1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/IRReader/IRReader.h" 36 #include "llvm/Linker/Linker.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/TargetSelect.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 43 #include "isl/union_map.h" 44 45 extern "C" { 46 #include "ppcg/cuda.h" 47 #include "ppcg/gpu.h" 48 #include "ppcg/gpu_print.h" 49 #include "ppcg/ppcg.h" 50 #include "ppcg/schedule.h" 51 } 52 53 #include "llvm/Support/Debug.h" 54 55 using namespace polly; 56 using namespace llvm; 57 58 #define DEBUG_TYPE "polly-codegen-ppcg" 59 60 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 61 cl::desc("Dump the computed GPU Schedule"), 62 cl::Hidden, cl::init(false), cl::ZeroOrMore, 63 cl::cat(PollyCategory)); 64 65 static cl::opt<bool> 66 DumpCode("polly-acc-dump-code", 67 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 71 cl::desc("Dump the kernel LLVM-IR"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 76 cl::desc("Dump the kernel assembly code"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 80 static cl::opt<bool> FastMath("polly-acc-fastmath", 81 cl::desc("Allow unsafe math optimizations"), 82 cl::Hidden, cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 85 cl::desc("Use shared memory"), cl::Hidden, 86 cl::init(false), cl::ZeroOrMore, 87 cl::cat(PollyCategory)); 88 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 89 cl::desc("Use private memory"), cl::Hidden, 90 cl::init(false), cl::ZeroOrMore, 91 cl::cat(PollyCategory)); 92 93 bool polly::PollyManagedMemory; 94 static cl::opt<bool, true> 95 XManagedMemory("polly-acc-codegen-managed-memory", 96 cl::desc("Generate Host kernel code assuming" 97 " that all memory has been" 98 " declared as managed memory"), 99 cl::location(PollyManagedMemory), cl::Hidden, 100 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 101 102 static cl::opt<bool> 103 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 104 cl::desc("Fail and generate a backtrace if" 105 " verifyModule fails on the GPU " 106 " kernel module."), 107 cl::Hidden, cl::init(false), cl::ZeroOrMore, 108 cl::cat(PollyCategory)); 109 110 static cl::opt<std::string> CUDALibDevice( 111 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 112 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 113 cl::ZeroOrMore, cl::cat(PollyCategory)); 114 115 static cl::opt<std::string> 116 CudaVersion("polly-acc-cuda-version", 117 cl::desc("The CUDA version to compile for"), cl::Hidden, 118 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 119 120 static cl::opt<int> 121 MinCompute("polly-acc-mincompute", 122 cl::desc("Minimal number of compute statements to run on GPU."), 123 cl::Hidden, cl::init(10 * 512 * 512)); 124 125 /// Return a unique name for a Scop, which is the scop region with the 126 /// function name. 127 std::string getUniqueScopName(const Scop *S) { 128 return "Scop Region: " + S->getNameStr() + 129 " | Function: " + std::string(S->getFunction().getName()); 130 } 131 132 /// Used to store information PPCG wants for kills. This information is 133 /// used by live range reordering. 134 /// 135 /// @see computeLiveRangeReordering 136 /// @see GPUNodeBuilder::createPPCGScop 137 /// @see GPUNodeBuilder::createPPCGProg 138 struct MustKillsInfo { 139 /// Collection of all kill statements that will be sequenced at the end of 140 /// PPCGScop->schedule. 141 /// 142 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 143 /// which merges schedules in *arbitrary* order. 144 /// (we don't care about the order of the kills anyway). 145 isl::schedule KillsSchedule; 146 /// Map from kill statement instances to scalars that need to be 147 /// killed. 148 /// 149 /// We currently derive kill information for: 150 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 151 /// consequently all be killed. 152 /// 2. Scalar arrays that are not used outside the Scop. This is 153 /// checked by `isScalarUsesContainedInScop`. 154 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 155 isl::union_map TaggedMustKills; 156 157 /// Tagged must kills stripped of the tags. 158 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 159 isl::union_map MustKills; 160 161 MustKillsInfo() : KillsSchedule(nullptr) {} 162 }; 163 164 /// Check if SAI's uses are entirely contained within Scop S. 165 /// If a scalar is used only with a Scop, we are free to kill it, as no data 166 /// can flow in/out of the value any more. 167 /// @see computeMustKillsInfo 168 static bool isScalarUsesContainedInScop(const Scop &S, 169 const ScopArrayInfo *SAI) { 170 assert(SAI->isValueKind() && "this function only deals with scalars." 171 " Dealing with arrays required alias analysis"); 172 173 const Region &R = S.getRegion(); 174 for (User *U : SAI->getBasePtr()->users()) { 175 Instruction *I = dyn_cast<Instruction>(U); 176 assert(I && "invalid user of scop array info"); 177 if (!R.contains(I)) 178 return false; 179 } 180 return true; 181 } 182 183 /// Compute must-kills needed to enable live range reordering with PPCG. 184 /// 185 /// @params S The Scop to compute live range reordering information 186 /// @returns live range reordering information that can be used to setup 187 /// PPCG. 188 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 189 const isl::space ParamSpace = S.getParamSpace(); 190 MustKillsInfo Info; 191 192 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 193 // 1.1 phi nodes in scop. 194 // 1.2 scalars that are only used within the scop 195 SmallVector<isl::id, 4> KillMemIds; 196 for (ScopArrayInfo *SAI : S.arrays()) { 197 if (SAI->isPHIKind() || 198 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 199 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 200 } 201 202 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 203 Info.MustKills = isl::union_map::empty(ParamSpace); 204 205 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 206 // schedule: 207 // - filter: "[control] -> { }" 208 // So, we choose to not create this to keep the output a little nicer, 209 // at the cost of some code complexity. 210 Info.KillsSchedule = nullptr; 211 212 for (isl::id &ToKillId : KillMemIds) { 213 isl::id KillStmtId = isl::id::alloc( 214 S.getIslCtx(), 215 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 216 217 // NOTE: construction of tagged_must_kill: 218 // 2. We need to construct a map: 219 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 220 // To construct this, we use `isl_map_domain_product` on 2 maps`: 221 // 2a. StmtToScalar: 222 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 223 // 2b. PhantomRefToScalar: 224 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 225 // 226 // Combining these with `isl_map_domain_product` gives us 227 // TaggedMustKill: 228 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 229 230 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 231 isl::map StmtToScalar = isl::map::universe(ParamSpace); 232 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 233 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 234 235 isl::id PhantomRefId = isl::id::alloc( 236 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 237 nullptr); 238 239 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 240 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 241 PhantomRefToScalar = 242 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 243 PhantomRefToScalar = 244 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 245 246 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 247 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 248 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 249 250 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 251 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 252 253 // 3. Create the kill schedule of the form: 254 // "[param] -> { Stmt_phantom[] }" 255 // Then add this to Info.KillsSchedule. 256 isl::space KillStmtSpace = ParamSpace; 257 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 258 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 259 260 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 261 if (Info.KillsSchedule) 262 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 263 else 264 Info.KillsSchedule = KillSchedule; 265 } 266 267 return Info; 268 } 269 270 /// Create the ast expressions for a ScopStmt. 271 /// 272 /// This function is a callback for to generate the ast expressions for each 273 /// of the scheduled ScopStmts. 