1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslAst.h" 16 #include "polly/CodeGen/IslNodeBuilder.h" 17 #include "polly/CodeGen/Utils.h" 18 #include "polly/DependenceInfo.h" 19 #include "polly/LinkAllPasses.h" 20 #include "polly/Options.h" 21 #include "polly/ScopDetection.h" 22 #include "polly/ScopInfo.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "llvm/ADT/PostOrderIterator.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/PostDominators.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<std::string> 91 CudaVersion("polly-acc-cuda-version", 92 cl::desc("The CUDA version to compile for"), cl::Hidden, 93 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 94 95 /// Create the ast expressions for a ScopStmt. 96 /// 97 /// This function is a callback for to generate the ast expressions for each 98 /// of the scheduled ScopStmts. 99 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 100 void *StmtT, isl_ast_build *Build, 101 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 102 isl_id *Id, void *User), 103 void *UserIndex, 104 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 105 void *UserExpr) { 106 107 ScopStmt *Stmt = (ScopStmt *)StmtT; 108 109 isl_ctx *Ctx; 110 111 if (!Stmt || !Build) 112 return NULL; 113 114 Ctx = isl_ast_build_get_ctx(Build); 115 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 116 117 for (MemoryAccess *Acc : *Stmt) { 118 isl_map *AddrFunc = Acc->getAddressFunction(); 119 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 120 isl_id *RefId = Acc->getId(); 121 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 122 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 123 MPA = isl_multi_pw_aff_coalesce(MPA); 124 MPA = FunctionIndex(MPA, RefId, UserIndex); 125 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 126 Access = FunctionExpr(Access, RefId, UserExpr); 127 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 128 } 129 130 return RefToExpr; 131 } 132 133 /// Generate code for a GPU specific isl AST. 134 /// 135 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 136 /// generates code for general-prupose AST nodes, with special functionality 137 /// for generating GPU specific user nodes. 138 /// 139 /// @see GPUNodeBuilder::createUser 140 class GPUNodeBuilder : public IslNodeBuilder { 141 public: 142 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 143 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 144 DominatorTree &DT, Scop &S, gpu_prog *Prog) 145 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 146 getExprBuilder().setIDToSAI(&IDToSAI); 147 } 148 149 /// Create after-run-time-check initialization code. 150 void initializeAfterRTH(); 151 152 /// Finalize the generated scop. 153 virtual void finalize(); 154 155 /// Track if the full build process was successful. 156 /// 157 /// This value is set to false, if throughout the build process an error 158 /// occurred which prevents us from generating valid GPU code. 159 bool BuildSuccessful = true; 160 161 private: 162 /// A vector of array base pointers for which a new ScopArrayInfo was created. 163 /// 164 /// This vector is used to delete the ScopArrayInfo when it is not needed any 165 /// more. 166 std::vector<Value *> LocalArrays; 167 168 /// A map from ScopArrays to their corresponding device allocations. 169 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 170 171 /// The current GPU context. 172 Value *GPUContext; 173 174 /// The set of isl_ids allocated in the kernel 175 std::vector<isl_id *> KernelIds; 176 177 /// A module containing GPU code. 178 /// 179 /// This pointer is only set in case we are currently generating GPU code. 180 std::unique_ptr<Module> GPUModule; 181 182 /// The GPU program we generate code for. 183 gpu_prog *Prog; 184 185 /// Class to free isl_ids. 186 class IslIdDeleter { 187 public: 188 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 189 }; 190 191 /// A set containing all isl_ids allocated in a GPU kernel. 192 /// 193 /// By releasing this set all isl_ids will be freed. 194 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 195 196 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 197 198 /// Create code for user-defined AST nodes. 199 /// 200 /// These AST nodes can be of type: 201 /// 202 /// - ScopStmt: A computational statement (TODO) 203 /// - Kernel: A GPU kernel call (TODO) 204 /// - Data-Transfer: A GPU <-> CPU data-transfer 205 /// - In-kernel synchronization 206 /// - In-kernel memory copy statement 207 /// 208 /// @param UserStmt The ast node to generate code for. 209 virtual void createUser(__isl_take isl_ast_node *UserStmt); 210 211 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 212 213 /// Create code for a data transfer statement 214 /// 215 /// @param TransferStmt The data transfer statement. 216 /// @param Direction The direction in which to transfer data. 217 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 218 enum DataDirection Direction); 219 220 /// Find llvm::Values referenced in GPU kernel. 221 /// 222 /// @param Kernel The kernel to scan for llvm::Values 223 /// 224 /// @returns A set of values referenced by the kernel. 225 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 226 227 /// Compute the sizes of the execution grid for a given kernel. 228 /// 229 /// @param Kernel The kernel to compute grid sizes for. 230 /// 231 /// @returns A tuple with grid sizes for X and Y dimension 232 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 233 234 /// Compute the sizes of the thread blocks for a given kernel. 235 /// 236 /// @param Kernel The kernel to compute thread block sizes for. 237 /// 238 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 239 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 240 241 /// Create kernel launch parameters. 242 /// 243 /// @param Kernel The kernel to create parameters for. 244 /// @param F The kernel function that has been created. 245 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 246 /// 247 /// @returns A stack allocated array with pointers to the parameter 248 /// values that are passed to the kernel. 249 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 250 SetVector<Value *> SubtreeValues); 251 252 /// Create declarations for kernel variable. 253 /// 254 /// This includes shared memory declarations. 255 /// 256 /// @param Kernel The kernel definition to create variables for. 257 /// @param FN The function into which to generate the variables. 258 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 259 260 /// Add CUDA annotations to module. 261 /// 262 /// Add a set of CUDA annotations that declares the maximal block dimensions 263 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 264 /// PTX compiler to bound the number of allocated registers to ensure the 265 /// resulting kernel is known to run with up to as many block dimensions 266 /// as specified here. 267 /// 268 /// @param M The module to add the annotations to. 269 /// @param BlockDimX The size of block dimension X. 270 /// @param BlockDimY The size of block dimension Y. 271 /// @param BlockDimZ The size of block dimension Z. 272 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 273 Value *BlockDimZ); 274 275 /// Create GPU kernel. 276 /// 277 /// Code generate the kernel described by @p KernelStmt. 278 /// 279 /// @param KernelStmt The ast node to generate kernel code for. 280 void createKernel(__isl_take isl_ast_node *KernelStmt); 281 282 /// Generate code that computes the size of an array. 283 /// 284 /// @param Array The array for which to compute a size. 285 Value *getArraySize(gpu_array_info *Array); 286 287 /// Prepare the kernel arguments for kernel code generation 288 /// 289 /// @param Kernel The kernel to generate code for. 290 /// @param FN The function created for the kernel. 291 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 292 293 /// Create kernel function. 294 /// 295 /// Create a kernel function located in a newly created module that can serve 296 /// as target for device code generation. Set the Builder to point to the 297 /// start block of this newly created function. 298 /// 299 /// @param Kernel The kernel to generate code for. 300 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 301 void createKernelFunction(ppcg_kernel *Kernel, 302 SetVector<Value *> &SubtreeValues); 303 304 /// Create the declaration of a kernel function. 305 /// 306 /// The kernel function takes as arguments: 307 /// 308 /// - One i8 pointer for each external array reference used in the kernel. 309 /// - Host iterators 310 /// - Parameters 311 /// - Other LLVM Value references (TODO) 312 /// 313 /// @param Kernel The kernel to generate the function declaration for. 314 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 315 /// 316 /// @returns The newly declared function. 317 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 318 SetVector<Value *> &SubtreeValues); 319 320 /// Insert intrinsic functions to obtain thread and block ids. 321 /// 322 /// @param The kernel to generate the intrinsic functions for. 323 void insertKernelIntrinsics(ppcg_kernel *Kernel); 324 325 /// Create a global-to-shared or shared-to-global copy statement. 