1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/PPCGCodeGeneration.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslNodeBuilder.h"
19 #include "polly/CodeGen/PerfMonitor.h"
20 #include "polly/CodeGen/Utils.h"
21 #include "polly/DependenceInfo.h"
22 #include "polly/LinkAllPasses.h"
23 #include "polly/Options.h"
24 #include "polly/ScopDetection.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/SCEVValidator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/BasicAliasAnalysis.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/LegacyPassManager.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/IRReader/IRReader.h"
37 #include "llvm/Linker/Linker.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/TargetSelect.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 
44 #include "isl/union_map.h"
45 
46 extern "C" {
47 #include "ppcg/cuda.h"
48 #include "ppcg/gpu.h"
49 #include "ppcg/gpu_print.h"
50 #include "ppcg/ppcg.h"
51 #include "ppcg/schedule.h"
52 }
53 
54 #include "llvm/Support/Debug.h"
55 
56 using namespace polly;
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "polly-codegen-ppcg"
60 
61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
62                                   cl::desc("Dump the computed GPU Schedule"),
63                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
64                                   cl::cat(PollyCategory));
65 
66 static cl::opt<bool>
67     DumpCode("polly-acc-dump-code",
68              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
69              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
70 
71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
72                                   cl::desc("Dump the kernel LLVM-IR"),
73                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
74                                   cl::cat(PollyCategory));
75 
76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
77                                    cl::desc("Dump the kernel assembly code"),
78                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
79                                    cl::cat(PollyCategory));
80 
81 static cl::opt<bool> FastMath("polly-acc-fastmath",
82                               cl::desc("Allow unsafe math optimizations"),
83                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
84                               cl::cat(PollyCategory));
85 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
86                                   cl::desc("Use shared memory"), cl::Hidden,
87                                   cl::init(false), cl::ZeroOrMore,
88                                   cl::cat(PollyCategory));
89 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
90                                    cl::desc("Use private memory"), cl::Hidden,
91                                    cl::init(false), cl::ZeroOrMore,
92                                    cl::cat(PollyCategory));
93 
94 bool polly::PollyManagedMemory;
95 static cl::opt<bool, true>
96     XManagedMemory("polly-acc-codegen-managed-memory",
97                    cl::desc("Generate Host kernel code assuming"
98                             " that all memory has been"
99                             " declared as managed memory"),
100                    cl::location(PollyManagedMemory), cl::Hidden,
101                    cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
102 
103 static cl::opt<bool>
104     FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
105                               cl::desc("Fail and generate a backtrace if"
106                                        " verifyModule fails on the GPU "
107                                        " kernel module."),
108                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
109                               cl::cat(PollyCategory));
110 
111 static cl::opt<std::string> CUDALibDevice(
112     "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
113     cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
114     cl::ZeroOrMore, cl::cat(PollyCategory));
115 
116 static cl::opt<std::string>
117     CudaVersion("polly-acc-cuda-version",
118                 cl::desc("The CUDA version to compile for"), cl::Hidden,
119                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
120 
121 static cl::opt<int>
122     MinCompute("polly-acc-mincompute",
123                cl::desc("Minimal number of compute statements to run on GPU."),
124                cl::Hidden, cl::init(10 * 512 * 512));
125 
126 extern bool polly::PerfMonitoring;
127 
128 /// Return  a unique name for a Scop, which is the scop region with the
129 /// function name.
130 std::string getUniqueScopName(const Scop *S) {
131   return "Scop Region: " + S->getNameStr() +
132          " | Function: " + std::string(S->getFunction().getName());
133 }
134 
135 /// Used to store information PPCG wants for kills. This information is
136 /// used by live range reordering.
137 ///
138 /// @see computeLiveRangeReordering
139 /// @see GPUNodeBuilder::createPPCGScop
140 /// @see GPUNodeBuilder::createPPCGProg
141 struct MustKillsInfo {
142   /// Collection of all kill statements that will be sequenced at the end of
143   /// PPCGScop->schedule.
144   ///
145   /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
146   /// which merges schedules in *arbitrary* order.
147   /// (we don't care about the order of the kills anyway).
148   isl::schedule KillsSchedule;
149   /// Map from kill statement instances to scalars that need to be
150   /// killed.
151   ///
152   /// We currently derive kill information for:
153   ///  1. phi nodes. PHI nodes are not alive outside the scop and can
154   ///     consequently all be killed.
155   ///  2. Scalar arrays that are not used outside the Scop. This is
156   ///     checked by `isScalarUsesContainedInScop`.
157   /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
158   isl::union_map TaggedMustKills;
159 
160   /// Tagged must kills stripped of the tags.
161   /// [params] -> { Stmt_phantom[]  -> scalar_to_kill[] }
162   isl::union_map MustKills;
163 
164   MustKillsInfo() : KillsSchedule(nullptr) {}
165 };
166 
167 /// Check if SAI's uses are entirely contained within Scop S.
168 /// If a scalar is used only with a Scop, we are free to kill it, as no data
169 /// can flow in/out of the value any more.
170 /// @see computeMustKillsInfo
171 static bool isScalarUsesContainedInScop(const Scop &S,
172                                         const ScopArrayInfo *SAI) {
173   assert(SAI->isValueKind() && "this function only deals with scalars."
174                                " Dealing with arrays required alias analysis");
175 
176   const Region &R = S.getRegion();
177   for (User *U : SAI->getBasePtr()->users()) {
178     Instruction *I = dyn_cast<Instruction>(U);
179     assert(I && "invalid user of scop array info");
180     if (!R.contains(I))
181       return false;
182   }
183   return true;
184 }
185 
186 /// Compute must-kills needed to enable live range reordering with PPCG.
187 ///
188 /// @params S The Scop to compute live range reordering information
189 /// @returns live range reordering information that can be used to setup
190 /// PPCG.
191 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
192   const isl::space ParamSpace = S.getParamSpace();
193   MustKillsInfo Info;
194 
195   // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
196   //      1.1 phi nodes in scop.
197   //      1.2 scalars that are only used within the scop
198   SmallVector<isl::id, 4> KillMemIds;
199   for (ScopArrayInfo *SAI : S.arrays()) {
200     if (SAI->isPHIKind() ||
201         (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
202       KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
203   }
204 
205   Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
206   Info.MustKills = isl::union_map::empty(ParamSpace);
207 
208   // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
209   // schedule:
210   //     - filter: "[control] -> { }"
211   // So, we choose to not create this to keep the output a little nicer,
212   // at the cost of some code complexity.
213   Info.KillsSchedule = nullptr;
214 
215   for (isl::id &ToKillId : KillMemIds) {
216     isl::id KillStmtId = isl::id::alloc(
217         S.getIslCtx(),
218         std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
219 
220     // NOTE: construction of tagged_must_kill:
221     // 2. We need to construct a map:
222     //     [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
223     // To construct this, we use `isl_map_domain_product` on 2 maps`:
224     // 2a. StmtToScalar:
225     //         [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
226     // 2b. PhantomRefToScalar:
227     //         [param] -> { ref_phantom[] -> scalar_to_kill[] }
228     //
229     // Combining these with `isl_map_domain_product` gives us
230     // TaggedMustKill:
231     //     [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
232 
233     // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
234     isl::map StmtToScalar = isl::map::universe(ParamSpace);
235     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
236     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
237 
238     isl::id PhantomRefId = isl::id::alloc(
239         S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
240         nullptr);
241 
242     // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
243     isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
244     PhantomRefToScalar =
245         PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
246     PhantomRefToScalar =
247         PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
248 
249     // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
250     isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
251     Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
252 
253     // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
254     Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
255 
256     // 3. Create the kill schedule of the form:
257     //     "[param] -> { Stmt_phantom[] }"
258     // Then add this to Info.KillsSchedule.
259     isl::space KillStmtSpace = ParamSpace;
260     KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
261     isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
262 
263     isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
264     if (Info.KillsSchedule)
265       Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule);
266     else
267       Info.KillsSchedule = KillSchedule;
268   }
269 
270   return Info;
271 }
272 
273 /// Create the ast expressions for a ScopStmt.
274 ///
275 /// This function is a callback for to generate the ast expressions for each
276 /// of the scheduled ScopStmts.
277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
278     void *StmtT, __isl_take isl_ast_build *Build_C,
279     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
280                                        isl_id *Id, void *User),
281     void *UserIndex,
282     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
283     void *UserExpr) {
284 
285   ScopStmt *Stmt = (ScopStmt *)StmtT;
286 
287   if (!Stmt || !Build_C)
288     return NULL;
289 
290   isl::ast_build Build = isl::manage_copy(Build_C);
291   isl::ctx Ctx = Build.get_ctx();
292   isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
293 
294   Stmt->setAstBuild(Build);
295 
296   for (MemoryAccess *Acc : *Stmt) {
297     isl::map AddrFunc = Acc->getAddressFunction();
298     AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
299 
300     isl::id RefId = Acc->getId();
301     isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
302 
303     isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
304     MPA = MPA.coalesce();
305     MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
306 
307     isl::ast_expr Access = Build.access_from(MPA);
308     Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
309     RefToExpr = RefToExpr.set(RefId, Access);
310   }
311 
312   return RefToExpr.release();
313 }
314 
315 /// Given a LLVM Type, compute its size in bytes,
316 static int computeSizeInBytes(const Type *T) {
317   int bytes = T->getPrimitiveSizeInBits() / 8;
318   if (bytes == 0)
319     bytes = T->getScalarSizeInBits() / 8;
320   return bytes;
321 }
322 
323 /// Generate code for a GPU specific isl AST.
324 ///
325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
326 /// generates code for general-purpose AST nodes, with special functionality
327 /// for generating GPU specific user nodes.
328 ///
329 /// @see GPUNodeBuilder::createUser
330 class GPUNodeBuilder : public IslNodeBuilder {
331 public:
332   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
333                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
334                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
335                  gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
336       : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
337         Prog(Prog), Runtime(Runtime), Arch(Arch) {
338     getExprBuilder().setIDToSAI(&IDToSAI);
339   }
340 
341   /// Create after-run-time-check initialization code.
342   void initializeAfterRTH();
343 
344   /// Finalize the generated scop.
345   virtual void finalize();
346 
347   /// Track if the full build process was successful.
348   ///
349   /// This value is set to false, if throughout the build process an error
350   /// occurred which prevents us from generating valid GPU code.
351   bool BuildSuccessful = true;
352 
353   /// The maximal number of loops surrounding a sequential kernel.
354   unsigned DeepestSequential = 0;
355 
356   /// The maximal number of loops surrounding a parallel kernel.
357   unsigned DeepestParallel = 0;
358 
359   /// Return the name to set for the ptx_kernel.
360   std::string getKernelFuncName(int Kernel_id);
361 
362 private:
363   /// A vector of array base pointers for which a new ScopArrayInfo was created.
364   ///
365   /// This vector is used to delete the ScopArrayInfo when it is not needed any
366   /// more.
367   std::vector<Value *> LocalArrays;
368 
369   /// A map from ScopArrays to their corresponding device allocations.
370   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
371 
372   /// The current GPU context.
373   Value *GPUContext;
374 
375   /// The set of isl_ids allocated in the kernel
376   std::vector<isl_id *> KernelIds;
377 
378   /// A module containing GPU code.
379   ///
380   /// This pointer is only set in case we are currently generating GPU code.
381   std::unique_ptr<Module> GPUModule;
382 
383   /// The GPU program we generate code for.
384   gpu_prog *Prog;
385 
386   /// The GPU Runtime implementation to use (OpenCL or CUDA).
387   GPURuntime Runtime;
388 
389   /// The GPU Architecture to target.
390   GPUArch Arch;
391 
392   /// Class to free isl_ids.
393   class IslIdDeleter {
394   public:
395     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
396   };
397 
398   /// A set containing all isl_ids allocated in a GPU kernel.
399   ///
400   /// By releasing this set all isl_ids will be freed.
401   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
402 
403   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
404 
405   /// Create code for user-defined AST nodes.
406   ///
407   /// These AST nodes can be of type:
408   ///
409   ///   - ScopStmt:      A computational statement (TODO)
410   ///   - Kernel:        A GPU kernel call (TODO)
411   ///   - Data-Transfer: A GPU <-> CPU data-transfer
412   ///   - In-kernel synchronization
413   ///   - In-kernel memory copy statement
414   ///
415   /// @param UserStmt The ast node to generate code for.
416   virtual void createUser(__isl_take isl_ast_node *UserStmt);
417 
418   virtual void createFor(__isl_take isl_ast_node *Node);
419 
420   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
421 
422   /// Create code for a data transfer statement
423   ///
424   /// @param TransferStmt The data transfer statement.
425   /// @param Direction The direction in which to transfer data.
426   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
427                           enum DataDirection Direction);
428 
429   /// Find llvm::Values referenced in GPU kernel.
430   ///
431   /// @param Kernel The kernel to scan for llvm::Values
432   ///
433   /// @returns A tuple, whose:
434   ///          - First element contains the set of values referenced by the
435   ///            kernel
436   ///          - Second element contains the set of functions referenced by the
437   ///             kernel. All functions in the set satisfy
438   ///             `isValidFunctionInKernel`.
439   ///          - Third element contains loops that have induction variables
440   ///            which are used in the kernel, *and* these loops are *neither*
441   ///            in the scop, nor do they immediately surroung the Scop.
442   ///            See [Code generation of induction variables of loops outside
443   ///            Scops]
444   std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
445              isl::space>
446   getReferencesInKernel(ppcg_kernel *Kernel);
447 
448   /// Compute the sizes of the execution grid for a given kernel.
449   ///
450   /// @param Kernel The kernel to compute grid sizes for.
451   ///
452   /// @returns A tuple with grid sizes for X and Y dimension
453   std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
454 
455   /// Get the managed array pointer for sending host pointers to the device.
456   /// \note
457   /// This is to be used only with managed memory
458   Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
459 
460   /// Compute the sizes of the thread blocks for a given kernel.
461   ///
462   /// @param Kernel The kernel to compute thread block sizes for.
463   ///
464   /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
465   std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
466 
467   /// Store a specific kernel launch parameter in the array of kernel launch
468   /// parameters.
469   ///
470   /// @param Parameters The list of parameters in which to store.
471   /// @param Param      The kernel launch parameter to store.
472   /// @param Index      The index in the parameter list, at which to store the
473   ///                   parameter.
474   void insertStoreParameter(Instruction *Parameters, Instruction *Param,
475                             int Index);
476 
477   /// Create kernel launch parameters.
478   ///
479   /// @param Kernel        The kernel to create parameters for.
480   /// @param F             The kernel function that has been created.
481   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
482   ///
483   /// @returns A stack allocated array with pointers to the parameter
484   ///          values that are passed to the kernel.