274 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 275 void *StmtT, __isl_take isl_ast_build *Build_C, 276 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 277 isl_id *Id, void *User), 278 void *UserIndex, 279 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 280 void *UserExpr) { 281 282 ScopStmt *Stmt = (ScopStmt *)StmtT; 283 284 if (!Stmt || !Build_C) 285 return NULL; 286 287 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 288 isl::ctx Ctx = Build.get_ctx(); 289 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 290 291 Stmt->setAstBuild(Build); 292 293 for (MemoryAccess *Acc : *Stmt) { 294 isl::map AddrFunc = Acc->getAddressFunction(); 295 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 296 297 isl::id RefId = Acc->getId(); 298 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 299 300 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 301 MPA = MPA.coalesce(); 302 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 303 304 isl::ast_expr Access = Build.access_from(MPA); 305 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 306 RefToExpr = RefToExpr.set(RefId, Access); 307 } 308 309 return RefToExpr.release(); 310 } 311 312 /// Given a LLVM Type, compute its size in bytes, 313 static int computeSizeInBytes(const Type *T) { 314 int bytes = T->getPrimitiveSizeInBits() / 8; 315 if (bytes == 0) 316 bytes = T->getScalarSizeInBits() / 8; 317 return bytes; 318 } 319 320 /// Generate code for a GPU specific isl AST. 321 /// 322 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 323 /// generates code for general-purpose AST nodes, with special functionality 324 /// for generating GPU specific user nodes. 325 /// 326 /// @see GPUNodeBuilder::createUser 327 class GPUNodeBuilder : public IslNodeBuilder { 328 public: 329 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 330 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 331 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 332 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 333 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 334 Prog(Prog), Runtime(Runtime), Arch(Arch) { 335 getExprBuilder().setIDToSAI(&IDToSAI); 336 } 337 338 /// Create after-run-time-check initialization code. 339 void initializeAfterRTH(); 340 341 /// Finalize the generated scop. 342 virtual void finalize(); 343 344 /// Track if the full build process was successful. 345 /// 346 /// This value is set to false, if throughout the build process an error 347 /// occurred which prevents us from generating valid GPU code. 348 bool BuildSuccessful = true; 349 350 /// The maximal number of loops surrounding a sequential kernel. 351 unsigned DeepestSequential = 0; 352 353 /// The maximal number of loops surrounding a parallel kernel. 354 unsigned DeepestParallel = 0; 355 356 /// Return the name to set for the ptx_kernel. 357 std::string getKernelFuncName(int Kernel_id); 358 359 private: 360 /// A vector of array base pointers for which a new ScopArrayInfo was created. 361 /// 362 /// This vector is used to delete the ScopArrayInfo when it is not needed any 363 /// more. 364 std::vector<Value *> LocalArrays; 365 366 /// A map from ScopArrays to their corresponding device allocations. 367 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 368 369 /// The current GPU context. 370 Value *GPUContext; 371 372 /// The set of isl_ids allocated in the kernel 373 std::vector<isl_id *> KernelIds; 374 375 /// A module containing GPU code. 376 /// 377 /// This pointer is only set in case we are currently generating GPU code. 378 std::unique_ptr<Module> GPUModule; 379 380 /// The GPU program we generate code for. 381 gpu_prog *Prog; 382 383 /// The GPU Runtime implementation to use (OpenCL or CUDA). 384 GPURuntime Runtime; 385 386 /// The GPU Architecture to target. 387 GPUArch Arch; 388 389 /// Class to free isl_ids. 390 class IslIdDeleter { 391 public: 392 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 393 }; 394 395 /// A set containing all isl_ids allocated in a GPU kernel. 396 /// 397 /// By releasing this set all isl_ids will be freed. 398 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 399 400 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 401 402 /// Create code for user-defined AST nodes. 403 /// 404 /// These AST nodes can be of type: 405 /// 406 /// - ScopStmt: A computational statement (TODO) 407 /// - Kernel: A GPU kernel call (TODO) 408 /// - Data-Transfer: A GPU <-> CPU data-transfer 409 /// - In-kernel synchronization 410 /// - In-kernel memory copy statement 411 /// 412 /// @param UserStmt The ast node to generate code for. 413 virtual void createUser(__isl_take isl_ast_node *UserStmt); 414 415 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 416 417 /// Create code for a data transfer statement 418 /// 419 /// @param TransferStmt The data transfer statement. 420 /// @param Direction The direction in which to transfer data. 421 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 422 enum DataDirection Direction); 423 424 /// Find llvm::Values referenced in GPU kernel. 425 /// 426 /// @param Kernel The kernel to scan for llvm::Values 427 /// 428 /// @returns A tuple, whose: 429 /// - First element contains the set of values referenced by the 430 /// kernel 431 /// - Second element contains the set of functions referenced by the 432 /// kernel. All functions in the set satisfy 433 /// `isValidFunctionInKernel`. 434 /// - Third element contains loops that have induction variables 435 /// which are used in the kernel, *and* these loops are *neither* 436 /// in the scop, nor do they immediately surroung the Scop. 437 /// See [Code generation of induction variables of loops outside 438 /// Scops] 439 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 440 getReferencesInKernel(ppcg_kernel *Kernel); 441 442 /// Compute the sizes of the execution grid for a given kernel. 443 /// 444 /// @param Kernel The kernel to compute grid sizes for. 445 /// 446 /// @returns A tuple with grid sizes for X and Y dimension 447 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 448 449 /// Get the managed array pointer for sending host pointers to the device. 450 /// \note 451 /// This is to be used only with managed memory 452 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 453 454 /// Compute the sizes of the thread blocks for a given kernel. 455 /// 456 /// @param Kernel The kernel to compute thread block sizes for. 457 /// 458 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 459 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 460 461 /// Store a specific kernel launch parameter in the array of kernel launch 462 /// parameters. 463 /// 464 /// @param Parameters The list of parameters in which to store. 465 /// @param Param The kernel launch parameter to store. 466 /// @param Index The index in the parameter list, at which to store the 467 /// parameter. 468 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 469 int Index); 470 471 /// Create kernel launch parameters. 472 /// 473 /// @param Kernel The kernel to create parameters for. 474 /// @param F The kernel function that has been created. 475 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 476 /// 477 /// @returns A stack allocated array with pointers to the parameter 478 /// values that are passed to the kernel. 479 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 480 SetVector<Value *> SubtreeValues); 481 482 /// Create declarations for kernel variable. 483 /// 484 /// This includes shared memory declarations. 485 /// 486 /// @param Kernel The kernel definition to create variables for. 487 /// @param FN The function into which to generate the variables. 488 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 489 490 /// Add CUDA annotations to module. 491 /// 492 /// Add a set of CUDA annotations that declares the maximal block dimensions 493 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 494 /// PTX compiler to bound the number of allocated registers to ensure the 495 /// resulting kernel is known to run with up to as many block dimensions 496 /// as specified here. 497 /// 498 /// @param M The module to add the annotations to. 499 /// @param BlockDimX The size of block dimension X. 500 /// @param BlockDimY The size of block dimension Y. 501 /// @param BlockDimZ The size of block dimension Z. 502 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 503 Value *BlockDimZ); 504 505 /// Create GPU kernel. 506 /// 507 /// Code generate the kernel described by @p KernelStmt. 508 /// 509 /// @param KernelStmt The ast node to generate kernel code for. 510 void createKernel(__isl_take isl_ast_node *KernelStmt); 511 512 /// Generate code that computes the size of an array. 513 /// 514 /// @param Array The array for which to compute a size. 515 Value *getArraySize(gpu_array_info *Array); 516 517 /// Generate code to compute the minimal offset at which an array is accessed. 518 /// 519 /// The offset of an array is the minimal array location accessed in a scop. 520 /// 521 /// Example: 522 /// 523 /// for (long i = 0; i < 100; i++) 524 /// A[i + 42] += ... 525 /// 526 /// getArrayOffset(A) results in 42. 527 /// 528 /// @param Array The array for which to compute the offset. 529 /// @returns An llvm::Value that contains the offset of the array. 530 Value *getArrayOffset(gpu_array_info *Array); 531 532 /// Prepare the kernel arguments for kernel code generation 533 /// 534 /// @param Kernel The kernel to generate code for. 535 /// @param FN The function created for the kernel. 536 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 537 538 /// Create kernel function. 