326 /// 327 /// @param CopyStmt The copy statement to generate code for 328 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 329 330 /// Create code for a ScopStmt called in @p Expr. 331 /// 332 /// @param Expr The expression containing the call. 333 /// @param KernelStmt The kernel statement referenced in the call. 334 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 335 336 /// Create an in-kernel synchronization call. 337 void createKernelSync(); 338 339 /// Create a PTX assembly string for the current GPU kernel. 340 /// 341 /// @returns A string containing the corresponding PTX assembly code. 342 std::string createKernelASM(); 343 344 /// Remove references from the dominator tree to the kernel function @p F. 345 /// 346 /// @param F The function to remove references to. 347 void clearDominators(Function *F); 348 349 /// Remove references from scalar evolution to the kernel function @p F. 350 /// 351 /// @param F The function to remove references to. 352 void clearScalarEvolution(Function *F); 353 354 /// Remove references from loop info to the kernel function @p F. 355 /// 356 /// @param F The function to remove references to. 357 void clearLoops(Function *F); 358 359 /// Finalize the generation of the kernel function. 360 /// 361 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 362 /// dump its IR to stderr. 363 /// 364 /// @returns The Assembly string of the kernel. 365 std::string finalizeKernelFunction(); 366 367 /// Create code that allocates memory to store arrays on device. 368 void allocateDeviceArrays(); 369 370 /// Free all allocated device arrays. 371 void freeDeviceArrays(); 372 373 /// Create a call to initialize the GPU context. 374 /// 375 /// @returns A pointer to the newly initialized context. 376 Value *createCallInitContext(); 377 378 /// Create a call to get the device pointer for a kernel allocation. 379 /// 380 /// @param Allocation The Polly GPU allocation 381 /// 382 /// @returns The device parameter corresponding to this allocation. 383 Value *createCallGetDevicePtr(Value *Allocation); 384 385 /// Create a call to free the GPU context. 386 /// 387 /// @param Context A pointer to an initialized GPU context. 388 void createCallFreeContext(Value *Context); 389 390 /// Create a call to allocate memory on the device. 391 /// 392 /// @param Size The size of memory to allocate 393 /// 394 /// @returns A pointer that identifies this allocation. 395 Value *createCallAllocateMemoryForDevice(Value *Size); 396 397 /// Create a call to free a device array. 398 /// 399 /// @param Array The device array to free. 400 void createCallFreeDeviceMemory(Value *Array); 401 402 /// Create a call to copy data from host to device. 403 /// 404 /// @param HostPtr A pointer to the host data that should be copied. 405 /// @param DevicePtr A device pointer specifying the location to copy to. 406 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 407 Value *Size); 408 409 /// Create a call to copy data from device to host. 410 /// 411 /// @param DevicePtr A pointer to the device data that should be copied. 412 /// @param HostPtr A host pointer specifying the location to copy to. 413 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 414 Value *Size); 415 416 /// Create a call to get a kernel from an assembly string. 417 /// 418 /// @param Buffer The string describing the kernel. 419 /// @param Entry The name of the kernel function to call. 420 /// 421 /// @returns A pointer to a kernel object 422 Value *createCallGetKernel(Value *Buffer, Value *Entry); 423 424 /// Create a call to free a GPU kernel. 425 /// 426 /// @param GPUKernel THe kernel to free. 427 void createCallFreeKernel(Value *GPUKernel); 428 429 /// Create a call to launch a GPU kernel. 430 /// 431 /// @param GPUKernel The kernel to launch. 432 /// @param GridDimX The size of the first grid dimension. 433 /// @param GridDimY The size of the second grid dimension. 434 /// @param GridBlockX The size of the first block dimension. 435 /// @param GridBlockY The size of the second block dimension. 436 /// @param GridBlockZ The size of the third block dimension. 437 /// @param Paramters A pointer to an array that contains itself pointers to 438 /// the parameter values passed for each kernel argument. 439 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 440 Value *GridDimY, Value *BlockDimX, 441 Value *BlockDimY, Value *BlockDimZ, 442 Value *Parameters); 443 }; 444 445 void GPUNodeBuilder::initializeAfterRTH() { 446 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 447 &*Builder.GetInsertPoint(), &DT, &LI); 448 NewBB->setName("polly.acc.initialize"); 449 Builder.SetInsertPoint(&NewBB->front()); 450 451 GPUContext = createCallInitContext(); 452 allocateDeviceArrays(); 453 } 454 455 void GPUNodeBuilder::finalize() { 456 freeDeviceArrays(); 457 createCallFreeContext(GPUContext); 458 IslNodeBuilder::finalize(); 459 } 460 461 void GPUNodeBuilder::allocateDeviceArrays() { 462 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 463 464 for (int i = 0; i < Prog->n_array; ++i) { 465 gpu_array_info *Array = &Prog->array[i]; 466 auto *ScopArray = (ScopArrayInfo *)Array->user; 467 std::string DevArrayName("p_dev_array_"); 468 DevArrayName.append(Array->name); 469 470 Value *ArraySize = getArraySize(Array); 471 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 472 DevArray->setName(DevArrayName); 473 DeviceAllocations[ScopArray] = DevArray; 474 } 475 476 isl_ast_build_free(Build); 477 } 478 479 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 480 Value *BlockDimY, Value *BlockDimZ) { 481 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 482 483 for (auto &F : *M) { 484 if (F.getCallingConv() != CallingConv::PTX_Kernel) 485 continue; 486 487 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 488 489 Metadata *Elements[] = { 490 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 491 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 492 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 493 ValueAsMetadata::get(V[2]), 494 }; 495 MDNode *Node = MDNode::get(M->getContext(), Elements); 496 AnnotationNode->addOperand(Node); 497 } 498 } 499 500 void GPUNodeBuilder::freeDeviceArrays() { 501 for (auto &Array : DeviceAllocations) 502 createCallFreeDeviceMemory(Array.second); 503 } 504 505 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 506 const char *Name = "polly_getKernel"; 507 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 508 Function *F = M->getFunction(Name); 509 510 // If F is not available, declare it. 511 if (!F) { 512 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 513 std::vector<Type *> Args; 514 Args.push_back(Builder.getInt8PtrTy()); 515 Args.push_back(Builder.getInt8PtrTy()); 516 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 517 F = Function::Create(Ty, Linkage, Name, M); 518 } 519 520 return Builder.CreateCall(F, {Buffer, Entry}); 521 } 522 523 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 524 const char *Name = "polly_getDevicePtr"; 525 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 526 Function *F = M->getFunction(Name); 527 528 // If F is not available, declare it. 529 if (!F) { 530 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 531 std::vector<Type *> Args; 532 Args.push_back(Builder.getInt8PtrTy()); 533 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 534 F = Function::Create(Ty, Linkage, Name, M); 535 } 536 537 return Builder.CreateCall(F, {Allocation}); 538 } 539 540 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 541 Value *GridDimY, Value *BlockDimX, 542 Value *BlockDimY, Value *BlockDimZ, 543 Value *Parameters) { 544 const char *Name = "polly_launchKernel"; 545 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 546 Function *F = M->getFunction(Name); 547 548 // If F is not available, declare it. 549 if (!F) { 550 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 551 std::vector<Type *> Args; 552 Args.push_back(Builder.getInt8PtrTy()); 553 Args.push_back(Builder.getInt32Ty()); 554 Args.push_back(Builder.getInt32Ty()); 555 Args.push_back(Builder.getInt32Ty()); 556 Args.push_back(Builder.getInt32Ty()); 557 Args.push_back(Builder.getInt32Ty()); 558 Args.push_back(Builder.getInt8PtrTy()); 559 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 560 F = Function::Create(Ty, Linkage, Name, M); 561 } 562 563 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 564 BlockDimZ, Parameters}); 565 } 566 567 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 568 const char *Name = "polly_freeKernel"; 569 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 570 Function *F = M->getFunction(Name); 571 572 // If F is not available, declare it. 573 if (!F) { 574 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 575 std::vector<Type *> Args; 576 Args.push_back(Builder.getInt8PtrTy()); 577 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 578 F = Function::Create(Ty, Linkage, Name, M); 579 } 580 581 Builder.CreateCall(F, {GPUKernel}); 582 } 583 584 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 585 const char *Name = "polly_freeDeviceMemory"; 586 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 587 Function *F = M->getFunction(Name); 588 589 // If