1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/IntrinsicsNVPTX.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Linker/Linker.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "isl/union_map.h" 40 #include <algorithm> 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/ppcg.h" 46 } 47 48 #include "llvm/Support/Debug.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen-ppcg" 54 55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 56 cl::desc("Dump the computed GPU Schedule"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, 58 cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 71 cl::desc("Dump the kernel assembly code"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> FastMath("polly-acc-fastmath", 76 cl::desc("Allow unsafe math optimizations"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 80 cl::desc("Use shared memory"), cl::Hidden, 81 cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 84 cl::desc("Use private memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 88 bool polly::PollyManagedMemory; 89 static cl::opt<bool, true> 90 XManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::location(PollyManagedMemory), cl::Hidden, 95 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> CUDALibDevice( 106 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 107 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 108 cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<std::string> 111 CudaVersion("polly-acc-cuda-version", 112 cl::desc("The CUDA version to compile for"), cl::Hidden, 113 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 114 115 static cl::opt<int> 116 MinCompute("polly-acc-mincompute", 117 cl::desc("Minimal number of compute statements to run on GPU."), 118 cl::Hidden, cl::init(10 * 512 * 512)); 119 120 extern bool polly::PerfMonitoring; 121 122 /// Return a unique name for a Scop, which is the scop region with the 123 /// function name. 124 std::string getUniqueScopName(const Scop *S) { 125 return "Scop Region: " + S->getNameStr() + 126 " | Function: " + std::string(S->getFunction().getName()); 127 } 128 129 /// Used to store information PPCG wants for kills. This information is 130 /// used by live range reordering. 131 /// 132 /// @see computeLiveRangeReordering 133 /// @see GPUNodeBuilder::createPPCGScop 134 /// @see GPUNodeBuilder::createPPCGProg 135 struct MustKillsInfo { 136 /// Collection of all kill statements that will be sequenced at the end of 137 /// PPCGScop->schedule. 138 /// 139 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 140 /// which merges schedules in *arbitrary* order. 141 /// (we don't care about the order of the kills anyway). 142 isl::schedule KillsSchedule; 143 /// Map from kill statement instances to scalars that need to be 144 /// killed. 145 /// 146 /// We currently derive kill information for: 147 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 148 /// consequently all be killed. 149 /// 2. Scalar arrays that are not used outside the Scop. This is 150 /// checked by `isScalarUsesContainedInScop`. 151 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 152 isl::union_map TaggedMustKills; 153 154 /// Tagged must kills stripped of the tags. 155 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 156 isl::union_map MustKills; 157 158 MustKillsInfo() : KillsSchedule(nullptr) {} 159 }; 160 161 /// Check if SAI's uses are entirely contained within Scop S. 162 /// If a scalar is used only with a Scop, we are free to kill it, as no data 163 /// can flow in/out of the value any more. 164 /// @see computeMustKillsInfo 165 static bool isScalarUsesContainedInScop(const Scop &S, 166 const ScopArrayInfo *SAI) { 167 assert(SAI->isValueKind() && "this function only deals with scalars." 168 " Dealing with arrays required alias analysis"); 169 170 const Region &R = S.getRegion(); 171 for (User *U : SAI->getBasePtr()->users()) { 172 Instruction *I = dyn_cast<Instruction>(U); 173 assert(I && "invalid user of scop array info"); 174 if (!R.contains(I)) 175 return false; 176 } 177 return true; 178 } 179 180 /// Compute must-kills needed to enable live range reordering with PPCG. 181 /// 182 /// @params S The Scop to compute live range reordering information 183 /// @returns live range reordering information that can be used to setup 184 /// PPCG. 185 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 186 const isl::space ParamSpace = S.getParamSpace(); 187 MustKillsInfo Info; 188 189 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 190 // 1.1 phi nodes in scop. 191 // 1.2 scalars that are only used within the scop 192 SmallVector<isl::id, 4> KillMemIds; 193 for (ScopArrayInfo *SAI : S.arrays()) { 194 if (SAI->isPHIKind() || 195 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 196 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 197 } 198 199 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 200 Info.MustKills = isl::union_map::empty(ParamSpace); 201 202 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 203 // schedule: 204 // - filter: "[control] -> { }" 205 // So, we choose to not create this to keep the output a little nicer, 206 // at the cost of some code complexity. 207 Info.KillsSchedule = nullptr; 208 209 for (isl::id &ToKillId : KillMemIds) { 210 isl::id KillStmtId = isl::id::alloc( 211 S.getIslCtx(), 212 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 213 214 // NOTE: construction of tagged_must_kill: 215 // 2. We need to construct a map: 216 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 217 // To construct this, we use `isl_map_domain_product` on 2 maps`: 218 // 2a. StmtToScalar: 219 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 220 // 2b. PhantomRefToScalar: 221 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 222 // 223 // Combining these with `isl_map_domain_product` gives us 224 // TaggedMustKill: 225 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 226 227 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 228 isl::map StmtToScalar = isl::map::universe(ParamSpace); 229 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 230 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 231 232 isl::id PhantomRefId = isl::id::alloc( 233 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 234 nullptr); 235 236 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 237 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 238 PhantomRefToScalar = 239 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 240 PhantomRefToScalar = 241 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 242 243 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 244 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 245 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 246 247 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 248 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 249 250 // 3. Create the kill schedule of the form: 251 // "[param] -> { Stmt_phantom[] }" 252 // Then add this to Info.KillsSchedule. 253 isl::space KillStmtSpace = ParamSpace; 254 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 255 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 256 257 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 258 if (Info.KillsSchedule) 259 Info.KillsSchedule = isl::manage( 260 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 261 else 262 Info.KillsSchedule = KillSchedule; 263 } 264 265 return Info; 266 } 267 268 /// Create the ast expressions for a ScopStmt. 269 /// 270 /// This function is a callback for to generate the ast expressions for each 271 /// of the scheduled ScopStmts. 272 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 273 void *StmtT, __isl_take isl_ast_build *Build_C, 274 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 275 isl_id *Id, void *User), 276 void *UserIndex, 277 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 278 void *UserExpr) { 279 280 ScopStmt *Stmt = (ScopStmt *)StmtT; 281 282 if (!Stmt || !Build_C) 283 return NULL; 284 285 isl::ast_build Build = isl::manage_copy(Build_C); 286 isl::ctx Ctx = Build.get_ctx(); 287 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 288 289 Stmt->setAstBuild(Build); 290 291 for (MemoryAccess *Acc : *Stmt) { 292 isl::map AddrFunc = Acc->getAddressFunction(); 293 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 294 295 isl::id RefId = Acc->getId(); 296 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 297 298 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 299 MPA = MPA.coalesce(); 300 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 301 302 isl::ast_expr Access = Build.access_from(MPA); 303 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 304 RefToExpr = RefToExpr.set(RefId, Access); 305 } 306 307 return RefToExpr.release(); 308 } 309 310 /// Given a LLVM Type, compute its size in bytes, 311 static int computeSizeInBytes(const Type *T) { 312 int bytes = T->getPrimitiveSizeInBits() / 8; 313 if (bytes == 0) 314 bytes = T->getScalarSizeInBits() / 8; 315 return bytes; 316 } 317 318 /// Generate code for a GPU specific isl AST. 319 /// 320 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 321 /// generates code for general-purpose AST nodes, with special functionality 322 /// for generating GPU specific user nodes. 323 /// 324 /// @see GPUNodeBuilder::createUser 325 class GPUNodeBuilder : public IslNodeBuilder { 326 public: 327 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 328 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 329 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 330 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 331 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 332 Prog(Prog), Runtime(Runtime), Arch(Arch) { 333 getExprBuilder().setIDToSAI(&IDToSAI); 334 } 335 336 /// Create after-run-time-check initialization code. 337 void initializeAfterRTH(); 338 339 /// Finalize the generated scop. 340 virtual void finalize(); 341 342 /// Track if the full build process was successful. 343 /// 344 /// This value is set to false, if throughout the build process an error 345 /// occurred which prevents us from generating valid GPU code. 346 bool BuildSuccessful = true; 347 348 /// The maximal number of loops surrounding a sequential kernel. 349 unsigned DeepestSequential = 0; 350 351 /// The maximal number of loops surrounding a parallel kernel. 352 unsigned DeepestParallel = 0; 353 354 /// Return the name to set for the ptx_kernel. 355 std::string getKernelFuncName(int Kernel_id); 356 357 private: 358 /// A vector of array base pointers for which a new ScopArrayInfo was created. 359 /// 360 /// This vector is used to delete the ScopArrayInfo when it is not needed any 361 /// more. 362 std::vector<Value *> LocalArrays; 363 364 /// A map from ScopArrays to their corresponding device allocations. 365 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 366 367 /// The current GPU context. 368 Value *GPUContext; 369 370 /// The set of isl_ids allocated in the kernel 371 std::vector<isl_id *> KernelIds; 372 373 /// A module containing GPU code. 374 /// 375 /// This pointer is only set in case we are currently generating GPU code. 376 std::unique_ptr<Module> GPUModule; 377 378 /// The GPU program we generate code for. 379 gpu_prog *Prog; 380 381 /// The GPU Runtime implementation to use (OpenCL or CUDA). 382 GPURuntime Runtime; 383 384 /// The GPU Architecture to target. 385 GPUArch Arch; 386 387 /// Class to free isl_ids. 388 class IslIdDeleter { 389 public: 390 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 391 }; 392 393 /// A set containing all isl_ids allocated in a GPU kernel. 394 /// 395 /// By releasing this set all isl_ids will be freed. 396 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 397 398 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 399 400 /// Create code for user-defined AST nodes. 401 /// 402 /// These AST nodes can be of type: 403 /// 404 /// - ScopStmt: A computational statement (TODO) 405 /// - Kernel: A GPU kernel call (TODO) 406 /// - Data-Transfer: A GPU <-> CPU data-transfer 407 /// - In-kernel synchronization 408 /// - In-kernel memory copy statement 409 /// 410 /// @param UserStmt The ast node to generate code for. 411 virtual void createUser(__isl_take isl_ast_node *UserStmt); 412 413 virtual void createFor(__isl_take isl_ast_node *Node); 414 415 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 416 417 /// Create code for a data transfer statement 418 /// 419 /// @param TransferStmt The data transfer statement. 420 /// @param Direction The direction in which to transfer data. 421 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 422 enum DataDirection Direction); 423 424 /// Find llvm::Values referenced in GPU kernel. 425 /// 426 /// @param Kernel The kernel to scan for llvm::Values 427 /// 428 /// @returns A tuple, whose: 429 /// - First element contains the set of values referenced by the 430 /// kernel 431 /// - Second element contains the set of functions referenced by the 432 /// kernel. All functions in the set satisfy 433 /// `isValidFunctionInKernel`. 434 /// - Third element contains loops that have induction variables 435 /// which are used in the kernel, *and* these loops are *neither* 436 /// in the scop, nor do they immediately surroung the Scop. 437 /// See [Code generation of induction variables of loops outside 438 /// Scops] 439 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 440 isl::space> 441 getReferencesInKernel(ppcg_kernel *Kernel); 442 443 /// Compute the sizes of the execution grid for a given kernel. 444 /// 445 /// @param Kernel The kernel to compute grid sizes for. 446 /// 447 /// @returns A tuple with grid sizes for X and Y dimension 448 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 449 450 /// Get the managed array pointer for sending host pointers to the device. 451 /// \note 452 /// This is to be used only with managed memory 453 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 454 455 /// Compute the sizes of the thread blocks for a given kernel. 456 /// 457 /// @param Kernel The kernel to compute thread block sizes for. 458 /// 459 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 460 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 461 462 /// Store a specific kernel launch parameter in the array of kernel launch 463 /// parameters. 464 /// 465 /// @param Parameters The list of parameters in which to store. 466 /// @param Param The kernel launch parameter to store. 467 /// @param Index The index in the parameter list, at which to store the 468 /// parameter. 469 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 470 int Index); 471 472 /// Create kernel launch parameters. 473 /// 474 /// @param Kernel The kernel to create parameters for. 475 /// @param F The kernel function that has been created. 476 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 477 /// 478 /// @returns A stack allocated array with pointers to the parameter 479 /// values that are passed to the kernel. 480 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 481 SetVector<Value *> SubtreeValues); 482 483 /// Create declarations for kernel variable. 484 /// 485 /// This includes shared memory declarations. 486 /// 487 /// @param Kernel The kernel definition to create variables for. 488 /// @param FN The function into which to generate the variables. 489 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 490 491 /// Add CUDA annotations to module. 