485   Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
486                                 SetVector<Value *> SubtreeValues);
487 
488   /// Create declarations for kernel variable.
489   ///
490   /// This includes shared memory declarations.
491   ///
492   /// @param Kernel        The kernel definition to create variables for.
493   /// @param FN            The function into which to generate the variables.
494   void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
495 
496   /// Add CUDA annotations to module.
497   ///
498   /// Add a set of CUDA annotations that declares the maximal block dimensions
499   /// that will be used to execute the CUDA kernel. This allows the NVIDIA
500   /// PTX compiler to bound the number of allocated registers to ensure the
501   /// resulting kernel is known to run with up to as many block dimensions
502   /// as specified here.
503   ///
504   /// @param M         The module to add the annotations to.
505   /// @param BlockDimX The size of block dimension X.
506   /// @param BlockDimY The size of block dimension Y.
507   /// @param BlockDimZ The size of block dimension Z.
508   void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
509                           Value *BlockDimZ);
510 
511   /// Create GPU kernel.
512   ///
513   /// Code generate the kernel described by @p KernelStmt.
514   ///
515   /// @param KernelStmt The ast node to generate kernel code for.
516   void createKernel(__isl_take isl_ast_node *KernelStmt);
517 
518   /// Generate code that computes the size of an array.
519   ///
520   /// @param Array The array for which to compute a size.
521   Value *getArraySize(gpu_array_info *Array);
522 
523   /// Generate code to compute the minimal offset at which an array is accessed.
524   ///
525   /// The offset of an array is the minimal array location accessed in a scop.
526   ///
527   /// Example:
528   ///
529   ///   for (long i = 0; i < 100; i++)
530   ///     A[i + 42] += ...
531   ///
532   ///   getArrayOffset(A) results in 42.
533   ///
534   /// @param Array The array for which to compute the offset.
535   /// @returns An llvm::Value that contains the offset of the array.
536   Value *getArrayOffset(gpu_array_info *Array);
537 
538   /// Prepare the kernel arguments for kernel code generation
539   ///
540   /// @param Kernel The kernel to generate code for.
541   /// @param FN     The function created for the kernel.
542   void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
543 
544   /// Create kernel function.
545   ///
546   /// Create a kernel function located in a newly created module that can serve
547   /// as target for device code generation. Set the Builder to point to the
548   /// start block of this newly created function.
549   ///
550   /// @param Kernel The kernel to generate code for.
551   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
552   /// @param SubtreeFunctions The set of llvm::Functions referenced by this
553   ///                         kernel.
554   void createKernelFunction(ppcg_kernel *Kernel,
555                             SetVector<Value *> &SubtreeValues,
556                             SetVector<Function *> &SubtreeFunctions);
557 
558   /// Create the declaration of a kernel function.
559   ///
560   /// The kernel function takes as arguments:
561   ///
562   ///   - One i8 pointer for each external array reference used in the kernel.
563   ///   - Host iterators
564   ///   - Parameters
565   ///   - Other LLVM Value references (TODO)
566   ///
567   /// @param Kernel The kernel to generate the function declaration for.
568   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
569   ///
570   /// @returns The newly declared function.
571   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
572                                      SetVector<Value *> &SubtreeValues);
573 
574   /// Insert intrinsic functions to obtain thread and block ids.
575   ///
576   /// @param The kernel to generate the intrinsic functions for.
577   void insertKernelIntrinsics(ppcg_kernel *Kernel);
578 
579   /// Insert function calls to retrieve the SPIR group/local ids.
580   ///
581   /// @param The kernel to generate the function calls for.
582   void insertKernelCallsSPIR(ppcg_kernel *Kernel);
583 
584   /// Setup the creation of functions referenced by the GPU kernel.
585   ///
586   /// 1. Create new function declarations in GPUModule which are the same as
587   /// SubtreeFunctions.
588   ///
589   /// 2. Populate IslNodeBuilder::ValueMap with mappings from
590   /// old functions (that come from the original module) to new functions
591   /// (that are created within GPUModule). That way, we generate references
592   /// to the correct function (in GPUModule) in BlockGenerator.
593   ///
594   /// @see IslNodeBuilder::ValueMap
595   /// @see BlockGenerator::GlobalMap
596   /// @see BlockGenerator::getNewValue
597   /// @see GPUNodeBuilder::getReferencesInKernel.
598   ///
599   /// @param SubtreeFunctions The set of llvm::Functions referenced by
600   ///                         this kernel.
601   void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
602 
603   /// Create a global-to-shared or shared-to-global copy statement.
604   ///
605   /// @param CopyStmt The copy statement to generate code for
606   void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
607 
608   /// Create code for a ScopStmt called in @p Expr.
609   ///
610   /// @param Expr The expression containing the call.
611   /// @param KernelStmt The kernel statement referenced in the call.
612   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
613 
614   /// Create an in-kernel synchronization call.
615   void createKernelSync();
616 
617   /// Create a PTX assembly string for the current GPU kernel.
618   ///
619   /// @returns A string containing the corresponding PTX assembly code.
620   std::string createKernelASM();
621 
622   /// Remove references from the dominator tree to the kernel function @p F.
623   ///
624   /// @param F The function to remove references to.
625   void clearDominators(Function *F);
626 
627   /// Remove references from scalar evolution to the kernel function @p F.
628   ///
629   /// @param F The function to remove references to.
630   void clearScalarEvolution(Function *F);
631 
632   /// Remove references from loop info to the kernel function @p F.
633   ///
634   /// @param F The function to remove references to.
635   void clearLoops(Function *F);
636 
637   /// Check if the scop requires to be linked with CUDA's libdevice.
638   bool requiresCUDALibDevice();
639 
640   /// Link with the NVIDIA libdevice library (if needed and available).
641   void addCUDALibDevice();
642 
643   /// Finalize the generation of the kernel function.
644   ///
645   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
646   /// dump its IR to stderr.
647   ///
648   /// @returns The Assembly string of the kernel.
649   std::string finalizeKernelFunction();
650 
651   /// Finalize the generation of the kernel arguments.
652   ///
653   /// This function ensures that not-read-only scalars used in a kernel are
654   /// stored back to the global memory location they are backed with before
655   /// the kernel terminates.
656   ///
657   /// @params Kernel The kernel to finalize kernel arguments for.
658   void finalizeKernelArguments(ppcg_kernel *Kernel);
659 
660   /// Create code that allocates memory to store arrays on device.
661   void allocateDeviceArrays();
662 
663   /// Create code to prepare the managed device pointers.
664   void prepareManagedDeviceArrays();
665 
666   /// Free all allocated device arrays.
667   void freeDeviceArrays();
668 
669   /// Create a call to initialize the GPU context.
670   ///
671   /// @returns A pointer to the newly initialized context.
672   Value *createCallInitContext();
673 
674   /// Create a call to get the device pointer for a kernel allocation.
675   ///
676   /// @param Allocation The Polly GPU allocation
677   ///
678   /// @returns The device parameter corresponding to this allocation.
679   Value *createCallGetDevicePtr(Value *Allocation);
680 
681   /// Create a call to free the GPU context.
682   ///
683   /// @param Context A pointer to an initialized GPU context.
684   void createCallFreeContext(Value *Context);
685 
686   /// Create a call to allocate memory on the device.
687   ///
688   /// @param Size The size of memory to allocate
689   ///
690   /// @returns A pointer that identifies this allocation.
691   Value *createCallAllocateMemoryForDevice(Value *Size);
692 
693   /// Create a call to free a device array.
694   ///
695   /// @param Array The device array to free.
696   void createCallFreeDeviceMemory(Value *Array);
697 
698   /// Create a call to copy data from host to device.
699   ///
700   /// @param HostPtr A pointer to the host data that should be copied.
701   /// @param DevicePtr A device pointer specifying the location to copy to.
702   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
703                                       Value *Size);
704 
705   /// Create a call to copy data from device to host.
706   ///
707   /// @param DevicePtr A pointer to the device data that should be copied.
708   /// @param HostPtr A host pointer specifying the location to copy to.
709   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
710                                       Value *Size);
711 
712   /// Create a call to synchronize Host & Device.
713   /// \note
714   /// This is to be used only with managed memory.
715   void createCallSynchronizeDevice();
716 
717   /// Create a call to get a kernel from an assembly string.
718   ///
719   /// @param Buffer The string describing the kernel.
720   /// @param Entry  The name of the kernel function to call.
721   ///
722   /// @returns A pointer to a kernel object
723   Value *createCallGetKernel(Value *Buffer, Value *Entry);
724 
725   /// Create a call to free a GPU kernel.
726   ///
727   /// @param GPUKernel THe kernel to free.
728   void createCallFreeKernel(Value *GPUKernel);
729 
730   /// Create a call to launch a GPU kernel.
731   ///
732   /// @param GPUKernel  The kernel to launch.
733   /// @param GridDimX   The size of the first grid dimension.
734   /// @param GridDimY   The size of the second grid dimension.
735   /// @param GridBlockX The size of the first block dimension.
736   /// @param GridBlockY The size of the second block dimension.
737   /// @param GridBlockZ The size of the third block dimension.
738   /// @param Parameters A pointer to an array that contains itself pointers to
739   ///                   the parameter values passed for each kernel argument.
740   void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
741                               Value *GridDimY, Value *BlockDimX,
742                               Value *BlockDimY, Value *BlockDimZ,
743                               Value *Parameters);
744 };
745 
746 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
747   return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
748          std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
749 }
750 
751 void GPUNodeBuilder::initializeAfterRTH() {
752   BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
753                                  &*Builder.GetInsertPoint(), &DT, &LI);
754   NewBB->setName("polly.acc.initialize");
755   Builder.SetInsertPoint(&NewBB->front());
756 
757   GPUContext = createCallInitContext();
758 
759   if (!PollyManagedMemory)
760     allocateDeviceArrays();
761   else
762     prepareManagedDeviceArrays();
763 }
764 
765 void GPUNodeBuilder::finalize() {
766   if (!PollyManagedMemory)
767     freeDeviceArrays();
768 
769   createCallFreeContext(GPUContext);
770   IslNodeBuilder::finalize();
771 }
772 
773 void GPUNodeBuilder::allocateDeviceArrays() {
774   assert(!PollyManagedMemory &&
775          "Managed memory will directly send host pointers "
776          "to the kernel. There is no need for device arrays");
777   isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
778 
779   for (int i = 0; i < Prog->n_array; ++i) {
780     gpu_array_info *Array = &Prog->array[i];
781     auto *ScopArray = (ScopArrayInfo *)Array->user;
782     std::string DevArrayName("p_dev_array_");
783     DevArrayName.append(Array->name);
784 
785     Value *ArraySize = getArraySize(Array);
786     Value *Offset = getArrayOffset(Array);
787     if (Offset)
788       ArraySize = Builder.CreateSub(
789           ArraySize,
790           Builder.CreateMul(Offset,
791                             Builder.getInt64(ScopArray->getElemSizeInBytes())));
792     const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
793     // It makes no sense to have an array of size 0. The CUDA API will
794     // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
795     // choose to be defensive and catch this at the compile phase. It is
796     // most likely that we are doing something wrong with size computation.
797     if (SizeSCEV->isZero()) {
798       errs() << getUniqueScopName(&S)
799              << " has computed array size 0: " << *ArraySize
800              << " | for array: " << *(ScopArray->getBasePtr())
801              << ". This is illegal, exiting.\n";
802       report_fatal_error("array size was computed to be 0");
803     }
804 
805     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
806     DevArray->setName(DevArrayName);
807     DeviceAllocations[ScopArray] = DevArray;
808   }
809 
810   isl_ast_build_free(Build);
811 }
812 
813 void GPUNodeBuilder::prepareManagedDeviceArrays() {
814   assert(PollyManagedMemory &&
815          "Device array most only be prepared in managed-memory mode");
816   for (int i = 0; i < Prog->n_array; ++i) {
817     gpu_array_info *Array = &Prog->array[i];
818     ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
819     Value *HostPtr;
820 
821     if (gpu_array_is_scalar(Array))
822       HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
823     else
824       HostPtr = ScopArray->getBasePtr();
825     HostPtr = getLatestValue(HostPtr);
826 
827     Value *Offset = getArrayOffset(Array);
828     if (Offset) {
829       HostPtr = Builder.CreatePointerCast(
830           HostPtr, ScopArray->getElementType()->getPointerTo());
831       HostPtr = Builder.CreateGEP(HostPtr, Offset);
832     }
833 
834     HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
835     DeviceAllocations[ScopArray] = HostPtr;
836   }
837 }
838 
839 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
840                                         Value *BlockDimY, Value *BlockDimZ) {
841   auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
842 
843   for (auto &F : *M) {
844     if (F.getCallingConv() != CallingConv::PTX_Kernel)
845       continue;
846 
847     Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
848 
849     Metadata *Elements[] = {
850         ValueAsMetadata::get(&F),   MDString::get(M->getContext(), "maxntidx"),
851         ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
852         ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
853         ValueAsMetadata::get(V[2]),
854     };
855     MDNode *Node = MDNode::get(M->getContext(), Elements);
856     AnnotationNode->addOperand(Node);
857   }
858 }
859 
860 void GPUNodeBuilder::freeDeviceArrays() {
861   assert(!PollyManagedMemory && "Managed memory does not use device arrays");
862   for (auto &Array : DeviceAllocations)
863     createCallFreeDeviceMemory(Array.second);
864 }
865 
866 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
867   const char *Name = "polly_getKernel";
868   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
869   Function *F = M->getFunction(Name);
870 
871   // If F is not available, declare it.
872   if (!F) {
873     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
874     std::vector<Type *> Args;
875     Args.push_back(Builder.getInt8PtrTy());
876     Args.push_back(Builder.getInt8PtrTy());
877     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
878     F = Function::Create(Ty, Linkage, Name, M);
879   }
880 
881   return Builder.CreateCall(F, {Buffer, Entry});
882 }
883 
884 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
885   const char *Name = "polly_getDevicePtr";
886   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
887   Function *F = M->getFunction(Name);
888 
889   // If F is not available, declare it.
890   if (!F) {
891     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
892     std::vector<Type *> Args;
893     Args.push_back(Builder.getInt8PtrTy());
894     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
895     F = Function::Create(Ty, Linkage, Name, M);
896   }
897 
898   return Builder.CreateCall(F, {Allocation});
899 }
900 
901 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
902                                             Value *GridDimY, Value *BlockDimX,
903                                             Value *BlockDimY, Value *BlockDimZ,
904                                             Value *Parameters) {
905   const char *Name = "polly_launchKernel";
906   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
907   Function *F = M->getFunction(Name);
908 
909   // If F is not available, declare it.