539 /// 540 /// Create a kernel function located in a newly created module that can serve 541 /// as target for device code generation. Set the Builder to point to the 542 /// start block of this newly created function. 543 /// 544 /// @param Kernel The kernel to generate code for. 545 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 546 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 547 /// kernel. 548 void createKernelFunction(ppcg_kernel *Kernel, 549 SetVector<Value *> &SubtreeValues, 550 SetVector<Function *> &SubtreeFunctions); 551 552 /// Create the declaration of a kernel function. 553 /// 554 /// The kernel function takes as arguments: 555 /// 556 /// - One i8 pointer for each external array reference used in the kernel. 557 /// - Host iterators 558 /// - Parameters 559 /// - Other LLVM Value references (TODO) 560 /// 561 /// @param Kernel The kernel to generate the function declaration for. 562 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 563 /// 564 /// @returns The newly declared function. 565 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 566 SetVector<Value *> &SubtreeValues); 567 568 /// Insert intrinsic functions to obtain thread and block ids. 569 /// 570 /// @param The kernel to generate the intrinsic functions for. 571 void insertKernelIntrinsics(ppcg_kernel *Kernel); 572 573 /// Insert function calls to retrieve the SPIR group/local ids. 574 /// 575 /// @param The kernel to generate the function calls for. 576 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 577 578 /// Setup the creation of functions referenced by the GPU kernel. 579 /// 580 /// 1. Create new function declarations in GPUModule which are the same as 581 /// SubtreeFunctions. 582 /// 583 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 584 /// old functions (that come from the original module) to new functions 585 /// (that are created within GPUModule). That way, we generate references 586 /// to the correct function (in GPUModule) in BlockGenerator. 587 /// 588 /// @see IslNodeBuilder::ValueMap 589 /// @see BlockGenerator::GlobalMap 590 /// @see BlockGenerator::getNewValue 591 /// @see GPUNodeBuilder::getReferencesInKernel. 592 /// 593 /// @param SubtreeFunctions The set of llvm::Functions referenced by 594 /// this kernel. 595 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 596 597 /// Create a global-to-shared or shared-to-global copy statement. 598 /// 599 /// @param CopyStmt The copy statement to generate code for 600 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 601 602 /// Create code for a ScopStmt called in @p Expr. 603 /// 604 /// @param Expr The expression containing the call. 605 /// @param KernelStmt The kernel statement referenced in the call. 606 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 607 608 /// Create an in-kernel synchronization call. 609 void createKernelSync(); 610 611 /// Create a PTX assembly string for the current GPU kernel. 612 /// 613 /// @returns A string containing the corresponding PTX assembly code. 614 std::string createKernelASM(); 615 616 /// Remove references from the dominator tree to the kernel function @p F. 617 /// 618 /// @param F The function to remove references to. 619 void clearDominators(Function *F); 620 621 /// Remove references from scalar evolution to the kernel function @p F. 622 /// 623 /// @param F The function to remove references to. 624 void clearScalarEvolution(Function *F); 625 626 /// Remove references from loop info to the kernel function @p F. 627 /// 628 /// @param F The function to remove references to. 629 void clearLoops(Function *F); 630 631 /// Check if the scop requires to be linked with CUDA's libdevice. 632 bool requiresCUDALibDevice(); 633 634 /// Link with the NVIDIA libdevice library (if needed and available). 635 void addCUDALibDevice(); 636 637 /// Finalize the generation of the kernel function. 638 /// 639 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 640 /// dump its IR to stderr. 641 /// 642 /// @returns The Assembly string of the kernel. 643 std::string finalizeKernelFunction(); 644 645 /// Finalize the generation of the kernel arguments. 646 /// 647 /// This function ensures that not-read-only scalars used in a kernel are 648 /// stored back to the global memory location they are backed with before 649 /// the kernel terminates. 650 /// 651 /// @params Kernel The kernel to finalize kernel arguments for. 652 void finalizeKernelArguments(ppcg_kernel *Kernel); 653 654 /// Create code that allocates memory to store arrays on device. 655 void allocateDeviceArrays(); 656 657 /// Create code to prepare the managed device pointers. 658 void prepareManagedDeviceArrays(); 659 660 /// Free all allocated device arrays. 661 void freeDeviceArrays(); 662 663 /// Create a call to initialize the GPU context. 664 /// 665 /// @returns A pointer to the newly initialized context. 666 Value *createCallInitContext(); 667 668 /// Create a call to get the device pointer for a kernel allocation. 669 /// 670 /// @param Allocation The Polly GPU allocation 671 /// 672 /// @returns The device parameter corresponding to this allocation. 673 Value *createCallGetDevicePtr(Value *Allocation); 674 675 /// Create a call to free the GPU context. 676 /// 677 /// @param Context A pointer to an initialized GPU context. 678 void createCallFreeContext(Value *Context); 679 680 /// Create a call to allocate memory on the device. 681 /// 682 /// @param Size The size of memory to allocate 683 /// 684 /// @returns A pointer that identifies this allocation. 685 Value *createCallAllocateMemoryForDevice(Value *Size); 686 687 /// Create a call to free a device array. 688 /// 689 /// @param Array The device array to free. 690 void createCallFreeDeviceMemory(Value *Array); 691 692 /// Create a call to copy data from host to device. 693 /// 694 /// @param HostPtr A pointer to the host data that should be copied. 695 /// @param DevicePtr A device pointer specifying the location to copy to. 696 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 697 Value *Size); 698 699 /// Create a call to copy data from device to host. 700 /// 701 /// @param DevicePtr A pointer to the device data that should be copied. 702 /// @param HostPtr A host pointer specifying the location to copy to. 703 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 704 Value *Size); 705 706 /// Create a call to synchronize Host & Device. 707 /// \note 708 /// This is to be used only with managed memory. 709 void createCallSynchronizeDevice(); 710 711 /// Create a call to get a kernel from an assembly string. 712 /// 713 /// @param Buffer The string describing the kernel. 714 /// @param Entry The name of the kernel function to call. 715 /// 716 /// @returns A pointer to a kernel object 717 Value *createCallGetKernel(Value *Buffer, Value *Entry); 718 719 /// Create a call to free a GPU kernel. 720 /// 721 /// @param GPUKernel THe kernel to free. 722 void createCallFreeKernel(Value *GPUKernel); 723 724 /// Create a call to launch a GPU kernel. 725 /// 726 /// @param GPUKernel The kernel to launch. 727 /// @param GridDimX The size of the first grid dimension. 728 /// @param GridDimY The size of the second grid dimension. 729 /// @param GridBlockX The size of the first block dimension. 730 /// @param GridBlockY The size of the second block dimension. 731 /// @param GridBlockZ The size of the third block dimension. 732 /// @param Parameters A pointer to an array that contains itself pointers to 733 /// the parameter values passed for each kernel argument. 734 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 735 Value *GridDimY, Value *BlockDimX, 736 Value *BlockDimY, Value *BlockDimZ, 737 Value *Parameters); 738 }; 739 740 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 741 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 742 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 743 } 744 745 void GPUNodeBuilder::initializeAfterRTH() { 746 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 747 &*Builder.GetInsertPoint(), &DT, &LI); 748 NewBB->setName("polly.acc.initialize"); 749 Builder.SetInsertPoint(&NewBB->front()); 750 751 GPUContext = createCallInitContext(); 752 753 if (!PollyManagedMemory) 754 allocateDeviceArrays(); 755 else 756 prepareManagedDeviceArrays(); 757 } 758 759 void GPUNodeBuilder::finalize() { 760 if (!PollyManagedMemory) 761 freeDeviceArrays(); 762 763 createCallFreeContext(GPUContext); 764 IslNodeBuilder::finalize(); 765 } 766 767 void GPUNodeBuilder::allocateDeviceArrays() { 768 assert(!PollyManagedMemory && 769 "Managed memory will directly send host pointers " 770 "to the kernel. There is no need for device arrays"); 771 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 772 773 for (int i = 0; i < Prog->n_array; ++i) { 774 gpu_array_info *Array = &Prog->array[i]; 775 auto *ScopArray = (ScopArrayInfo *)Array->user; 776 std::string DevArrayName("p_dev_array_"); 777 DevArrayName.append(Array->name); 778 779 Value *ArraySize = getArraySize(Array); 780 Value *Offset = getArrayOffset(Array); 781 if (Offset) 782 ArraySize = Builder.CreateSub( 783 ArraySize, 784 Builder.CreateMul(Offset, 785 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 786 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 787 // It makes no sense to have an array of size 0. The CUDA API will 788 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 789 // choose to be defensive and catch this at the compile phase. It is 790 // most likely that we are doing something wrong with size computation. 