492 /// 493 /// Add a set of CUDA annotations that declares the maximal block dimensions 494 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 495 /// PTX compiler to bound the number of allocated registers to ensure the 496 /// resulting kernel is known to run with up to as many block dimensions 497 /// as specified here. 498 /// 499 /// @param M The module to add the annotations to. 500 /// @param BlockDimX The size of block dimension X. 501 /// @param BlockDimY The size of block dimension Y. 502 /// @param BlockDimZ The size of block dimension Z. 503 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 504 Value *BlockDimZ); 505 506 /// Create GPU kernel. 507 /// 508 /// Code generate the kernel described by @p KernelStmt. 509 /// 510 /// @param KernelStmt The ast node to generate kernel code for. 511 void createKernel(__isl_take isl_ast_node *KernelStmt); 512 513 /// Generate code that computes the size of an array. 514 /// 515 /// @param Array The array for which to compute a size. 516 Value *getArraySize(gpu_array_info *Array); 517 518 /// Generate code to compute the minimal offset at which an array is accessed. 519 /// 520 /// The offset of an array is the minimal array location accessed in a scop. 521 /// 522 /// Example: 523 /// 524 /// for (long i = 0; i < 100; i++) 525 /// A[i + 42] += ... 526 /// 527 /// getArrayOffset(A) results in 42. 528 /// 529 /// @param Array The array for which to compute the offset. 530 /// @returns An llvm::Value that contains the offset of the array. 531 Value *getArrayOffset(gpu_array_info *Array); 532 533 /// Prepare the kernel arguments for kernel code generation 534 /// 535 /// @param Kernel The kernel to generate code for. 536 /// @param FN The function created for the kernel. 537 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 538 539 /// Create kernel function. 540 /// 541 /// Create a kernel function located in a newly created module that can serve 542 /// as target for device code generation. Set the Builder to point to the 543 /// start block of this newly created function. 544 /// 545 /// @param Kernel The kernel to generate code for. 546 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 547 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 548 /// kernel. 549 void createKernelFunction(ppcg_kernel *Kernel, 550 SetVector<Value *> &SubtreeValues, 551 SetVector<Function *> &SubtreeFunctions); 552 553 /// Create the declaration of a kernel function. 554 /// 555 /// The kernel function takes as arguments: 556 /// 557 /// - One i8 pointer for each external array reference used in the kernel. 558 /// - Host iterators 559 /// - Parameters 560 /// - Other LLVM Value references (TODO) 561 /// 562 /// @param Kernel The kernel to generate the function declaration for. 563 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 564 /// 565 /// @returns The newly declared function. 566 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 567 SetVector<Value *> &SubtreeValues); 568 569 /// Insert intrinsic functions to obtain thread and block ids. 570 /// 571 /// @param The kernel to generate the intrinsic functions for. 572 void insertKernelIntrinsics(ppcg_kernel *Kernel); 573 574 /// Insert function calls to retrieve the SPIR group/local ids. 575 /// 576 /// @param Kernel The kernel to generate the function calls for. 577 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 578 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 579 580 /// Setup the creation of functions referenced by the GPU kernel. 581 /// 582 /// 1. Create new function declarations in GPUModule which are the same as 583 /// SubtreeFunctions. 584 /// 585 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 586 /// old functions (that come from the original module) to new functions 587 /// (that are created within GPUModule). That way, we generate references 588 /// to the correct function (in GPUModule) in BlockGenerator. 589 /// 590 /// @see IslNodeBuilder::ValueMap 591 /// @see BlockGenerator::GlobalMap 592 /// @see BlockGenerator::getNewValue 593 /// @see GPUNodeBuilder::getReferencesInKernel. 594 /// 595 /// @param SubtreeFunctions The set of llvm::Functions referenced by 596 /// this kernel. 597 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 598 599 /// Create a global-to-shared or shared-to-global copy statement. 600 /// 601 /// @param CopyStmt The copy statement to generate code for 602 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 603 604 /// Create code for a ScopStmt called in @p Expr. 605 /// 606 /// @param Expr The expression containing the call. 607 /// @param KernelStmt The kernel statement referenced in the call. 608 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 609 610 /// Create an in-kernel synchronization call. 611 void createKernelSync(); 612 613 /// Create a PTX assembly string for the current GPU kernel. 614 /// 615 /// @returns A string containing the corresponding PTX assembly code. 616 std::string createKernelASM(); 617 618 /// Remove references from the dominator tree to the kernel function @p F. 619 /// 620 /// @param F The function to remove references to. 621 void clearDominators(Function *F); 622 623 /// Remove references from scalar evolution to the kernel function @p F. 624 /// 625 /// @param F The function to remove references to. 626 void clearScalarEvolution(Function *F); 627 628 /// Remove references from loop info to the kernel function @p F. 629 /// 630 /// @param F The function to remove references to. 631 void clearLoops(Function *F); 632 633 /// Check if the scop requires to be linked with CUDA's libdevice. 634 bool requiresCUDALibDevice(); 635 636 /// Link with the NVIDIA libdevice library (if needed and available). 637 void addCUDALibDevice(); 638 639 /// Finalize the generation of the kernel function. 640 /// 641 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 642 /// dump its IR to stderr. 643 /// 644 /// @returns The Assembly string of the kernel. 645 std::string finalizeKernelFunction(); 646 647 /// Finalize the generation of the kernel arguments. 648 /// 649 /// This function ensures that not-read-only scalars used in a kernel are 650 /// stored back to the global memory location they are backed with before 651 /// the kernel terminates. 652 /// 653 /// @params Kernel The kernel to finalize kernel arguments for. 654 void finalizeKernelArguments(ppcg_kernel *Kernel); 655 656 /// Create code that allocates memory to store arrays on device. 657 void allocateDeviceArrays(); 658 659 /// Create code to prepare the managed device pointers. 660 void prepareManagedDeviceArrays(); 661 662 /// Free all allocated device arrays. 663 void freeDeviceArrays(); 664 665 /// Create a call to initialize the GPU context. 666 /// 667 /// @returns A pointer to the newly initialized context. 668 Value *createCallInitContext(); 669 670 /// Create a call to get the device pointer for a kernel allocation. 671 /// 672 /// @param Allocation The Polly GPU allocation 673 /// 674 /// @returns The device parameter corresponding to this allocation. 675 Value *createCallGetDevicePtr(Value *Allocation); 676 677 /// Create a call to free the GPU context. 678 /// 679 /// @param Context A pointer to an initialized GPU context. 680 void createCallFreeContext(Value *Context); 681 682 /// Create a call to allocate memory on the device. 683 /// 684 /// @param Size The size of memory to allocate 685 /// 686 /// @returns A pointer that identifies this allocation. 687 Value *createCallAllocateMemoryForDevice(Value *Size); 688 689 /// Create a call to free a device array. 690 /// 691 /// @param Array The device array to free. 692 void createCallFreeDeviceMemory(Value *Array); 693 694 /// Create a call to copy data from host to device. 695 /// 696 /// @param HostPtr A pointer to the host data that should be copied. 697 /// @param DevicePtr A device pointer specifying the location to copy to. 698 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 699 Value *Size); 700 701 /// Create a call to copy data from device to host. 702 /// 703 /// @param DevicePtr A pointer to the device data that should be copied. 704 /// @param HostPtr A host pointer specifying the location to copy to. 705 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 706 Value *Size); 707 708 /// Create a call to synchronize Host & Device. 709 /// \note 710 /// This is to be used only with managed memory. 711 void createCallSynchronizeDevice(); 712 713 /// Create a call to get a kernel from an assembly string. 714 /// 715 /// @param Buffer The string describing the kernel. 716 /// @param Entry The name of the kernel function to call. 717 /// 718 /// @returns A pointer to a kernel object 719 Value *createCallGetKernel(Value *Buffer, Value *Entry); 720 721 /// Create a call to free a GPU kernel. 722 /// 723 /// @param GPUKernel THe kernel to free. 724 void createCallFreeKernel(Value *GPUKernel); 725 726 /// Create a call to launch a GPU kernel. 727 /// 728 /// @param GPUKernel The kernel to launch. 729 /// @param GridDimX The size of the first grid dimension. 730 /// @param GridDimY The size of the second grid dimension. 731 /// @param GridBlockX The size of the first block dimension. 732 /// @param GridBlockY The size of the second block dimension. 733 /// @param GridBlockZ The size of the third block dimension. 734 /// @param Parameters A pointer to an array that contains itself pointers to 735 /// the parameter values passed for each kernel argument. 736 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 737 Value *GridDimY, Value *BlockDimX, 738 Value *BlockDimY, Value *BlockDimZ, 739 Value *Parameters); 740 }; 741 742 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 743 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 744 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 745 } 746 747 void GPUNodeBuilder::initializeAfterRTH() { 748 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 749 &*Builder.GetInsertPoint(), &DT, &LI); 750 NewBB->setName("polly.acc.initialize"); 751 Builder.SetInsertPoint(&NewBB->front()); 752 753 GPUContext = createCallInitContext(); 754 755 if (!PollyManagedMemory) 756 allocateDeviceArrays(); 757 else 758 prepareManagedDeviceArrays(); 759 } 760 761 void GPUNodeBuilder::finalize() { 762 if (!PollyManagedMemory) 763 freeDeviceArrays(); 764 765 createCallFreeContext(GPUContext); 766 IslNodeBuilder::finalize(); 767 } 768 769 void GPUNodeBuilder::allocateDeviceArrays() { 770 assert(!PollyManagedMemory && 771 "Managed memory will directly send host pointers " 772 "to the kernel. There is no need for device arrays"); 773 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 774 775 for (int i = 0; i < Prog->n_array; ++i) { 776 gpu_array_info *Array = &Prog->array[i]; 777 auto *ScopArray = (ScopArrayInfo *)Array->user; 778 std::string DevArrayName("p_dev_array_"); 779 DevArrayName.append(Array->name); 780 781 Value *ArraySize = getArraySize(Array); 782 Value *Offset = getArrayOffset(Array); 783 if (Offset) 784 ArraySize = Builder.CreateSub( 785 ArraySize, 786 Builder.CreateMul(Offset, 787 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 788 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 789 // It makes no sense to have an array of size 0. The CUDA API will 790 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 791 // choose to be defensive and catch this at the compile phase. It is 792 // most likely that we are doing something wrong with size computation. 793 if (SizeSCEV->isZero()) { 794 errs() << getUniqueScopName(&S) 795 << " has computed array size 0: " << *ArraySize 796 << " | for array: " << *(ScopArray->getBasePtr()) 797 << ". This is illegal, exiting.\n"; 798 report_fatal_error("array size was computed to be 0"); 799 } 800 801 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 802 DevArray->setName(DevArrayName); 803 DeviceAllocations[ScopArray] = DevArray; 804 } 805 806 isl_ast_build_free(Build); 807 } 808 809 void GPUNodeBuilder::prepareManagedDeviceArrays() { 810 assert(PollyManagedMemory && 811 "Device array most only be prepared in managed-memory mode"); 812 for (int i = 0; i < Prog->n_array; ++i) { 813 gpu_array_info *Array = &Prog->array[i]; 814 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 815 Value *HostPtr; 816 817 if (gpu_array_is_scalar(Array)) 818 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 819 else 820 HostPtr = ScopArray->getBasePtr(); 821 HostPtr = getLatestValue(HostPtr); 822 823 Value *Offset = getArrayOffset(Array); 824 if (Offset) { 825 HostPtr = Builder.CreatePointerCast( 826 HostPtr, ScopArray->getElementType()->getPointerTo()); 827 HostPtr = Builder.CreateGEP(HostPtr, Offset); 828 } 829 830 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 831 DeviceAllocations[ScopArray] = HostPtr; 832 } 833 } 834 835 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 836 Value *BlockDimY, Value *BlockDimZ) { 837 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 838 839 for (auto &F : *M) { 840 if (F.getCallingConv() != CallingConv::PTX_Kernel) 841 continue; 842 843 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 844 845 Metadata *Elements[] = { 846 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 847 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 848 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 849 ValueAsMetadata::get(V[2]), 850 }; 851 MDNode *Node = MDNode::get(M->getContext(), Elements); 852 AnnotationNode->addOperand(Node); 853 } 854 } 855 856 void GPUNodeBuilder::freeDeviceArrays() { 857 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 858 for (auto &Array : DeviceAllocations) 859 createCallFreeDeviceMemory(Array.second); 860 } 861 862 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 863 const char *Name = "polly_getKernel"; 864 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 865 Function *F = M->getFunction(Name); 866 867 // If F is not available, declare it. 868 if (!F) { 869 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 870 std::vector<Type *> Args; 871 Args.push_back(Builder.getInt8PtrTy()); 872 Args.push_back(Builder.getInt8PtrTy()); 873 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 874 F = Function::Create(Ty, Linkage, Name, M); 875 } 876 877 return Builder.CreateCall(F, {Buffer, Entry}); 878 } 879 880 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 881 const char *Name = "polly_getDevicePtr"; 882 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 883 Function *F = M->getFunction(Name); 884 885 // If F is not available, declare it. 886 if (!F) { 887 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 888 std::vector<Type *> Args; 889 Args.push_back(Builder.getInt8PtrTy()); 890 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 891 F = Function::Create(Ty, Linkage, Name, M); 892 } 893 894 return Builder.CreateCall(F, {Allocation}); 895 } 896 897 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 898 Value *GridDimY, Value *BlockDimX, 899 Value *BlockDimY, Value *BlockDimZ, 900 Value *Parameters) { 901 const char *Name = "polly_launchKernel"; 902 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 903 Function *F = M->getFunction(Name); 904 905 // If F is not available, declare it. 906 if (!F) { 907 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 908 std::vector<Type *> Args; 909 Args.push_back(Builder.getInt8PtrTy()); 910 Args.push_back(Builder.getInt32Ty()); 911 Args.push_back(Builder.getInt32Ty()); 912 Args.push_back(Builder.getInt32Ty()); 913 Args.push_back(Builder.getInt32Ty()); 914 Args.push_back(Builder.getInt32Ty()); 915 Args.push_back(Builder.getInt8PtrTy()); 916 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 917 F = Function::Create(Ty, Linkage, Name, M); 918 } 919 920 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 921 