910   if (!F) {
911     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
912     std::vector<Type *> Args;
913     Args.push_back(Builder.getInt8PtrTy());
914     Args.push_back(Builder.getInt32Ty());
915     Args.push_back(Builder.getInt32Ty());
916     Args.push_back(Builder.getInt32Ty());
917     Args.push_back(Builder.getInt32Ty());
918     Args.push_back(Builder.getInt32Ty());
919     Args.push_back(Builder.getInt8PtrTy());
920     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
921     F = Function::Create(Ty, Linkage, Name, M);
922   }
923 
924   Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
925                          BlockDimZ, Parameters});
926 }
927 
928 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
929   const char *Name = "polly_freeKernel";
930   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
931   Function *F = M->getFunction(Name);
932 
933   // If F is not available, declare it.
934   if (!F) {
935     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
936     std::vector<Type *> Args;
937     Args.push_back(Builder.getInt8PtrTy());
938     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
939     F = Function::Create(Ty, Linkage, Name, M);
940   }
941 
942   Builder.CreateCall(F, {GPUKernel});
943 }
944 
945 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
946   assert(!PollyManagedMemory &&
947          "Managed memory does not allocate or free memory "
948          "for device");
949   const char *Name = "polly_freeDeviceMemory";
950   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
951   Function *F = M->getFunction(Name);
952 
953   // If F is not available, declare it.
954   if (!F) {
955     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
956     std::vector<Type *> Args;
957     Args.push_back(Builder.getInt8PtrTy());
958     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
959     F = Function::Create(Ty, Linkage, Name, M);
960   }
961 
962   Builder.CreateCall(F, {Array});
963 }
964 
965 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
966   assert(!PollyManagedMemory &&
967          "Managed memory does not allocate or free memory "
968          "for device");
969   const char *Name = "polly_allocateMemoryForDevice";
970   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
971   Function *F = M->getFunction(Name);
972 
973   // If F is not available, declare it.
974   if (!F) {
975     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
976     std::vector<Type *> Args;
977     Args.push_back(Builder.getInt64Ty());
978     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
979     F = Function::Create(Ty, Linkage, Name, M);
980   }
981 
982   return Builder.CreateCall(F, {Size});
983 }
984 
985 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
986                                                     Value *DeviceData,
987                                                     Value *Size) {
988   assert(!PollyManagedMemory &&
989          "Managed memory does not transfer memory between "
990          "device and host");
991   const char *Name = "polly_copyFromHostToDevice";
992   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
993   Function *F = M->getFunction(Name);
994 
995   // If F is not available, declare it.
996   if (!F) {
997     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
998     std::vector<Type *> Args;
999     Args.push_back(Builder.getInt8PtrTy());
1000     Args.push_back(Builder.getInt8PtrTy());
1001     Args.push_back(Builder.getInt64Ty());
1002     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1003     F = Function::Create(Ty, Linkage, Name, M);
1004   }
1005 
1006   Builder.CreateCall(F, {HostData, DeviceData, Size});
1007 }
1008 
1009 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1010                                                     Value *HostData,
1011                                                     Value *Size) {
1012   assert(!PollyManagedMemory &&
1013          "Managed memory does not transfer memory between "
1014          "device and host");
1015   const char *Name = "polly_copyFromDeviceToHost";
1016   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1017   Function *F = M->getFunction(Name);
1018 
1019   // If F is not available, declare it.
1020   if (!F) {
1021     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1022     std::vector<Type *> Args;
1023     Args.push_back(Builder.getInt8PtrTy());
1024     Args.push_back(Builder.getInt8PtrTy());
1025     Args.push_back(Builder.getInt64Ty());
1026     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1027     F = Function::Create(Ty, Linkage, Name, M);
1028   }
1029 
1030   Builder.CreateCall(F, {DeviceData, HostData, Size});
1031 }
1032 
1033 void GPUNodeBuilder::createCallSynchronizeDevice() {
1034   assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1035                                "managed memory");
1036   const char *Name = "polly_synchronizeDevice";
1037   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1038   Function *F = M->getFunction(Name);
1039 
1040   // If F is not available, declare it.
1041   if (!F) {
1042     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1043     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1044     F = Function::Create(Ty, Linkage, Name, M);
1045   }
1046 
1047   Builder.CreateCall(F);
1048 }
1049 
1050 Value *GPUNodeBuilder::createCallInitContext() {
1051   const char *Name;
1052 
1053   switch (Runtime) {
1054   case GPURuntime::CUDA:
1055     Name = "polly_initContextCUDA";
1056     break;
1057   case GPURuntime::OpenCL:
1058     Name = "polly_initContextCL";
1059     break;
1060   }
1061 
1062   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1063   Function *F = M->getFunction(Name);
1064 
1065   // If F is not available, declare it.
1066   if (!F) {
1067     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1068     std::vector<Type *> Args;
1069     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1070     F = Function::Create(Ty, Linkage, Name, M);
1071   }
1072 
1073   return Builder.CreateCall(F, {});
1074 }
1075 
1076 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1077   const char *Name = "polly_freeContext";
1078   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1079   Function *F = M->getFunction(Name);
1080 
1081   // If F is not available, declare it.
1082   if (!F) {
1083     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1084     std::vector<Type *> Args;
1085     Args.push_back(Builder.getInt8PtrTy());
1086     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1087     F = Function::Create(Ty, Linkage, Name, M);
1088   }
1089 
1090   Builder.CreateCall(F, {Context});
1091 }
1092 
1093 /// Check if one string is a prefix of another.
1094 ///
1095 /// @param String The string in which to look for the prefix.
1096 /// @param Prefix The prefix to look for.
1097 static bool isPrefix(std::string String, std::string Prefix) {
1098   return String.find(Prefix) == 0;
1099 }
1100 
1101 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1102   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1103   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1104 
1105   if (!gpu_array_is_scalar(Array)) {
1106     isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound);
1107 
1108     isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1109     isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1110 
1111     for (unsigned int i = 1; i < Array->n_index; i++) {
1112       isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1113       isl::ast_expr Expr = Build.expr_from(Bound_I);
1114       Res = Res.mul(Expr);
1115     }
1116 
1117     Value *NumElements = ExprBuilder.create(Res.release());
1118     if (NumElements->getType() != ArraySize->getType())
1119       NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1120     ArraySize = Builder.CreateMul(ArraySize, NumElements);
1121   }
1122   return ArraySize;
1123 }
1124 
1125 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1126   if (gpu_array_is_scalar(Array))
1127     return nullptr;
1128 
1129   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1130 
1131   isl::set Min = isl::manage_copy(Array->extent).lexmin();
1132 
1133   isl::set ZeroSet = isl::set::universe(Min.get_space());
1134 
1135   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++)
1136     ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1137 
1138   if (Min.is_subset(ZeroSet)) {
1139     return nullptr;
1140   }
1141 
1142   isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1143 
1144   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) {
1145     if (i > 0) {
1146       isl::pw_aff Bound_I =
1147           isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1148       isl::ast_expr BExpr = Build.expr_from(Bound_I);
1149       Result = Result.mul(BExpr);
1150     }
1151     isl::pw_aff DimMin = Min.dim_min(i);
1152     isl::ast_expr MExpr = Build.expr_from(DimMin);
1153     Result = Result.add(MExpr);
1154   }
1155 
1156   return ExprBuilder.create(Result.release());
1157 }
1158 
1159 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1160                                              ScopArrayInfo *ArrayInfo) {
1161   assert(PollyManagedMemory && "Only used when you wish to get a host "
1162                                "pointer for sending data to the kernel, "
1163                                "with managed memory");
1164   std::map<ScopArrayInfo *, Value *>::iterator it;
1165   it = DeviceAllocations.find(ArrayInfo);
1166   assert(it != DeviceAllocations.end() &&
1167          "Device array expected to be available");
1168   return it->second;
1169 }
1170 
1171 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1172                                         enum DataDirection Direction) {
1173   assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1174   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1175   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1176   isl_id *Id = isl_ast_expr_get_id(Arg);
1177   auto Array = (gpu_array_info *)isl_id_get_user(Id);
1178   auto ScopArray = (ScopArrayInfo *)(Array->user);
1179 
1180   Value *Size = getArraySize(Array);
1181   Value *Offset = getArrayOffset(Array);
1182   Value *DevPtr = DeviceAllocations[ScopArray];
1183 
1184   Value *HostPtr;
1185 
1186   if (gpu_array_is_scalar(Array))
1187     HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1188   else
1189     HostPtr = ScopArray->getBasePtr();
1190   HostPtr = getLatestValue(HostPtr);
1191 
1192   if (Offset) {
1193     HostPtr = Builder.CreatePointerCast(
1194         HostPtr, ScopArray->getElementType()->getPointerTo());
1195     HostPtr = Builder.CreateGEP(HostPtr, Offset);
1196   }
1197 
1198   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1199 
1200   if (Offset) {
1201     Size = Builder.CreateSub(
1202         Size, Builder.CreateMul(
1203                   Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1204   }
1205 
1206   if (Direction == HOST_TO_DEVICE)
1207     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1208   else
1209     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1210 
1211   isl_id_free(Id);
1212   isl_ast_expr_free(Arg);
1213   isl_ast_expr_free(Expr);
1214   isl_ast_node_free(TransferStmt);
1215 }
1216 
1217 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1218   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1219   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1220   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1221   isl_id_free(Id);
1222   isl_ast_expr_free(StmtExpr);
1223 
1224   const char *Str = isl_id_get_name(Id);
1225   if (!strcmp(Str, "kernel")) {
1226     createKernel(UserStmt);
1227     if (PollyManagedMemory)
1228       createCallSynchronizeDevice();
1229     isl_ast_expr_free(Expr);
1230     return;
1231   }
1232   if (!strcmp(Str, "init_device")) {
1233     initializeAfterRTH();
1234     isl_ast_node_free(UserStmt);
1235     isl_ast_expr_free(Expr);
1236     return;
1237   }
1238   if (!strcmp(Str, "clear_device")) {
1239     finalize();
1240     isl_ast_node_free(UserStmt);
1241     isl_ast_expr_free(Expr);
1242     return;
1243   }
1244   if (isPrefix(Str, "to_device")) {
1245     if (!PollyManagedMemory)
1246       createDataTransfer(UserStmt, HOST_TO_DEVICE);
1247     else
1248       isl_ast_node_free(UserStmt);
1249 
1250     isl_ast_expr_free(Expr);
1251     return;
1252   }
1253 
1254   if (isPrefix(Str, "from_device")) {
1255     if (!PollyManagedMemory) {
1256       createDataTransfer(UserStmt, DEVICE_TO_HOST);
1257     } else {
1258       isl_ast_node_free(UserStmt);
1259     }
1260     isl_ast_expr_free(Expr);
1261     return;
1262   }
1263 
1264   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1265   struct ppcg_kernel_stmt *KernelStmt =
1266       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1267   isl_id_free(Anno);
1268 
1269   switch (KernelStmt->type) {
1270   case ppcg_kernel_domain:
1271     createScopStmt(Expr, KernelStmt);
1272     isl_ast_node_free(UserStmt);
1273     return;
1274   case ppcg_kernel_copy:
1275     createKernelCopy(KernelStmt);
1276     isl_ast_expr_free(Expr);
1277     isl_ast_node_free(UserStmt);
1278     return;
1279   case ppcg_kernel_sync:
1280     createKernelSync();
1281     isl_ast_expr_free(Expr);
1282     isl_ast_node_free(UserStmt);
1283     return;
1284   }
1285 
1286   isl_ast_expr_free(Expr);
1287   isl_ast_node_free(UserStmt);
1288 }
1289 
1290 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) {
1291   createForSequential(Node, false);
1292 }
1293 
1294 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1295   isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1296   LocalIndex = isl_ast_expr_address_of(LocalIndex);
1297   Value *LocalAddr = ExprBuilder.create(LocalIndex);
1298   isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1299   Index = isl_ast_expr_address_of(Index);
1300   Value *GlobalAddr = ExprBuilder.create(Index);
1301 
1302   if (KernelStmt->u.c.read) {
1303     LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1304     Builder.CreateStore(Load, LocalAddr);
1305   } else {
1306     LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1307     Builder.CreateStore(Load, GlobalAddr);
1308   }
1309 }
1310 
1311 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1312                                     ppcg_kernel_stmt *KernelStmt) {
1313   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1314   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1315 
1316   LoopToScevMapT LTS;
1317   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1318 
1319   createSubstitutions(Expr, Stmt, LTS);
1320 
1321   if (Stmt->isBlockStmt())
1322     BlockGen.copyStmt(*Stmt, LTS, Indexes);
1323   else
1324     RegionGen.copyStmt(*Stmt, LTS, Indexes);
1325 }
1326 
1327 void GPUNodeBuilder::createKernelSync() {
1328   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1329   const char *SpirName = "__gen_ocl_barrier_global";
1330 
1331   Function *Sync;
1332 
1333   switch (Arch) {
1334   case GPUArch::SPIR64:
1335   case GPUArch::SPIR32:
1336     Sync = M->getFunction(SpirName);
1337 
1338     // If Sync is not available, declare it.
1339     if (!Sync) {
1340       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1341       std::vector<Type *> Args;
1342       FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1343       Sync = Function::Create(Ty, Linkage, SpirName, M);
1344       Sync->setCallingConv(CallingConv::SPIR_FUNC);
1345     }
1346     break;
1347   case GPUArch::NVPTX64:
1348     Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1349     break;
1350   }
1351 
1352   Builder.CreateCall(Sync, {});
1353 }
1354 
1355 /// Collect llvm::Values referenced from @p Node
1356 ///
1357 /// This function only applies to isl_ast_nodes that are user_nodes referring
1358 /// to a ScopStmt. All other node types are ignore.
1359 ///
1360 /// @param Node The node to collect references for.
1361 /// @param User A user pointer used as storage for the data that is collected.
1362 ///
1363 /// @returns isl_bool_true if data could be collected successfully.
1364 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1365   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1366     return isl_bool_true;
1367 
1368   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1369   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1370   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1371   const char *Str = isl_id_get_name(Id);
1372   isl_id_free(Id);
1373   isl_ast_expr_free(StmtExpr);
1374   isl_ast_expr_free(Expr);
1375 
1376   if (!isPrefix(Str, "Stmt"))
1377     return isl_bool_true;
1378 
1379   Id = isl_ast_node_get_annotation(Node);
1380   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1381   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1382   isl_id_free(Id);
1383 
1384   addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1385 
1386   return isl_bool_true;
1387 }
1388 
1389 /// A list of functions that are available in NVIDIA's libdevice.
1390 const std::set<std::string> CUDALibDeviceFunctions = {
1391     "exp",      "expf",      "expl",      "cos", "cosf", "sqrt", "sqrtf",
1392     "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
1393 
1394 // A map from intrinsics to their corresponding libdevice functions.