F is not available, declare it. 590 if (!F) { 591 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 592 std::vector<Type *> Args; 593 Args.push_back(Builder.getInt8PtrTy()); 594 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 595 F = Function::Create(Ty, Linkage, Name, M); 596 } 597 598 Builder.CreateCall(F, {Array}); 599 } 600 601 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 602 const char *Name = "polly_allocateMemoryForDevice"; 603 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 604 Function *F = M->getFunction(Name); 605 606 // If F is not available, declare it. 607 if (!F) { 608 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 609 std::vector<Type *> Args; 610 Args.push_back(Builder.getInt64Ty()); 611 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 612 F = Function::Create(Ty, Linkage, Name, M); 613 } 614 615 return Builder.CreateCall(F, {Size}); 616 } 617 618 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 619 Value *DeviceData, 620 Value *Size) { 621 const char *Name = "polly_copyFromHostToDevice"; 622 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 623 Function *F = M->getFunction(Name); 624 625 // If F is not available, declare it. 626 if (!F) { 627 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 628 std::vector<Type *> Args; 629 Args.push_back(Builder.getInt8PtrTy()); 630 Args.push_back(Builder.getInt8PtrTy()); 631 Args.push_back(Builder.getInt64Ty()); 632 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 633 F = Function::Create(Ty, Linkage, Name, M); 634 } 635 636 Builder.CreateCall(F, {HostData, DeviceData, Size}); 637 } 638 639 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 640 Value *HostData, 641 Value *Size) { 642 const char *Name = "polly_copyFromDeviceToHost"; 643 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 644 Function *F = M->getFunction(Name); 645 646 // If F is not available, declare it. 647 if (!F) { 648 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 649 std::vector<Type *> Args; 650 Args.push_back(Builder.getInt8PtrTy()); 651 Args.push_back(Builder.getInt8PtrTy()); 652 Args.push_back(Builder.getInt64Ty()); 653 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 654 F = Function::Create(Ty, Linkage, Name, M); 655 } 656 657 Builder.CreateCall(F, {DeviceData, HostData, Size}); 658 } 659 660 Value *GPUNodeBuilder::createCallInitContext() { 661 const char *Name = "polly_initContext"; 662 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 663 Function *F = M->getFunction(Name); 664 665 // If F is not available, declare it. 666 if (!F) { 667 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 668 std::vector<Type *> Args; 669 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 670 F = Function::Create(Ty, Linkage, Name, M); 671 } 672 673 return Builder.CreateCall(F, {}); 674 } 675 676 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 677 const char *Name = "polly_freeContext"; 678 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 679 Function *F = M->getFunction(Name); 680 681 // If F is not available, declare it. 682 if (!F) { 683 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 684 std::vector<Type *> Args; 685 Args.push_back(Builder.getInt8PtrTy()); 686 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 687 F = Function::Create(Ty, Linkage, Name, M); 688 } 689 690 Builder.CreateCall(F, {Context}); 691 } 692 693 /// Check if one string is a prefix of another. 694 /// 695 /// @param String The string in which to look for the prefix. 696 /// @param Prefix The prefix to look for. 697 static bool isPrefix(std::string String, std::string Prefix) { 698 return String.find(Prefix) == 0; 699 } 700 701 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 702 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 703 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 704 705 if (!gpu_array_is_scalar(Array)) { 706 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 707 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 708 709 for (unsigned int i = 1; i < Array->n_index; i++) { 710 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 711 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 712 Res = isl_ast_expr_mul(Res, Expr); 713 } 714 715 Value *NumElements = ExprBuilder.create(Res); 716 if (NumElements->getType() != ArraySize->getType()) 717 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 718 ArraySize = Builder.CreateMul(ArraySize, NumElements); 719 } 720 isl_ast_build_free(Build); 721 return ArraySize; 722 } 723 724 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 725 enum DataDirection Direction) { 726 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 727 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 728 isl_id *Id = isl_ast_expr_get_id(Arg); 729 auto Array = (gpu_array_info *)isl_id_get_user(Id); 730 auto ScopArray = (ScopArrayInfo *)(Array->user); 731 732 Value *Size = getArraySize(Array); 733 Value *DevPtr = DeviceAllocations[ScopArray]; 734 735 Value *HostPtr; 736 737 if (gpu_array_is_scalar(Array)) 738 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 739 else 740 HostPtr = ScopArray->getBasePtr(); 741 742 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 743 744 if (Direction == HOST_TO_DEVICE) 745 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 746 else 747 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 748 749 isl_id_free(Id); 750 isl_ast_expr_free(Arg); 751 isl_ast_expr_free(Expr); 752 isl_ast_node_free(TransferStmt); 753 } 754 755 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 756 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 757 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 758 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 759 isl_id_free(Id); 760 isl_ast_expr_free(StmtExpr); 761 762 const char *Str = isl_id_get_name(Id); 763 if (!strcmp(Str, "kernel")) { 764 createKernel(UserStmt); 765 isl_ast_expr_free(Expr); 766 return; 767 } 768 769 if (isPrefix(Str, "to_device")) { 770 createDataTransfer(UserStmt, HOST_TO_DEVICE); 771 isl_ast_expr_free(Expr); 772 return; 773 } 774 775 if (isPrefix(Str, "from_device")) { 776 createDataTransfer(UserStmt, DEVICE_TO_HOST); 777 isl_ast_expr_free(Expr); 778 return; 779 } 780 781 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 782 struct ppcg_kernel_stmt *KernelStmt = 783 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 784 isl_id_free(Anno); 785 786 switch (KernelStmt->type) { 787 case ppcg_kernel_domain: 788 createScopStmt(Expr, KernelStmt); 789 isl_ast_node_free(UserStmt); 790 return; 791 case ppcg_kernel_copy: 792 createKernelCopy(KernelStmt); 793 isl_ast_expr_free(Expr); 794 isl_ast_node_free(UserStmt); 795 return; 796 case ppcg_kernel_sync: 797 createKernelSync(); 798 isl_ast_expr_free(Expr); 799 isl_ast_node_free(UserStmt); 800 return; 801 } 802 803 isl_ast_expr_free(Expr); 804 isl_ast_node_free(UserStmt); 805 return; 806 } 807 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 808 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 809 LocalIndex = isl_ast_expr_address_of(LocalIndex); 810 Value *LocalAddr = ExprBuilder.create(LocalIndex); 811 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 812 Index = isl_ast_expr_address_of(Index); 813 Value *GlobalAddr = ExprBuilder.create(Index); 814 815 if (KernelStmt->u.c.read) { 816 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 817 Builder.CreateStore(Load, LocalAddr); 818 } else { 819 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 820 Builder.CreateStore(Load, GlobalAddr); 821 } 822 } 823 824 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 825 ppcg_kernel_stmt *KernelStmt) { 826 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 827 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 828 829 LoopToScevMapT LTS; 830 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 831 832 createSubstitutions(Expr, Stmt, LTS); 833 834 if (Stmt->isBlockStmt()) 835 BlockGen.copyStmt(*Stmt, LTS, Indexes); 836 else 837 assert(0 && "Region statement not supported\n"); 838 } 839 840 void GPUNodeBuilder::createKernelSync() { 841 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 842 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 843 Builder.CreateCall(Sync, {}); 844 } 845 846 /// Collect llvm::Values referenced from @p Node 847 /// 848 /// This function only applies to isl_ast_nodes that are user_nodes referring 849 /// to a ScopStmt. All other node types are ignore. 850 /// 851 /// @param Node The node to collect references for. 852 /// @param User A user pointer used as storage for the data that is collected. 853 /// 854 /// @returns isl_bool_true if data could be collected successfully. 