BlockDimZ, Parameters}); 922 } 923 924 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 925 const char *Name = "polly_freeKernel"; 926 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 927 Function *F = M->getFunction(Name); 928 929 // If F is not available, declare it. 930 if (!F) { 931 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 932 std::vector<Type *> Args; 933 Args.push_back(Builder.getInt8PtrTy()); 934 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 935 F = Function::Create(Ty, Linkage, Name, M); 936 } 937 938 Builder.CreateCall(F, {GPUKernel}); 939 } 940 941 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 942 assert(!PollyManagedMemory && 943 "Managed memory does not allocate or free memory " 944 "for device"); 945 const char *Name = "polly_freeDeviceMemory"; 946 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 947 Function *F = M->getFunction(Name); 948 949 // If F is not available, declare it. 950 if (!F) { 951 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 952 std::vector<Type *> Args; 953 Args.push_back(Builder.getInt8PtrTy()); 954 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 955 F = Function::Create(Ty, Linkage, Name, M); 956 } 957 958 Builder.CreateCall(F, {Array}); 959 } 960 961 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 962 assert(!PollyManagedMemory && 963 "Managed memory does not allocate or free memory " 964 "for device"); 965 const char *Name = "polly_allocateMemoryForDevice"; 966 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 967 Function *F = M->getFunction(Name); 968 969 // If F is not available, declare it. 970 if (!F) { 971 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 972 std::vector<Type *> Args; 973 Args.push_back(Builder.getInt64Ty()); 974 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 975 F = Function::Create(Ty, Linkage, Name, M); 976 } 977 978 return Builder.CreateCall(F, {Size}); 979 } 980 981 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 982 Value *DeviceData, 983 Value *Size) { 984 assert(!PollyManagedMemory && 985 "Managed memory does not transfer memory between " 986 "device and host"); 987 const char *Name = "polly_copyFromHostToDevice"; 988 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 989 Function *F = M->getFunction(Name); 990 991 // If F is not available, declare it. 992 if (!F) { 993 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 994 std::vector<Type *> Args; 995 Args.push_back(Builder.getInt8PtrTy()); 996 Args.push_back(Builder.getInt8PtrTy()); 997 Args.push_back(Builder.getInt64Ty()); 998 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 999 F = Function::Create(Ty, Linkage, Name, M); 1000 } 1001 1002 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1003 } 1004 1005 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1006 Value *HostData, 1007 Value *Size) { 1008 assert(!PollyManagedMemory && 1009 "Managed memory does not transfer memory between " 1010 "device and host"); 1011 const char *Name = "polly_copyFromDeviceToHost"; 1012 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1013 Function *F = M->getFunction(Name); 1014 1015 // If F is not available, declare it. 1016 if (!F) { 1017 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1018 std::vector<Type *> Args; 1019 Args.push_back(Builder.getInt8PtrTy()); 1020 Args.push_back(Builder.getInt8PtrTy()); 1021 Args.push_back(Builder.getInt64Ty()); 1022 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1023 F = Function::Create(Ty, Linkage, Name, M); 1024 } 1025 1026 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1027 } 1028 1029 void GPUNodeBuilder::createCallSynchronizeDevice() { 1030 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1031 "managed memory"); 1032 const char *Name = "polly_synchronizeDevice"; 1033 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1034 Function *F = M->getFunction(Name); 1035 1036 // If F is not available, declare it. 1037 if (!F) { 1038 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1039 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1040 F = Function::Create(Ty, Linkage, Name, M); 1041 } 1042 1043 Builder.CreateCall(F); 1044 } 1045 1046 Value *GPUNodeBuilder::createCallInitContext() { 1047 const char *Name; 1048 1049 switch (Runtime) { 1050 case GPURuntime::CUDA: 1051 Name = "polly_initContextCUDA"; 1052 break; 1053 case GPURuntime::OpenCL: 1054 Name = "polly_initContextCL"; 1055 break; 1056 } 1057 1058 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1059 Function *F = M->getFunction(Name); 1060 1061 // If F is not available, declare it. 1062 if (!F) { 1063 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1064 std::vector<Type *> Args; 1065 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1066 F = Function::Create(Ty, Linkage, Name, M); 1067 } 1068 1069 return Builder.CreateCall(F, {}); 1070 } 1071 1072 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1073 const char *Name = "polly_freeContext"; 1074 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1075 Function *F = M->getFunction(Name); 1076 1077 // If F is not available, declare it. 1078 if (!F) { 1079 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1080 std::vector<Type *> Args; 1081 Args.push_back(Builder.getInt8PtrTy()); 1082 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1083 F = Function::Create(Ty, Linkage, Name, M); 1084 } 1085 1086 Builder.CreateCall(F, {Context}); 1087 } 1088 1089 /// Check if one string is a prefix of another. 1090 /// 1091 /// @param String The string in which to look for the prefix. 1092 /// @param Prefix The prefix to look for. 1093 static bool isPrefix(std::string String, std::string Prefix) { 1094 return String.find(Prefix) == 0; 1095 } 1096 1097 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1098 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1099 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1100 1101 if (!gpu_array_is_scalar(Array)) { 1102 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1103 1104 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1105 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1106 1107 for (unsigned int i = 1; i < Array->n_index; i++) { 1108 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1109 isl::ast_expr Expr = Build.expr_from(Bound_I); 1110 Res = Res.mul(Expr); 1111 } 1112 1113 Value *NumElements = ExprBuilder.create(Res.release()); 1114 if (NumElements->getType() != ArraySize->getType()) 1115 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1116 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1117 } 1118 return ArraySize; 1119 } 1120 1121 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1122 if (gpu_array_is_scalar(Array)) 1123 return nullptr; 1124 1125 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1126 1127 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1128 1129 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1130 1131 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1132 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1133 1134 if (Min.is_subset(ZeroSet)) { 1135 return nullptr; 1136 } 1137 1138 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1139 1140 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1141 if (i > 0) { 1142 isl::pw_aff Bound_I = 1143 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1144 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1145 Result = Result.mul(BExpr); 1146 } 1147 isl::pw_aff DimMin = Min.dim_min(i); 1148 isl::ast_expr MExpr = Build.expr_from(DimMin); 1149 Result = Result.add(MExpr); 1150 } 1151 1152 return ExprBuilder.create(Result.release()); 1153 } 1154 1155 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1156 ScopArrayInfo *ArrayInfo) { 1157 assert(PollyManagedMemory && "Only used when you wish to get a host " 1158 "pointer for sending data to the kernel, " 1159 "with managed memory"); 1160 std::map<ScopArrayInfo *, Value *>::iterator it; 1161 it = DeviceAllocations.find(ArrayInfo); 1162 assert(it != DeviceAllocations.end() && 1163 "Device array expected to be available"); 1164 return it->second; 1165 } 1166 1167 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1168 enum DataDirection Direction) { 1169 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1170 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1171 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1172 isl_id *Id = isl_ast_expr_get_id(Arg); 1173 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1174 auto ScopArray = (ScopArrayInfo *)(Array->user); 1175 1176 Value *Size = getArraySize(Array); 1177 Value *Offset = getArrayOffset(Array); 1178 Value *DevPtr = DeviceAllocations[ScopArray]; 1179 1180 Value *HostPtr; 1181 1182 if (gpu_array_is_scalar(Array)) 1183 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1184 else 1185 HostPtr = ScopArray->getBasePtr(); 1186 HostPtr = getLatestValue(HostPtr); 1187 1188 if (Offset) { 1189 HostPtr = Builder.CreatePointerCast( 1190 HostPtr, ScopArray->getElementType()->getPointerTo()); 1191 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1192 } 1193 1194 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1195 1196 if (Offset) { 1197 Size = Builder.CreateSub( 1198 Size, Builder.CreateMul( 1199 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1200 } 1201 1202 if (Direction == HOST_TO_DEVICE) 1203 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1204 else 1205 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1206 1207 isl_id_free(Id); 1208 isl_ast_expr_free(Arg); 1209 isl_ast_expr_free(Expr); 1210 isl_ast_node_free(TransferStmt); 1211 } 1212 1213 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1214 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1215 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1216 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1217 isl_id_free(Id); 1218 isl_ast_expr_free(StmtExpr); 1219 1220 const char *Str = isl_id_get_name(Id); 1221 if (!strcmp(Str, "kernel")) { 1222 createKernel(UserStmt); 1223 if (PollyManagedMemory) 1224 createCallSynchronizeDevice(); 1225 isl_ast_expr_free(Expr); 1226 return; 1227 } 1228 if (!strcmp(Str, "init_device")) { 1229 initializeAfterRTH(); 1230 isl_ast_node_free(UserStmt); 1231 isl_ast_expr_free(Expr); 1232 return; 1233 } 1234 if (!strcmp(Str, "clear_device")) { 1235 finalize(); 1236 isl_ast_node_free(UserStmt); 1237 isl_ast_expr_free(Expr); 1238 return; 1239 } 1240 if (isPrefix(Str, "to_device")) { 1241 if (!PollyManagedMemory) 1242 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1243 else 1244 isl_ast_node_free(UserStmt); 1245 1246 isl_ast_expr_free(Expr); 1247 return; 1248 } 1249 1250 if (isPrefix(Str, "from_device")) { 1251 if (!PollyManagedMemory) { 1252 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1253 } else { 1254 isl_ast_node_free(UserStmt); 1255 } 1256 isl_ast_expr_free(Expr); 1257 return; 1258 } 1259 1260 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1261 struct ppcg_kernel_stmt *KernelStmt = 1262 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1263 isl_id_free(Anno); 1264 1265 switch (KernelStmt->type) { 1266 case ppcg_kernel_domain: 1267 createScopStmt(Expr, KernelStmt); 1268 isl_ast_node_free(UserStmt); 1269 return; 1270 case ppcg_kernel_copy: 1271 createKernelCopy(KernelStmt); 1272 isl_ast_expr_free(Expr); 1273 isl_ast_node_free(UserStmt); 1274 return; 1275 case ppcg_kernel_sync: 1276 createKernelSync(); 1277 isl_ast_expr_free(Expr); 1278 isl_ast_node_free(UserStmt); 1279 return; 1280 } 1281 1282 isl_ast_expr_free(Expr); 1283 isl_ast_node_free(UserStmt); 1284 } 1285 1286 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1287 createForSequential(isl::manage(Node), false); 1288 } 1289 1290 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1291 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1292 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1293 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1294 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1295 Index = isl_ast_expr_address_of(Index); 1296 Value *GlobalAddr = ExprBuilder.create(Index); 1297 1298 if (KernelStmt->u.c.read) { 1299 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1300 Builder.CreateStore(Load, LocalAddr); 1301 } else { 1302 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1303 Builder.CreateStore(Load, GlobalAddr); 1304 } 1305 } 1306 1307 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1308 ppcg_kernel_stmt *KernelStmt) { 1309 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1310 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1311 1312 LoopToScevMapT LTS; 1313 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1314 1315 createSubstitutions(Expr, Stmt, LTS); 1316 1317 if (Stmt->isBlockStmt()) 1318 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1319 else 1320 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1321 } 1322 1323 void GPUNodeBuilder::createKernelSync() { 1324 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1325 const char *SpirName = "__gen_ocl_barrier_global"; 1326 1327 Function *Sync; 1328 1329 switch (Arch) { 1330 case GPUArch::SPIR64: 1331 case GPUArch::SPIR32: 1332 Sync = M->getFunction(SpirName); 1333 1334 // If Sync is not available, declare it. 1335 if (!Sync) { 1336 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1337 std::vector<Type *> Args; 1338 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1339 Sync = Function::Create(Ty, Linkage, SpirName, M); 1340 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1341 } 1342 break; 1343 case GPUArch::NVPTX64: 1344 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1345 break; 1346 } 1347 1348 Builder.CreateCall(Sync, {}); 1349 } 1350 1351 /// Collect llvm::Values referenced from @p Node 1352 /// 1353 /// This function only applies to isl_ast_nodes that are user_nodes referring 1354 /// to a ScopStmt. All other node types are ignore. 1355 /// 1356 /// @param Node The node to collect references for. 1357 /// @param User A user pointer used as storage for the data that is collected. 1358 /// 1359 /// @returns isl_bool_true if data could be collected successfully. 1360 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1361 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1362 return isl_bool_true; 1363 1364 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1365 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1366 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1367 const char *Str = isl_id_get_name(Id); 1368 isl_id_free(Id); 1369 isl_ast_expr_free(StmtExpr); 1370 isl_ast_expr_free(Expr); 1371 1372 if (!isPrefix(Str, "Stmt")) 1373 return isl_bool_true; 1374 1375 Id = isl_ast_node_get_annotation(Node); 1376 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1377 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1378 isl_id_free(Id); 1379 1380 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1381 1382 return isl_bool_true; 1383 } 1384 1385 /// A list of functions that are available in NVIDIA's libdevice. 1386 const std::set<std::string> CUDALibDeviceFunctions = { 1387 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1388 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1389 1390 // A map from intrinsics to their corresponding libdevice functions. 1391 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1392 {"llvm.exp.f64", "exp"}, 1393 {"llvm.exp.f32", "expf"}, 1394 {"llvm.powi.f64", "powi"}, 1395 {"llvm.powi.f32", "powif"}}; 1396 1397 /// Return the corresponding CUDA libdevice function name @p Name. 1398 /// Note that this function will try to convert instrinsics in the list 1399 /// IntrinsicToLibdeviceFunc into libdevice functions. 