791 if (SizeSCEV->isZero()) { 792 errs() << getUniqueScopName(&S) 793 << " has computed array size 0: " << *ArraySize 794 << " | for array: " << *(ScopArray->getBasePtr()) 795 << ". This is illegal, exiting.\n"; 796 report_fatal_error("array size was computed to be 0"); 797 } 798 799 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 800 DevArray->setName(DevArrayName); 801 DeviceAllocations[ScopArray] = DevArray; 802 } 803 804 isl_ast_build_free(Build); 805 } 806 807 void GPUNodeBuilder::prepareManagedDeviceArrays() { 808 assert(PollyManagedMemory && 809 "Device array most only be prepared in managed-memory mode"); 810 for (int i = 0; i < Prog->n_array; ++i) { 811 gpu_array_info *Array = &Prog->array[i]; 812 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 813 Value *HostPtr; 814 815 if (gpu_array_is_scalar(Array)) 816 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 817 else 818 HostPtr = ScopArray->getBasePtr(); 819 HostPtr = getLatestValue(HostPtr); 820 821 Value *Offset = getArrayOffset(Array); 822 if (Offset) { 823 HostPtr = Builder.CreatePointerCast( 824 HostPtr, ScopArray->getElementType()->getPointerTo()); 825 HostPtr = Builder.CreateGEP(HostPtr, Offset); 826 } 827 828 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 829 DeviceAllocations[ScopArray] = HostPtr; 830 } 831 } 832 833 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 834 Value *BlockDimY, Value *BlockDimZ) { 835 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 836 837 for (auto &F : *M) { 838 if (F.getCallingConv() != CallingConv::PTX_Kernel) 839 continue; 840 841 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 842 843 Metadata *Elements[] = { 844 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 845 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 846 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 847 ValueAsMetadata::get(V[2]), 848 }; 849 MDNode *Node = MDNode::get(M->getContext(), Elements); 850 AnnotationNode->addOperand(Node); 851 } 852 } 853 854 void GPUNodeBuilder::freeDeviceArrays() { 855 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 856 for (auto &Array : DeviceAllocations) 857 createCallFreeDeviceMemory(Array.second); 858 } 859 860 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 861 const char *Name = "polly_getKernel"; 862 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 863 Function *F = M->getFunction(Name); 864 865 // If F is not available, declare it. 866 if (!F) { 867 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 868 std::vector<Type *> Args; 869 Args.push_back(Builder.getInt8PtrTy()); 870 Args.push_back(Builder.getInt8PtrTy()); 871 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 872 F = Function::Create(Ty, Linkage, Name, M); 873 } 874 875 return Builder.CreateCall(F, {Buffer, Entry}); 876 } 877 878 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 879 const char *Name = "polly_getDevicePtr"; 880 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 881 Function *F = M->getFunction(Name); 882 883 // If F is not available, declare it. 884 if (!F) { 885 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 886 std::vector<Type *> Args; 887 Args.push_back(Builder.getInt8PtrTy()); 888 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 889 F = Function::Create(Ty, Linkage, Name, M); 890 } 891 892 return Builder.CreateCall(F, {Allocation}); 893 } 894 895 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 896 Value *GridDimY, Value *BlockDimX, 897 Value *BlockDimY, Value *BlockDimZ, 898 Value *Parameters) { 899 const char *Name = "polly_launchKernel"; 900 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 901 Function *F = M->getFunction(Name); 902 903 // If F is not available, declare it. 904 if (!F) { 905 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 906 std::vector<Type *> Args; 907 Args.push_back(Builder.getInt8PtrTy()); 908 Args.push_back(Builder.getInt32Ty()); 909 Args.push_back(Builder.getInt32Ty()); 910 Args.push_back(Builder.getInt32Ty()); 911 Args.push_back(Builder.getInt32Ty()); 912 Args.push_back(Builder.getInt32Ty()); 913 Args.push_back(Builder.getInt8PtrTy()); 914 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 915 F = Function::Create(Ty, Linkage, Name, M); 916 } 917 918 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 919 BlockDimZ, Parameters}); 920 } 921 922 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 923 const char *Name = "polly_freeKernel"; 924 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 925 Function *F = M->getFunction(Name); 926 927 // If F is not available, declare it. 928 if (!F) { 929 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 930 std::vector<Type *> Args; 931 Args.push_back(Builder.getInt8PtrTy()); 932 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 933 F = Function::Create(Ty, Linkage, Name, M); 934 } 935 936 Builder.CreateCall(F, {GPUKernel}); 937 } 938 939 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 940 assert(!PollyManagedMemory && 941 "Managed memory does not allocate or free memory " 942 "for device"); 943 const char *Name = "polly_freeDeviceMemory"; 944 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 945 Function *F = M->getFunction(Name); 946 947 // If F is not available, declare it. 948 if (!F) { 949 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 950 std::vector<Type *> Args; 951 Args.push_back(Builder.getInt8PtrTy()); 952 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 953 F = Function::Create(Ty, Linkage, Name, M); 954 } 955 956 Builder.CreateCall(F, {Array}); 957 } 958 959 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 960 assert(!PollyManagedMemory && 961 "Managed memory does not allocate or free memory " 962 "for device"); 963 const char *Name = "polly_allocateMemoryForDevice"; 964 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 965 Function *F = M->getFunction(Name); 966 967 // If F is not available, declare it. 968 if (!F) { 969 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 970 std::vector<Type *> Args; 971 Args.push_back(Builder.getInt64Ty()); 972 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 973 F = Function::Create(Ty, Linkage, Name, M); 974 } 975 976 return Builder.CreateCall(F, {Size}); 977 } 978 979 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 980 Value *DeviceData, 981 Value *Size) { 982 assert(!PollyManagedMemory && 983 "Managed memory does not transfer memory between " 984 "device and host"); 985 const char *Name = "polly_copyFromHostToDevice"; 986 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 987 Function *F = M->getFunction(Name); 988 989 // If F is not available, declare it. 990 if (!F) { 991 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 992 std::vector<Type *> Args; 993 Args.push_back(Builder.getInt8PtrTy()); 994 Args.push_back(Builder.getInt8PtrTy()); 995 Args.push_back(Builder.getInt64Ty()); 996 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 997 F = Function::Create(Ty, Linkage, Name, M); 998 } 999 1000 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1001 } 1002 1003 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1004 Value *HostData, 1005 Value *Size) { 1006 assert(!PollyManagedMemory && 1007 "Managed memory does not transfer memory between " 1008 "device and host"); 1009 const char *Name = "polly_copyFromDeviceToHost"; 1010 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1011 Function *F = M->getFunction(Name); 1012 1013 // If F is not available, declare it. 1014 if (!F) { 1015 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1016 std::vector<Type *> Args; 1017 Args.push_back(Builder.getInt8PtrTy()); 1018 Args.push_back(Builder.getInt8PtrTy()); 1019 Args.push_back(Builder.getInt64Ty()); 1020 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1021 F = Function::Create(Ty, Linkage, Name, M); 1022 } 1023 1024 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1025 } 1026 1027 void GPUNodeBuilder::createCallSynchronizeDevice() { 1028 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1029 "managed memory"); 1030 const char *Name = "polly_synchronizeDevice"; 1031 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1032 Function *F = M->getFunction(Name); 1033 1034 // If F is not available, declare it. 1035 if (!F) { 1036 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1037 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1038 F = Function::Create(Ty, Linkage, Name, M); 1039 } 1040 1041 Builder.CreateCall(F); 1042 } 1043 1044 Value *GPUNodeBuilder::createCallInitContext() { 1045 const char *Name; 1046 1047 switch (Runtime) { 1048 case GPURuntime::CUDA: 1049 Name = "polly_initContextCUDA"; 1050 break; 1051 case GPURuntime::OpenCL: 1052 Name = "polly_initContextCL"; 1053 break; 1054 } 1055 1056 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1057 Function *F = M->getFunction(Name); 1058 1059 // If F is not available, declare it. 1060 if (!F) { 1061 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1062 std::vector<Type *> Args; 1063 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1064 F = Function::Create(Ty, Linkage, Name, M); 1065 } 1066 1067 return Builder.CreateCall(F, {}); 1068 } 1069 1070 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1071 const char *Name = "polly_freeContext"; 1072 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1073 Function *F = M->getFunction(Name); 1074 1075 // If F is not available, declare it. 1076 if (!F) { 1077 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1078 std::vector<Type *> Args; 1079 Args.push_back(Builder.getInt8PtrTy()); 1080 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1081 F = Function::Create(Ty, Linkage, Name, M); 1082 } 1083 1084 Builder.CreateCall(F, {Context}); 1085 } 1086 1087 /// Check if one string is a prefix of another. 