build the run-time condition and parameters _after_ having 3392 // introduced the conditional branch. This is important as the conditional 3393 // branch will guard the original scop from new induction variables that 3394 // the SCEVExpander may introduce while code generating the parameters and 3395 // which may introduce scalar dependences that prevent us from correctly 3396 // code generating this scop. 3397 BBPair StartExitBlocks; 3398 BranchInst *CondBr = nullptr; 3399 std::tie(StartExitBlocks, CondBr) = 3400 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3401 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3402 3403 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3404 3405 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3406 StartBlock, Prog, Runtime, Architecture); 3407 3408 // TODO: Handle LICM 3409 auto SplitBlock = StartBlock->getSinglePredecessor(); 3410 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3411 3412 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3413 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3414 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3415 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3416 isl_ast_build_free(Build); 3417 3418 // preload invariant loads. Note: This should happen before the RTC 3419 // because the RTC may depend on values that are invariant load hoisted. 3420 if (!NodeBuilder.preloadInvariantLoads()) { 3421 DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3422 S->getFunction().getName() + 3423 " | Scop Region: " + S->getNameStr()); 3424 // adjust the dominator tree accordingly. 3425 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3426 assert(ExitingBlock); 3427 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3428 assert(MergeBlock); 3429 polly::markBlockUnreachable(*StartBlock, Builder); 3430 polly::markBlockUnreachable(*ExitingBlock, Builder); 3431 auto *ExitingBB = S->getExitingBlock(); 3432 assert(ExitingBB); 3433 3434 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3435 DT->eraseNode(ExitingBlock); 3436 isl_ast_expr_free(Condition); 3437 isl_ast_node_free(Root); 3438 } else { 3439 3440 if (polly::PerfMonitoring) { 3441 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3442 P.initialize(); 3443 P.insertRegionStart(SplitBlock->getTerminator()); 3444 3445 // TODO: actually think if this is the correct exiting block to place 3446 // the `end` performance marker. Invariant load hoisting changes 3447 // the CFG in a way that I do not precisely understand, so I 3448 // (Siddharth<[email protected]>) should come back to this and 3449 // think about which exiting block to use. 3450 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3451 assert(ExitingBlock); 3452 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3453 P.insertRegionEnd(MergeBlock->getTerminator()); 3454 } 3455 3456 NodeBuilder.addParameters(S->getContext().release()); 3457 Value *RTC = NodeBuilder.createRTC(Condition); 3458 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3459 3460 Builder.SetInsertPoint(&*StartBlock->begin()); 3461 3462 NodeBuilder.create(Root); 3463 } 3464 3465 /// In case a sequential kernel has more surrounding loops as any parallel 3466 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3467 /// point in running it on a GPU. 3468 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3469 CondBr->setOperand(0, Builder.getFalse()); 3470 3471 if (!NodeBuilder.BuildSuccessful) 3472 CondBr->setOperand(0, Builder.getFalse()); 3473 } 3474 3475 bool runOnScop(Scop &CurrentScop) override { 3476 S = &CurrentScop; 3477 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3478 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3479 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3480 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3481 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3482 3483 DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3484 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3485 3486 // We currently do not support functions other than intrinsics inside 3487 // kernels, as code generation will need to offload function calls to the 3488 // kernel. This may lead to a kernel trying to call a function on the host. 3489 // This also allows us to prevent codegen from trying to take the 3490 // address of an intrinsic function to send to the kernel. 3491 if (containsInvalidKernelFunction(CurrentScop, 3492 Architecture == GPUArch::NVPTX64)) { 3493 DEBUG( 3494 dbgs() << getUniqueScopName(S) 3495 << " contains function which cannot be materialised in a GPU " 3496 "kernel. Bailing out.\n";); 3497 return false; 3498 } 3499 3500 auto PPCGScop = createPPCGScop(); 3501 auto PPCGProg = createPPCGProg(PPCGScop); 3502 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3503 3504 if (PPCGGen->tree) { 3505 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3506 CurrentScop.markAsToBeSkipped(); 3507 } else { 3508 DEBUG(dbgs() << getUniqueScopName(S) 3509 << " has empty PPCGGen->tree. Bailing out.\n"); 3510 } 3511 3512 freeOptions(PPCGScop); 3513 freePPCGGen(PPCGGen); 3514 gpu_prog_free(PPCGProg); 3515 ppcg_scop_free(PPCGScop); 3516 3517 return true; 3518 } 3519 3520 void printScop(raw_ostream &, Scop &) const override {} 3521 3522 void getAnalysisUsage(AnalysisUsage &AU) const override { 3523 AU.addRequired<DominatorTreeWrapperPass>(); 3524 AU.addRequired<RegionInfoPass>(); 3525 AU.addRequired<ScalarEvolutionWrapperPass>(); 3526 AU.addRequired<ScopDetectionWrapperPass>(); 3527 AU.addRequired<ScopInfoRegionPass>(); 3528 AU.addRequired<LoopInfoWrapperPass>(); 3529 3530 AU.addPreserved<AAResultsWrapperPass>(); 3531 AU.addPreserved<BasicAAWrapperPass>(); 3532 AU.addPreserved<LoopInfoWrapperPass>(); 3533 AU.addPreserved<DominatorTreeWrapperPass>(); 3534 AU.addPreserved<GlobalsAAWrapperPass>(); 3535 AU.addPreserved<ScopDetectionWrapperPass>(); 3536 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3537 AU.addPreserved<SCEVAAWrapperPass>(); 3538 3539 // FIXME: We do not yet add regions for the newly generated code to the 3540 // region tree. 3541 AU.addPreserved<RegionInfoPass>(); 3542 AU.addPreserved<ScopInfoRegionPass>(); 3543 } 3544 }; 3545 } // namespace 3546 3547 char PPCGCodeGeneration::ID = 1; 3548 3549 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3550 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3551 generator->Runtime = Runtime; 3552 generator->Architecture = Arch; 3553 return generator; 3554 } 3555 3556 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3557 "Polly - Apply PPCG translation to SCOP", false, false) 3558 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3559 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3560 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3561 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3562 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3563 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3564 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3565 "Polly - Apply PPCG translation to SCOP", false, false) 3566