1400 /// This is because some intrinsics such as `exp` 1401 /// are not supported by the NVPTX backend. 1402 /// If this restriction of the backend is lifted, we should refactor our code 1403 /// so that we use intrinsics whenever possible. 1404 /// 1405 /// Return "" if we are not compiling for CUDA. 1406 std::string getCUDALibDeviceFuntion(StringRef NameRef) { 1407 std::string Name = NameRef.str(); 1408 auto It = IntrinsicToLibdeviceFunc.find(Name); 1409 if (It != IntrinsicToLibdeviceFunc.end()) 1410 return getCUDALibDeviceFuntion(It->second); 1411 1412 if (CUDALibDeviceFunctions.count(Name)) 1413 return ("__nv_" + Name); 1414 1415 return ""; 1416 } 1417 1418 /// Check if F is a function that we can code-generate in a GPU kernel. 1419 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1420 assert(F && "F is an invalid pointer"); 1421 // We string compare against the name of the function to allow 1422 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1423 // "llvm.copysign". 1424 const StringRef Name = F->getName(); 1425 1426 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1427 return true; 1428 1429 return F->isIntrinsic() && 1430 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1431 Name.startswith("llvm.copysign")); 1432 } 1433 1434 /// Do not take `Function` as a subtree value. 1435 /// 1436 /// We try to take the reference of all subtree values and pass them along 1437 /// to the kernel from the host. Taking an address of any function and 1438 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1439 /// `Function`s. 1440 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1441 1442 /// Return `Function`s from `RawSubtreeValues`. 1443 static SetVector<Function *> 1444 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1445 bool AllowCUDALibDevice) { 1446 SetVector<Function *> SubtreeFunctions; 1447 for (Value *It : RawSubtreeValues) { 1448 Function *F = dyn_cast<Function>(It); 1449 if (F) { 1450 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1451 "Code should have bailed out by " 1452 "this point if an invalid function " 1453 "were present in a kernel."); 1454 SubtreeFunctions.insert(F); 1455 } 1456 } 1457 return SubtreeFunctions; 1458 } 1459 1460 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1461 isl::space> 1462 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1463 SetVector<Value *> SubtreeValues; 1464 SetVector<const SCEV *> SCEVs; 1465 SetVector<const Loop *> Loops; 1466 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1467 SubtreeReferences References = { 1468 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1469 &ParamSpace}; 1470 1471 for (const auto &I : IDToValue) 1472 SubtreeValues.insert(I.second); 1473 1474 // NOTE: this is populated in IslNodeBuilder::addParameters 1475 // See [Code generation of induction variables of loops outside Scops]. 1476 for (const auto &I : OutsideLoopIterations) 1477 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1478 1479 isl_ast_node_foreach_descendant_top_down( 1480 Kernel->tree, collectReferencesInGPUStmt, &References); 1481 1482 for (const SCEV *Expr : SCEVs) { 1483 findValues(Expr, SE, SubtreeValues); 1484 findLoops(Expr, Loops); 1485 } 1486 1487 Loops.remove_if([this](const Loop *L) { 1488 return S.contains(L) || L->contains(S.getEntry()); 1489 }); 1490 1491 for (auto &SAI : S.arrays()) 1492 SubtreeValues.remove(SAI->getBasePtr()); 1493 1494 isl_space *Space = S.getParamSpace().release(); 1495 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1496 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1497 assert(IDToValue.count(Id)); 1498 Value *Val = IDToValue[Id]; 1499 SubtreeValues.remove(Val); 1500 isl_id_free(Id); 1501 } 1502 isl_space_free(Space); 1503 1504 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1505 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1506 assert(IDToValue.count(Id)); 1507 Value *Val = IDToValue[Id]; 1508 SubtreeValues.remove(Val); 1509 isl_id_free(Id); 1510 } 1511 1512 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1513 // SubtreeValues. This is important, because we should not lose any 1514 // SubtreeValues in the process of constructing the 1515 // "ValidSubtree{Values, Functions} sets. Nor should the set 1516 // ValidSubtree{Values, Functions} have any common element. 1517 auto ValidSubtreeValuesIt = 1518 make_filter_range(SubtreeValues, isValidSubtreeValue); 1519 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1520 ValidSubtreeValuesIt.end()); 1521 1522 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1523 1524 SetVector<Function *> ValidSubtreeFunctions( 1525 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1526 1527 // @see IslNodeBuilder::getReferencesInSubtree 1528 SetVector<Value *> ReplacedValues; 1529 for (Value *V : ValidSubtreeValues) { 1530 auto It = ValueMap.find(V); 1531 if (It == ValueMap.end()) 1532 ReplacedValues.insert(V); 1533 else 1534 ReplacedValues.insert(It->second); 1535 } 1536 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1537 ParamSpace); 1538 } 1539 1540 void GPUNodeBuilder::clearDominators(Function *F) { 1541 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1542 std::vector<BasicBlock *> Nodes; 1543 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1544 Nodes.push_back(I->getBlock()); 1545 1546 for (BasicBlock *BB : Nodes) 1547 DT.eraseNode(BB); 1548 } 1549 1550 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1551 for (BasicBlock &BB : *F) { 1552 Loop *L = LI.getLoopFor(&BB); 1553 if (L) 1554 SE.forgetLoop(L); 1555 } 1556 } 1557 1558 void GPUNodeBuilder::clearLoops(Function *F) { 1559 SmallSet<Loop *, 1> WorkList; 1560 for (BasicBlock &BB : *F) { 1561 Loop *L = LI.getLoopFor(&BB); 1562 if (L) 1563 WorkList.insert(L); 1564 } 1565 for (auto *L : WorkList) 1566 LI.erase(L); 1567 } 1568 1569 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1570 std::vector<Value *> Sizes; 1571 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1572 1573 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1574 for (long i = 0; i < Kernel->n_grid; i++) { 1575 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1576 isl::ast_expr GridSize = Context.expr_from(Size); 1577 Value *Res = ExprBuilder.create(GridSize.release()); 1578 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1579 Sizes.push_back(Res); 1580 } 1581 1582 for (long i = Kernel->n_grid; i < 3; i++) 1583 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1584 1585 return std::make_tuple(Sizes[0], Sizes[1]); 1586 } 1587 1588 std::tuple<Value *, Value *, Value *> 1589 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1590 std::vector<Value *> Sizes; 1591 1592 for (long i = 0; i < Kernel->n_block; i++) { 1593 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1594 Sizes.push_back(Res); 1595 } 1596 1597 for (long i = Kernel->n_block; i < 3; i++) 1598 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1599 1600 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1601 } 1602 1603 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1604 Instruction *Param, int Index) { 1605 Value *Slot = Builder.CreateGEP( 1606 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1607 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1608 Builder.CreateStore(ParamTyped, Slot); 1609 } 1610 1611 Value * 1612 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1613 SetVector<Value *> SubtreeValues) { 1614 const int NumArgs = F->arg_size(); 1615 std::vector<int> ArgSizes(NumArgs); 1616 1617 // If we are using the OpenCL Runtime, we need to add the kernel argument 1618 // sizes to the end of the launch-parameter list, so OpenCL can determine 1619 // how big the respective kernel arguments are. 1620 // Here we need to reserve adequate space for that. 1621 Type *ArrayTy; 1622 if (Runtime == GPURuntime::OpenCL) 1623 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1624 else 1625 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1626 1627 BasicBlock *EntryBlock = 1628 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1629 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1630 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1631 Instruction *Parameters = new AllocaInst( 1632 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1633 1634 int Index = 0; 1635 for (long i = 0; i < Prog->n_array; i++) { 1636 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1637 continue; 1638 1639 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1640 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1641 1642 if (Runtime == GPURuntime::OpenCL) 1643 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1644 1645 Value *DevArray = nullptr; 1646 if (PollyManagedMemory) { 1647 DevArray = getManagedDeviceArray(&Prog->array[i], 1648 const_cast<ScopArrayInfo *>(SAI)); 1649 } else { 1650 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1651 DevArray = createCallGetDevicePtr(DevArray); 1652 } 1653 assert(DevArray != nullptr && "Array to be offloaded to device not " 1654 "initialized"); 1655 Value *Offset = getArrayOffset(&Prog->array[i]); 1656 1657 if (Offset) { 1658 DevArray = Builder.CreatePointerCast( 1659 DevArray, SAI->getElementType()->getPointerTo()); 1660 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1661 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1662 } 1663 Value *Slot = Builder.CreateGEP( 1664 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1665 1666 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1667 Value *ValPtr = nullptr; 1668 if (PollyManagedMemory) 1669 ValPtr = DevArray; 1670 else 1671 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1672 1673 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1674 " to be stored into Parameters"); 1675 Value *ValPtrCast = 1676 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1677 Builder.CreateStore(ValPtrCast, Slot); 1678 } else { 1679 Instruction *Param = 1680 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1681 Launch + "_param_" + std::to_string(Index), 1682 EntryBlock->getTerminator()); 1683 Builder.CreateStore(DevArray, Param); 1684 Value *ParamTyped = 1685 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1686 Builder.CreateStore(ParamTyped, Slot); 1687 } 1688 Index++; 1689 } 1690 1691 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1692 1693 for (long i = 0; i < NumHostIters; i++) { 1694 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1695 Value *Val = IDToValue[Id]; 1696 isl_id_free(Id); 1697 1698 if (Runtime == GPURuntime::OpenCL) 1699 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1700 1701 Instruction *Param = 1702 new AllocaInst(Val->getType(), AddressSpace, 1703 Launch + "_param_" + std::to_string(Index), 1704 EntryBlock->getTerminator()); 1705 Builder.CreateStore(Val, Param); 1706 insertStoreParameter(Parameters, Param, Index); 1707 Index++; 1708 } 1709 1710 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1711 1712 for (long i = 0; i < NumVars; i++) { 1713 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1714 Value *Val = IDToValue[Id]; 1715 if (ValueMap.count(Val)) 1716 Val = ValueMap[Val]; 1717 isl_id_free(Id); 1718 1719 if (Runtime == GPURuntime::OpenCL) 1720 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1721 1722 Instruction *Param = 1723 new AllocaInst(Val->getType(), AddressSpace, 1724 Launch + "_param_" + std::to_string(Index), 1725 EntryBlock->getTerminator()); 1726 Builder.CreateStore(Val, Param); 1727 insertStoreParameter(Parameters, Param, Index); 1728 Index++; 1729 } 1730 1731 for (auto Val : SubtreeValues) { 1732 if (Runtime == GPURuntime::OpenCL) 1733 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1734 1735 Instruction *Param = 1736 new AllocaInst(Val->getType(), AddressSpace, 1737 Launch + "_param_" + std::to_string(Index), 1738 EntryBlock->getTerminator()); 1739 Builder.CreateStore(Val, Param); 1740 insertStoreParameter(Parameters, Param, Index); 1741 Index++; 1742 } 1743 1744 if (Runtime == GPURuntime::OpenCL) { 1745 for (int i = 0; i < NumArgs; i++) { 1746 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1747 Instruction *Param = 1748 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1749 Launch + "_param_size_" + std::to_string(i), 1750 EntryBlock->getTerminator()); 1751 Builder.CreateStore(Val, Param); 1752 insertStoreParameter(Parameters, Param, Index); 1753 Index++; 1754 } 1755 } 1756 1757 auto Location = EntryBlock->getTerminator(); 1758 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1759 Launch + "_params_i8ptr", Location); 1760 } 1761 1762 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1763 SetVector<Function *> SubtreeFunctions) { 1764 for (auto Fn : SubtreeFunctions) { 1765 const std::string ClonedFnName = Fn->getName().str(); 1766 Function *Clone = GPUModule->getFunction(ClonedFnName); 1767 if (!Clone) 1768 Clone = 1769 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1770 ClonedFnName, GPUModule.get()); 1771 assert(Clone && "Expected cloned function to be initialized."); 1772 assert(ValueMap.find(Fn) == ValueMap.end() && 1773 "Fn already present in ValueMap"); 1774 ValueMap[Fn] = Clone; 1775 } 1776 } 1777 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1778 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1779 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1780 isl_id_free(Id); 1781 isl_ast_node_free(KernelStmt); 1782 1783 if (Kernel->n_grid > 1) 1784 DeepestParallel = std::max( 1785 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1786 else 1787 DeepestSequential = std::max( 1788 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1789 1790 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1791 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1792 1793 SetVector<Value *> SubtreeValues; 1794 SetVector<Function *> SubtreeFunctions; 1795 SetVector<const Loop *> Loops; 1796 isl::space ParamSpace; 1797 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1798 getReferencesInKernel(Kernel); 1799 1800 // Add parameters that appear only in the access function to the kernel 1801 // space. This is important to make sure that all isl_ids are passed as 1802 // parameters to the kernel, even though we may not have all parameters 1803 // in the context to improve compile time. 1804 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1805 1806 assert(Kernel->tree && "Device AST of kernel node is empty"); 1807 1808 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1809 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1810 ValueMapT HostValueMap = ValueMap; 1811 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1812 ScalarMap.clear(); 1813 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1814 EscapeMap.clear(); 1815 1816 // Create for all loops we depend on values that contain the current loop 1817 // iteration. These values are necessary to generate code for SCEVs that 1818 // depend on such loops. As a result we need to pass them to the subfunction. 