1088 /// 1089 /// @param String The string in which to look for the prefix. 1090 /// @param Prefix The prefix to look for. 1091 static bool isPrefix(std::string String, std::string Prefix) { 1092 return String.find(Prefix) == 0; 1093 } 1094 1095 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1096 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1097 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1098 1099 if (!gpu_array_is_scalar(Array)) { 1100 isl::multi_pw_aff ArrayBound = 1101 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1102 1103 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1104 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1105 1106 for (unsigned int i = 1; i < Array->n_index; i++) { 1107 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1108 isl::ast_expr Expr = Build.expr_from(Bound_I); 1109 Res = Res.mul(Expr); 1110 } 1111 1112 Value *NumElements = ExprBuilder.create(Res.release()); 1113 if (NumElements->getType() != ArraySize->getType()) 1114 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1115 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1116 } 1117 return ArraySize; 1118 } 1119 1120 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1121 if (gpu_array_is_scalar(Array)) 1122 return nullptr; 1123 1124 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1125 1126 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1127 1128 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1129 1130 for (long i = 0; i < Min.dim(isl::dim::set); i++) 1131 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1132 1133 if (Min.is_subset(ZeroSet)) { 1134 return nullptr; 1135 } 1136 1137 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1138 1139 for (long i = 0; i < Min.dim(isl::dim::set); i++) { 1140 if (i > 0) { 1141 isl::pw_aff Bound_I = 1142 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1143 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1144 Result = Result.mul(BExpr); 1145 } 1146 isl::pw_aff DimMin = Min.dim_min(i); 1147 isl::ast_expr MExpr = Build.expr_from(DimMin); 1148 Result = Result.add(MExpr); 1149 } 1150 1151 return ExprBuilder.create(Result.release()); 1152 } 1153 1154 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1155 ScopArrayInfo *ArrayInfo) { 1156 assert(PollyManagedMemory && "Only used when you wish to get a host " 1157 "pointer for sending data to the kernel, " 1158 "with managed memory"); 1159 std::map<ScopArrayInfo *, Value *>::iterator it; 1160 it = DeviceAllocations.find(ArrayInfo); 1161 assert(it != DeviceAllocations.end() && 1162 "Device array expected to be available"); 1163 return it->second; 1164 } 1165 1166 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1167 enum DataDirection Direction) { 1168 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1169 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1170 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1171 isl_id *Id = isl_ast_expr_get_id(Arg); 1172 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1173 auto ScopArray = (ScopArrayInfo *)(Array->user); 1174 1175 Value *Size = getArraySize(Array); 1176 Value *Offset = getArrayOffset(Array); 1177 Value *DevPtr = DeviceAllocations[ScopArray]; 1178 1179 Value *HostPtr; 1180 1181 if (gpu_array_is_scalar(Array)) 1182 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1183 else 1184 HostPtr = ScopArray->getBasePtr(); 1185 HostPtr = getLatestValue(HostPtr); 1186 1187 if (Offset) { 1188 HostPtr = Builder.CreatePointerCast( 1189 HostPtr, ScopArray->getElementType()->getPointerTo()); 1190 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1191 } 1192 1193 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1194 1195 if (Offset) { 1196 Size = Builder.CreateSub( 1197 Size, Builder.CreateMul( 1198 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1199 } 1200 1201 if (Direction == HOST_TO_DEVICE) 1202 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1203 else 1204 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1205 1206 isl_id_free(Id); 1207 isl_ast_expr_free(Arg); 1208 isl_ast_expr_free(Expr); 1209 isl_ast_node_free(TransferStmt); 1210 } 1211 1212 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1213 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1214 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1215 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1216 isl_id_free(Id); 1217 isl_ast_expr_free(StmtExpr); 1218 1219 const char *Str = isl_id_get_name(Id); 1220 if (!strcmp(Str, "kernel")) { 1221 createKernel(UserStmt); 1222 isl_ast_expr_free(Expr); 1223 return; 1224 } 1225 if (!strcmp(Str, "init_device")) { 1226 initializeAfterRTH(); 1227 isl_ast_node_free(UserStmt); 1228 isl_ast_expr_free(Expr); 1229 return; 1230 } 1231 if (!strcmp(Str, "clear_device")) { 1232 finalize(); 1233 isl_ast_node_free(UserStmt); 1234 isl_ast_expr_free(Expr); 1235 return; 1236 } 1237 if (isPrefix(Str, "to_device")) { 1238 if (!PollyManagedMemory) 1239 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1240 else 1241 isl_ast_node_free(UserStmt); 1242 1243 isl_ast_expr_free(Expr); 1244 return; 1245 } 1246 1247 if (isPrefix(Str, "from_device")) { 1248 if (!PollyManagedMemory) { 1249 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1250 } else { 1251 createCallSynchronizeDevice(); 1252 isl_ast_node_free(UserStmt); 1253 } 1254 isl_ast_expr_free(Expr); 1255 return; 1256 } 1257 1258 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1259 struct ppcg_kernel_stmt *KernelStmt = 1260 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1261 isl_id_free(Anno); 1262 1263 switch (KernelStmt->type) { 1264 case ppcg_kernel_domain: 1265 createScopStmt(Expr, KernelStmt); 1266 isl_ast_node_free(UserStmt); 1267 return; 1268 case ppcg_kernel_copy: 1269 createKernelCopy(KernelStmt); 1270 isl_ast_expr_free(Expr); 1271 isl_ast_node_free(UserStmt); 1272 return; 1273 case ppcg_kernel_sync: 1274 createKernelSync(); 1275 isl_ast_expr_free(Expr); 1276 isl_ast_node_free(UserStmt); 1277 return; 1278 } 1279 1280 isl_ast_expr_free(Expr); 1281 isl_ast_node_free(UserStmt); 1282 return; 1283 } 1284 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1285 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1286 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1287 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1288 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1289 Index = isl_ast_expr_address_of(Index); 1290 Value *GlobalAddr = ExprBuilder.create(Index); 1291 1292 if (KernelStmt->u.c.read) { 1293 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1294 Builder.CreateStore(Load, LocalAddr); 1295 } else { 1296 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1297 Builder.CreateStore(Load, GlobalAddr); 1298 } 1299 } 1300 1301 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1302 ppcg_kernel_stmt *KernelStmt) { 1303 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1304 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1305 1306 LoopToScevMapT LTS; 1307 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1308 1309 createSubstitutions(Expr, Stmt, LTS); 1310 1311 if (Stmt->isBlockStmt()) 1312 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1313 else 1314 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1315 } 1316 1317 void GPUNodeBuilder::createKernelSync() { 1318 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1319 const char *SpirName = "__gen_ocl_barrier_global"; 1320 1321 Function *Sync; 1322 1323 switch (Arch) { 1324 case GPUArch::SPIR64: 1325 case GPUArch::SPIR32: 1326 Sync = M->getFunction(SpirName); 1327 1328 // If Sync is not available, declare it. 1329 if (!Sync) { 1330 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1331 std::vector<Type *> Args; 1332 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1333 Sync = Function::Create(Ty, Linkage, SpirName, M); 1334 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1335 } 1336 break; 1337 case GPUArch::NVPTX64: 1338 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1339 break; 1340 } 1341 1342 Builder.CreateCall(Sync, {}); 1343 } 1344 1345 /// Collect llvm::Values referenced from @p Node 1346 /// 1347 /// This function only applies to isl_ast_nodes that are user_nodes referring 1348 /// to a ScopStmt. All other node types are ignore. 