855 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 856 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 857 return isl_bool_true; 858 859 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 860 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 861 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 862 const char *Str = isl_id_get_name(Id); 863 isl_id_free(Id); 864 isl_ast_expr_free(StmtExpr); 865 isl_ast_expr_free(Expr); 866 867 if (!isPrefix(Str, "Stmt")) 868 return isl_bool_true; 869 870 Id = isl_ast_node_get_annotation(Node); 871 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 872 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 873 isl_id_free(Id); 874 875 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 876 877 return isl_bool_true; 878 } 879 880 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 881 SetVector<Value *> SubtreeValues; 882 SetVector<const SCEV *> SCEVs; 883 SetVector<const Loop *> Loops; 884 SubtreeReferences References = { 885 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 886 887 for (const auto &I : IDToValue) 888 SubtreeValues.insert(I.second); 889 890 isl_ast_node_foreach_descendant_top_down( 891 Kernel->tree, collectReferencesInGPUStmt, &References); 892 893 for (const SCEV *Expr : SCEVs) 894 findValues(Expr, SE, SubtreeValues); 895 896 for (auto &SAI : S.arrays()) 897 SubtreeValues.remove(SAI->getBasePtr()); 898 899 isl_space *Space = S.getParamSpace(); 900 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 901 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 902 assert(IDToValue.count(Id)); 903 Value *Val = IDToValue[Id]; 904 SubtreeValues.remove(Val); 905 isl_id_free(Id); 906 } 907 isl_space_free(Space); 908 909 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 910 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 911 assert(IDToValue.count(Id)); 912 Value *Val = IDToValue[Id]; 913 SubtreeValues.remove(Val); 914 isl_id_free(Id); 915 } 916 917 return SubtreeValues; 918 } 919 920 void GPUNodeBuilder::clearDominators(Function *F) { 921 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 922 std::vector<BasicBlock *> Nodes; 923 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 924 Nodes.push_back(I->getBlock()); 925 926 for (BasicBlock *BB : Nodes) 927 DT.eraseNode(BB); 928 } 929 930 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 931 for (BasicBlock &BB : *F) { 932 Loop *L = LI.getLoopFor(&BB); 933 if (L) 934 SE.forgetLoop(L); 935 } 936 } 937 938 void GPUNodeBuilder::clearLoops(Function *F) { 939 for (BasicBlock &BB : *F) { 940 Loop *L = LI.getLoopFor(&BB); 941 if (L) 942 SE.forgetLoop(L); 943 LI.removeBlock(&BB); 944 } 945 } 946 947 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 948 std::vector<Value *> Sizes; 949 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 950 951 for (long i = 0; i < Kernel->n_grid; i++) { 952 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 953 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 954 Value *Res = ExprBuilder.create(GridSize); 955 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 956 Sizes.push_back(Res); 957 } 958 isl_ast_build_free(Context); 959 960 for (long i = Kernel->n_grid; i < 3; i++) 961 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 962 963 return std::make_tuple(Sizes[0], Sizes[1]); 964 } 965 966 std::tuple<Value *, Value *, Value *> 967 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 968 std::vector<Value *> Sizes; 969 970 for (long i = 0; i < Kernel->n_block; i++) { 971 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 972 Sizes.push_back(Res); 973 } 974 975 for (long i = Kernel->n_block; i < 3; i++) 976 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 977 978 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 979 } 980 981 Value * 982 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 983 SetVector<Value *> SubtreeValues) { 984 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 985 std::distance(F->arg_begin(), F->arg_end())); 986 987 BasicBlock *EntryBlock = 988 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 989 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 990 Instruction *Parameters = 991 new AllocaInst(ArrayTy, Launch + "_params", EntryBlock->getTerminator()); 992 993 int Index = 0; 994 for (long i = 0; i < Prog->n_array; i++) { 995 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 996 continue; 997 998 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 999 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1000 1001 Value *DevArray = DeviceAllocations[(ScopArrayInfo *)SAI]; 1002 DevArray = createCallGetDevicePtr(DevArray); 1003 Instruction *Param = new AllocaInst( 1004 Builder.getInt8PtrTy(), Launch + "_param_" + std::to_string(Index), 1005 EntryBlock->getTerminator()); 1006 Builder.CreateStore(DevArray, Param); 1007 Value *Slot = Builder.CreateGEP( 1008 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1009 Value *ParamTyped = 1010 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1011 Builder.CreateStore(ParamTyped, Slot); 1012 Index++; 1013 } 1014 1015 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1016 1017 for (long i = 0; i < NumHostIters; i++) { 1018 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1019 Value *Val = IDToValue[Id]; 1020 isl_id_free(Id); 1021 Instruction *Param = new AllocaInst( 1022 Val->getType(), Launch + "_param_" + std::to_string(Index), 1023 EntryBlock->getTerminator()); 1024 Builder.CreateStore(Val, Param); 1025 Value *Slot = Builder.CreateGEP( 1026 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1027 Value *ParamTyped = 1028 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1029 Builder.CreateStore(ParamTyped, Slot); 1030 Index++; 1031 } 1032 1033 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1034 1035 for (long i = 0; i < NumVars; i++) { 1036 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1037 Value *Val = IDToValue[Id]; 1038 isl_id_free(Id); 1039 Instruction *Param = new AllocaInst( 1040 Val->getType(), Launch + "_param_" + std::to_string(Index), 1041 EntryBlock->getTerminator()); 1042 Builder.CreateStore(Val, Param); 1043 Value *Slot = Builder.CreateGEP( 1044 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1045 Value *ParamTyped = 1046 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1047 Builder.CreateStore(ParamTyped, Slot); 1048 Index++; 1049 } 1050 1051 for (auto Val : SubtreeValues) { 1052 Instruction *Param = new AllocaInst( 1053 Val->getType(), Launch + "_param_" + std::to_string(Index), 1054 EntryBlock->getTerminator()); 1055 Builder.CreateStore(Val, Param); 1056 Value *Slot = Builder.CreateGEP( 1057 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1058 Value *ParamTyped = 1059 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1060 Builder.CreateStore(ParamTyped, Slot); 1061 Index++; 1062 } 1063 1064 auto Location = EntryBlock->getTerminator(); 1065 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1066 Launch + "_params_i8ptr", Location); 1067 } 1068 1069 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1070 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1071 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1072 isl_id_free(Id); 1073 isl_ast_node_free(KernelStmt); 1074 1075 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1076 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1077 1078 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 1079 1080 assert(Kernel->tree && "Device AST of kernel node is empty"); 1081 1082 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1083 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1084 ValueMapT HostValueMap = ValueMap; 1085 BlockGenerator::ScalarAllocaMapTy HostScalarMap = ScalarMap; 1086 BlockGenerator::ScalarAllocaMapTy HostPHIOpMap = PHIOpMap; 1087 ScalarMap.clear(); 1088 PHIOpMap.clear(); 1089 1090 SetVector<const Loop *> Loops; 1091 1092 // Create for all loops we depend on values that contain the current loop 1093 // iteration. These values are necessary to generate code for SCEVs that 1094 // depend on such loops. As a result we need to pass them to the subfunction. 1095 for (const Loop *L : Loops) { 1096 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1097 SE.getUnknown(Builder.getInt64(1)), 1098 L, SCEV::FlagAnyWrap); 1099 Value *V = generateSCEV(OuterLIV); 1100 OutsideLoopIterations[L] = SE.getUnknown(V); 1101 SubtreeValues.insert(V); 1102 } 1103 1104 createKernelFunction(Kernel, SubtreeValues); 1105 1106 create(isl_ast_node_copy(Kernel->tree)); 1107 1108 Function *F = Builder.GetInsertBlock()->getParent(); 1109 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1110 clearDominators(F); 1111 clearScalarEvolution(F); 1112 clearLoops(F); 1113 1114 Builder.SetInsertPoint(&HostInsertPoint); 1115 IDToValue = HostIDs; 1116 1117 ValueMap = std::move(HostValueMap); 1118 ScalarMap = std::move(HostScalarMap); 1119 PHIOpMap = std::move(HostPHIOpMap); 1120 EscapeMap.clear(); 1121 IDToSAI.clear(); 1122 Annotator.resetAlternativeAliasBases(); 1123 for (auto &BasePtr : LocalArrays) 1124 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 1125 LocalArrays.clear(); 1126 1127 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1128 1129 std::string ASMString = finalizeKernelFunction(); 1130 std::string Name = "kernel_" + std::to_string(Kernel->id); 1131 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1132 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1133 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1134 1135 Value *GridDimX, *GridDimY; 1136 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1137 1138 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1139 BlockDimZ, Parameters); 1140 createCallFreeKernel(GPUKernel); 1141 1142 for (auto Id : KernelIds) 1143 isl_id_free(Id); 1144 1145 KernelIds.clear(); 1146 } 1147 1148 /// Compute the DataLayout string for the NVPTX backend. 