1819 for (const Loop *L : Loops) { 1820 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1821 SE.getUnknown(Builder.getInt64(1)), 1822 L, SCEV::FlagAnyWrap); 1823 Value *V = generateSCEV(OuterLIV); 1824 OutsideLoopIterations[L] = SE.getUnknown(V); 1825 SubtreeValues.insert(V); 1826 } 1827 1828 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1829 setupKernelSubtreeFunctions(SubtreeFunctions); 1830 1831 create(isl_ast_node_copy(Kernel->tree)); 1832 1833 finalizeKernelArguments(Kernel); 1834 Function *F = Builder.GetInsertBlock()->getParent(); 1835 if (Arch == GPUArch::NVPTX64) 1836 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1837 clearDominators(F); 1838 clearScalarEvolution(F); 1839 clearLoops(F); 1840 1841 IDToValue = HostIDs; 1842 1843 ValueMap = std::move(HostValueMap); 1844 ScalarMap = std::move(HostScalarMap); 1845 EscapeMap = std::move(HostEscapeMap); 1846 IDToSAI.clear(); 1847 Annotator.resetAlternativeAliasBases(); 1848 for (auto &BasePtr : LocalArrays) 1849 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1850 LocalArrays.clear(); 1851 1852 std::string ASMString = finalizeKernelFunction(); 1853 Builder.SetInsertPoint(&HostInsertPoint); 1854 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1855 1856 std::string Name = getKernelFuncName(Kernel->id); 1857 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1858 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1859 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1860 1861 Value *GridDimX, *GridDimY; 1862 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1863 1864 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1865 BlockDimZ, Parameters); 1866 createCallFreeKernel(GPUKernel); 1867 1868 for (auto Id : KernelIds) 1869 isl_id_free(Id); 1870 1871 KernelIds.clear(); 1872 } 1873 1874 /// Compute the DataLayout string for the NVPTX backend. 1875 /// 1876 /// @param is64Bit Are we looking for a 64 bit architecture? 1877 static std::string computeNVPTXDataLayout(bool is64Bit) { 1878 std::string Ret = ""; 1879 1880 if (!is64Bit) { 1881 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1882 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1883 "64-v128:128:128-n16:32:64"; 1884 } else { 1885 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1886 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1887 "64-v128:128:128-n16:32:64"; 1888 } 1889 1890 return Ret; 1891 } 1892 1893 /// Compute the DataLayout string for a SPIR kernel. 1894 /// 1895 /// @param is64Bit Are we looking for a 64 bit architecture? 1896 static std::string computeSPIRDataLayout(bool is64Bit) { 1897 std::string Ret = ""; 1898 1899 if (!is64Bit) { 1900 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1901 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1902 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1903 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1904 } else { 1905 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1906 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1907 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1908 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1909 } 1910 1911 return Ret; 1912 } 1913 1914 Function * 1915 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1916 SetVector<Value *> &SubtreeValues) { 1917 std::vector<Type *> Args; 1918 std::string Identifier = getKernelFuncName(Kernel->id); 1919 1920 std::vector<Metadata *> MemoryType; 1921 1922 for (long i = 0; i < Prog->n_array; i++) { 1923 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1924 continue; 1925 1926 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1927 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1928 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1929 Args.push_back(SAI->getElementType()); 1930 MemoryType.push_back( 1931 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1932 } else { 1933 static const int UseGlobalMemory = 1; 1934 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1935 MemoryType.push_back( 1936 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1937 } 1938 } 1939 1940 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1941 1942 for (long i = 0; i < NumHostIters; i++) { 1943 Args.push_back(Builder.getInt64Ty()); 1944 MemoryType.push_back( 1945 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1946 } 1947 1948 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1949 1950 for (long i = 0; i < NumVars; i++) { 1951 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1952 Value *Val = IDToValue[Id]; 1953 isl_id_free(Id); 1954 Args.push_back(Val->getType()); 1955 MemoryType.push_back( 1956 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1957 } 1958 1959 for (auto *V : SubtreeValues) { 1960 Args.push_back(V->getType()); 1961 MemoryType.push_back( 1962 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1963 } 1964 1965 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1966 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1967 GPUModule.get()); 1968 1969 std::vector<Metadata *> EmptyStrings; 1970 1971 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1972 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1973 } 1974 1975 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1976 FN->setMetadata("kernel_arg_addr_space", 1977 MDNode::get(FN->getContext(), MemoryType)); 1978 FN->setMetadata("kernel_arg_name", 1979 MDNode::get(FN->getContext(), EmptyStrings)); 1980 FN->setMetadata("kernel_arg_access_qual", 1981 MDNode::get(FN->getContext(), EmptyStrings)); 1982 FN->setMetadata("kernel_arg_type", 1983 MDNode::get(FN->getContext(), EmptyStrings)); 1984 FN->setMetadata("kernel_arg_type_qual", 1985 MDNode::get(FN->getContext(), EmptyStrings)); 1986 FN->setMetadata("kernel_arg_base_type", 1987 MDNode::get(FN->getContext(), EmptyStrings)); 1988 } 1989 1990 switch (Arch) { 1991 case GPUArch::NVPTX64: 1992 FN->setCallingConv(CallingConv::PTX_Kernel); 1993 break; 1994 case GPUArch::SPIR32: 1995 case GPUArch::SPIR64: 1996 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1997 break; 1998 } 1999 2000 auto Arg = FN->arg_begin(); 2001 for (long i = 0; i < Kernel->n_array; i++) { 2002 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2003 continue; 2004 2005 Arg->setName(Kernel->array[i].array->name); 2006 2007 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2008 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2009 Type *EleTy = SAI->getElementType(); 2010 Value *Val = &*Arg; 2011 SmallVector<const SCEV *, 4> Sizes; 2012 isl_ast_build *Build = 2013 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2014 Sizes.push_back(nullptr); 2015 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2016 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2017 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2018 auto V = ExprBuilder.create(DimSize); 2019 Sizes.push_back(SE.getSCEV(V)); 2020 } 2021 const ScopArrayInfo *SAIRep = 2022 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2023 LocalArrays.push_back(Val); 2024 2025 isl_ast_build_free(Build); 2026 KernelIds.push_back(Id); 2027 IDToSAI[Id] = SAIRep; 2028 Arg++; 2029 } 2030 2031 for (long i = 0; i < NumHostIters; i++) { 2032 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2033 Arg->setName(isl_id_get_name(Id)); 2034 IDToValue[Id] = &*Arg; 2035 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2036 Arg++; 2037 } 2038 2039 for (long i = 0; i < NumVars; i++) { 2040 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2041 Arg->setName(isl_id_get_name(Id)); 2042 Value *Val = IDToValue[Id]; 2043 ValueMap[Val] = &*Arg; 2044 IDToValue[Id] = &*Arg; 2045 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2046 Arg++; 2047 } 2048 2049 for (auto *V : SubtreeValues) { 2050 Arg->setName(V->getName()); 2051 ValueMap[V] = &*Arg; 2052 Arg++; 2053 } 2054 2055 return FN; 2056 } 2057 2058 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2059 Intrinsic::ID IntrinsicsBID[2]; 2060 Intrinsic::ID IntrinsicsTID[3]; 2061 2062 switch (Arch) { 2063 case GPUArch::SPIR64: 2064 case GPUArch::SPIR32: 2065 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2066 case GPUArch::NVPTX64: 2067 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2068 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2069 2070 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2071 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2072 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2073 break; 2074 } 2075 2076 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2077 std::string Name = isl_id_get_name(Id); 2078 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2079 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2080 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2081 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2082 IDToValue[Id] = Val; 2083 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2084 }; 2085 2086 for (int i = 0; i < Kernel->n_grid; ++i) { 2087 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2088 addId(Id, IntrinsicsBID[i]); 2089 } 2090 2091 for (int i = 0; i < Kernel->n_block; ++i) { 2092 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2093 addId(Id, IntrinsicsTID[i]); 2094 } 2095 } 2096 2097 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2098 bool SizeTypeIs64bit) { 2099 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2100 "__gen_ocl_get_group_id1", 2101 "__gen_ocl_get_group_id2"}; 2102 2103 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2104 "__gen_ocl_get_local_id1", 2105 "__gen_ocl_get_local_id2"}; 2106 IntegerType *SizeT = 2107 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2108 2109 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2110 IntegerType *SizeT) mutable { 2111 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2112 Function *FN = M->getFunction(Name); 2113 2114 // If FN is not available, declare it. 2115 if (!FN) { 2116 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2117 std::vector<Type *> Args; 2118 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2119 FN = Function::Create(Ty, Linkage, Name, M); 2120 FN->setCallingConv(CallingConv::SPIR_FUNC); 2121 } 2122 2123 Value *Val = Builder.CreateCall(FN, {}); 2124 if (SizeT == Builder.getInt32Ty()) 2125 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2126 IDToValue[Id] = Val; 2127 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2128 }; 2129 2130 for (int i = 0; i < Kernel->n_grid; ++i) 2131 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2132 2133 for (int i = 0; i < Kernel->n_block; ++i) 2134 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2135 } 2136 2137 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2138 auto Arg = FN->arg_begin(); 2139 for (long i = 0; i < Kernel->n_array; i++) { 2140 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2141 continue; 2142 2143 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2144 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2145 isl_id_free(Id); 2146 2147 if (SAI->getNumberOfDimensions() > 0) { 2148 Arg++; 2149 continue; 2150 } 2151 2152 Value *Val = &*Arg; 2153 2154 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2155 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2156 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2157 Val = Builder.CreateLoad(TypedArgPtr); 2158 } 2159 2160 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2161 Builder.CreateStore(Val, Alloca); 2162 2163 Arg++; 2164 } 2165 } 2166 2167 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2168 auto *FN = Builder.GetInsertBlock()->getParent(); 2169 auto Arg = FN->arg_begin(); 2170 2171 bool StoredScalar = false; 2172 for (long i = 0; i < Kernel->n_array; i++) { 2173 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2174 continue; 2175 2176 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2177 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2178 isl_id_free(Id); 2179 2180 if (SAI->getNumberOfDimensions() > 0) { 2181 Arg++; 2182 continue; 2183 } 2184 2185 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2186 Arg++; 2187 continue; 2188 } 2189 2190 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2191 Value *ArgPtr = &*Arg; 2192 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2193 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2194 Value *Val = Builder.CreateLoad(Alloca); 2195 Builder.CreateStore(Val, TypedArgPtr); 2196 StoredScalar = true; 2197 2198 Arg++; 2199 } 2200 2201 if (StoredScalar) { 2202 /// In case more than one thread contains scalar stores, the generated 2203 /// code might be incorrect, if we only store at the end of the kernel. 2204 /// To support this case we need to store these scalars back at each 2205 /// memory store or at least before each kernel barrier. 2206 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2207 BuildSuccessful = 0; 2208 LLVM_DEBUG( 2209 dbgs() << getUniqueScopName(&S) 2210 << " has a store to a scalar value that" 2211 " would be undefined to run in parallel. Bailing out.\n";); 2212 } 2213 } 2214 } 2215 2216 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2217 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2218 2219 for (int i = 0; i < Kernel->n_var; ++i) { 2220 struct ppcg_kernel_var &Var = Kernel->var[i]; 2221 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2222 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2223 2224 Type *ArrayTy = EleTy; 2225 SmallVector<const SCEV *, 4> Sizes; 2226 2227 Sizes.push_back(nullptr); 2228 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2229 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2230 long Bound = isl_val_get_num_si(Val); 2231 isl_val_free(Val); 2232 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2233 } 2234 2235 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2236 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2237 long Bound = isl_val_get_num_si(Val); 2238 isl_val_free(Val); 2239 ArrayTy = ArrayType::get(ArrayTy, Bound); 2240 } 2241 2242 const ScopArrayInfo *SAI; 2243 Value *Allocation; 2244 if (Var.type == ppcg_access_shared) { 2245 auto GlobalVar = new GlobalVariable( 2246 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2247 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2248 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); 2249 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2250 2251 Allocation = GlobalVar; 2252 } else if (Var.type == ppcg_access_private) { 2253 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2254 } else { 2255 llvm_unreachable("unknown variable type"); 2256 } 2257 SAI = 2258 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2259 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2260 IDToValue[Id] = Allocation; 2261 LocalArrays.push_back(Allocation); 2262 KernelIds.push_back(Id); 2263 IDToSAI[Id] = SAI; 2264 } 2265 } 2266 2267 void GPUNodeBuilder::createKernelFunction( 2268 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2269 SetVector<Function *> &SubtreeFunctions) { 2270 std::string Identifier = getKernelFuncName(Kernel->id); 2271 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2272 2273 switch (Arch) { 2274 case GPUArch::NVPTX64: 2275 if (Runtime == GPURuntime::CUDA) 2276 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2277 else if (Runtime == GPURuntime::OpenCL) 2278 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2279 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2280 break; 2281 case GPUArch::SPIR32: 2282 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2283 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2284 break; 2285 case GPUArch::SPIR64: 2286 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2287 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2288 break; 2289 } 2290 2291 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2292 2293 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2294 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2295 2296 DT.addNewBlock(EntryBlock, PrevBlock); 2297 2298 Builder.SetInsertPoint(EntryBlock); 2299 Builder.CreateRetVoid(); 2300 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2301 2302 ScopDetection::markFunctionAsInvalid(FN); 2303 2304 prepareKernelArguments(Kernel, FN); 2305 createKernelVariables(Kernel, FN); 2306 2307 switch (Arch) { 2308 case GPUArch::NVPTX64: 2309 insertKernelIntrinsics(Kernel); 2310 break; 2311 case GPUArch::SPIR32: 2312 insertKernelCallsSPIR(Kernel, false); 2313 break; 2314 case GPUArch::SPIR64: 2315 insertKernelCallsSPIR(Kernel, true); 2316 break; 2317 } 2318 } 2319 2320 std::string GPUNodeBuilder::createKernelASM() { 2321 llvm::Triple GPUTriple; 2322 2323 switch (Arch) { 2324 case GPUArch::NVPTX64: 2325 switch (Runtime) { 2326 case GPURuntime::CUDA: 2327 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2328 break; 2329 case GPURuntime::OpenCL: 2330 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2331 break; 2332 } 2333 break; 2334 case GPUArch::SPIR64: 2335 case GPUArch::SPIR32: 2336 std::string SPIRAssembly; 2337 raw_string_ostream IROstream(SPIRAssembly); 2338 IROstream << *GPUModule; 2339 IROstream.flush(); 2340 return SPIRAssembly; 2341 } 2342 2343 std::string ErrMsg; 2344 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2345 2346 if (!GPUTarget) { 2347 errs() << ErrMsg << "\n"; 2348 return ""; 2349 } 2350 2351 TargetOptions Options; 2352 Options.UnsafeFPMath = FastMath; 2353 2354 std::string subtarget; 2355 2356 switch (Arch) { 2357 case GPUArch::NVPTX64: 2358 subtarget = CudaVersion; 2359 break; 2360 case GPUArch::SPIR32: 2361 case GPUArch::SPIR64: 2362 llvm_unreachable("No subtarget for SPIR architecture"); 2363 } 2364 2365 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2366 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2367 2368 SmallString<0> ASMString; 2369 raw_svector_ostream ASMStream(ASMString); 2370 llvm::legacy::PassManager PM; 2371 2372 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2373 2374 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, 2375 true /* verify */)) { 2376 errs() << "The target does not support generation of this file type!