1395 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
1396     {"llvm.exp.f64", "exp"},
1397     {"llvm.exp.f32", "expf"},
1398     {"llvm.powi.f64", "powi"},
1399     {"llvm.powi.f32", "powif"}};
1400 
1401 /// Return the corresponding CUDA libdevice function name @p Name.
1402 /// Note that this function will try to convert instrinsics in the list
1403 /// IntrinsicToLibdeviceFunc into libdevice functions.
1404 /// This is because some intrinsics such as `exp`
1405 /// are not supported by the NVPTX backend.
1406 /// If this restriction of the backend is lifted, we should refactor our code
1407 /// so that we use intrinsics whenever possible.
1408 ///
1409 /// Return "" if we are not compiling for CUDA.
1410 std::string getCUDALibDeviceFuntion(StringRef Name) {
1411   auto It = IntrinsicToLibdeviceFunc.find(Name);
1412   if (It != IntrinsicToLibdeviceFunc.end())
1413     return getCUDALibDeviceFuntion(It->second);
1414 
1415   if (CUDALibDeviceFunctions.count(Name))
1416     return ("__nv_" + Name).str();
1417 
1418   return "";
1419 }
1420 
1421 /// Check if F is a function that we can code-generate in a GPU kernel.
1422 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1423   assert(F && "F is an invalid pointer");
1424   // We string compare against the name of the function to allow
1425   // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1426   // "llvm.copysign".
1427   const StringRef Name = F->getName();
1428 
1429   if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0)
1430     return true;
1431 
1432   return F->isIntrinsic() &&
1433          (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1434           Name.startswith("llvm.copysign"));
1435 }
1436 
1437 /// Do not take `Function` as a subtree value.
1438 ///
1439 /// We try to take the reference of all subtree values and pass them along
1440 /// to the kernel from the host. Taking an address of any function and
1441 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1442 /// `Function`s.
1443 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1444 
1445 /// Return `Function`s from `RawSubtreeValues`.
1446 static SetVector<Function *>
1447 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1448                                  bool AllowCUDALibDevice) {
1449   SetVector<Function *> SubtreeFunctions;
1450   for (Value *It : RawSubtreeValues) {
1451     Function *F = dyn_cast<Function>(It);
1452     if (F) {
1453       assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1454              "Code should have bailed out by "
1455              "this point if an invalid function "
1456              "were present in a kernel.");
1457       SubtreeFunctions.insert(F);
1458     }
1459   }
1460   return SubtreeFunctions;
1461 }
1462 
1463 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1464            isl::space>
1465 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1466   SetVector<Value *> SubtreeValues;
1467   SetVector<const SCEV *> SCEVs;
1468   SetVector<const Loop *> Loops;
1469   isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1470   SubtreeReferences References = {
1471       LI,         SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1472       &ParamSpace};
1473 
1474   for (const auto &I : IDToValue)
1475     SubtreeValues.insert(I.second);
1476 
1477   // NOTE: this is populated in IslNodeBuilder::addParameters
1478   // See [Code generation of induction variables of loops outside Scops].
1479   for (const auto &I : OutsideLoopIterations)
1480     SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1481 
1482   isl_ast_node_foreach_descendant_top_down(
1483       Kernel->tree, collectReferencesInGPUStmt, &References);
1484 
1485   for (const SCEV *Expr : SCEVs) {
1486     findValues(Expr, SE, SubtreeValues);
1487     findLoops(Expr, Loops);
1488   }
1489 
1490   Loops.remove_if([this](const Loop *L) {
1491     return S.contains(L) || L->contains(S.getEntry());
1492   });
1493 
1494   for (auto &SAI : S.arrays())
1495     SubtreeValues.remove(SAI->getBasePtr());
1496 
1497   isl_space *Space = S.getParamSpace().release();
1498   for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
1499     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1500     assert(IDToValue.count(Id));
1501     Value *Val = IDToValue[Id];
1502     SubtreeValues.remove(Val);
1503     isl_id_free(Id);
1504   }
1505   isl_space_free(Space);
1506 
1507   for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
1508     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1509     assert(IDToValue.count(Id));
1510     Value *Val = IDToValue[Id];
1511     SubtreeValues.remove(Val);
1512     isl_id_free(Id);
1513   }
1514 
1515   // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1516   // SubtreeValues. This is important, because we should not lose any
1517   // SubtreeValues in the process of constructing the
1518   // "ValidSubtree{Values, Functions} sets. Nor should the set
1519   // ValidSubtree{Values, Functions} have any common element.
1520   auto ValidSubtreeValuesIt =
1521       make_filter_range(SubtreeValues, isValidSubtreeValue);
1522   SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1523                                         ValidSubtreeValuesIt.end());
1524 
1525   bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1526 
1527   SetVector<Function *> ValidSubtreeFunctions(
1528       getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1529 
1530   // @see IslNodeBuilder::getReferencesInSubtree
1531   SetVector<Value *> ReplacedValues;
1532   for (Value *V : ValidSubtreeValues) {
1533     auto It = ValueMap.find(V);
1534     if (It == ValueMap.end())
1535       ReplacedValues.insert(V);
1536     else
1537       ReplacedValues.insert(It->second);
1538   }
1539   return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1540                          ParamSpace);
1541 }
1542 
1543 void GPUNodeBuilder::clearDominators(Function *F) {
1544   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1545   std::vector<BasicBlock *> Nodes;
1546   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1547     Nodes.push_back(I->getBlock());
1548 
1549   for (BasicBlock *BB : Nodes)
1550     DT.eraseNode(BB);
1551 }
1552 
1553 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1554   for (BasicBlock &BB : *F) {
1555     Loop *L = LI.getLoopFor(&BB);
1556     if (L)
1557       SE.forgetLoop(L);
1558   }
1559 }
1560 
1561 void GPUNodeBuilder::clearLoops(Function *F) {
1562   SmallSet<Loop *, 1> WorkList;
1563   for (BasicBlock &BB : *F) {
1564     Loop *L = LI.getLoopFor(&BB);
1565     if (L)
1566       WorkList.insert(L);
1567   }
1568   for (auto *L : WorkList)
1569     LI.erase(L);
1570 }
1571 
1572 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1573   std::vector<Value *> Sizes;
1574   isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1575 
1576   isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size);
1577   for (long i = 0; i < Kernel->n_grid; i++) {
1578     isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1579     isl::ast_expr GridSize = Context.expr_from(Size);
1580     Value *Res = ExprBuilder.create(GridSize.release());
1581     Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1582     Sizes.push_back(Res);
1583   }
1584 
1585   for (long i = Kernel->n_grid; i < 3; i++)
1586     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1587 
1588   return std::make_tuple(Sizes[0], Sizes[1]);
1589 }
1590 
1591 std::tuple<Value *, Value *, Value *>
1592 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1593   std::vector<Value *> Sizes;
1594 
1595   for (long i = 0; i < Kernel->n_block; i++) {
1596     Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1597     Sizes.push_back(Res);
1598   }
1599 
1600   for (long i = Kernel->n_block; i < 3; i++)
1601     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1602 
1603   return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1604 }
1605 
1606 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1607                                           Instruction *Param, int Index) {
1608   Value *Slot = Builder.CreateGEP(
1609       Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1610   Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1611   Builder.CreateStore(ParamTyped, Slot);
1612 }
1613 
1614 Value *
1615 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1616                                        SetVector<Value *> SubtreeValues) {
1617   const int NumArgs = F->arg_size();
1618   std::vector<int> ArgSizes(NumArgs);
1619 
1620   // If we are using the OpenCL Runtime, we need to add the kernel argument
1621   // sizes to the end of the launch-parameter list, so OpenCL can determine
1622   // how big the respective kernel arguments are.
1623   // Here we need to reserve adequate space for that.
1624   Type *ArrayTy;
1625   if (Runtime == GPURuntime::OpenCL)
1626     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1627   else
1628     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1629 
1630   BasicBlock *EntryBlock =
1631       &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1632   auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1633   std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1634   Instruction *Parameters = new AllocaInst(
1635       ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1636 
1637   int Index = 0;
1638   for (long i = 0; i < Prog->n_array; i++) {
1639     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1640       continue;
1641 
1642     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1643     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1644 
1645     if (Runtime == GPURuntime::OpenCL)
1646       ArgSizes[Index] = SAI->getElemSizeInBytes();
1647 
1648     Value *DevArray = nullptr;
1649     if (PollyManagedMemory) {
1650       DevArray = getManagedDeviceArray(&Prog->array[i],
1651                                        const_cast<ScopArrayInfo *>(SAI));
1652     } else {
1653       DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1654       DevArray = createCallGetDevicePtr(DevArray);
1655     }
1656     assert(DevArray != nullptr && "Array to be offloaded to device not "
1657                                   "initialized");
1658     Value *Offset = getArrayOffset(&Prog->array[i]);
1659 
1660     if (Offset) {
1661       DevArray = Builder.CreatePointerCast(
1662           DevArray, SAI->getElementType()->getPointerTo());
1663       DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1664       DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1665     }
1666     Value *Slot = Builder.CreateGEP(
1667         Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1668 
1669     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1670       Value *ValPtr = nullptr;
1671       if (PollyManagedMemory)
1672         ValPtr = DevArray;
1673       else
1674         ValPtr = BlockGen.getOrCreateAlloca(SAI);
1675 
1676       assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1677                                   " to be stored into Parameters");
1678       Value *ValPtrCast =
1679           Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1680       Builder.CreateStore(ValPtrCast, Slot);
1681     } else {
1682       Instruction *Param =
1683           new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1684                          Launch + "_param_" + std::to_string(Index),
1685                          EntryBlock->getTerminator());
1686       Builder.CreateStore(DevArray, Param);
1687       Value *ParamTyped =
1688           Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1689       Builder.CreateStore(ParamTyped, Slot);
1690     }
1691     Index++;
1692   }
1693 
1694   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1695 
1696   for (long i = 0; i < NumHostIters; i++) {
1697     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1698     Value *Val = IDToValue[Id];
1699     isl_id_free(Id);
1700 
1701     if (Runtime == GPURuntime::OpenCL)
1702       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1703 
1704     Instruction *Param =
1705         new AllocaInst(Val->getType(), AddressSpace,
1706                        Launch + "_param_" + std::to_string(Index),
1707                        EntryBlock->getTerminator());
1708     Builder.CreateStore(Val, Param);
1709     insertStoreParameter(Parameters, Param, Index);
1710     Index++;
1711   }
1712 
1713   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1714 
1715   for (long i = 0; i < NumVars; i++) {
1716     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1717     Value *Val = IDToValue[Id];
1718     if (ValueMap.count(Val))
1719       Val = ValueMap[Val];
1720     isl_id_free(Id);
1721 
1722     if (Runtime == GPURuntime::OpenCL)
1723       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1724 
1725     Instruction *Param =
1726         new AllocaInst(Val->getType(), AddressSpace,
1727                        Launch + "_param_" + std::to_string(Index),
1728                        EntryBlock->getTerminator());
1729     Builder.CreateStore(Val, Param);
1730     insertStoreParameter(Parameters, Param, Index);
1731     Index++;
1732   }
1733 
1734   for (auto Val : SubtreeValues) {
1735     if (Runtime == GPURuntime::OpenCL)
1736       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1737 
1738     Instruction *Param =
1739         new AllocaInst(Val->getType(), AddressSpace,
1740                        Launch + "_param_" + std::to_string(Index),
1741                        EntryBlock->getTerminator());
1742     Builder.CreateStore(Val, Param);
1743     insertStoreParameter(Parameters, Param, Index);
1744     Index++;
1745   }
1746 
1747   if (Runtime == GPURuntime::OpenCL) {
1748     for (int i = 0; i < NumArgs; i++) {
1749       Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1750       Instruction *Param =
1751           new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1752                          Launch + "_param_size_" + std::to_string(i),
1753                          EntryBlock->getTerminator());
1754       Builder.CreateStore(Val, Param);
1755       insertStoreParameter(Parameters, Param, Index);
1756       Index++;
1757     }
1758   }
1759 
1760   auto Location = EntryBlock->getTerminator();
1761   return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1762                          Launch + "_params_i8ptr", Location);
1763 }
1764 
1765 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1766     SetVector<Function *> SubtreeFunctions) {
1767   for (auto Fn : SubtreeFunctions) {
1768     const std::string ClonedFnName = Fn->getName();
1769     Function *Clone = GPUModule->getFunction(ClonedFnName);
1770     if (!Clone)
1771       Clone =
1772           Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1773                            ClonedFnName, GPUModule.get());
1774     assert(Clone && "Expected cloned function to be initialized.");
1775     assert(ValueMap.find(Fn) == ValueMap.end() &&
1776            "Fn already present in ValueMap");
1777     ValueMap[Fn] = Clone;
1778   }
1779 }
1780 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1781   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1782   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1783   isl_id_free(Id);
1784   isl_ast_node_free(KernelStmt);
1785 
1786   if (Kernel->n_grid > 1)
1787     DeepestParallel =
1788         std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1789   else
1790     DeepestSequential =
1791         std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1792 
1793   Value *BlockDimX, *BlockDimY, *BlockDimZ;
1794   std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1795 
1796   SetVector<Value *> SubtreeValues;
1797   SetVector<Function *> SubtreeFunctions;
1798   SetVector<const Loop *> Loops;
1799   isl::space ParamSpace;
1800   std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1801       getReferencesInKernel(Kernel);
1802 
1803   // Add parameters that appear only in the access function to the kernel
1804   // space. This is important to make sure that all isl_ids are passed as
1805   // parameters to the kernel, even though we may not have all parameters
1806   // in the context to improve compile time.
1807   Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1808 
1809   assert(Kernel->tree && "Device AST of kernel node is empty");
1810 
1811   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1812   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1813   ValueMapT HostValueMap = ValueMap;
1814   BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1815   ScalarMap.clear();
1816   BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap;
1817   EscapeMap.clear();
1818 
1819   // Create for all loops we depend on values that contain the current loop
1820   // iteration. These values are necessary to generate code for SCEVs that
1821   // depend on such loops. As a result we need to pass them to the subfunction.