1149 /// 1150 /// @param is64Bit Are we looking for a 64 bit architecture? 1151 static std::string computeNVPTXDataLayout(bool is64Bit) { 1152 std::string Ret = "e"; 1153 1154 if (!is64Bit) 1155 Ret += "-p:32:32"; 1156 1157 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 1158 1159 return Ret; 1160 } 1161 1162 Function * 1163 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1164 SetVector<Value *> &SubtreeValues) { 1165 std::vector<Type *> Args; 1166 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1167 1168 for (long i = 0; i < Prog->n_array; i++) { 1169 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1170 continue; 1171 1172 Args.push_back(Builder.getInt8PtrTy()); 1173 } 1174 1175 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1176 1177 for (long i = 0; i < NumHostIters; i++) 1178 Args.push_back(Builder.getInt64Ty()); 1179 1180 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1181 1182 for (long i = 0; i < NumVars; i++) { 1183 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1184 Value *Val = IDToValue[Id]; 1185 isl_id_free(Id); 1186 Args.push_back(Val->getType()); 1187 } 1188 1189 for (auto *V : SubtreeValues) 1190 Args.push_back(V->getType()); 1191 1192 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1193 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1194 GPUModule.get()); 1195 FN->setCallingConv(CallingConv::PTX_Kernel); 1196 1197 auto Arg = FN->arg_begin(); 1198 for (long i = 0; i < Kernel->n_array; i++) { 1199 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1200 continue; 1201 1202 Arg->setName(Kernel->array[i].array->name); 1203 1204 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1205 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1206 Type *EleTy = SAI->getElementType(); 1207 Value *Val = &*Arg; 1208 SmallVector<const SCEV *, 4> Sizes; 1209 isl_ast_build *Build = 1210 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1211 Sizes.push_back(nullptr); 1212 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1213 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1214 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1215 auto V = ExprBuilder.create(DimSize); 1216 Sizes.push_back(SE.getSCEV(V)); 1217 } 1218 const ScopArrayInfo *SAIRep = 1219 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 1220 LocalArrays.push_back(Val); 1221 1222 isl_ast_build_free(Build); 1223 KernelIds.push_back(Id); 1224 IDToSAI[Id] = SAIRep; 1225 Arg++; 1226 } 1227 1228 for (long i = 0; i < NumHostIters; i++) { 1229 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1230 Arg->setName(isl_id_get_name(Id)); 1231 IDToValue[Id] = &*Arg; 1232 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1233 Arg++; 1234 } 1235 1236 for (long i = 0; i < NumVars; i++) { 1237 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1238 Arg->setName(isl_id_get_name(Id)); 1239 Value *Val = IDToValue[Id]; 1240 ValueMap[Val] = &*Arg; 1241 IDToValue[Id] = &*Arg; 1242 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1243 Arg++; 1244 } 1245 1246 for (auto *V : SubtreeValues) { 1247 Arg->setName(V->getName()); 1248 ValueMap[V] = &*Arg; 1249 Arg++; 1250 } 1251 1252 return FN; 1253 } 1254 1255 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1256 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 1257 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 1258 1259 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 1260 Intrinsic::nvvm_read_ptx_sreg_tid_y, 1261 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 1262 1263 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1264 std::string Name = isl_id_get_name(Id); 1265 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1266 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1267 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1268 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1269 IDToValue[Id] = Val; 1270 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1271 }; 1272 1273 for (int i = 0; i < Kernel->n_grid; ++i) { 1274 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1275 addId(Id, IntrinsicsBID[i]); 1276 } 1277 1278 for (int i = 0; i < Kernel->n_block; ++i) { 1279 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1280 addId(Id, IntrinsicsTID[i]); 1281 } 1282 } 1283 1284 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1285 auto Arg = FN->arg_begin(); 1286 for (long i = 0; i < Kernel->n_array; i++) { 1287 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1288 continue; 1289 1290 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1291 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1292 isl_id_free(Id); 1293 1294 if (SAI->getNumberOfDimensions() > 0) { 1295 Arg++; 1296 continue; 1297 } 1298 1299 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1300 Value *ArgPtr = &*Arg; 1301 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1302 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1303 Value *Val = Builder.CreateLoad(TypedArgPtr); 1304 Builder.CreateStore(Val, Alloca); 1305 1306 Arg++; 1307 } 1308 } 1309 1310 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1311 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1312 1313 for (int i = 0; i < Kernel->n_var; ++i) { 1314 struct ppcg_kernel_var &Var = Kernel->var[i]; 1315 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1316 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1317 1318 Type *ArrayTy = EleTy; 1319 SmallVector<const SCEV *, 4> Sizes; 1320 1321 Sizes.push_back(nullptr); 1322 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1323 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1324 long Bound = isl_val_get_num_si(Val); 1325 isl_val_free(Val); 1326 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1327 } 1328 1329 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1330 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1331 long Bound = isl_val_get_num_si(Val); 1332 isl_val_free(Val); 1333 ArrayTy = ArrayType::get(ArrayTy, Bound); 1334 } 1335 1336 const ScopArrayInfo *SAI; 1337 Value *Allocation; 1338 if (Var.type == ppcg_access_shared) { 1339 auto GlobalVar = new GlobalVariable( 1340 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1341 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1342 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1343 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1344 1345 Allocation = GlobalVar; 1346 } else if (Var.type == ppcg_access_private) { 1347 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1348 } else { 1349 llvm_unreachable("unknown variable type"); 1350 } 1351 SAI = S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, 1352 ScopArrayInfo::MK_Array); 1353 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1354 IDToValue[Id] = Allocation; 1355 LocalArrays.push_back(Allocation); 1356 KernelIds.push_back(Id); 1357 IDToSAI[Id] = SAI; 1358 } 1359 } 1360 1361 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1362 SetVector<Value *> &SubtreeValues) { 1363 1364 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1365 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1366 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1367 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1368 1369 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1370 1371 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1372 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1373 1374 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1375 DT.addNewBlock(EntryBlock, PrevBlock); 1376 1377 Builder.SetInsertPoint(EntryBlock); 1378 Builder.CreateRetVoid(); 1379 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1380 1381 ScopDetection::markFunctionAsInvalid(FN); 1382 1383 prepareKernelArguments(Kernel, FN); 1384 createKernelVariables(Kernel, FN); 1385 insertKernelIntrinsics(Kernel); 1386 } 1387 1388 std::string GPUNodeBuilder::createKernelASM() { 1389 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1390 std::string ErrMsg; 1391 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1392 1393 if (!GPUTarget) { 1394 errs() << ErrMsg << "\n"; 1395 return ""; 1396 } 1397 1398 TargetOptions Options; 1399 Options.UnsafeFPMath = FastMath; 1400 std::unique_ptr<TargetMachine> TargetM( 1401 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 1402 Options, Optional<Reloc::Model>())); 1403 1404 SmallString<0> ASMString; 1405 raw_svector_ostream ASMStream(ASMString); 1406 llvm::legacy::PassManager PM; 1407 1408 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1409 1410 if (TargetM->addPassesToEmitFile( 1411 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1412 errs() << "The target does not support generation of this file type!\n"; 1413 return ""; 1414 } 1415 1416 PM.run(*GPUModule); 1417 1418 return ASMStream.str(); 1419 } 1420 1421 std::string GPUNodeBuilder::finalizeKernelFunction() { 1422 if (verifyModule(*GPUModule)) { 1423 BuildSuccessful = false; 1424 return ""; 1425 } 1426 1427 if (DumpKernelIR) 1428 outs() << *GPUModule << "\n"; 1429 1430 // Optimize module. 