1349 /// 1350 /// @param Node The node to collect references for. 1351 /// @param User A user pointer used as storage for the data that is collected. 1352 /// 1353 /// @returns isl_bool_true if data could be collected successfully. 1354 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1355 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1356 return isl_bool_true; 1357 1358 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1359 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1360 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1361 const char *Str = isl_id_get_name(Id); 1362 isl_id_free(Id); 1363 isl_ast_expr_free(StmtExpr); 1364 isl_ast_expr_free(Expr); 1365 1366 if (!isPrefix(Str, "Stmt")) 1367 return isl_bool_true; 1368 1369 Id = isl_ast_node_get_annotation(Node); 1370 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1371 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1372 isl_id_free(Id); 1373 1374 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1375 1376 return isl_bool_true; 1377 } 1378 1379 /// A list of functions that are available in NVIDIA's libdevice. 1380 const std::set<std::string> CUDALibDeviceFunctions = { 1381 "exp", "expf", "expl", "cos", "cosf", 1382 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"}; 1383 1384 /// Return the corresponding CUDA libdevice function name for @p F. 1385 /// 1386 /// Return "" if we are not compiling for CUDA. 1387 std::string getCUDALibDeviceFuntion(Function *F) { 1388 if (CUDALibDeviceFunctions.count(F->getName())) 1389 return std::string("__nv_") + std::string(F->getName()); 1390 1391 return ""; 1392 } 1393 1394 /// Check if F is a function that we can code-generate in a GPU kernel. 1395 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1396 assert(F && "F is an invalid pointer"); 1397 // We string compare against the name of the function to allow 1398 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1399 // "llvm.copysign". 1400 const StringRef Name = F->getName(); 1401 1402 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1403 return true; 1404 1405 return F->isIntrinsic() && 1406 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1407 Name.startswith("llvm.copysign")); 1408 } 1409 1410 /// Do not take `Function` as a subtree value. 1411 /// 1412 /// We try to take the reference of all subtree values and pass them along 1413 /// to the kernel from the host. Taking an address of any function and 1414 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1415 /// `Function`s. 1416 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1417 1418 /// Return `Function`s from `RawSubtreeValues`. 1419 static SetVector<Function *> 1420 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1421 bool AllowCUDALibDevice) { 1422 SetVector<Function *> SubtreeFunctions; 1423 for (Value *It : RawSubtreeValues) { 1424 Function *F = dyn_cast<Function>(It); 1425 if (F) { 1426 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1427 "Code should have bailed out by " 1428 "this point if an invalid function " 1429 "were present in a kernel."); 1430 SubtreeFunctions.insert(F); 1431 } 1432 } 1433 return SubtreeFunctions; 1434 } 1435 1436 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 1437 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1438 SetVector<Value *> SubtreeValues; 1439 SetVector<const SCEV *> SCEVs; 1440 SetVector<const Loop *> Loops; 1441 SubtreeReferences References = { 1442 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1443 1444 for (const auto &I : IDToValue) 1445 SubtreeValues.insert(I.second); 1446 1447 // NOTE: this is populated in IslNodeBuilder::addParameters 1448 // See [Code generation of induction variables of loops outside Scops]. 1449 for (const auto &I : OutsideLoopIterations) 1450 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1451 1452 isl_ast_node_foreach_descendant_top_down( 1453 Kernel->tree, collectReferencesInGPUStmt, &References); 1454 1455 for (const SCEV *Expr : SCEVs) { 1456 findValues(Expr, SE, SubtreeValues); 1457 findLoops(Expr, Loops); 1458 } 1459 1460 Loops.remove_if([this](const Loop *L) { 1461 return S.contains(L) || L->contains(S.getEntry()); 1462 }); 1463 1464 for (auto &SAI : S.arrays()) 1465 SubtreeValues.remove(SAI->getBasePtr()); 1466 1467 isl_space *Space = S.getParamSpace().release(); 1468 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1469 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1470 assert(IDToValue.count(Id)); 1471 Value *Val = IDToValue[Id]; 1472 SubtreeValues.remove(Val); 1473 isl_id_free(Id); 1474 } 1475 isl_space_free(Space); 1476 1477 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1478 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1479 assert(IDToValue.count(Id)); 1480 Value *Val = IDToValue[Id]; 1481 SubtreeValues.remove(Val); 1482 isl_id_free(Id); 1483 } 1484 1485 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1486 // SubtreeValues. This is important, because we should not lose any 1487 // SubtreeValues in the process of constructing the 1488 // "ValidSubtree{Values, Functions} sets. Nor should the set 1489 // ValidSubtree{Values, Functions} have any common element. 1490 auto ValidSubtreeValuesIt = 1491 make_filter_range(SubtreeValues, isValidSubtreeValue); 1492 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1493 ValidSubtreeValuesIt.end()); 1494 1495 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1496 1497 SetVector<Function *> ValidSubtreeFunctions( 1498 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1499 1500 // @see IslNodeBuilder::getReferencesInSubtree 1501 SetVector<Value *> ReplacedValues; 1502 for (Value *V : ValidSubtreeValues) { 1503 auto It = ValueMap.find(V); 1504 if (It == ValueMap.end()) 1505 ReplacedValues.insert(V); 1506 else 1507 ReplacedValues.insert(It->second); 1508 } 1509 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops); 1510 } 1511 1512 void GPUNodeBuilder::clearDominators(Function *F) { 1513 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1514 std::vector<BasicBlock *> Nodes; 1515 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1516 Nodes.push_back(I->getBlock()); 1517 1518 for (BasicBlock *BB : Nodes) 1519 DT.eraseNode(BB); 1520 } 1521 1522 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1523 for (BasicBlock &BB : *F) { 1524 Loop *L = LI.getLoopFor(&BB); 1525 if (L) 1526 SE.forgetLoop(L); 1527 } 1528 } 1529 1530 void GPUNodeBuilder::clearLoops(Function *F) { 1531 for (BasicBlock &BB : *F) { 1532 Loop *L = LI.getLoopFor(&BB); 1533 if (L) 1534 SE.forgetLoop(L); 1535 LI.removeBlock(&BB); 1536 } 1537 } 1538 1539 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1540 std::vector<Value *> Sizes; 1541 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1542 1543 isl::multi_pw_aff GridSizePwAffs = 1544 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1545 for (long i = 0; i < Kernel->n_grid; i++) { 1546 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1547 isl::ast_expr GridSize = Context.expr_from(Size); 1548 Value *Res = ExprBuilder.create(GridSize.release()); 1549 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1550 Sizes.push_back(Res); 1551 } 1552 1553 for (long i = Kernel->n_grid; i < 3; i++) 1554 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1555 1556 return std::make_tuple(Sizes[0], Sizes[1]); 1557 } 1558 1559 std::tuple<Value *, Value *, Value *> 1560 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1561 std::vector<Value *> Sizes; 1562 1563 for (long i = 0; i < Kernel->n_block; i++) { 1564 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1565 Sizes.push_back(Res); 1566 } 1567 1568 for (long i = Kernel->n_block; i < 3; i++) 1569 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1570 1571 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1572 } 1573 1574 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1575 Instruction *Param, int Index) { 1576 Value *Slot = Builder.CreateGEP( 1577 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1578 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1579 Builder.CreateStore(ParamTyped, Slot); 1580 } 1581 1582 Value * 1583 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1584 SetVector<Value *> SubtreeValues) { 1585 const int NumArgs = F->arg_size(); 1586 std::vector<int> ArgSizes(NumArgs); 1587 1588 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1589 1590 BasicBlock *EntryBlock = 1591 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1592 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1593 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1594 Instruction *Parameters = new AllocaInst( 1595 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1596 1597 int Index = 0; 1598 for (long i = 0; i < Prog->n_array; i++) { 1599 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1600 