1822   for (const Loop *L : Loops) {
1823     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1824                                             SE.getUnknown(Builder.getInt64(1)),
1825                                             L, SCEV::FlagAnyWrap);
1826     Value *V = generateSCEV(OuterLIV);
1827     OutsideLoopIterations[L] = SE.getUnknown(V);
1828     SubtreeValues.insert(V);
1829   }
1830 
1831   createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1832   setupKernelSubtreeFunctions(SubtreeFunctions);
1833 
1834   create(isl_ast_node_copy(Kernel->tree));
1835 
1836   finalizeKernelArguments(Kernel);
1837   Function *F = Builder.GetInsertBlock()->getParent();
1838   if (Arch == GPUArch::NVPTX64)
1839     addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1840   clearDominators(F);
1841   clearScalarEvolution(F);
1842   clearLoops(F);
1843 
1844   IDToValue = HostIDs;
1845 
1846   ValueMap = std::move(HostValueMap);
1847   ScalarMap = std::move(HostScalarMap);
1848   EscapeMap = std::move(HostEscapeMap);
1849   IDToSAI.clear();
1850   Annotator.resetAlternativeAliasBases();
1851   for (auto &BasePtr : LocalArrays)
1852     S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1853   LocalArrays.clear();
1854 
1855   std::string ASMString = finalizeKernelFunction();
1856   Builder.SetInsertPoint(&HostInsertPoint);
1857   Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1858 
1859   std::string Name = getKernelFuncName(Kernel->id);
1860   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1861   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1862   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1863 
1864   Value *GridDimX, *GridDimY;
1865   std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1866 
1867   createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1868                          BlockDimZ, Parameters);
1869   createCallFreeKernel(GPUKernel);
1870 
1871   for (auto Id : KernelIds)
1872     isl_id_free(Id);
1873 
1874   KernelIds.clear();
1875 }
1876 
1877 /// Compute the DataLayout string for the NVPTX backend.
1878 ///
1879 /// @param is64Bit Are we looking for a 64 bit architecture?
1880 static std::string computeNVPTXDataLayout(bool is64Bit) {
1881   std::string Ret = "";
1882 
1883   if (!is64Bit) {
1884     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1885            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1886            "64-v128:128:128-n16:32:64";
1887   } else {
1888     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1889            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1890            "64-v128:128:128-n16:32:64";
1891   }
1892 
1893   return Ret;
1894 }
1895 
1896 /// Compute the DataLayout string for a SPIR kernel.
1897 ///
1898 /// @param is64Bit Are we looking for a 64 bit architecture?
1899 static std::string computeSPIRDataLayout(bool is64Bit) {
1900   std::string Ret = "";
1901 
1902   if (!is64Bit) {
1903     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1904            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1905            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1906            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1907   } else {
1908     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1909            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1910            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1911            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1912   }
1913 
1914   return Ret;
1915 }
1916 
1917 Function *
1918 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1919                                          SetVector<Value *> &SubtreeValues) {
1920   std::vector<Type *> Args;
1921   std::string Identifier = getKernelFuncName(Kernel->id);
1922 
1923   std::vector<Metadata *> MemoryType;
1924 
1925   for (long i = 0; i < Prog->n_array; i++) {
1926     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1927       continue;
1928 
1929     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1930       isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1931       const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1932       Args.push_back(SAI->getElementType());
1933       MemoryType.push_back(
1934           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1935     } else {
1936       static const int UseGlobalMemory = 1;
1937       Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1938       MemoryType.push_back(
1939           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1940     }
1941   }
1942 
1943   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1944 
1945   for (long i = 0; i < NumHostIters; i++) {
1946     Args.push_back(Builder.getInt64Ty());
1947     MemoryType.push_back(
1948         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1949   }
1950 
1951   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1952 
1953   for (long i = 0; i < NumVars; i++) {
1954     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1955     Value *Val = IDToValue[Id];
1956     isl_id_free(Id);
1957     Args.push_back(Val->getType());
1958     MemoryType.push_back(
1959         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1960   }
1961 
1962   for (auto *V : SubtreeValues) {
1963     Args.push_back(V->getType());
1964     MemoryType.push_back(
1965         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1966   }
1967 
1968   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1969   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1970                               GPUModule.get());
1971 
1972   std::vector<Metadata *> EmptyStrings;
1973 
1974   for (unsigned int i = 0; i < MemoryType.size(); i++) {
1975     EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1976   }
1977 
1978   if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1979     FN->setMetadata("kernel_arg_addr_space",
1980                     MDNode::get(FN->getContext(), MemoryType));
1981     FN->setMetadata("kernel_arg_name",
1982                     MDNode::get(FN->getContext(), EmptyStrings));
1983     FN->setMetadata("kernel_arg_access_qual",
1984                     MDNode::get(FN->getContext(), EmptyStrings));
1985     FN->setMetadata("kernel_arg_type",
1986                     MDNode::get(FN->getContext(), EmptyStrings));
1987     FN->setMetadata("kernel_arg_type_qual",
1988                     MDNode::get(FN->getContext(), EmptyStrings));
1989     FN->setMetadata("kernel_arg_base_type",
1990                     MDNode::get(FN->getContext(), EmptyStrings));
1991   }
1992 
1993   switch (Arch) {
1994   case GPUArch::NVPTX64:
1995     FN->setCallingConv(CallingConv::PTX_Kernel);
1996     break;
1997   case GPUArch::SPIR32:
1998   case GPUArch::SPIR64:
1999     FN->setCallingConv(CallingConv::SPIR_KERNEL);
2000     break;
2001   }
2002 
2003   auto Arg = FN->arg_begin();
2004   for (long i = 0; i < Kernel->n_array; i++) {
2005     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2006       continue;
2007 
2008     Arg->setName(Kernel->array[i].array->name);
2009 
2010     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2011     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2012     Type *EleTy = SAI->getElementType();
2013     Value *Val = &*Arg;
2014     SmallVector<const SCEV *, 4> Sizes;
2015     isl_ast_build *Build =
2016         isl_ast_build_from_context(isl_set_copy(Prog->context));
2017     Sizes.push_back(nullptr);
2018     for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
2019       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
2020           Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
2021       auto V = ExprBuilder.create(DimSize);
2022       Sizes.push_back(SE.getSCEV(V));
2023     }
2024     const ScopArrayInfo *SAIRep =
2025         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
2026     LocalArrays.push_back(Val);
2027 
2028     isl_ast_build_free(Build);
2029     KernelIds.push_back(Id);
2030     IDToSAI[Id] = SAIRep;
2031     Arg++;
2032   }
2033 
2034   for (long i = 0; i < NumHostIters; i++) {
2035     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2036     Arg->setName(isl_id_get_name(Id));
2037     IDToValue[Id] = &*Arg;
2038     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2039     Arg++;
2040   }
2041 
2042   for (long i = 0; i < NumVars; i++) {
2043     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2044     Arg->setName(isl_id_get_name(Id));
2045     Value *Val = IDToValue[Id];
2046     ValueMap[Val] = &*Arg;
2047     IDToValue[Id] = &*Arg;
2048     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2049     Arg++;
2050   }
2051 
2052   for (auto *V : SubtreeValues) {
2053     Arg->setName(V->getName());
2054     ValueMap[V] = &*Arg;
2055     Arg++;
2056   }
2057 
2058   return FN;
2059 }
2060 
2061 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2062   Intrinsic::ID IntrinsicsBID[2];
2063   Intrinsic::ID IntrinsicsTID[3];
2064 
2065   switch (Arch) {
2066   case GPUArch::SPIR64:
2067   case GPUArch::SPIR32:
2068     llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2069   case GPUArch::NVPTX64:
2070     IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2071     IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2072 
2073     IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2074     IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2075     IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2076     break;
2077   }
2078 
2079   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2080     std::string Name = isl_id_get_name(Id);
2081     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2082     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2083     Value *Val = Builder.CreateCall(IntrinsicFn, {});
2084     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2085     IDToValue[Id] = Val;
2086     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2087   };
2088 
2089   for (int i = 0; i < Kernel->n_grid; ++i) {
2090     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2091     addId(Id, IntrinsicsBID[i]);
2092   }
2093 
2094   for (int i = 0; i < Kernel->n_block; ++i) {
2095     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2096     addId(Id, IntrinsicsTID[i]);
2097   }
2098 }
2099 
2100 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) {
2101   const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2102                               "__gen_ocl_get_group_id1",
2103                               "__gen_ocl_get_group_id2"};
2104 
2105   const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2106                               "__gen_ocl_get_local_id1",
2107                               "__gen_ocl_get_local_id2"};
2108 
2109   auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable {
2110     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2111     Function *FN = M->getFunction(Name);
2112 
2113     // If FN is not available, declare it.
2114     if (!FN) {
2115       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2116       std::vector<Type *> Args;
2117       FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false);
2118       FN = Function::Create(Ty, Linkage, Name, M);
2119       FN->setCallingConv(CallingConv::SPIR_FUNC);
2120     }
2121 
2122     Value *Val = Builder.CreateCall(FN, {});
2123     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2124     IDToValue[Id] = Val;
2125     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2126   };
2127 
2128   for (int i = 0; i < Kernel->n_grid; ++i)
2129     createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i));
2130 
2131   for (int i = 0; i < Kernel->n_block; ++i)
2132     createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i));
2133 }
2134 
2135 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2136   auto Arg = FN->arg_begin();
2137   for (long i = 0; i < Kernel->n_array; i++) {
2138     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2139       continue;
2140 
2141     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2142     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2143     isl_id_free(Id);
2144 
2145     if (SAI->getNumberOfDimensions() > 0) {
2146       Arg++;
2147       continue;
2148     }
2149 
2150     Value *Val = &*Arg;
2151 
2152     if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2153       Type *TypePtr = SAI->getElementType()->getPointerTo();
2154       Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2155       Val = Builder.CreateLoad(TypedArgPtr);
2156     }
2157 
2158     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2159     Builder.CreateStore(Val, Alloca);
2160 
2161     Arg++;
2162   }
2163 }
2164 
2165 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2166   auto *FN = Builder.GetInsertBlock()->getParent();
2167   auto Arg = FN->arg_begin();
2168 
2169   bool StoredScalar = false;
2170   for (long i = 0; i < Kernel->n_array; i++) {
2171     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2172       continue;
2173 
2174     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2175     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2176     isl_id_free(Id);
2177 
2178     if (SAI->getNumberOfDimensions() > 0) {
2179       Arg++;
2180       continue;
2181     }
2182 
2183     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2184       Arg++;
2185       continue;
2186     }
2187 
2188     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2189     Value *ArgPtr = &*Arg;
2190     Type *TypePtr = SAI->getElementType()->getPointerTo();
2191     Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2192     Value *Val = Builder.CreateLoad(Alloca);
2193     Builder.CreateStore(Val, TypedArgPtr);
2194     StoredScalar = true;
2195 
2196     Arg++;
2197   }
2198 
2199   if (StoredScalar) {
2200     /// In case more than one thread contains scalar stores, the generated
2201     /// code might be incorrect, if we only store at the end of the kernel.
2202     /// To support this case we need to store these scalars back at each
2203     /// memory store or at least before each kernel barrier.
2204     if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2205       BuildSuccessful = 0;
2206       LLVM_DEBUG(
2207           dbgs() << getUniqueScopName(&S)
2208                  << " has a store to a scalar value that"
2209                     " would be undefined to run in parallel. Bailing out.\n";);
2210     }
2211   }
2212 }
2213 
2214 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2215   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2216 
2217   for (int i = 0; i < Kernel->n_var; ++i) {
2218     struct ppcg_kernel_var &Var = Kernel->var[i];
2219     isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2220     Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2221 
2222     Type *ArrayTy = EleTy;
2223     SmallVector<const SCEV *, 4> Sizes;
2224 
2225     Sizes.push_back(nullptr);
2226     for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2227       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2228       long Bound = isl_val_get_num_si(Val);
2229       isl_val_free(Val);
2230       Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2231     }
2232 
2233     for (int j = Var.array->n_index - 1; j >= 0; --j) {
2234       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2235       long Bound = isl_val_get_num_si(Val);
2236       isl_val_free(Val);
2237       ArrayTy = ArrayType::get(ArrayTy, Bound);
2238     }
2239 
2240     const ScopArrayInfo *SAI;
2241     Value *Allocation;
2242     if (Var.type == ppcg_access_shared) {
2243       auto GlobalVar = new GlobalVariable(
2244           *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2245           nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2246       GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8);
2247       GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2248 
2249       Allocation = GlobalVar;
2250     } else if (Var.type == ppcg_access_private) {
2251       Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2252     } else {
2253       llvm_unreachable("unknown variable type");
2254     }
2255     SAI =
2256         S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2257     Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr);
2258     IDToValue[Id] = Allocation;
2259     LocalArrays.push_back(Allocation);
2260     KernelIds.push_back(Id);
2261     IDToSAI[Id] = SAI;
2262   }
2263 }
2264 
2265 void GPUNodeBuilder::createKernelFunction(
2266     ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2267     SetVector<Function *> &SubtreeFunctions) {
2268   std::string Identifier = getKernelFuncName(Kernel->id);
2269   GPUModule.reset(new Module(Identifier, Builder.getContext()));
2270 
2271   switch (Arch) {
2272   case GPUArch::NVPTX64:
2273     if (Runtime == GPURuntime::CUDA)
2274       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2275     else if (Runtime == GPURuntime::OpenCL)
2276       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2277     GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2278     break;
2279   case GPUArch::SPIR32:
2280     GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2281     GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2282     break;
2283   case GPUArch::SPIR64:
2284     GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2285     GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2286     break;
2287   }
2288 
2289   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2290 
2291   BasicBlock *PrevBlock = Builder.GetInsertBlock();
2292   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2293 
2294   DT.addNewBlock(EntryBlock, PrevBlock);
2295 
2296   Builder.SetInsertPoint(EntryBlock);
2297   Builder.CreateRetVoid();
2298   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2299 
2300   ScopDetection::markFunctionAsInvalid(FN);
2301 
2302   prepareKernelArguments(Kernel, FN);
2303   createKernelVariables(Kernel, FN);
2304 
2305   switch (Arch) {
2306   case GPUArch::NVPTX64:
2307     insertKernelIntrinsics(Kernel);
2308     break;
2309   case GPUArch::SPIR32:
2310   case GPUArch::SPIR64:
2311     insertKernelCallsSPIR(Kernel);
2312     break;
2313   }
2314 }
2315 
2316 std::string GPUNodeBuilder::createKernelASM() {
2317   llvm::Triple GPUTriple;
2318 
2319   switch (Arch) {
2320   case GPUArch::NVPTX64:
2321     switch (Runtime) {
2322     case GPURuntime::CUDA:
2323       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2324       break;
2325     case GPURuntime::OpenCL:
2326       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2327       break;
2328     }
2329     break;
2330   case GPUArch::SPIR64:
2331   case GPUArch::SPIR32:
2332     std::string SPIRAssembly;
2333     raw_string_ostream IROstream(SPIRAssembly);
2334     IROstream << *GPUModule;
2335     IROstream.flush();
2336     return SPIRAssembly;
2337   }
2338 
2339   std::string ErrMsg;
2340   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2341 
2342   if (!GPUTarget) {
2343     errs() << ErrMsg << "\n";
2344     return "";
2345   }
2346 
2347   TargetOptions Options;
2348   Options.UnsafeFPMath = FastMath;
2349 
2350   std::string subtarget;
2351 
2352   switch (Arch) {
2353   case GPUArch::NVPTX64:
2354     subtarget = CudaVersion;
2355     break;
2356   case GPUArch::SPIR32:
2357   case GPUArch::SPIR64:
2358     llvm_unreachable("No subtarget for SPIR architecture");
2359   }
2360 
2361   std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2362       GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2363 
2364   SmallString<0> ASMString;
2365   raw_svector_ostream ASMStream(ASMString);
2366   llvm::legacy::PassManager PM;
2367 
2368   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2369 
2370   if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr,
2371                                    TargetMachine::CGFT_AssemblyFile,
2372                                    true /* verify */)) {
2373     errs() << "The target does not support generation of this file type!\n";
2374     return "";
2375   }
2376 
2377   PM.run(*GPUModule);
2378 
2379   return ASMStream.str();
2380 }
2381 
2382 bool GPUNodeBuilder::requiresCUDALibDevice() {
2383   bool RequiresLibDevice = false;
2384   for (Function &F : GPUModule->functions()) {
2385     if (!F.isDeclaration())
2386       continue;
2387 
2388     const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName());
2389     if (CUDALibDeviceFunc.length() != 0) {
2390       // We need to handle the case where a module looks like this:
2391       // @expf(..)