1431 llvm::legacy::PassManager OptPasses; 1432 PassManagerBuilder PassBuilder; 1433 PassBuilder.OptLevel = 3; 1434 PassBuilder.SizeLevel = 0; 1435 PassBuilder.populateModulePassManager(OptPasses); 1436 OptPasses.run(*GPUModule); 1437 1438 std::string Assembly = createKernelASM(); 1439 1440 if (DumpKernelASM) 1441 outs() << Assembly << "\n"; 1442 1443 GPUModule.release(); 1444 KernelIDs.clear(); 1445 1446 return Assembly; 1447 } 1448 1449 namespace { 1450 class PPCGCodeGeneration : public ScopPass { 1451 public: 1452 static char ID; 1453 1454 /// The scop that is currently processed. 1455 Scop *S; 1456 1457 LoopInfo *LI; 1458 DominatorTree *DT; 1459 ScalarEvolution *SE; 1460 const DataLayout *DL; 1461 RegionInfo *RI; 1462 1463 PPCGCodeGeneration() : ScopPass(ID) {} 1464 1465 /// Construct compilation options for PPCG. 1466 /// 1467 /// @returns The compilation options. 1468 ppcg_options *createPPCGOptions() { 1469 auto DebugOptions = 1470 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1471 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1472 1473 DebugOptions->dump_schedule_constraints = false; 1474 DebugOptions->dump_schedule = false; 1475 DebugOptions->dump_final_schedule = false; 1476 DebugOptions->dump_sizes = false; 1477 DebugOptions->verbose = false; 1478 1479 Options->debug = DebugOptions; 1480 1481 Options->reschedule = true; 1482 Options->scale_tile_loops = false; 1483 Options->wrap = false; 1484 1485 Options->non_negative_parameters = false; 1486 Options->ctx = nullptr; 1487 Options->sizes = nullptr; 1488 1489 Options->tile_size = 32; 1490 1491 Options->use_private_memory = PrivateMemory; 1492 Options->use_shared_memory = SharedMemory; 1493 Options->max_shared_memory = 48 * 1024; 1494 1495 Options->target = PPCG_TARGET_CUDA; 1496 Options->openmp = false; 1497 Options->linearize_device_arrays = true; 1498 Options->live_range_reordering = false; 1499 1500 Options->opencl_compiler_options = nullptr; 1501 Options->opencl_use_gpu = false; 1502 Options->opencl_n_include_file = 0; 1503 Options->opencl_include_files = nullptr; 1504 Options->opencl_print_kernel_types = false; 1505 Options->opencl_embed_kernel_code = false; 1506 1507 Options->save_schedule_file = nullptr; 1508 Options->load_schedule_file = nullptr; 1509 1510 return Options; 1511 } 1512 1513 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1514 /// 1515 /// Instead of a normal access of the form: 1516 /// 1517 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1518 /// 1519 /// a tagged access has the form 1520 /// 1521 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1522 /// 1523 /// where 'id' is an additional space that references the memory access that 1524 /// triggered the access. 1525 /// 1526 /// @param AccessTy The type of the memory accesses to collect. 1527 /// 1528 /// @return The relation describing all tagged memory accesses. 1529 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1530 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1531 1532 for (auto &Stmt : *S) 1533 for (auto &Acc : Stmt) 1534 if (Acc->getType() == AccessTy) { 1535 isl_map *Relation = Acc->getAccessRelation(); 1536 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1537 1538 isl_space *Space = isl_map_get_space(Relation); 1539 Space = isl_space_range(Space); 1540 Space = isl_space_from_range(Space); 1541 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1542 isl_map *Universe = isl_map_universe(Space); 1543 Relation = isl_map_domain_product(Relation, Universe); 1544 Accesses = isl_union_map_add_map(Accesses, Relation); 1545 } 1546 1547 return Accesses; 1548 } 1549 1550 /// Get the set of all read accesses, tagged with the access id. 1551 /// 1552 /// @see getTaggedAccesses 1553 isl_union_map *getTaggedReads() { 1554 return getTaggedAccesses(MemoryAccess::READ); 1555 } 1556 1557 /// Get the set of all may (and must) accesses, tagged with the access id. 1558 /// 1559 /// @see getTaggedAccesses 1560 isl_union_map *getTaggedMayWrites() { 1561 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1562 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1563 } 1564 1565 /// Get the set of all must accesses, tagged with the access id. 1566 /// 1567 /// @see getTaggedAccesses 1568 isl_union_map *getTaggedMustWrites() { 1569 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1570 } 1571 1572 /// Collect parameter and array names as isl_ids. 1573 /// 1574 /// To reason about the different parameters and arrays used, ppcg requires 1575 /// a list of all isl_ids in use. As PPCG traditionally performs 1576 /// source-to-source compilation each of these isl_ids is mapped to the 1577 /// expression that represents it. As we do not have a corresponding 1578 /// expression in Polly, we just map each id to a 'zero' expression to match 1579 /// the data format that ppcg expects. 1580 /// 1581 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1582 __isl_give isl_id_to_ast_expr *getNames() { 1583 auto *Names = isl_id_to_ast_expr_alloc( 1584 S->getIslCtx(), 1585 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1586 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1587 auto *Space = S->getParamSpace(); 1588 1589 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1590 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1591 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1592 } 1593 1594 for (auto &Array : S->arrays()) { 1595 auto Id = Array->getBasePtrId(); 1596 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1597 } 1598 1599 isl_space_free(Space); 1600 isl_ast_expr_free(Zero); 1601 1602 return Names; 1603 } 1604 1605 /// Create a new PPCG scop from the current scop. 1606 /// 1607 /// The PPCG scop is initialized with data from the current polly::Scop. From 1608 /// this initial data, the data-dependences in the PPCG scop are initialized. 1609 /// We do not use Polly's dependence analysis for now, to ensure we match 1610 /// the PPCG default behaviour more closely. 1611 /// 1612 /// @returns A new ppcg scop. 1613 ppcg_scop *createPPCGScop() { 1614 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1615 1616 PPCGScop->options = createPPCGOptions(); 1617 1618 PPCGScop->start = 0; 1619 PPCGScop->end = 0; 1620 1621 PPCGScop->context = S->getContext(); 1622 PPCGScop->domain = S->getDomains(); 1623 PPCGScop->call = nullptr; 1624 PPCGScop->tagged_reads = getTaggedReads(); 1625 PPCGScop->reads = S->getReads(); 1626 PPCGScop->live_in = nullptr; 1627 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1628 PPCGScop->may_writes = S->getWrites(); 1629 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1630 PPCGScop->must_writes = S->getMustWrites(); 1631 PPCGScop->live_out = nullptr; 1632 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1633 PPCGScop->tagger = nullptr; 1634 1635 PPCGScop->independence = nullptr; 1636 PPCGScop->dep_flow = nullptr; 1637 PPCGScop->tagged_dep_flow = nullptr; 1638 PPCGScop->dep_false = nullptr; 1639 PPCGScop->dep_forced = nullptr; 1640 PPCGScop->dep_order = nullptr; 1641 PPCGScop->tagged_dep_order = nullptr; 1642 1643 PPCGScop->schedule = S->getScheduleTree(); 1644 PPCGScop->names = getNames(); 1645 1646 PPCGScop->pet = nullptr; 1647 1648 compute_tagger(PPCGScop); 1649 compute_dependences(PPCGScop); 1650 1651 return PPCGScop; 1652 } 1653 1654 /// Collect the array acesses in a statement. 1655 /// 1656 /// @param Stmt The statement for which to collect the accesses. 1657 /// 1658 /// @returns A list of array accesses. 1659 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1660 gpu_stmt_access *Accesses = nullptr; 1661 1662 for (MemoryAccess *Acc : Stmt) { 1663 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1664 Access->read = Acc->isRead(); 1665 Access->write = Acc->isWrite(); 1666 Access->access = Acc->getAccessRelation(); 1667 isl_space *Space = isl_map_get_space(Access->access); 1668 Space = isl_space_range(Space); 1669 Space = isl_space_from_range(Space); 1670 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1671 isl_map *Universe = isl_map_universe(Space); 1672 Access->tagged_access = 1673 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1674 Access->exact_write = !Acc->isMayWrite(); 1675 Access->ref_id = Acc->getId(); 1676 Access->next = Accesses; 1677 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 1678 Accesses = Access; 1679 } 1680 1681 return Accesses; 1682 } 1683 1684 /// Collect the list of GPU statements. 1685 /// 1686 /// Each statement has an id, a pointer to the underlying data structure, 1687 /// as well as a list with all memory accesses. 1688 /// 1689 /// TODO: Initialize the list of memory accesses. 1690 /// 1691 /// @returns A linked-list of statements. 1692 gpu_stmt *getStatements() { 1693 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1694 std::distance(S->begin(), S->end())); 1695 1696 int i = 0; 1697 for (auto &Stmt : *S) { 1698 gpu_stmt *GPUStmt = &Stmts[i]; 1699 1700 GPUStmt->id = Stmt.getDomainId(); 1701 1702 // We use the pet stmt pointer to keep track of the Polly statements. 1703 GPUStmt->stmt = (pet_stmt *)&Stmt; 1704 GPUStmt->accesses = getStmtAccesses(Stmt); 1705 i++; 1706 } 1707 1708 return Stmts; 1709 } 1710 1711 /// Derive the extent of an array. 