continue; 1601 1602 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1603 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1604 1605 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1606 1607 Value *DevArray = nullptr; 1608 if (PollyManagedMemory) { 1609 DevArray = getManagedDeviceArray(&Prog->array[i], 1610 const_cast<ScopArrayInfo *>(SAI)); 1611 } else { 1612 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1613 DevArray = createCallGetDevicePtr(DevArray); 1614 } 1615 assert(DevArray != nullptr && "Array to be offloaded to device not " 1616 "initialized"); 1617 Value *Offset = getArrayOffset(&Prog->array[i]); 1618 1619 if (Offset) { 1620 DevArray = Builder.CreatePointerCast( 1621 DevArray, SAI->getElementType()->getPointerTo()); 1622 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1623 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1624 } 1625 Value *Slot = Builder.CreateGEP( 1626 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1627 1628 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1629 Value *ValPtr = nullptr; 1630 if (PollyManagedMemory) 1631 ValPtr = DevArray; 1632 else 1633 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1634 1635 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1636 " to be stored into Parameters"); 1637 Value *ValPtrCast = 1638 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1639 Builder.CreateStore(ValPtrCast, Slot); 1640 } else { 1641 Instruction *Param = 1642 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1643 Launch + "_param_" + std::to_string(Index), 1644 EntryBlock->getTerminator()); 1645 Builder.CreateStore(DevArray, Param); 1646 Value *ParamTyped = 1647 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1648 Builder.CreateStore(ParamTyped, Slot); 1649 } 1650 Index++; 1651 } 1652 1653 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1654 1655 for (long i = 0; i < NumHostIters; i++) { 1656 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1657 Value *Val = IDToValue[Id]; 1658 isl_id_free(Id); 1659 1660 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1661 1662 Instruction *Param = 1663 new AllocaInst(Val->getType(), AddressSpace, 1664 Launch + "_param_" + std::to_string(Index), 1665 EntryBlock->getTerminator()); 1666 Builder.CreateStore(Val, Param); 1667 insertStoreParameter(Parameters, Param, Index); 1668 Index++; 1669 } 1670 1671 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1672 1673 for (long i = 0; i < NumVars; i++) { 1674 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1675 Value *Val = IDToValue[Id]; 1676 if (ValueMap.count(Val)) 1677 Val = ValueMap[Val]; 1678 isl_id_free(Id); 1679 1680 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1681 1682 Instruction *Param = 1683 new AllocaInst(Val->getType(), AddressSpace, 1684 Launch + "_param_" + std::to_string(Index), 1685 EntryBlock->getTerminator()); 1686 Builder.CreateStore(Val, Param); 1687 insertStoreParameter(Parameters, Param, Index); 1688 Index++; 1689 } 1690 1691 for (auto Val : SubtreeValues) { 1692 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1693 1694 Instruction *Param = 1695 new AllocaInst(Val->getType(), AddressSpace, 1696 Launch + "_param_" + std::to_string(Index), 1697 EntryBlock->getTerminator()); 1698 Builder.CreateStore(Val, Param); 1699 insertStoreParameter(Parameters, Param, Index); 1700 Index++; 1701 } 1702 1703 for (int i = 0; i < NumArgs; i++) { 1704 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1705 Instruction *Param = 1706 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1707 Launch + "_param_size_" + std::to_string(i), 1708 EntryBlock->getTerminator()); 1709 Builder.CreateStore(Val, Param); 1710 insertStoreParameter(Parameters, Param, Index); 1711 Index++; 1712 } 1713 1714 auto Location = EntryBlock->getTerminator(); 1715 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1716 Launch + "_params_i8ptr", Location); 1717 } 1718 1719 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1720 SetVector<Function *> SubtreeFunctions) { 1721 for (auto Fn : SubtreeFunctions) { 1722 const std::string ClonedFnName = Fn->getName(); 1723 Function *Clone = GPUModule->getFunction(ClonedFnName); 1724 if (!Clone) 1725 Clone = 1726 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1727 ClonedFnName, GPUModule.get()); 1728 assert(Clone && "Expected cloned function to be initialized."); 1729 assert(ValueMap.find(Fn) == ValueMap.end() && 1730 "Fn already present in ValueMap"); 1731 ValueMap[Fn] = Clone; 1732 } 1733 } 1734 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1735 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1736 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1737 isl_id_free(Id); 1738 isl_ast_node_free(KernelStmt); 1739 1740 if (Kernel->n_grid > 1) 1741 DeepestParallel = 1742 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1743 else 1744 DeepestSequential = 1745 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1746 1747 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1748 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1749 1750 SetVector<Value *> SubtreeValues; 1751 SetVector<Function *> SubtreeFunctions; 1752 SetVector<const Loop *> Loops; 1753 std::tie(SubtreeValues, SubtreeFunctions, Loops) = 1754 getReferencesInKernel(Kernel); 1755 1756 assert(Kernel->tree && "Device AST of kernel node is empty"); 1757 1758 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1759 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1760 ValueMapT HostValueMap = ValueMap; 1761 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1762 ScalarMap.clear(); 1763 1764 // Create for all loops we depend on values that contain the current loop 1765 // iteration. These values are necessary to generate code for SCEVs that 1766 // depend on such loops. As a result we need to pass them to the subfunction. 1767 for (const Loop *L : Loops) { 1768 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1769 SE.getUnknown(Builder.getInt64(1)), 1770 L, SCEV::FlagAnyWrap); 1771 Value *V = generateSCEV(OuterLIV); 1772 OutsideLoopIterations[L] = SE.getUnknown(V); 1773 SubtreeValues.insert(V); 1774 } 1775 1776 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1777 setupKernelSubtreeFunctions(SubtreeFunctions); 1778 1779 create(isl_ast_node_copy(Kernel->tree)); 1780 1781 finalizeKernelArguments(Kernel); 1782 Function *F = Builder.GetInsertBlock()->getParent(); 1783 if (Arch == GPUArch::NVPTX64) 1784 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1785 clearDominators(F); 1786 clearScalarEvolution(F); 1787 clearLoops(F); 1788 1789 IDToValue = HostIDs; 1790 1791 ValueMap = std::move(HostValueMap); 1792 ScalarMap = std::move(HostScalarMap); 1793 EscapeMap.clear(); 1794 IDToSAI.clear(); 1795 Annotator.resetAlternativeAliasBases(); 1796 for (auto &BasePtr : LocalArrays) 1797 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1798 LocalArrays.clear(); 1799 1800 std::string ASMString = finalizeKernelFunction(); 1801 Builder.SetInsertPoint(&HostInsertPoint); 1802 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1803 1804 std::string Name = getKernelFuncName(Kernel->id); 1805 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1806 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1807 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1808 1809 Value *GridDimX, *GridDimY; 1810 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1811 1812 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1813 BlockDimZ, Parameters); 1814 createCallFreeKernel(GPUKernel); 1815 1816 for (auto Id : KernelIds) 1817 isl_id_free(Id); 1818 1819 KernelIds.clear(); 1820 } 1821 1822 /// Compute the DataLayout string for the NVPTX backend. 1823 /// 1824 /// @param is64Bit Are we looking for a 64 bit architecture? 1825 static std::string computeNVPTXDataLayout(bool is64Bit) { 1826 std::string Ret = ""; 1827 1828 if (!is64Bit) { 1829 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1830 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1831 "64-v128:128:128-n16:32:64"; 1832 } else { 1833 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1834 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1835 "64-v128:128:128-n16:32:64"; 1836 } 1837 1838 return Ret; 1839 } 1840 1841 /// Compute the DataLayout string for a SPIR kernel. 1842 /// 1843 /// @param is64Bit Are we looking for a 64 bit architecture? 