2392       // @llvm.exp.f64(..)
2393       // Both of these functions would be renamed to `__nv_expf`.
2394       //
2395       // So, we must first check for the existence of the libdevice function.
2396       // If this exists, we replace our current function with it.
2397       //
2398       // If it does not exist, we rename the current function to the
2399       // libdevice functiono name.
2400       if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
2401         F.replaceAllUsesWith(Replacement);
2402       else
2403         F.setName(CUDALibDeviceFunc);
2404       RequiresLibDevice = true;
2405     }
2406   }
2407 
2408   return RequiresLibDevice;
2409 }
2410 
2411 void GPUNodeBuilder::addCUDALibDevice() {
2412   if (Arch != GPUArch::NVPTX64)
2413     return;
2414 
2415   if (requiresCUDALibDevice()) {
2416     SMDiagnostic Error;
2417 
2418     errs() << CUDALibDevice << "\n";
2419     auto LibDeviceModule =
2420         parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2421 
2422     if (!LibDeviceModule) {
2423       BuildSuccessful = false;
2424       report_fatal_error("Could not find or load libdevice. Skipping GPU "
2425                          "kernel generation. Please set -polly-acc-libdevice "
2426                          "accordingly.\n");
2427       return;
2428     }
2429 
2430     Linker L(*GPUModule);
2431 
2432     // Set an nvptx64 target triple to avoid linker warnings. The original
2433     // triple of the libdevice files are nvptx-unknown-unknown.
2434     LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2435     L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2436   }
2437 }
2438 
2439 std::string GPUNodeBuilder::finalizeKernelFunction() {
2440 
2441   if (verifyModule(*GPUModule)) {
2442     LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n";
2443                GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2444     LLVM_DEBUG(dbgs() << "verifyModule Error:\n";
2445                verifyModule(*GPUModule, &dbgs()););
2446 
2447     if (FailOnVerifyModuleFailure)
2448       llvm_unreachable("VerifyModule failed.");
2449 
2450     BuildSuccessful = false;
2451     return "";
2452   }
2453 
2454   addCUDALibDevice();
2455 
2456   if (DumpKernelIR)
2457     outs() << *GPUModule << "\n";
2458 
2459   if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2460     // Optimize module.
2461     llvm::legacy::PassManager OptPasses;
2462     PassManagerBuilder PassBuilder;
2463     PassBuilder.OptLevel = 3;
2464     PassBuilder.SizeLevel = 0;
2465     PassBuilder.populateModulePassManager(OptPasses);
2466     OptPasses.run(*GPUModule);
2467   }
2468 
2469   std::string Assembly = createKernelASM();
2470 
2471   if (DumpKernelASM)
2472     outs() << Assembly << "\n";
2473 
2474   GPUModule.release();
2475   KernelIDs.clear();
2476 
2477   return Assembly;
2478 }
2479 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2480 /// @param PwAffs The list of piecewise affine functions to create an
2481 ///               `isl_pw_aff_list` from. We expect an rvalue ref because
2482 ///               all the isl_pw_aff are used up by this function.
2483 ///
2484 /// @returns  The `isl_pw_aff_list`.
2485 __isl_give isl_pw_aff_list *
2486 createPwAffList(isl_ctx *Context,
2487                 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2488   isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2489 
2490   for (unsigned i = 0; i < PwAffs.size(); i++) {
2491     List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2492   }
2493   return List;
2494 }
2495 
2496 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2497 ///
2498 /// We loop over all `pw_aff` and align all of their spaces together to
2499 /// create a common space for all the `pw_aff`. This common space is the
2500 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2501 /// with the given `SeedSpace`.
2502 /// @param PwAffs    The list of piecewise affine functions we want to align.
2503 ///                  This is an rvalue reference because the entire vector is
2504 ///                  used up by the end of the operation.
2505 /// @param SeedSpace The space to start the alignment process with.
2506 /// @returns         A std::pair, whose first element is the aligned space,
2507 ///                  whose second element is the vector of aligned piecewise
2508 ///                  affines.
2509 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
2510 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2511             __isl_take isl_space *SeedSpace) {
2512   assert(SeedSpace && "Invalid seed space given.");
2513 
2514   isl_space *AlignSpace = SeedSpace;
2515   for (isl_pw_aff *PwAff : PwAffs) {
2516     isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2517     AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2518   }
2519   std::vector<isl_pw_aff *> AdjustedPwAffs;
2520 
2521   for (unsigned i = 0; i < PwAffs.size(); i++) {
2522     isl_pw_aff *Adjusted = PwAffs[i];
2523     assert(Adjusted && "Invalid pw_aff given.");
2524     Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2525     AdjustedPwAffs.push_back(Adjusted);
2526   }
2527   return std::make_pair(AlignSpace, AdjustedPwAffs);
2528 }
2529 
2530 namespace {
2531 class PPCGCodeGeneration : public ScopPass {
2532 public:
2533   static char ID;
2534 
2535   GPURuntime Runtime = GPURuntime::CUDA;
2536 
2537   GPUArch Architecture = GPUArch::NVPTX64;
2538 
2539   /// The scop that is currently processed.
2540   Scop *S;
2541 
2542   LoopInfo *LI;
2543   DominatorTree *DT;
2544   ScalarEvolution *SE;
2545   const DataLayout *DL;
2546   RegionInfo *RI;
2547 
2548   PPCGCodeGeneration() : ScopPass(ID) {}
2549 
2550   /// Construct compilation options for PPCG.
2551   ///
2552   /// @returns The compilation options.
2553   ppcg_options *createPPCGOptions() {
2554     auto DebugOptions =
2555         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2556     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2557 
2558     DebugOptions->dump_schedule_constraints = false;
2559     DebugOptions->dump_schedule = false;
2560     DebugOptions->dump_final_schedule = false;
2561     DebugOptions->dump_sizes = false;
2562     DebugOptions->verbose = false;
2563 
2564     Options->debug = DebugOptions;
2565 
2566     Options->group_chains = false;
2567     Options->reschedule = true;
2568     Options->scale_tile_loops = false;
2569     Options->wrap = false;
2570 
2571     Options->non_negative_parameters = false;
2572     Options->ctx = nullptr;
2573     Options->sizes = nullptr;
2574 
2575     Options->tile = true;
2576     Options->tile_size = 32;
2577 
2578     Options->isolate_full_tiles = false;
2579 
2580     Options->use_private_memory = PrivateMemory;
2581     Options->use_shared_memory = SharedMemory;
2582     Options->max_shared_memory = 48 * 1024;
2583 
2584     Options->target = PPCG_TARGET_CUDA;
2585     Options->openmp = false;
2586     Options->linearize_device_arrays = true;
2587     Options->allow_gnu_extensions = false;
2588 
2589     Options->unroll_copy_shared = false;
2590     Options->unroll_gpu_tile = false;
2591     Options->live_range_reordering = true;
2592 
2593     Options->live_range_reordering = true;
2594     Options->hybrid = false;
2595     Options->opencl_compiler_options = nullptr;
2596     Options->opencl_use_gpu = false;
2597     Options->opencl_n_include_file = 0;
2598     Options->opencl_include_files = nullptr;
2599     Options->opencl_print_kernel_types = false;
2600     Options->opencl_embed_kernel_code = false;
2601 
2602     Options->save_schedule_file = nullptr;
2603     Options->load_schedule_file = nullptr;
2604 
2605     return Options;
2606   }
2607 
2608   /// Get a tagged access relation containing all accesses of type @p AccessTy.
2609   ///
2610   /// Instead of a normal access of the form:
2611   ///
2612   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2613   ///
2614   /// a tagged access has the form
2615   ///
2616   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2617   ///
2618   /// where 'id' is an additional space that references the memory access that
2619   /// triggered the access.
2620   ///
2621   /// @param AccessTy The type of the memory accesses to collect.
2622   ///
2623   /// @return The relation describing all tagged memory accesses.
2624   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2625     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2626 
2627     for (auto &Stmt : *S)
2628       for (auto &Acc : Stmt)
2629         if (Acc->getType() == AccessTy) {
2630           isl_map *Relation = Acc->getAccessRelation().release();
2631           Relation =
2632               isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2633 
2634           isl_space *Space = isl_map_get_space(Relation);
2635           Space = isl_space_range(Space);
2636           Space = isl_space_from_range(Space);
2637           Space =
2638               isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2639           isl_map *Universe = isl_map_universe(Space);
2640           Relation = isl_map_domain_product(Relation, Universe);
2641           Accesses = isl_union_map_add_map(Accesses, Relation);
2642         }
2643 
2644     return Accesses;
2645   }
2646 
2647   /// Get the set of all read accesses, tagged with the access id.
2648   ///
2649   /// @see getTaggedAccesses
2650   isl_union_map *getTaggedReads() {
2651     return getTaggedAccesses(MemoryAccess::READ);
2652   }
2653 
2654   /// Get the set of all may (and must) accesses, tagged with the access id.
2655   ///
2656   /// @see getTaggedAccesses
2657   isl_union_map *getTaggedMayWrites() {
2658     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2659                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
2660   }
2661 
2662   /// Get the set of all must accesses, tagged with the access id.
2663   ///
2664   /// @see getTaggedAccesses
2665   isl_union_map *getTaggedMustWrites() {
2666     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2667   }
2668 
2669   /// Collect parameter and array names as isl_ids.
2670   ///
2671   /// To reason about the different parameters and arrays used, ppcg requires
2672   /// a list of all isl_ids in use. As PPCG traditionally performs
2673   /// source-to-source compilation each of these isl_ids is mapped to the
2674   /// expression that represents it. As we do not have a corresponding
2675   /// expression in Polly, we just map each id to a 'zero' expression to match
2676   /// the data format that ppcg expects.
2677   ///
2678   /// @returns Retun a map from collected ids to 'zero' ast expressions.
2679   __isl_give isl_id_to_ast_expr *getNames() {
2680     auto *Names = isl_id_to_ast_expr_alloc(
2681         S->getIslCtx().get(),
2682         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2683     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get()));
2684 
2685     for (const SCEV *P : S->parameters()) {
2686       isl_id *Id = S->getIdForParam(P).release();
2687       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2688     }
2689 
2690     for (auto &Array : S->arrays()) {
2691       auto Id = Array->getBasePtrId().release();
2692       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2693     }
2694 
2695     isl_ast_expr_free(Zero);
2696 
2697     return Names;
2698   }
2699 
2700   /// Create a new PPCG scop from the current scop.
2701   ///
2702   /// The PPCG scop is initialized with data from the current polly::Scop. From
2703   /// this initial data, the data-dependences in the PPCG scop are initialized.
2704   /// We do not use Polly's dependence analysis for now, to ensure we match
2705   /// the PPCG default behaviour more closely.
2706   ///
2707   /// @returns A new ppcg scop.
2708   ppcg_scop *createPPCGScop() {
2709     MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2710 
2711     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2712 
2713     PPCGScop->options = createPPCGOptions();
2714     // enable live range reordering
2715     PPCGScop->options->live_range_reordering = 1;
2716 
2717     PPCGScop->start = 0;
2718     PPCGScop->end = 0;
2719 
2720     PPCGScop->context = S->getContext().release();
2721     PPCGScop->domain = S->getDomains().release();
2722     // TODO: investigate this further. PPCG calls collect_call_domains.
2723     PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2724     PPCGScop->tagged_reads = getTaggedReads();
2725     PPCGScop->reads = S->getReads().release();
2726     PPCGScop->live_in = nullptr;
2727     PPCGScop->tagged_may_writes = getTaggedMayWrites();
2728     PPCGScop->may_writes = S->getWrites().release();
2729     PPCGScop->tagged_must_writes = getTaggedMustWrites();
2730     PPCGScop->must_writes = S->getMustWrites().release();
2731     PPCGScop->live_out = nullptr;
2732     PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release();
2733     PPCGScop->must_kills = KillsInfo.MustKills.release();
2734 
2735     PPCGScop->tagger = nullptr;
2736     PPCGScop->independence =
2737         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2738     PPCGScop->dep_flow = nullptr;
2739     PPCGScop->tagged_dep_flow = nullptr;
2740     PPCGScop->dep_false = nullptr;
2741     PPCGScop->dep_forced = nullptr;
2742     PPCGScop->dep_order = nullptr;
2743     PPCGScop->tagged_dep_order = nullptr;
2744 
2745     PPCGScop->schedule = S->getScheduleTree().release();
2746     // If we have something non-trivial to kill, add it to the schedule
2747     if (KillsInfo.KillsSchedule.get())
2748       PPCGScop->schedule = isl_schedule_sequence(
2749           PPCGScop->schedule, KillsInfo.KillsSchedule.release());
2750 
2751     PPCGScop->names = getNames();
2752     PPCGScop->pet = nullptr;
2753 
2754     compute_tagger(PPCGScop);
2755     compute_dependences(PPCGScop);
2756     eliminate_dead_code(PPCGScop);
2757 
2758     return PPCGScop;
2759   }
2760 
2761   /// Collect the array accesses in a statement.
2762   ///
2763   /// @param Stmt The statement for which to collect the accesses.
2764   ///
2765   /// @returns A list of array accesses.