1712 /// 1713 /// The extent of an array is the set of elements that are within the 1714 /// accessed array. For the inner dimensions, the extent constraints are 1715 /// 0 and the size of the corresponding array dimension. For the first 1716 /// (outermost) dimension, the extent constraints are the minimal and maximal 1717 /// subscript value for the first dimension. 1718 /// 1719 /// @param Array The array to derive the extent for. 1720 /// 1721 /// @returns An isl_set describing the extent of the array. 1722 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1723 unsigned NumDims = Array->getNumberOfDimensions(); 1724 isl_union_map *Accesses = S->getAccesses(); 1725 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1726 Accesses = isl_union_map_detect_equalities(Accesses); 1727 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1728 AccessUSet = isl_union_set_coalesce(AccessUSet); 1729 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 1730 AccessUSet = isl_union_set_coalesce(AccessUSet); 1731 1732 if (isl_union_set_is_empty(AccessUSet)) { 1733 isl_union_set_free(AccessUSet); 1734 return isl_set_empty(Array->getSpace()); 1735 } 1736 1737 if (Array->getNumberOfDimensions() == 0) { 1738 isl_union_set_free(AccessUSet); 1739 return isl_set_universe(Array->getSpace()); 1740 } 1741 1742 isl_set *AccessSet = 1743 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1744 1745 isl_union_set_free(AccessUSet); 1746 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 1747 1748 isl_pw_aff *Val = 1749 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 1750 1751 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 1752 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 1753 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 1754 isl_pw_aff_dim(Val, isl_dim_in)); 1755 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 1756 isl_pw_aff_dim(Val, isl_dim_in)); 1757 OuterMin = 1758 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 1759 OuterMax = 1760 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 1761 1762 isl_set *Extent = isl_set_universe(Array->getSpace()); 1763 1764 Extent = isl_set_intersect( 1765 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 1766 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 1767 1768 for (unsigned i = 1; i < NumDims; ++i) 1769 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 1770 1771 for (unsigned i = 1; i < NumDims; ++i) { 1772 isl_pw_aff *PwAff = 1773 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 1774 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 1775 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 1776 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 1777 isl_pw_aff_dim(Val, isl_dim_in)); 1778 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 1779 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 1780 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 1781 Extent = isl_set_intersect(Set, Extent); 1782 } 1783 1784 return Extent; 1785 } 1786 1787 /// Derive the bounds of an array. 1788 /// 1789 /// For the first dimension we derive the bound of the array from the extent 1790 /// of this dimension. For inner dimensions we obtain their size directly from 1791 /// ScopArrayInfo. 1792 /// 1793 /// @param PPCGArray The array to compute bounds for. 1794 /// @param Array The polly array from which to take the information. 1795 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1796 if (PPCGArray.n_index > 0) { 1797 if (isl_set_is_empty(PPCGArray.extent)) { 1798 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1799 isl_local_space *LS = isl_local_space_from_space( 1800 isl_space_params(isl_set_get_space(Dom))); 1801 isl_set_free(Dom); 1802 isl_aff *Zero = isl_aff_zero_on_domain(LS); 1803 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 1804 } else { 1805 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1806 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1807 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1808 isl_set_free(Dom); 1809 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1810 isl_local_space *LS = 1811 isl_local_space_from_space(isl_set_get_space(Dom)); 1812 isl_aff *One = isl_aff_zero_on_domain(LS); 1813 One = isl_aff_add_constant_si(One, 1); 1814 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1815 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1816 PPCGArray.bound[0] = Bound; 1817 } 1818 } 1819 1820 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1821 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1822 auto LS = isl_pw_aff_get_domain_space(Bound); 1823 auto Aff = isl_multi_aff_zero(LS); 1824 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1825 PPCGArray.bound[i] = Bound; 1826 } 1827 } 1828 1829 /// Create the arrays for @p PPCGProg. 1830 /// 1831 /// @param PPCGProg The program to compute the arrays for. 1832 void createArrays(gpu_prog *PPCGProg) { 1833 int i = 0; 1834 for (auto &Array : S->arrays()) { 1835 std::string TypeName; 1836 raw_string_ostream OS(TypeName); 1837 1838 OS << *Array->getElementType(); 1839 TypeName = OS.str(); 1840 1841 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1842 1843 PPCGArray.space = Array->getSpace(); 1844 PPCGArray.type = strdup(TypeName.c_str()); 1845 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1846 PPCGArray.name = strdup(Array->getName().c_str()); 1847 PPCGArray.extent = nullptr; 1848 PPCGArray.n_index = Array->getNumberOfDimensions(); 1849 PPCGArray.bound = 1850 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1851 PPCGArray.extent = getExtent(Array); 1852 PPCGArray.n_ref = 0; 1853 PPCGArray.refs = nullptr; 1854 PPCGArray.accessed = true; 1855 PPCGArray.read_only_scalar = false; 1856 PPCGArray.has_compound_element = false; 1857 PPCGArray.local = false; 1858 PPCGArray.declare_local = false; 1859 PPCGArray.global = false; 1860 PPCGArray.linearize = false; 1861 PPCGArray.dep_order = nullptr; 1862 PPCGArray.user = Array; 1863 1864 setArrayBounds(PPCGArray, Array); 1865 i++; 1866 1867 collect_references(PPCGProg, &PPCGArray); 1868 } 1869 } 1870 1871 /// Create an identity map between the arrays in the scop. 1872 /// 1873 /// @returns An identity map between the arrays in the scop. 1874 isl_union_map *getArrayIdentity() { 1875 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1876 1877 for (auto &Array : S->arrays()) { 1878 isl_space *Space = Array->getSpace(); 1879 Space = isl_space_map_from_set(Space); 1880 isl_map *Identity = isl_map_identity(Space); 1881 Maps = isl_union_map_add_map(Maps, Identity); 1882 } 1883 1884 return Maps; 1885 } 1886 1887 /// Create a default-initialized PPCG GPU program. 1888 /// 1889 /// @returns A new gpu grogram description. 1890 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1891 1892 if (!PPCGScop) 1893 return nullptr; 1894 1895 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1896 1897 PPCGProg->ctx = S->getIslCtx(); 1898 PPCGProg->scop = PPCGScop; 1899 PPCGProg->context = isl_set_copy(PPCGScop->context); 1900 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1901 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1902 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1903 PPCGProg->tagged_must_kill = 1904 isl_union_map_copy(PPCGScop->tagged_must_kills); 1905 PPCGProg->to_inner = getArrayIdentity(); 1906 PPCGProg->to_outer = getArrayIdentity(); 1907 PPCGProg->any_to_outer = nullptr; 1908 PPCGProg->array_order = nullptr; 1909 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1910 PPCGProg->stmts = getStatements(); 1911 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1912 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1913 PPCGProg->n_array); 1914 1915 createArrays(PPCGProg); 1916 1917 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1918 1919 return PPCGProg; 1920 } 1921 1922 struct PrintGPUUserData { 1923 struct cuda_info *CudaInfo; 1924 struct gpu_prog *PPCGProg; 1925 std::vector<ppcg_kernel *> Kernels; 1926 }; 1927 1928 /// Print a user statement node in the host code. 1929 /// 1930 /// We use ppcg's printing facilities to print the actual statement and 1931 /// additionally build up a list of all kernels that are encountered in the 1932 /// host ast. 1933 /// 1934 /// @param P The printer to print to 1935 /// @param Options The printing options to use 1936 /// @param Node The node to print 1937 /// @param User A user pointer to carry additional data. This pointer is 1938 /// expected to be of type PrintGPUUserData. 1939 /// 1940 /// @returns A printer to which the output has been printed. 1941 static __isl_give isl_printer * 1942 printHostUser(__isl_take isl_printer *P, 1943 __isl_take isl_ast_print_options *Options, 1944 __isl_take isl_ast_node *Node, void *User) { 1945 auto Data = (struct PrintGPUUserData *)User; 1946 auto Id = isl_ast_node_get_annotation(Node); 1947 1948 if (Id) { 1949 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1950 1951 // If this is a user statement, format it ourselves as ppcg would 1952 // otherwise try to call pet functionality that is not available in 1953 // Polly. 