\n"; 2377 return ""; 2378 } 2379 2380 PM.run(*GPUModule); 2381 2382 return ASMStream.str().str(); 2383 } 2384 2385 bool GPUNodeBuilder::requiresCUDALibDevice() { 2386 bool RequiresLibDevice = false; 2387 for (Function &F : GPUModule->functions()) { 2388 if (!F.isDeclaration()) 2389 continue; 2390 2391 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2392 if (CUDALibDeviceFunc.length() != 0) { 2393 // We need to handle the case where a module looks like this: 2394 // @expf(..) 2395 // @llvm.exp.f64(..) 2396 // Both of these functions would be renamed to `__nv_expf`. 2397 // 2398 // So, we must first check for the existence of the libdevice function. 2399 // If this exists, we replace our current function with it. 2400 // 2401 // If it does not exist, we rename the current function to the 2402 // libdevice functiono name. 2403 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2404 F.replaceAllUsesWith(Replacement); 2405 else 2406 F.setName(CUDALibDeviceFunc); 2407 RequiresLibDevice = true; 2408 } 2409 } 2410 2411 return RequiresLibDevice; 2412 } 2413 2414 void GPUNodeBuilder::addCUDALibDevice() { 2415 if (Arch != GPUArch::NVPTX64) 2416 return; 2417 2418 if (requiresCUDALibDevice()) { 2419 SMDiagnostic Error; 2420 2421 errs() << CUDALibDevice << "\n"; 2422 auto LibDeviceModule = 2423 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2424 2425 if (!LibDeviceModule) { 2426 BuildSuccessful = false; 2427 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2428 "kernel generation. Please set -polly-acc-libdevice " 2429 "accordingly.\n"); 2430 return; 2431 } 2432 2433 Linker L(*GPUModule); 2434 2435 // Set an nvptx64 target triple to avoid linker warnings. The original 2436 // triple of the libdevice files are nvptx-unknown-unknown. 2437 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2438 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2439 } 2440 } 2441 2442 std::string GPUNodeBuilder::finalizeKernelFunction() { 2443 2444 if (verifyModule(*GPUModule)) { 2445 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2446 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2447 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2448 verifyModule(*GPUModule, &dbgs());); 2449 2450 if (FailOnVerifyModuleFailure) 2451 llvm_unreachable("VerifyModule failed."); 2452 2453 BuildSuccessful = false; 2454 return ""; 2455 } 2456 2457 addCUDALibDevice(); 2458 2459 if (DumpKernelIR) 2460 outs() << *GPUModule << "\n"; 2461 2462 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2463 // Optimize module. 2464 llvm::legacy::PassManager OptPasses; 2465 PassManagerBuilder PassBuilder; 2466 PassBuilder.OptLevel = 3; 2467 PassBuilder.SizeLevel = 0; 2468 PassBuilder.populateModulePassManager(OptPasses); 2469 OptPasses.run(*GPUModule); 2470 } 2471 2472 std::string Assembly = createKernelASM(); 2473 2474 if (DumpKernelASM) 2475 outs() << Assembly << "\n"; 2476 2477 GPUModule.release(); 2478 KernelIDs.clear(); 2479 2480 return Assembly; 2481 } 2482 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2483 /// @param PwAffs The list of piecewise affine functions to create an 2484 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2485 /// all the isl_pw_aff are used up by this function. 2486 /// 2487 /// @returns The `isl_pw_aff_list`. 2488 __isl_give isl_pw_aff_list * 2489 createPwAffList(isl_ctx *Context, 2490 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2491 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2492 2493 for (unsigned i = 0; i < PwAffs.size(); i++) { 2494 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2495 } 2496 return List; 2497 } 2498 2499 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2500 /// 2501 /// We loop over all `pw_aff` and align all of their spaces together to 2502 /// create a common space for all the `pw_aff`. This common space is the 2503 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2504 /// with the given `SeedSpace`. 2505 /// @param PwAffs The list of piecewise affine functions we want to align. 2506 /// This is an rvalue reference because the entire vector is 2507 /// used up by the end of the operation. 2508 /// @param SeedSpace The space to start the alignment process with. 2509 /// @returns A std::pair, whose first element is the aligned space, 2510 /// whose second element is the vector of aligned piecewise 2511 /// affines. 2512 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2513 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2514 __isl_take isl_space *SeedSpace) { 2515 assert(SeedSpace && "Invalid seed space given."); 2516 2517 isl_space *AlignSpace = SeedSpace; 2518 for (isl_pw_aff *PwAff : PwAffs) { 2519 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2520 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2521 } 2522 std::vector<isl_pw_aff *> AdjustedPwAffs; 2523 2524 for (unsigned i = 0; i < PwAffs.size(); i++) { 2525 isl_pw_aff *Adjusted = PwAffs[i]; 2526 assert(Adjusted && "Invalid pw_aff given."); 2527 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2528 AdjustedPwAffs.push_back(Adjusted); 2529 } 2530 return std::make_pair(AlignSpace, AdjustedPwAffs); 2531 } 2532 2533 namespace { 2534 class PPCGCodeGeneration : public ScopPass { 2535 public: 2536 static char ID; 2537 2538 GPURuntime Runtime = GPURuntime::CUDA; 2539 2540 GPUArch Architecture = GPUArch::NVPTX64; 2541 2542 /// The scop that is currently processed. 2543 Scop *S; 2544 2545 LoopInfo *LI; 2546 DominatorTree *DT; 2547 ScalarEvolution *SE; 2548 const DataLayout *DL; 2549 RegionInfo *RI; 2550 2551 PPCGCodeGeneration() : ScopPass(ID) {} 2552 2553 /// Construct compilation options for PPCG. 2554 /// 2555 /// @returns The compilation options. 2556 ppcg_options *createPPCGOptions() { 2557 auto DebugOptions = 2558 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2559 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2560 2561 DebugOptions->dump_schedule_constraints = false; 2562 DebugOptions->dump_schedule = false; 2563 DebugOptions->dump_final_schedule = false; 2564 DebugOptions->dump_sizes = false; 2565 DebugOptions->verbose = false; 2566 2567 Options->debug = DebugOptions; 2568 2569 Options->group_chains = false; 2570 Options->reschedule = true; 2571 Options->scale_tile_loops = false; 2572 Options->wrap = false; 2573 2574 Options->non_negative_parameters = false; 2575 Options->ctx = nullptr; 2576 Options->sizes = nullptr; 2577 2578 Options->tile = true; 2579 Options->tile_size = 32; 2580 2581 Options->isolate_full_tiles = false; 2582 2583 Options->use_private_memory = PrivateMemory; 2584 Options->use_shared_memory = SharedMemory; 2585 Options->max_shared_memory = 48 * 1024; 2586 2587 Options->target = PPCG_TARGET_CUDA; 2588 Options->openmp = false; 2589 Options->linearize_device_arrays = true; 2590 Options->allow_gnu_extensions = false; 2591 2592 Options->unroll_copy_shared = false; 2593 Options->unroll_gpu_tile = false; 2594 Options->live_range_reordering = true; 2595 2596 Options->live_range_reordering = true; 2597 Options->hybrid = false; 2598 Options->opencl_compiler_options = nullptr; 2599 Options->opencl_use_gpu = false; 2600 Options->opencl_n_include_file = 0; 2601 Options->opencl_include_files = nullptr; 2602 Options->opencl_print_kernel_types = false; 2603 Options->opencl_embed_kernel_code = false; 2604 2605 Options->save_schedule_file = nullptr; 2606 Options->load_schedule_file = nullptr; 2607 2608 return Options; 2609 } 2610 2611 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2612 /// 2613 /// Instead of a normal access of the form: 2614 /// 2615 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2616 /// 2617 /// a tagged access has the form 2618 /// 2619 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2620 /// 2621 /// where 'id' is an additional space that references the memory access that 2622 /// triggered the access. 2623 /// 2624 /// @param AccessTy The type of the memory accesses to collect. 2625 /// 2626 /// @return The relation describing all tagged memory accesses. 2627 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2628 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2629 2630 for (auto &Stmt : *S) 2631 for (auto &Acc : Stmt) 2632 if (Acc->getType() == AccessTy) { 2633 isl_map *Relation = Acc->getAccessRelation().release(); 2634 Relation = 2635 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2636 2637 isl_space *Space = isl_map_get_space(Relation); 2638 Space = isl_space_range(Space); 2639 Space = isl_space_from_range(Space); 2640 Space = 2641 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2642 isl_map *Universe = isl_map_universe(Space); 2643 Relation = isl_map_domain_product(Relation, Universe); 2644 Accesses = isl_union_map_add_map(Accesses, Relation); 2645 } 2646 2647 return Accesses; 2648 } 2649 2650 /// Get the set of all read accesses, tagged with the access id. 2651 /// 2652 /// @see getTaggedAccesses 2653 isl_union_map *getTaggedReads() { 2654 return getTaggedAccesses(MemoryAccess::READ); 2655 } 2656 2657 /// Get the set of all may (and must) accesses, tagged with the access id. 2658 /// 2659 /// @see getTaggedAccesses 2660 isl_union_map *getTaggedMayWrites() { 2661 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2662 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2663 } 2664 2665 /// Get the set of all must accesses, tagged with the access id. 2666 /// 2667 /// @see getTaggedAccesses 2668 isl_union_map *getTaggedMustWrites() { 2669 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2670 } 2671 2672 /// Collect parameter and array names as isl_ids. 2673 /// 2674 /// To reason about the different parameters and arrays used, ppcg requires 2675 /// a list of all isl_ids in use. As PPCG traditionally performs 2676 /// source-to-source compilation each of these isl_ids is mapped to the 2677 /// expression that represents it. As we do not have a corresponding 2678 /// expression in Polly, we just map each id to a 'zero' expression to match 2679 /// the data format that ppcg expects. 2680 /// 2681 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2682 __isl_give isl_id_to_ast_expr *getNames() { 2683 auto *Names = isl_id_to_ast_expr_alloc( 2684 S->getIslCtx().get(), 2685 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2686 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2687 2688 for (const SCEV *P : S->parameters()) { 2689 isl_id *Id = S->getIdForParam(P).release(); 2690 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2691 } 2692 2693 for (auto &Array : S->arrays()) { 2694 auto Id = Array->getBasePtrId().release(); 2695 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2696 } 2697 2698 isl_ast_expr_free(Zero); 2699 2700 return Names; 2701 } 2702 2703 /// Create a new PPCG scop from the current scop. 2704 /// 2705 /// The PPCG scop is initialized with data from the current polly::Scop. From 2706 /// this initial data, the data-dependences in the PPCG scop are initialized. 2707 /// We do not use Polly's dependence analysis for now, to ensure we match 2708 /// the PPCG default behaviour more closely. 2709 /// 2710 /// @returns A new ppcg scop. 2711 ppcg_scop *createPPCGScop() { 2712 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2713 2714 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2715 2716 PPCGScop->options = createPPCGOptions(); 2717 // enable live range reordering 2718 PPCGScop->options->live_range_reordering = 1; 2719 2720 PPCGScop->start = 0; 2721 PPCGScop->end = 0; 2722 2723 PPCGScop->context = S->getContext().release(); 2724 PPCGScop->domain = S->getDomains().release(); 2725 // TODO: investigate this further. PPCG calls collect_call_domains. 2726 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2727 PPCGScop->tagged_reads = getTaggedReads(); 2728 PPCGScop->reads = S->getReads().release(); 2729 PPCGScop->live_in = nullptr; 2730 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2731 PPCGScop->may_writes = S->getWrites().release(); 2732 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2733 PPCGScop->must_writes = S->getMustWrites().release(); 2734 PPCGScop->live_out = nullptr; 2735 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2736 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2737 2738 PPCGScop->tagger = nullptr; 2739 PPCGScop->independence = 2740 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2741 PPCGScop->dep_flow = nullptr; 2742 PPCGScop->tagged_dep_flow = nullptr; 2743 PPCGScop->dep_false = nullptr; 2744 PPCGScop->dep_forced = nullptr; 2745 PPCGScop->dep_order = nullptr; 2746 PPCGScop->tagged_dep_order = nullptr; 2747 2748 PPCGScop->schedule = S->getScheduleTree().release(); 2749 // If we have something non-trivial to kill, add it to the schedule 2750 if (KillsInfo.KillsSchedule.get()) 2751 PPCGScop->schedule = isl_schedule_sequence( 2752 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2753 2754 PPCGScop->names = getNames(); 2755 PPCGScop->pet = nullptr; 2756 2757 compute_tagger(PPCGScop); 2758 compute_dependences(PPCGScop); 2759 eliminate_dead_code(PPCGScop); 2760 2761 return PPCGScop; 2762 } 2763 2764 /// Collect the array accesses in a statement. 2765 /// 2766 /// @param Stmt The statement for which to collect the accesses. 2767 /// 2768 /// @returns A list of array accesses. 2769 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2770 gpu_stmt_access *Accesses = nullptr; 2771 2772 for (MemoryAccess *Acc : Stmt) { 2773 auto Access = 2774 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2775 Access->read = Acc->isRead(); 2776 Access->write = Acc->isWrite(); 2777 Access->access = Acc->getAccessRelation().release(); 2778 isl_space *Space = isl_map_get_space(Access->access); 2779 Space = isl_space_range(Space); 2780 Space = isl_space_from_range(Space); 2781 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2782 isl_map *Universe = isl_map_universe(Space); 2783 Access->tagged_access = 2784 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2785 Access->exact_write = !Acc->isMayWrite(); 2786 Access->ref_id = Acc->getId().release(); 2787 Access->next = Accesses; 2788 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2789 // TODO: Also mark one-element accesses to arrays as fixed-element. 