2766   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2767     gpu_stmt_access *Accesses = nullptr;
2768 
2769     for (MemoryAccess *Acc : Stmt) {
2770       auto Access =
2771           isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access);
2772       Access->read = Acc->isRead();
2773       Access->write = Acc->isWrite();
2774       Access->access = Acc->getAccessRelation().release();
2775       isl_space *Space = isl_map_get_space(Access->access);
2776       Space = isl_space_range(Space);
2777       Space = isl_space_from_range(Space);
2778       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2779       isl_map *Universe = isl_map_universe(Space);
2780       Access->tagged_access =
2781           isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2782       Access->exact_write = !Acc->isMayWrite();
2783       Access->ref_id = Acc->getId().release();
2784       Access->next = Accesses;
2785       Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2786       // TODO: Also mark one-element accesses to arrays as fixed-element.
2787       Access->fixed_element =
2788           Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2789       Accesses = Access;
2790     }
2791 
2792     return Accesses;
2793   }
2794 
2795   /// Collect the list of GPU statements.
2796   ///
2797   /// Each statement has an id, a pointer to the underlying data structure,
2798   /// as well as a list with all memory accesses.
2799   ///
2800   /// TODO: Initialize the list of memory accesses.
2801   ///
2802   /// @returns A linked-list of statements.
2803   gpu_stmt *getStatements() {
2804     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt,
2805                                        std::distance(S->begin(), S->end()));
2806 
2807     int i = 0;
2808     for (auto &Stmt : *S) {
2809       gpu_stmt *GPUStmt = &Stmts[i];
2810 
2811       GPUStmt->id = Stmt.getDomainId().release();
2812 
2813       // We use the pet stmt pointer to keep track of the Polly statements.
2814       GPUStmt->stmt = (pet_stmt *)&Stmt;
2815       GPUStmt->accesses = getStmtAccesses(Stmt);
2816       i++;
2817     }
2818 
2819     return Stmts;
2820   }
2821 
2822   /// Derive the extent of an array.
2823   ///
2824   /// The extent of an array is the set of elements that are within the
2825   /// accessed array. For the inner dimensions, the extent constraints are
2826   /// 0 and the size of the corresponding array dimension. For the first
2827   /// (outermost) dimension, the extent constraints are the minimal and maximal
2828   /// subscript value for the first dimension.
2829   ///
2830   /// @param Array The array to derive the extent for.
2831   ///
2832   /// @returns An isl_set describing the extent of the array.
2833   isl::set getExtent(ScopArrayInfo *Array) {
2834     unsigned NumDims = Array->getNumberOfDimensions();
2835 
2836     if (Array->getNumberOfDimensions() == 0)
2837       return isl::set::universe(Array->getSpace());
2838 
2839     isl::union_map Accesses = S->getAccesses(Array);
2840     isl::union_set AccessUSet = Accesses.range();
2841     AccessUSet = AccessUSet.coalesce();
2842     AccessUSet = AccessUSet.detect_equalities();
2843     AccessUSet = AccessUSet.coalesce();
2844 
2845     if (AccessUSet.is_empty())
2846       return isl::set::empty(Array->getSpace());
2847 
2848     isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2849 
2850     isl::local_space LS = isl::local_space(Array->getSpace());
2851 
2852     isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2853     isl::pw_aff OuterMin = AccessSet.dim_min(0);
2854     isl::pw_aff OuterMax = AccessSet.dim_max(0);
2855     OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2856     OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2857     OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2858     OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2859 
2860     isl::set Extent = isl::set::universe(Array->getSpace());
2861 
2862     Extent = Extent.intersect(OuterMin.le_set(Val));
2863     Extent = Extent.intersect(OuterMax.ge_set(Val));
2864 
2865     for (unsigned i = 1; i < NumDims; ++i)
2866       Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2867 
2868     for (unsigned i = 0; i < NumDims; ++i) {
2869       isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2870 
2871       // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2872       // Fortran array will we have a legitimate dimension.
2873       if (PwAff.is_null()) {
2874         assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2875         continue;
2876       }
2877 
2878       isl::pw_aff Val = isl::aff::var_on_domain(
2879           isl::local_space(Array->getSpace()), isl::dim::set, i);
2880       PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2881       PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2882       isl::set Set = PwAff.gt_set(Val);
2883       Extent = Set.intersect(Extent);
2884     }
2885 
2886     return Extent;
2887   }
2888 
2889   /// Derive the bounds of an array.
2890   ///
2891   /// For the first dimension we derive the bound of the array from the extent
2892   /// of this dimension. For inner dimensions we obtain their size directly from
2893   /// ScopArrayInfo.
2894   ///
2895   /// @param PPCGArray The array to compute bounds for.
2896   /// @param Array The polly array from which to take the information.
2897   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2898     std::vector<isl_pw_aff *> Bounds;
2899 
2900     if (PPCGArray.n_index > 0) {
2901       if (isl_set_is_empty(PPCGArray.extent)) {
2902         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2903         isl_local_space *LS = isl_local_space_from_space(
2904             isl_space_params(isl_set_get_space(Dom)));
2905         isl_set_free(Dom);
2906         isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2907         Bounds.push_back(Zero);
2908       } else {
2909         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2910         Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2911         isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2912         isl_set_free(Dom);
2913         Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2914         isl_local_space *LS =
2915             isl_local_space_from_space(isl_set_get_space(Dom));
2916         isl_aff *One = isl_aff_zero_on_domain(LS);
2917         One = isl_aff_add_constant_si(One, 1);
2918         Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2919         Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2920         Bounds.push_back(Bound);
2921       }
2922     }
2923 
2924     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2925       isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2926       auto LS = isl_pw_aff_get_domain_space(Bound);
2927       auto Aff = isl_multi_aff_zero(LS);
2928 
2929       // We need types to work out, which is why we perform this weird dance
2930       // with `Aff` and `Bound`. Consider this example:
2931 
2932       // LS: [p] -> { [] }
2933       // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }.
2934       // This `~` is used to denote a "null space" (which is different from
2935       // a *zero dimensional* space), which is something that ISL does not
2936       // show you when pretty printing.
2937 
2938       // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional*
2939       // space, not a "null space" which does not exist at all.
2940 
2941       // When we pullback (precompose) `Bound` with `Zero`, we get:
2942       // Bound . Zero =
2943       //     ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) =
2944       //     [p] -> { ~ -> [(10p)] } =
2945       //     [p] -> [(10p)] (as ISL pretty prints it)
2946       // Bound Pullback: [p] -> { [(10p)] }
2947 
2948       // We want this kind of an expression for Bound, without a
2949       // zero dimensional input, but with a "null space" input for the types
2950       // to work out later on, as far as I (Siddharth Bhat) understand.
2951       // I was unable to find a reference to this in the ISL manual.
2952       // References: Tobias Grosser.
2953 
2954       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2955       Bounds.push_back(Bound);
2956     }
2957 
2958     /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2959     /// to have the same parameter dimensions. So, we need to align them to an
2960     /// appropriate space.
2961     /// Scop::Context is _not_ an appropriate space, because when we have
2962     /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2963     /// contain all parameter dimensions.
2964     /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2965     isl_space *SeedAlignSpace = S->getParamSpace().release();
2966     SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2967 
2968     isl_space *AlignSpace = nullptr;
2969     std::vector<isl_pw_aff *> AlignedBounds;
2970     std::tie(AlignSpace, AlignedBounds) =
2971         alignPwAffs(std::move(Bounds), SeedAlignSpace);
2972 
2973     assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2974 
2975     isl_pw_aff_list *BoundsList =
2976         createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds));
2977 
2978     isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2979     BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2980 
2981     assert(BoundsSpace && "Unable to access space of array.");
2982     assert(BoundsList && "Unable to access list of bounds.");
2983 
2984     PPCGArray.bound =
2985         isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2986     assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2987   }
2988 
2989   /// Create the arrays for @p PPCGProg.
2990   ///
2991   /// @param PPCGProg The program to compute the arrays for.
2992   void createArrays(gpu_prog *PPCGProg,
2993                     const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
2994     int i = 0;
2995     for (auto &Array : ValidSAIs) {
2996       std::string TypeName;
2997       raw_string_ostream OS(TypeName);
2998 
2999       OS << *Array->getElementType();
3000       TypeName = OS.str();
3001 
3002       gpu_array_info &PPCGArray = PPCGProg->array[i];
3003 
3004       PPCGArray.space = Array->getSpace().release();
3005       PPCGArray.type = strdup(TypeName.c_str());
3006       PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
3007       PPCGArray.name = strdup(Array->getName().c_str());
3008       PPCGArray.extent = nullptr;
3009       PPCGArray.n_index = Array->getNumberOfDimensions();
3010       PPCGArray.extent = getExtent(Array).release();
3011       PPCGArray.n_ref = 0;
3012       PPCGArray.refs = nullptr;
3013       PPCGArray.accessed = true;
3014       PPCGArray.read_only_scalar =
3015           Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
3016       PPCGArray.has_compound_element = false;
3017       PPCGArray.local = false;
3018       PPCGArray.declare_local = false;
3019       PPCGArray.global = false;
3020       PPCGArray.linearize = false;
3021       PPCGArray.dep_order = nullptr;
3022       PPCGArray.user = Array;
3023 
3024       PPCGArray.bound = nullptr;
3025       setArrayBounds(PPCGArray, Array);
3026       i++;
3027 
3028       collect_references(PPCGProg, &PPCGArray);
3029       PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
3030     }
3031   }
3032 
3033   /// Create an identity map between the arrays in the scop.
3034   ///
3035   /// @returns An identity map between the arrays in the scop.
3036   isl_union_map *getArrayIdentity() {
3037     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
3038 
3039     for (auto &Array : S->arrays()) {
3040       isl_space *Space = Array->getSpace().release();
3041       Space = isl_space_map_from_set(Space);
3042       isl_map *Identity = isl_map_identity(Space);
3043       Maps = isl_union_map_add_map(Maps, Identity);
3044     }
3045 
3046     return Maps;
3047   }
3048 
3049   /// Create a default-initialized PPCG GPU program.
3050   ///
3051   /// @returns A new gpu program description.
3052   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
3053 
3054     if (!PPCGScop)
3055       return nullptr;
3056 
3057     auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog);
3058 
3059     PPCGProg->ctx = S->getIslCtx().get();
3060     PPCGProg->scop = PPCGScop;
3061     PPCGProg->context = isl_set_copy(PPCGScop->context);
3062     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
3063     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
3064     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
3065     PPCGProg->tagged_must_kill =
3066         isl_union_map_copy(PPCGScop->tagged_must_kills);
3067     PPCGProg->to_inner = getArrayIdentity();
3068     PPCGProg->to_outer = getArrayIdentity();
3069     // TODO: verify that this assignment is correct.
3070     PPCGProg->any_to_outer = nullptr;
3071     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3072     PPCGProg->stmts = getStatements();
3073 
3074     // Only consider arrays that have a non-empty extent.
3075     // Otherwise, this will cause us to consider the following kinds of
3076     // empty arrays:
3077     //     1. Invariant loads that are represented by SAI objects.
3078     //     2. Arrays with statically known zero size.
3079     auto ValidSAIsRange =
3080         make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3081           return !getExtent(SAI).is_empty();
3082         });
3083     SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3084                                               ValidSAIsRange.end());
3085 
3086     PPCGProg->n_array =
3087         ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3088     PPCGProg->array = isl_calloc_array(
3089         S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array);
3090 
3091     createArrays(PPCGProg, ValidSAIs);
3092 
3093     PPCGProg->array_order = nullptr;
3094     collect_order_dependences(PPCGProg);
3095 
3096     PPCGProg->may_persist = compute_may_persist(PPCGProg);
3097     return PPCGProg;
3098   }
3099 
3100   struct PrintGPUUserData {
3101     struct cuda_info *CudaInfo;
3102     struct gpu_prog *PPCGProg;
3103     std::vector<ppcg_kernel *> Kernels;
3104   };
3105 
3106   /// Print a user statement node in the host code.
3107   ///
3108   /// We use ppcg's printing facilities to print the actual statement and
3109   /// additionally build up a list of all kernels that are encountered in the
3110   /// host ast.
3111   ///
3112   /// @param P The printer to print to
3113   /// @param Options The printing options to use
3114   /// @param Node The node to print
3115   /// @param User A user pointer to carry additional data. This pointer is
3116   ///             expected to be of type PrintGPUUserData.
3117   ///
3118   /// @returns A printer to which the output has been printed.
3119   static __isl_give isl_printer *
3120   printHostUser(__isl_take isl_printer *P,
3121                 __isl_take isl_ast_print_options *Options,
3122                 __isl_take isl_ast_node *Node, void *User) {
3123     auto Data = (struct PrintGPUUserData *)User;
3124     auto Id = isl_ast_node_get_annotation(Node);
3125 
3126     if (Id) {
3127       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3128 
3129       // If this is a user statement, format it ourselves as ppcg would
3130       // otherwise try to call pet functionality that is not available in
3131       // Polly.
3132       if (IsUser) {
3133         P = isl_printer_start_line(P);
3134         P = isl_printer_print_ast_node(P, Node);
3135         P = isl_printer_end_line(P);
3136         isl_id_free(Id);
3137         isl_ast_print_options_free(Options);
3138         return P;
3139       }
3140 
3141       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3142       isl_id_free(Id);
3143       Data->Kernels.push_back(Kernel);
3144     }
3145 
3146     return print_host_user(P, Options, Node, User);
3147   }
3148 
3149   /// Print C code corresponding to the control flow in @p Kernel.
3150   ///
3151   /// @param Kernel The kernel to print
3152   void printKernel(ppcg_kernel *Kernel) {
3153     auto *P = isl_printer_to_str(S->getIslCtx().get());
3154     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3155     auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3156     P = isl_ast_node_print(Kernel->tree, P, Options);
3157     char *String = isl_printer_get_str(P);
3158     printf("%s\n", String);
3159     free(String);
3160     isl_printer_free(P);
3161   }
3162 
3163   /// Print C code corresponding to the GPU code described by @p Tree.
3164   ///
3165   /// @param Tree An AST describing GPU code
3166   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
3167   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3168     auto *P = isl_printer_to_str(S->getIslCtx().get());
3169     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3170 
3171     PrintGPUUserData Data;
3172     Data.PPCGProg = PPCGProg;
3173 
3174     auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3175     Options =
3176         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3177     P = isl_ast_node_print(Tree, P, Options);
3178     char *String = isl_printer_get_str(P);
3179     printf("# host\n");
3180     printf("%s\n", String);
3181     free(String);
3182     isl_printer_free(P);
3183 
3184     for (auto Kernel : Data.Kernels) {
3185       printf("# kernel%d\n", Kernel->id);
3186       printKernel(Kernel);
3187     }
3188   }
3189 
3190   // Generate a GPU program using PPCG.