1954 if (IsUser) { 1955 P = isl_printer_start_line(P); 1956 P = isl_printer_print_ast_node(P, Node); 1957 P = isl_printer_end_line(P); 1958 isl_id_free(Id); 1959 isl_ast_print_options_free(Options); 1960 return P; 1961 } 1962 1963 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1964 isl_id_free(Id); 1965 Data->Kernels.push_back(Kernel); 1966 } 1967 1968 return print_host_user(P, Options, Node, User); 1969 } 1970 1971 /// Print C code corresponding to the control flow in @p Kernel. 1972 /// 1973 /// @param Kernel The kernel to print 1974 void printKernel(ppcg_kernel *Kernel) { 1975 auto *P = isl_printer_to_str(S->getIslCtx()); 1976 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1977 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1978 P = isl_ast_node_print(Kernel->tree, P, Options); 1979 char *String = isl_printer_get_str(P); 1980 printf("%s\n", String); 1981 free(String); 1982 isl_printer_free(P); 1983 } 1984 1985 /// Print C code corresponding to the GPU code described by @p Tree. 1986 /// 1987 /// @param Tree An AST describing GPU code 1988 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1989 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1990 auto *P = isl_printer_to_str(S->getIslCtx()); 1991 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1992 1993 PrintGPUUserData Data; 1994 Data.PPCGProg = PPCGProg; 1995 1996 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1997 Options = 1998 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1999 P = isl_ast_node_print(Tree, P, Options); 2000 char *String = isl_printer_get_str(P); 2001 printf("# host\n"); 2002 printf("%s\n", String); 2003 free(String); 2004 isl_printer_free(P); 2005 2006 for (auto Kernel : Data.Kernels) { 2007 printf("# kernel%d\n", Kernel->id); 2008 printKernel(Kernel); 2009 } 2010 } 2011 2012 // Generate a GPU program using PPCG. 2013 // 2014 // GPU mapping consists of multiple steps: 2015 // 2016 // 1) Compute new schedule for the program. 2017 // 2) Map schedule to GPU (TODO) 2018 // 3) Generate code for new schedule (TODO) 2019 // 2020 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2021 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2022 // strategy directly from this pass. 2023 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2024 2025 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2026 2027 PPCGGen->ctx = S->getIslCtx(); 2028 PPCGGen->options = PPCGScop->options; 2029 PPCGGen->print = nullptr; 2030 PPCGGen->print_user = nullptr; 2031 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2032 PPCGGen->prog = PPCGProg; 2033 PPCGGen->tree = nullptr; 2034 PPCGGen->types.n = 0; 2035 PPCGGen->types.name = nullptr; 2036 PPCGGen->sizes = nullptr; 2037 PPCGGen->used_sizes = nullptr; 2038 PPCGGen->kernel_id = 0; 2039 2040 // Set scheduling strategy to same strategy PPCG is using. 2041 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2042 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2043 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2044 2045 isl_schedule *Schedule = get_schedule(PPCGGen); 2046 2047 int has_permutable = has_any_permutable_node(Schedule); 2048 2049 if (!has_permutable || has_permutable < 0) { 2050 Schedule = isl_schedule_free(Schedule); 2051 } else { 2052 Schedule = map_to_device(PPCGGen, Schedule); 2053 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2054 } 2055 2056 if (DumpSchedule) { 2057 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2058 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2059 P = isl_printer_print_str(P, "Schedule\n"); 2060 P = isl_printer_print_str(P, "========\n"); 2061 if (Schedule) 2062 P = isl_printer_print_schedule(P, Schedule); 2063 else 2064 P = isl_printer_print_str(P, "No schedule found\n"); 2065 2066 printf("%s\n", isl_printer_get_str(P)); 2067 isl_printer_free(P); 2068 } 2069 2070 if (DumpCode) { 2071 printf("Code\n"); 2072 printf("====\n"); 2073 if (PPCGGen->tree) 2074 printGPUTree(PPCGGen->tree, PPCGProg); 2075 else 2076 printf("No code generated\n"); 2077 } 2078 2079 isl_schedule_free(Schedule); 2080 2081 return PPCGGen; 2082 } 2083 2084 /// Free gpu_gen structure. 2085 /// 2086 /// @param PPCGGen The ppcg_gen object to free. 2087 void freePPCGGen(gpu_gen *PPCGGen) { 2088 isl_ast_node_free(PPCGGen->tree); 2089 isl_union_map_free(PPCGGen->sizes); 2090 isl_union_map_free(PPCGGen->used_sizes); 2091 free(PPCGGen); 2092 } 2093 2094 /// Free the options in the ppcg scop structure. 2095 /// 2096 /// ppcg is not freeing these options for us. To avoid leaks we do this 2097 /// ourselves. 2098 /// 2099 /// @param PPCGScop The scop referencing the options to free. 2100 void freeOptions(ppcg_scop *PPCGScop) { 2101 free(PPCGScop->options->debug); 2102 PPCGScop->options->debug = nullptr; 2103 free(PPCGScop->options); 2104 PPCGScop->options = nullptr; 2105 } 2106 2107 /// Generate code for a given GPU AST described by @p Root. 2108 /// 2109 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2110 /// @param Prog The GPU Program to generate code for. 2111 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2112 ScopAnnotator Annotator; 2113 Annotator.buildAliasScopes(*S); 2114 2115 Region *R = &S->getRegion(); 2116 2117 simplifyRegion(R, DT, LI, RI); 2118 2119 BasicBlock *EnteringBB = R->getEnteringBlock(); 2120 2121 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2122 2123 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 2124 Prog); 2125 2126 // Only build the run-time condition and parameters _after_ having 2127 // introduced the conditional branch. This is important as the conditional 2128 // branch will guard the original scop from new induction variables that 2129 // the SCEVExpander may introduce while code generating the parameters and 2130 // which may introduce scalar dependences that prevent us from correctly 2131 // code generating this scop. 2132 BasicBlock *StartBlock = 2133 executeScopConditionally(*S, this, Builder.getTrue()); 2134 2135 // TODO: Handle LICM 2136 auto SplitBlock = StartBlock->getSinglePredecessor(); 2137 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2138 NodeBuilder.addParameters(S->getContext()); 2139 2140 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2141 isl_ast_expr *Condition = IslAst::buildRunCondition(S, Build); 2142 isl_ast_build_free(Build); 2143 2144 Value *RTC = NodeBuilder.createRTC(Condition); 2145 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2146 2147 Builder.SetInsertPoint(&*StartBlock->begin()); 2148 2149 NodeBuilder.initializeAfterRTH(); 2150 NodeBuilder.create(Root); 2151 NodeBuilder.finalize(); 2152 2153 if (!NodeBuilder.BuildSuccessful) 2154 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2155 } 2156 2157 bool runOnScop(Scop &CurrentScop) override { 2158 S = &CurrentScop; 2159 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2160 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2161 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2162 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 2163 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2164 2165 // We currently do not support scops with invariant loads. 2166 if (S->hasInvariantAccesses()) 2167 return false; 2168 2169 auto PPCGScop = createPPCGScop(); 2170 auto PPCGProg = createPPCGProg(PPCGScop); 2171 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2172 2173 if (PPCGGen->tree) 2174 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2175 2176 freeOptions(PPCGScop); 2177 freePPCGGen(PPCGGen); 2178 gpu_prog_free(PPCGProg); 2179 ppcg_scop_free(PPCGScop); 2180 2181 return true; 2182 } 2183 2184 void printScop(raw_ostream &, Scop &) const override {} 2185 2186 void getAnalysisUsage(AnalysisUsage &AU) const override { 2187 AU.addRequired<DominatorTreeWrapperPass>(); 2188 AU.addRequired<RegionInfoPass>(); 2189 AU.addRequired<ScalarEvolutionWrapperPass>(); 2190 AU.addRequired<ScopDetection>(); 2191 AU.addRequired<ScopInfoRegionPass>(); 2192 AU.addRequired<LoopInfoWrapperPass>(); 2193 2194 AU.addPreserved<AAResultsWrapperPass>(); 2195 AU.addPreserved<BasicAAWrapperPass>(); 2196 AU.addPreserved<LoopInfoWrapperPass>(); 2197 AU.addPreserved<DominatorTreeWrapperPass>(); 2198 AU.addPreserved<GlobalsAAWrapperPass>(); 2199 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2200 AU.addPreserved<ScopDetection>(); 2201 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2202 AU.addPreserved<SCEVAAWrapperPass>(); 2203 2204 // FIXME: We do not yet add regions for the newly generated code to the 2205 // region tree. 2206 AU.addPreserved<RegionInfoPass>(); 2207 AU.addPreserved<ScopInfoRegionPass>(); 2208 } 2209 }; 2210 } 2211 2212 char PPCGCodeGeneration::ID = 1; 2213 2214 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 2215 2216 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 2217 "Polly - Apply PPCG translation to SCOP", false, false) 2218 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2219 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 2220 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 2221 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 2222 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 2223 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 2224 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 2225 "Polly - Apply PPCG translation to SCOP", false, false) 2226