2790 Access->fixed_element = 2791 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2792 Accesses = Access; 2793 } 2794 2795 return Accesses; 2796 } 2797 2798 /// Collect the list of GPU statements. 2799 /// 2800 /// Each statement has an id, a pointer to the underlying data structure, 2801 /// as well as a list with all memory accesses. 2802 /// 2803 /// TODO: Initialize the list of memory accesses. 2804 /// 2805 /// @returns A linked-list of statements. 2806 gpu_stmt *getStatements() { 2807 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2808 std::distance(S->begin(), S->end())); 2809 2810 int i = 0; 2811 for (auto &Stmt : *S) { 2812 gpu_stmt *GPUStmt = &Stmts[i]; 2813 2814 GPUStmt->id = Stmt.getDomainId().release(); 2815 2816 // We use the pet stmt pointer to keep track of the Polly statements. 2817 GPUStmt->stmt = (pet_stmt *)&Stmt; 2818 GPUStmt->accesses = getStmtAccesses(Stmt); 2819 i++; 2820 } 2821 2822 return Stmts; 2823 } 2824 2825 /// Derive the extent of an array. 2826 /// 2827 /// The extent of an array is the set of elements that are within the 2828 /// accessed array. For the inner dimensions, the extent constraints are 2829 /// 0 and the size of the corresponding array dimension. For the first 2830 /// (outermost) dimension, the extent constraints are the minimal and maximal 2831 /// subscript value for the first dimension. 2832 /// 2833 /// @param Array The array to derive the extent for. 2834 /// 2835 /// @returns An isl_set describing the extent of the array. 2836 isl::set getExtent(ScopArrayInfo *Array) { 2837 unsigned NumDims = Array->getNumberOfDimensions(); 2838 2839 if (Array->getNumberOfDimensions() == 0) 2840 return isl::set::universe(Array->getSpace()); 2841 2842 isl::union_map Accesses = S->getAccesses(Array); 2843 isl::union_set AccessUSet = Accesses.range(); 2844 AccessUSet = AccessUSet.coalesce(); 2845 AccessUSet = AccessUSet.detect_equalities(); 2846 AccessUSet = AccessUSet.coalesce(); 2847 2848 if (AccessUSet.is_empty()) 2849 return isl::set::empty(Array->getSpace()); 2850 2851 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2852 2853 isl::local_space LS = isl::local_space(Array->getSpace()); 2854 2855 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2856 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2857 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2858 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2859 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2860 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2861 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2862 2863 isl::set Extent = isl::set::universe(Array->getSpace()); 2864 2865 Extent = Extent.intersect(OuterMin.le_set(Val)); 2866 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2867 2868 for (unsigned i = 1; i < NumDims; ++i) 2869 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2870 2871 for (unsigned i = 0; i < NumDims; ++i) { 2872 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2873 2874 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2875 // Fortran array will we have a legitimate dimension. 2876 if (PwAff.is_null()) { 2877 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2878 continue; 2879 } 2880 2881 isl::pw_aff Val = isl::aff::var_on_domain( 2882 isl::local_space(Array->getSpace()), isl::dim::set, i); 2883 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2884 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2885 isl::set Set = PwAff.gt_set(Val); 2886 Extent = Set.intersect(Extent); 2887 } 2888 2889 return Extent; 2890 } 2891 2892 /// Derive the bounds of an array. 2893 /// 2894 /// For the first dimension we derive the bound of the array from the extent 2895 /// of this dimension. For inner dimensions we obtain their size directly from 2896 /// ScopArrayInfo. 2897 /// 2898 /// @param PPCGArray The array to compute bounds for. 2899 /// @param Array The polly array from which to take the information. 2900 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2901 std::vector<isl_pw_aff *> Bounds; 2902 2903 if (PPCGArray.n_index > 0) { 2904 if (isl_set_is_empty(PPCGArray.extent)) { 2905 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2906 isl_local_space *LS = isl_local_space_from_space( 2907 isl_space_params(isl_set_get_space(Dom))); 2908 isl_set_free(Dom); 2909 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2910 Bounds.push_back(Zero); 2911 } else { 2912 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2913 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2914 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2915 isl_set_free(Dom); 2916 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2917 isl_local_space *LS = 2918 isl_local_space_from_space(isl_set_get_space(Dom)); 2919 isl_aff *One = isl_aff_zero_on_domain(LS); 2920 One = isl_aff_add_constant_si(One, 1); 2921 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2922 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2923 Bounds.push_back(Bound); 2924 } 2925 } 2926 2927 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2928 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2929 auto LS = isl_pw_aff_get_domain_space(Bound); 2930 auto Aff = isl_multi_aff_zero(LS); 2931 2932 // We need types to work out, which is why we perform this weird dance 2933 // with `Aff` and `Bound`. Consider this example: 2934 2935 // LS: [p] -> { [] } 2936 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2937 // This `~` is used to denote a "null space" (which is different from 2938 // a *zero dimensional* space), which is something that ISL does not 2939 // show you when pretty printing. 2940 2941 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2942 // space, not a "null space" which does not exist at all. 2943 2944 // When we pullback (precompose) `Bound` with `Zero`, we get: 2945 // Bound . Zero = 2946 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2947 // [p] -> { ~ -> [(10p)] } = 2948 // [p] -> [(10p)] (as ISL pretty prints it) 2949 // Bound Pullback: [p] -> { [(10p)] } 2950 2951 // We want this kind of an expression for Bound, without a 2952 // zero dimensional input, but with a "null space" input for the types 2953 // to work out later on, as far as I (Siddharth Bhat) understand. 2954 // I was unable to find a reference to this in the ISL manual. 2955 // References: Tobias Grosser. 2956 2957 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2958 Bounds.push_back(Bound); 2959 } 2960 2961 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2962 /// to have the same parameter dimensions. So, we need to align them to an 2963 /// appropriate space. 2964 /// Scop::Context is _not_ an appropriate space, because when we have 2965 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2966 /// contain all parameter dimensions. 2967 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2968 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2969 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2970 2971 isl_space *AlignSpace = nullptr; 2972 std::vector<isl_pw_aff *> AlignedBounds; 2973 std::tie(AlignSpace, AlignedBounds) = 2974 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2975 2976 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2977 2978 isl_pw_aff_list *BoundsList = 2979 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 2980 2981 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2982 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2983 2984 assert(BoundsSpace && "Unable to access space of array."); 2985 assert(BoundsList && "Unable to access list of bounds."); 2986 2987 PPCGArray.bound = 2988 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2989 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2990 } 2991 2992 /// Create the arrays for @p PPCGProg. 2993 /// 2994 /// @param PPCGProg The program to compute the arrays for. 2995 void createArrays(gpu_prog *PPCGProg, 2996 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2997 int i = 0; 2998 for (auto &Array : ValidSAIs) { 2999 std::string TypeName; 3000 raw_string_ostream OS(TypeName); 3001 3002 OS << *Array->getElementType(); 3003 TypeName = OS.str(); 3004 3005 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3006 3007 PPCGArray.space = Array->getSpace().release(); 3008 PPCGArray.type = strdup(TypeName.c_str()); 3009 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3010 PPCGArray.name = strdup(Array->getName().c_str()); 3011 PPCGArray.extent = nullptr; 3012 PPCGArray.n_index = Array->getNumberOfDimensions(); 3013 PPCGArray.extent = getExtent(Array).release(); 3014 PPCGArray.n_ref = 0; 3015 PPCGArray.refs = nullptr; 3016 PPCGArray.accessed = true; 3017 PPCGArray.read_only_scalar = 3018 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3019 PPCGArray.has_compound_element = false; 3020 PPCGArray.local = false; 3021 PPCGArray.declare_local = false; 3022 PPCGArray.global = false; 3023 PPCGArray.linearize = false; 3024 PPCGArray.dep_order = nullptr; 3025 PPCGArray.user = Array; 3026 3027 PPCGArray.bound = nullptr; 3028 setArrayBounds(PPCGArray, Array); 3029 i++; 3030 3031 collect_references(PPCGProg, &PPCGArray); 3032 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3033 } 3034 } 3035 3036 /// Create an identity map between the arrays in the scop. 3037 /// 3038 /// @returns An identity map between the arrays in the scop. 3039 isl_union_map *getArrayIdentity() { 3040 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3041 3042 for (auto &Array : S->arrays()) { 3043 isl_space *Space = Array->getSpace().release(); 3044 Space = isl_space_map_from_set(Space); 3045 isl_map *Identity = isl_map_identity(Space); 3046 Maps = isl_union_map_add_map(Maps, Identity); 3047 } 3048 3049 return Maps; 3050 } 3051 3052 /// Create a default-initialized PPCG GPU program. 3053 /// 3054 /// @returns A new gpu program description. 3055 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3056 3057 if (!PPCGScop) 3058 return nullptr; 3059 3060 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3061 3062 PPCGProg->ctx = S->getIslCtx().get(); 3063 PPCGProg->scop = PPCGScop; 3064 PPCGProg->context = isl_set_copy(PPCGScop->context); 3065 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3066 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3067 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3068 PPCGProg->tagged_must_kill = 3069 isl_union_map_copy(PPCGScop->tagged_must_kills); 3070 PPCGProg->to_inner = getArrayIdentity(); 3071 PPCGProg->to_outer = getArrayIdentity(); 3072 // TODO: verify that this assignment is correct. 3073 PPCGProg->any_to_outer = nullptr; 3074 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3075 PPCGProg->stmts = getStatements(); 3076 3077 // Only consider arrays that have a non-empty extent. 3078 // Otherwise, this will cause us to consider the following kinds of 3079 // empty arrays: 3080 // 1. Invariant loads that are represented by SAI objects. 3081 // 2. Arrays with statically known zero size. 3082 auto ValidSAIsRange = 3083 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3084 return !getExtent(SAI).is_empty(); 3085 }); 3086 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3087 ValidSAIsRange.end()); 3088 3089 PPCGProg->n_array = 3090 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3091 PPCGProg->array = isl_calloc_array( 3092 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3093 3094 createArrays(PPCGProg, ValidSAIs); 3095 3096 PPCGProg->array_order = nullptr; 3097 collect_order_dependences(PPCGProg); 3098 3099 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3100 return PPCGProg; 3101 } 3102 3103 struct PrintGPUUserData { 3104 struct cuda_info *CudaInfo; 3105 struct gpu_prog *PPCGProg; 3106 std::vector<ppcg_kernel *> Kernels; 3107 }; 3108 3109 /// Print a user statement node in the host code. 3110 /// 3111 /// We use ppcg's printing facilities to print the actual statement and 3112 /// additionally build up a list of all kernels that are encountered in the 3113 /// host ast. 3114 /// 3115 /// @param P The printer to print to 3116 /// @param Options The printing options to use 3117 /// @param Node The node to print 3118 /// @param User A user pointer to carry additional data. This pointer is 3119 /// expected to be of type PrintGPUUserData. 3120 /// 3121 /// @returns A printer to which the output has been printed. 3122 static __isl_give isl_printer * 3123 printHostUser(__isl_take isl_printer *P, 3124 __isl_take isl_ast_print_options *Options, 3125 __isl_take isl_ast_node *Node, void *User) { 3126 auto Data = (struct PrintGPUUserData *)User; 3127 auto Id = isl_ast_node_get_annotation(Node); 3128 3129 if (Id) { 3130 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3131 3132 // If this is a user statement, format it ourselves as ppcg would 3133 // otherwise try to call pet functionality that is not available in 3134 // Polly. 3135 if (IsUser) { 3136 P = isl_printer_start_line(P); 3137 P = isl_printer_print_ast_node(P, Node); 3138 P = isl_printer_end_line(P); 3139 isl_id_free(Id); 3140 isl_ast_print_options_free(Options); 3141 return P; 3142 } 3143 3144 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3145 isl_id_free(Id); 3146 Data->Kernels.push_back(Kernel); 3147 } 3148 3149 return print_host_user(P, Options, Node, User); 3150 } 3151 3152 /// Print C code corresponding to the control flow in @p Kernel. 3153 /// 3154 /// @param Kernel The kernel to print 3155 void printKernel(ppcg_kernel *Kernel) { 3156 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3157 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3158 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3159 P = isl_ast_node_print(Kernel->tree, P, Options); 3160 char *String = isl_printer_get_str(P); 3161 outs() << String << "\n"; 3162 free(String); 3163 isl_printer_free(P); 3164 } 3165 3166 /// Print C code corresponding to the GPU code described by @p Tree. 3167 /// 3168 /// @param Tree An AST describing GPU code 3169 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3170 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3171 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3172 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3173 3174 PrintGPUUserData Data; 3175 Data.PPCGProg = PPCGProg; 3176 3177 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3178 Options = 3179 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3180 P = isl_ast_node_print(Tree, P, Options); 3181 char *String = isl_printer_get_str(P); 3182 outs() << "# host\n"; 3183 outs() << String << "\n"; 3184 free(String); 3185 isl_printer_free(P); 3186 3187 for (auto Kernel : Data.Kernels) { 3188 outs() << "# kernel" << Kernel->id << "\n"; 3189 printKernel(Kernel); 3190 } 3191 } 3192 3193 // Generate a GPU program using PPCG. 3194 // 3195 // GPU mapping consists of multiple steps: 3196 // 3197 // 1) Compute new schedule for the program. 