3191   //
3192   // GPU mapping consists of multiple steps:
3193   //
3194   //  1) Compute new schedule for the program.
3195   //  2) Map schedule to GPU (TODO)
3196   //  3) Generate code for new schedule (TODO)
3197   //
3198   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3199   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3200   // strategy directly from this pass.
3201   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3202 
3203     auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen);
3204 
3205     PPCGGen->ctx = S->getIslCtx().get();
3206     PPCGGen->options = PPCGScop->options;
3207     PPCGGen->print = nullptr;
3208     PPCGGen->print_user = nullptr;
3209     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3210     PPCGGen->prog = PPCGProg;
3211     PPCGGen->tree = nullptr;
3212     PPCGGen->types.n = 0;
3213     PPCGGen->types.name = nullptr;
3214     PPCGGen->sizes = nullptr;
3215     PPCGGen->used_sizes = nullptr;
3216     PPCGGen->kernel_id = 0;
3217 
3218     // Set scheduling strategy to same strategy PPCG is using.
3219     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3220     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3221     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3222 
3223     isl_schedule *Schedule = get_schedule(PPCGGen);
3224 
3225     int has_permutable = has_any_permutable_node(Schedule);
3226 
3227     Schedule =
3228         isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3229 
3230     if (!has_permutable || has_permutable < 0) {
3231       Schedule = isl_schedule_free(Schedule);
3232       LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3233                         << " does not have permutable bands. Bailing out\n";);
3234     } else {
3235       const bool CreateTransferToFromDevice = !PollyManagedMemory;
3236       Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3237       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3238     }
3239 
3240     if (DumpSchedule) {
3241       isl_printer *P = isl_printer_to_str(S->getIslCtx().get());
3242       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3243       P = isl_printer_print_str(P, "Schedule\n");
3244       P = isl_printer_print_str(P, "========\n");
3245       if (Schedule)
3246         P = isl_printer_print_schedule(P, Schedule);
3247       else
3248         P = isl_printer_print_str(P, "No schedule found\n");
3249 
3250       printf("%s\n", isl_printer_get_str(P));
3251       isl_printer_free(P);
3252     }
3253 
3254     if (DumpCode) {
3255       printf("Code\n");
3256       printf("====\n");
3257       if (PPCGGen->tree)
3258         printGPUTree(PPCGGen->tree, PPCGProg);
3259       else
3260         printf("No code generated\n");
3261     }
3262 
3263     isl_schedule_free(Schedule);
3264 
3265     return PPCGGen;
3266   }
3267 
3268   /// Free gpu_gen structure.
3269   ///
3270   /// @param PPCGGen The ppcg_gen object to free.
3271   void freePPCGGen(gpu_gen *PPCGGen) {
3272     isl_ast_node_free(PPCGGen->tree);
3273     isl_union_map_free(PPCGGen->sizes);
3274     isl_union_map_free(PPCGGen->used_sizes);
3275     free(PPCGGen);
3276   }
3277 
3278   /// Free the options in the ppcg scop structure.
3279   ///
3280   /// ppcg is not freeing these options for us. To avoid leaks we do this
3281   /// ourselves.
3282   ///
3283   /// @param PPCGScop The scop referencing the options to free.
3284   void freeOptions(ppcg_scop *PPCGScop) {
3285     free(PPCGScop->options->debug);
3286     PPCGScop->options->debug = nullptr;
3287     free(PPCGScop->options);
3288     PPCGScop->options = nullptr;
3289   }
3290 
3291   /// Approximate the number of points in the set.
3292   ///
3293   /// This function returns an ast expression that overapproximates the number
3294   /// of points in an isl set through the rectangular hull surrounding this set.
3295   ///
3296   /// @param Set   The set to count.
3297   /// @param Build The isl ast build object to use for creating the ast
3298   ///              expression.
3299   ///
3300   /// @returns An approximation of the number of points in the set.
3301   __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3302                                              __isl_keep isl_ast_build *Build) {
3303 
3304     isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3305     auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3306 
3307     isl_space *Space = isl_set_get_space(Set);
3308     Space = isl_space_params(Space);
3309     auto *Univ = isl_set_universe(Space);
3310     isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3311 
3312     for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
3313       isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3314       isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3315       isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3316       DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3317       auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3318       Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3319     }
3320 
3321     isl_set_free(Set);
3322     isl_pw_aff_free(OneAff);
3323 
3324     return Expr;
3325   }
3326 
3327   /// Approximate a number of dynamic instructions executed by a given
3328   /// statement.
3329   ///
3330   /// @param Stmt  The statement for which to compute the number of dynamic
3331   ///              instructions.
3332   /// @param Build The isl ast build object to use for creating the ast
3333   ///              expression.
3334   /// @returns An approximation of the number of dynamic instructions executed
3335   ///          by @p Stmt.
3336   __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3337                                              __isl_keep isl_ast_build *Build) {
3338     auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3339 
3340     long InstCount = 0;
3341 
3342     if (Stmt.isBlockStmt()) {
3343       auto *BB = Stmt.getBasicBlock();
3344       InstCount = std::distance(BB->begin(), BB->end());
3345     } else {
3346       auto *R = Stmt.getRegion();
3347 
3348       for (auto *BB : R->blocks()) {
3349         InstCount += std::distance(BB->begin(), BB->end());
3350       }
3351     }
3352 
3353     isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount);
3354     auto *InstExpr = isl_ast_expr_from_val(InstVal);
3355     return isl_ast_expr_mul(InstExpr, Iterations);
3356   }
3357 
3358   /// Approximate dynamic instructions executed in scop.
3359   ///
3360   /// @param S     The scop for which to approximate dynamic instructions.
3361   /// @param Build The isl ast build object to use for creating the ast
3362   ///              expression.
3363   /// @returns An approximation of the number of dynamic instructions executed
3364   ///          in @p S.
3365   __isl_give isl_ast_expr *
3366   getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3367     isl_ast_expr *Instructions;
3368 
3369     isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0);
3370     Instructions = isl_ast_expr_from_val(Zero);
3371 
3372     for (ScopStmt &Stmt : S) {
3373       isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3374       Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3375     }
3376     return Instructions;
3377   }
3378 
3379   /// Create a check that ensures sufficient compute in scop.
3380   ///
3381   /// @param S     The scop for which to ensure sufficient compute.
3382   /// @param Build The isl ast build object to use for creating the ast
3383   ///              expression.
3384   /// @returns An expression that evaluates to TRUE in case of sufficient
3385   ///          compute and to FALSE, otherwise.
3386   __isl_give isl_ast_expr *
3387   createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3388     auto Iterations = getNumberOfIterations(S, Build);
3389     auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute);
3390     auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3391     return isl_ast_expr_ge(Iterations, MinComputeExpr);
3392   }
3393 
3394   /// Check if the basic block contains a function we cannot codegen for GPU
3395   /// kernels.
3396   ///
3397   /// If this basic block does something with a `Function` other than calling
3398   /// a function that we support in a kernel, return true.
3399   bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3400                                             bool AllowCUDALibDevice) {
3401     for (const Instruction &Inst : *BB) {
3402       const CallInst *Call = dyn_cast<CallInst>(&Inst);
3403       if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3404                                           AllowCUDALibDevice))
3405         continue;
3406 
3407       for (Value *Op : Inst.operands())
3408         // Look for (<func-type>*) among operands of Inst
3409         if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) {
3410           if (isa<FunctionType>(PtrTy->getElementType())) {
3411             LLVM_DEBUG(dbgs()
3412                        << Inst << " has illegal use of function in kernel.\n");
3413             return true;
3414           }
3415         }
3416     }
3417     return false;
3418   }
3419 
3420   /// Return whether the Scop S uses functions in a way that we do not support.
3421   bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3422     for (auto &Stmt : S) {
3423       if (Stmt.isBlockStmt()) {
3424         if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3425                                                  AllowCUDALibDevice))
3426           return true;
3427       } else {
3428         assert(Stmt.isRegionStmt() &&
3429                "Stmt was neither block nor region statement");
3430         for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3431           if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3432             return true;
3433       }
3434     }
3435     return false;
3436   }
3437 
3438   /// Generate code for a given GPU AST described by @p Root.
3439   ///
3440   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3441   /// @param Prog The GPU Program to generate code for.
3442   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3443     ScopAnnotator Annotator;
3444     Annotator.buildAliasScopes(*S);
3445 
3446     Region *R = &S->getRegion();
3447 
3448     simplifyRegion(R, DT, LI, RI);
3449 
3450     BasicBlock *EnteringBB = R->getEnteringBlock();
3451 
3452     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3453 
3454     // Only build the run-time condition and parameters _after_ having
3455     // introduced the conditional branch. This is important as the conditional
3456     // branch will guard the original scop from new induction variables that
3457     // the SCEVExpander may introduce while code generating the parameters and
3458     // which may introduce scalar dependences that prevent us from correctly
3459     // code generating this scop.
3460     BBPair StartExitBlocks;
3461     BranchInst *CondBr = nullptr;
3462     std::tie(StartExitBlocks, CondBr) =
3463         executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3464     BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3465 
3466     assert(CondBr && "CondBr not initialized by executeScopConditionally");
3467 
3468     GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3469                                StartBlock, Prog, Runtime, Architecture);
3470 
3471     // TODO: Handle LICM
3472     auto SplitBlock = StartBlock->getSinglePredecessor();
3473     Builder.SetInsertPoint(SplitBlock->getTerminator());
3474 
3475     isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get());
3476     isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3477     isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3478     Condition = isl_ast_expr_and(Condition, SufficientCompute);
3479     isl_ast_build_free(Build);
3480 
3481     // preload invariant loads. Note: This should happen before the RTC
3482     // because the RTC may depend on values that are invariant load hoisted.
3483     if (!NodeBuilder.preloadInvariantLoads()) {
3484       // Patch the introduced branch condition to ensure that we always execute
3485       // the original SCoP.
3486       auto *FalseI1 = Builder.getFalse();
3487       auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
3488       SplitBBTerm->setOperand(0, FalseI1);
3489 
3490       LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3491                                S->getFunction().getName() +
3492                                " | Scop Region: " + S->getNameStr());
3493       // adjust the dominator tree accordingly.
3494       auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3495       assert(ExitingBlock);
3496       auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3497       assert(MergeBlock);
3498       polly::markBlockUnreachable(*StartBlock, Builder);
3499       polly::markBlockUnreachable(*ExitingBlock, Builder);
3500       auto *ExitingBB = S->getExitingBlock();
3501       assert(ExitingBB);
3502 
3503       DT->changeImmediateDominator(MergeBlock, ExitingBB);
3504       DT->eraseNode(ExitingBlock);
3505       isl_ast_expr_free(Condition);
3506       isl_ast_node_free(Root);
3507     } else {
3508 
3509       if (polly::PerfMonitoring) {
3510         PerfMonitor P(*S, EnteringBB->getParent()->getParent());
3511         P.initialize();
3512         P.insertRegionStart(SplitBlock->getTerminator());
3513 
3514         // TODO: actually think if this is the correct exiting block to place
3515         // the `end` performance marker. Invariant load hoisting changes
3516         // the CFG in a way that I do not precisely understand, so I
3517         // (Siddharth<[email protected]>) should come back to this and
3518         // think about which exiting block to use.
3519         auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3520         assert(ExitingBlock);
3521         BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
3522         P.insertRegionEnd(MergeBlock->getTerminator());
3523       }
3524 
3525       NodeBuilder.addParameters(S->getContext().release());
3526       Value *RTC = NodeBuilder.createRTC(Condition);
3527       Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3528 
3529       Builder.SetInsertPoint(&*StartBlock->begin());
3530 
3531       NodeBuilder.create(Root);
3532     }
3533 
3534     /// In case a sequential kernel has more surrounding loops as any parallel
3535     /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3536     /// point in running it on a GPU.
3537     if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3538       CondBr->setOperand(0, Builder.getFalse());
3539 
3540     if (!NodeBuilder.BuildSuccessful)
3541       CondBr->setOperand(0, Builder.getFalse());
3542   }
3543 
3544   bool runOnScop(Scop &CurrentScop) override {
3545     S = &CurrentScop;
3546     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3547     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3548     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3549     DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3550     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3551 
3552     LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3553                       << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3554 
3555     // We currently do not support functions other than intrinsics inside
3556     // kernels, as code generation will need to offload function calls to the
3557     // kernel. This may lead to a kernel trying to call a function on the host.
3558     // This also allows us to prevent codegen from trying to take the
3559     // address of an intrinsic function to send to the kernel.
3560     if (containsInvalidKernelFunction(CurrentScop,
3561                                       Architecture == GPUArch::NVPTX64)) {
3562       LLVM_DEBUG(
3563           dbgs() << getUniqueScopName(S)
3564                  << " contains function which cannot be materialised in a GPU "
3565                     "kernel. Bailing out.\n";);
3566       return false;
3567     }
3568 
3569     auto PPCGScop = createPPCGScop();
3570     auto PPCGProg = createPPCGProg(PPCGScop);
3571     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3572 
3573     if (PPCGGen->tree) {
3574       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3575       CurrentScop.markAsToBeSkipped();
3576     } else {
3577       LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3578                         << " has empty PPCGGen->tree. Bailing out.\n");
3579     }
3580 
3581     freeOptions(PPCGScop);
3582     freePPCGGen(PPCGGen);
3583     gpu_prog_free(PPCGProg);
3584     ppcg_scop_free(PPCGScop);
3585 
3586     return true;
3587   }
3588 
3589   void printScop(raw_ostream &, Scop &) const override {}
3590 
3591   void getAnalysisUsage(AnalysisUsage &AU) const override {
3592     ScopPass::getAnalysisUsage(AU);
3593 
3594     AU.addRequired<DominatorTreeWrapperPass>();
3595     AU.addRequired<RegionInfoPass>();
3596     AU.addRequired<ScalarEvolutionWrapperPass>();
3597     AU.addRequired<ScopDetectionWrapperPass>();
3598     AU.addRequired<ScopInfoRegionPass>();
3599     AU.addRequired<LoopInfoWrapperPass>();
3600 
3601     // FIXME: We do not yet add regions for the newly generated code to the
3602     //        region tree.
3603   }
3604 };
3605 } // namespace
3606 
3607 char PPCGCodeGeneration::ID = 1;
3608 
3609 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3610   PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3611   generator->Runtime = Runtime;
3612   generator->Architecture = Arch;
3613   return generator;
3614 }
3615 
3616 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3617                       "Polly - Apply PPCG translation to SCOP", false, false)
3618 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3619 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3620 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3621 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3622 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3623 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3624 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3625                     "Polly - Apply PPCG translation to SCOP", false, false)
3626