3198 // 2) Map schedule to GPU (TODO) 3199 // 3) Generate code for new schedule (TODO) 3200 // 3201 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3202 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3203 // strategy directly from this pass. 3204 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3205 3206 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3207 3208 PPCGGen->ctx = S->getIslCtx().get(); 3209 PPCGGen->options = PPCGScop->options; 3210 PPCGGen->print = nullptr; 3211 PPCGGen->print_user = nullptr; 3212 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3213 PPCGGen->prog = PPCGProg; 3214 PPCGGen->tree = nullptr; 3215 PPCGGen->types.n = 0; 3216 PPCGGen->types.name = nullptr; 3217 PPCGGen->sizes = nullptr; 3218 PPCGGen->used_sizes = nullptr; 3219 PPCGGen->kernel_id = 0; 3220 3221 // Set scheduling strategy to same strategy PPCG is using. 3222 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3223 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3224 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3225 3226 isl_schedule *Schedule = get_schedule(PPCGGen); 3227 3228 int has_permutable = has_any_permutable_node(Schedule); 3229 3230 Schedule = 3231 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3232 3233 if (!has_permutable || has_permutable < 0) { 3234 Schedule = isl_schedule_free(Schedule); 3235 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3236 << " does not have permutable bands. Bailing out\n";); 3237 } else { 3238 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3239 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3240 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3241 } 3242 3243 if (DumpSchedule) { 3244 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3245 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3246 P = isl_printer_print_str(P, "Schedule\n"); 3247 P = isl_printer_print_str(P, "========\n"); 3248 if (Schedule) 3249 P = isl_printer_print_schedule(P, Schedule); 3250 else 3251 P = isl_printer_print_str(P, "No schedule found\n"); 3252 3253 outs() << isl_printer_get_str(P) << "\n"; 3254 isl_printer_free(P); 3255 } 3256 3257 if (DumpCode) { 3258 outs() << "Code\n"; 3259 outs() << "====\n"; 3260 if (PPCGGen->tree) 3261 printGPUTree(PPCGGen->tree, PPCGProg); 3262 else 3263 outs() << "No code generated\n"; 3264 } 3265 3266 isl_schedule_free(Schedule); 3267 3268 return PPCGGen; 3269 } 3270 3271 /// Free gpu_gen structure. 3272 /// 3273 /// @param PPCGGen The ppcg_gen object to free. 3274 void freePPCGGen(gpu_gen *PPCGGen) { 3275 isl_ast_node_free(PPCGGen->tree); 3276 isl_union_map_free(PPCGGen->sizes); 3277 isl_union_map_free(PPCGGen->used_sizes); 3278 free(PPCGGen); 3279 } 3280 3281 /// Free the options in the ppcg scop structure. 3282 /// 3283 /// ppcg is not freeing these options for us. To avoid leaks we do this 3284 /// ourselves. 3285 /// 3286 /// @param PPCGScop The scop referencing the options to free. 3287 void freeOptions(ppcg_scop *PPCGScop) { 3288 free(PPCGScop->options->debug); 3289 PPCGScop->options->debug = nullptr; 3290 free(PPCGScop->options); 3291 PPCGScop->options = nullptr; 3292 } 3293 3294 /// Approximate the number of points in the set. 3295 /// 3296 /// This function returns an ast expression that overapproximates the number 3297 /// of points in an isl set through the rectangular hull surrounding this set. 3298 /// 3299 /// @param Set The set to count. 3300 /// @param Build The isl ast build object to use for creating the ast 3301 /// expression. 3302 /// 3303 /// @returns An approximation of the number of points in the set. 3304 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3305 __isl_keep isl_ast_build *Build) { 3306 3307 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3308 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3309 3310 isl_space *Space = isl_set_get_space(Set); 3311 Space = isl_space_params(Space); 3312 auto *Univ = isl_set_universe(Space); 3313 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3314 3315 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3316 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3317 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3318 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3319 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3320 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3321 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3322 } 3323 3324 isl_set_free(Set); 3325 isl_pw_aff_free(OneAff); 3326 3327 return Expr; 3328 } 3329 3330 /// Approximate a number of dynamic instructions executed by a given 3331 /// statement. 3332 /// 3333 /// @param Stmt The statement for which to compute the number of dynamic 3334 /// instructions. 3335 /// @param Build The isl ast build object to use for creating the ast 3336 /// expression. 3337 /// @returns An approximation of the number of dynamic instructions executed 3338 /// by @p Stmt. 3339 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3340 __isl_keep isl_ast_build *Build) { 3341 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3342 3343 long InstCount = 0; 3344 3345 if (Stmt.isBlockStmt()) { 3346 auto *BB = Stmt.getBasicBlock(); 3347 InstCount = std::distance(BB->begin(), BB->end()); 3348 } else { 3349 auto *R = Stmt.getRegion(); 3350 3351 for (auto *BB : R->blocks()) { 3352 InstCount += std::distance(BB->begin(), BB->end()); 3353 } 3354 } 3355 3356 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3357 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3358 return isl_ast_expr_mul(InstExpr, Iterations); 3359 } 3360 3361 /// Approximate dynamic instructions executed in scop. 3362 /// 3363 /// @param S The scop for which to approximate dynamic instructions. 3364 /// @param Build The isl ast build object to use for creating the ast 3365 /// expression. 3366 /// @returns An approximation of the number of dynamic instructions executed 3367 /// in @p S. 3368 __isl_give isl_ast_expr * 3369 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3370 isl_ast_expr *Instructions; 3371 3372 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3373 Instructions = isl_ast_expr_from_val(Zero); 3374 3375 for (ScopStmt &Stmt : S) { 3376 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3377 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3378 } 3379 return Instructions; 3380 } 3381 3382 /// Create a check that ensures sufficient compute in scop. 3383 /// 3384 /// @param S The scop for which to ensure sufficient compute. 3385 /// @param Build The isl ast build object to use for creating the ast 3386 /// expression. 3387 /// @returns An expression that evaluates to TRUE in case of sufficient 3388 /// compute and to FALSE, otherwise. 3389 __isl_give isl_ast_expr * 3390 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3391 auto Iterations = getNumberOfIterations(S, Build); 3392 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3393 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3394 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3395 } 3396 3397 /// Check if the basic block contains a function we cannot codegen for GPU 3398 /// kernels. 3399 /// 3400 /// If this basic block does something with a `Function` other than calling 3401 /// a function that we support in a kernel, return true. 3402 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3403 bool AllowCUDALibDevice) { 3404 for (const Instruction &Inst : *BB) { 3405 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3406 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3407 AllowCUDALibDevice)) 3408 continue; 3409 3410 for (Value *Op : Inst.operands()) 3411 // Look for (<func-type>*) among operands of Inst 3412 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3413 if (isa<FunctionType>(PtrTy->getElementType())) { 3414 LLVM_DEBUG(dbgs() 3415 << Inst << " has illegal use of function in kernel.\n"); 3416 return true; 3417 } 3418 } 3419 } 3420 return false; 3421 } 3422 3423 /// Return whether the Scop S uses functions in a way that we do not support. 3424 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3425 for (auto &Stmt : S) { 3426 if (Stmt.isBlockStmt()) { 3427 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3428 AllowCUDALibDevice)) 3429 return true; 3430 } else { 3431 assert(Stmt.isRegionStmt() && 3432 "Stmt was neither block nor region statement"); 3433 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3434 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3435 return true; 3436 } 3437 } 3438 return false; 3439 } 3440 3441 /// Generate code for a given GPU AST described by @p Root. 3442 /// 3443 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3444 /// @param Prog The GPU Program to generate code for. 3445 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3446 ScopAnnotator Annotator; 3447 Annotator.buildAliasScopes(*S); 3448 3449 Region *R = &S->getRegion(); 3450 3451 simplifyRegion(R, DT, LI, RI); 3452 3453 BasicBlock *EnteringBB = R->getEnteringBlock(); 3454 3455 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 3456 IRInserter(Annotator)); 3457 Builder.SetInsertPoint(EnteringBB->getTerminator()); 3458 3459 // Only build the run-time condition and parameters _after_ having 3460 // introduced the conditional branch. This is important as the conditional 3461 // branch will guard the original scop from new induction variables that 3462 // the SCEVExpander may introduce while code generating the parameters and 3463 // which may introduce scalar dependences that prevent us from correctly 3464 // code generating this scop. 3465 BBPair StartExitBlocks; 3466 BranchInst *CondBr = nullptr; 3467 std::tie(StartExitBlocks, CondBr) = 3468 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3469 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3470 3471 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3472 3473 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3474 StartBlock, Prog, Runtime, Architecture); 3475 3476 // TODO: Handle LICM 3477 auto SplitBlock = StartBlock->getSinglePredecessor(); 3478 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3479 3480 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3481 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3482 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3483 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3484 isl_ast_build_free(Build); 3485 3486 // preload invariant loads. Note: This should happen before the RTC 3487 // because the RTC may depend on values that are invariant load hoisted. 3488 if (!NodeBuilder.preloadInvariantLoads()) { 3489 // Patch the introduced branch condition to ensure that we always execute 3490 // the original SCoP. 3491 auto *FalseI1 = Builder.getFalse(); 3492 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3493 SplitBBTerm->setOperand(0, FalseI1); 3494 3495 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3496 S->getFunction().getName() + 3497 " | Scop Region: " + S->getNameStr()); 3498 // adjust the dominator tree accordingly. 3499 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3500 assert(ExitingBlock); 3501 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3502 assert(MergeBlock); 3503 polly::markBlockUnreachable(*StartBlock, Builder); 3504 polly::markBlockUnreachable(*ExitingBlock, Builder); 3505 auto *ExitingBB = S->getExitingBlock(); 3506 assert(ExitingBB); 3507 3508 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3509 DT->eraseNode(ExitingBlock); 3510 isl_ast_expr_free(Condition); 3511 isl_ast_node_free(Root); 3512 } else { 3513 3514 if (polly::PerfMonitoring) { 3515 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3516 P.initialize(); 3517 P.insertRegionStart(SplitBlock->getTerminator()); 3518 3519 // TODO: actually think if this is the correct exiting block to place 3520 // the `end` performance marker. Invariant load hoisting changes 3521 // the CFG in a way that I do not precisely understand, so I 3522 // (Siddharth<[email protected]>) should come back to this and 3523 // think about which exiting block to use. 3524 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3525 assert(ExitingBlock); 3526 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3527 P.insertRegionEnd(MergeBlock->getTerminator()); 3528 } 3529 3530 NodeBuilder.addParameters(S->getContext().release()); 3531 Value *RTC = NodeBuilder.createRTC(Condition); 3532 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3533 3534 Builder.SetInsertPoint(&*StartBlock->begin()); 3535 3536 NodeBuilder.create(Root); 3537 } 3538 3539 /// In case a sequential kernel has more surrounding loops as any parallel 3540 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3541 /// point in running it on a GPU. 3542 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3543 CondBr->setOperand(0, Builder.getFalse()); 3544 3545 if (!NodeBuilder.BuildSuccessful) 3546 CondBr->setOperand(0, Builder.getFalse()); 3547 } 3548 3549 bool runOnScop(Scop &CurrentScop) override { 3550 S = &CurrentScop; 3551 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3552 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3553 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3554 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3555 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3556 3557 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3558 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3559 3560 // We currently do not support functions other than intrinsics inside 3561 // kernels, as code generation will need to offload function calls to the 3562 // kernel. This may lead to a kernel trying to call a function on the host. 3563 // This also allows us to prevent codegen from trying to take the 3564 // address of an intrinsic function to send to the kernel. 3565 if (containsInvalidKernelFunction(CurrentScop, 3566 Architecture == GPUArch::NVPTX64)) { 3567 LLVM_DEBUG( 3568 dbgs() << getUniqueScopName(S) 3569 << " contains function which cannot be materialised in a GPU " 3570 "kernel. Bailing out.\n";); 3571 return false; 3572 } 3573 3574 auto PPCGScop = createPPCGScop(); 3575 auto PPCGProg = createPPCGProg(PPCGScop); 3576 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3577 3578 if (PPCGGen->tree) { 3579 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3580 CurrentScop.markAsToBeSkipped(); 3581 } else { 3582 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3583 << " has empty PPCGGen->tree. Bailing out.\n"); 3584 } 3585 3586 freeOptions(PPCGScop); 3587 freePPCGGen(PPCGGen); 3588 gpu_prog_free(PPCGProg); 3589 ppcg_scop_free(PPCGScop); 3590 3591 return true; 3592 } 3593 3594 void printScop(raw_ostream &, Scop &) const override {} 3595 3596 void getAnalysisUsage(AnalysisUsage &AU) const override { 3597 ScopPass::getAnalysisUsage(AU); 3598 3599 AU.addRequired<DominatorTreeWrapperPass>(); 3600 AU.addRequired<RegionInfoPass>(); 3601 AU.addRequired<ScalarEvolutionWrapperPass>(); 3602 AU.addRequired<ScopDetectionWrapperPass>(); 3603 AU.addRequired<ScopInfoRegionPass>(); 3604 AU.addRequired<LoopInfoWrapperPass>(); 3605 3606 // FIXME: We do not yet add regions for the newly generated code to the 3607 // region tree. 3608 } 3609 }; 3610 } // namespace 3611 3612 char PPCGCodeGeneration::ID = 1; 3613 3614 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3615 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3616 generator->Runtime = Runtime; 3617 generator->Architecture = Arch; 3618 return generator; 3619 } 3620 3621 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3622 "Polly - Apply PPCG translation to SCOP", false, false) 3623 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3624 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3625 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3626 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3627 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3628 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3629 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3630 "Polly - Apply PPCG translation to SCOP", false, false) 3631