1844 static std::string computeSPIRDataLayout(bool is64Bit) { 1845 std::string Ret = ""; 1846 1847 if (!is64Bit) { 1848 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1849 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1850 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1851 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1852 } else { 1853 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1854 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1855 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1856 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1857 } 1858 1859 return Ret; 1860 } 1861 1862 Function * 1863 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1864 SetVector<Value *> &SubtreeValues) { 1865 std::vector<Type *> Args; 1866 std::string Identifier = getKernelFuncName(Kernel->id); 1867 1868 std::vector<Metadata *> MemoryType; 1869 1870 for (long i = 0; i < Prog->n_array; i++) { 1871 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1872 continue; 1873 1874 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1875 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1876 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1877 Args.push_back(SAI->getElementType()); 1878 MemoryType.push_back( 1879 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1880 } else { 1881 static const int UseGlobalMemory = 1; 1882 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1883 MemoryType.push_back( 1884 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1885 } 1886 } 1887 1888 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1889 1890 for (long i = 0; i < NumHostIters; i++) { 1891 Args.push_back(Builder.getInt64Ty()); 1892 MemoryType.push_back( 1893 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1894 } 1895 1896 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1897 1898 for (long i = 0; i < NumVars; i++) { 1899 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1900 Value *Val = IDToValue[Id]; 1901 isl_id_free(Id); 1902 Args.push_back(Val->getType()); 1903 MemoryType.push_back( 1904 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1905 } 1906 1907 for (auto *V : SubtreeValues) { 1908 Args.push_back(V->getType()); 1909 MemoryType.push_back( 1910 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1911 } 1912 1913 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1914 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1915 GPUModule.get()); 1916 1917 std::vector<Metadata *> EmptyStrings; 1918 1919 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1920 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1921 } 1922 1923 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1924 FN->setMetadata("kernel_arg_addr_space", 1925 MDNode::get(FN->getContext(), MemoryType)); 1926 FN->setMetadata("kernel_arg_name", 1927 MDNode::get(FN->getContext(), EmptyStrings)); 1928 FN->setMetadata("kernel_arg_access_qual", 1929 MDNode::get(FN->getContext(), EmptyStrings)); 1930 FN->setMetadata("kernel_arg_type", 1931 MDNode::get(FN->getContext(), EmptyStrings)); 1932 FN->setMetadata("kernel_arg_type_qual", 1933 MDNode::get(FN->getContext(), EmptyStrings)); 1934 FN->setMetadata("kernel_arg_base_type", 1935 MDNode::get(FN->getContext(), EmptyStrings)); 1936 } 1937 1938 switch (Arch) { 1939 case GPUArch::NVPTX64: 1940 FN->setCallingConv(CallingConv::PTX_Kernel); 1941 break; 1942 case GPUArch::SPIR32: 1943 case GPUArch::SPIR64: 1944 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1945 break; 1946 } 1947 1948 auto Arg = FN->arg_begin(); 1949 for (long i = 0; i < Kernel->n_array; i++) { 1950 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1951 continue; 1952 1953 Arg->setName(Kernel->array[i].array->name); 1954 1955 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1956 const ScopArrayInfo *SAI = 1957 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1958 Type *EleTy = SAI->getElementType(); 1959 Value *Val = &*Arg; 1960 SmallVector<const SCEV *, 4> Sizes; 1961 isl_ast_build *Build = 1962 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1963 Sizes.push_back(nullptr); 1964 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1965 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1966 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1967 auto V = ExprBuilder.create(DimSize); 1968 Sizes.push_back(SE.getSCEV(V)); 1969 } 1970 const ScopArrayInfo *SAIRep = 1971 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1972 LocalArrays.push_back(Val); 1973 1974 isl_ast_build_free(Build); 1975 KernelIds.push_back(Id); 1976 IDToSAI[Id] = SAIRep; 1977 Arg++; 1978 } 1979 1980 for (long i = 0; i < NumHostIters; i++) { 1981 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1982 Arg->setName(isl_id_get_name(Id)); 1983 IDToValue[Id] = &*Arg; 1984 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1985 Arg++; 1986 } 1987 1988 for (long i = 0; i < NumVars; i++) { 1989 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1990 Arg->setName(isl_id_get_name(Id)); 1991 Value *Val = IDToValue[Id]; 1992 ValueMap[Val] = &*Arg; 1993 IDToValue[Id] = &*Arg; 1994 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1995 Arg++; 1996 } 1997 1998 for (auto *V : SubtreeValues) { 1999 Arg->setName(V->getName()); 2000 ValueMap[V] = &*Arg; 2001 Arg++; 2002 } 2003 2004 return FN; 2005 } 2006 2007 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2008 Intrinsic::ID IntrinsicsBID[2]; 2009 Intrinsic::ID IntrinsicsTID[3]; 2010 2011 switch (Arch) { 2012 case GPUArch::SPIR64: 2013 case GPUArch::SPIR32: 2014 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2015 case GPUArch::NVPTX64: 2016 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2017 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2018 2019 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2020 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2021 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2022 break; 2023 } 2024 2025 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2026 std::string Name = isl_id_get_name(Id); 2027 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2028 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2029 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2030 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2031 IDToValue[Id] = Val; 2032 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2033 }; 2034 2035 for (int i = 0; i < Kernel->n_grid; ++i) { 2036 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2037 addId(Id, IntrinsicsBID[i]); 2038 } 2039 2040 for (int i = 0; i < Kernel->n_block; ++i) { 2041 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2042 addId(Id, IntrinsicsTID[i]); 2043 } 2044 } 2045 2046 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2047 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2048 "__gen_ocl_get_group_id1", 2049 "__gen_ocl_get_group_id2"}; 2050 2051 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2052 "__gen_ocl_get_local_id1", 2053 "__gen_ocl_get_local_id2"}; 2054 2055 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2056 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2057 Function *FN = M->getFunction(Name); 2058 2059 // If FN is not available, declare it. 2060 if (!FN) { 2061 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2062 std::vector<Type *> Args; 2063 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2064 FN = Function::Create(Ty, Linkage, Name, M); 2065 FN->setCallingConv(CallingConv::SPIR_FUNC); 2066 } 2067 2068 Value *Val = Builder.CreateCall(FN, {}); 2069 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2070 IDToValue[Id] = Val; 2071 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2072 }; 2073 2074 for (int i = 0; i < Kernel->n_grid; ++i) 2075 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2076 2077 for (int i = 0; i < Kernel->n_block; ++i) 2078 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2079 } 2080 2081 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2082 auto Arg = FN->arg_begin(); 2083 for (long i = 0; i < Kernel->n_array; i++) { 2084 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2085 continue; 2086 2087 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2088 const ScopArrayInfo *SAI = 2089 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2090 isl_id_free(Id); 2091 2092 if (SAI->getNumberOfDimensions() > 0) { 2093 Arg++; 2094 continue; 2095 } 2096 2097 Value *Val = &*Arg; 2098 2099 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2100 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2101 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2102 Val = Builder.CreateLoad(TypedArgPtr); 2103 } 2104 2105 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2106 Builder.CreateStore(Val, Alloca); 2107 2108 Arg++; 2109 } 2110 } 2111 2112 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2113 auto *FN = Builder.GetInsertBlock()->getParent(); 2114 auto Arg = FN->arg_begin(); 2115 2116 bool StoredScalar = false; 2117 for (long i = 0; i < Kernel->n_array; i++) { 2118 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2119 continue; 2120 2121 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2122 const ScopArrayInfo *SAI = 2123 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2124 isl_id_free(Id); 2125 2126 if (SAI->getNumberOfDimensions() > 0) { 2127 Arg++; 2128 continue; 2129 } 2130 2131 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2132 Arg++; 2133 continue; 2134 } 2135 2136 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2137 Value *ArgPtr = &*Arg; 2138 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2139 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2140 Value *Val = Builder.CreateLoad(Alloca); 2141 Builder.CreateStore(Val, TypedArgPtr); 2142 StoredScalar = true; 2143 2144 Arg++; 2145 } 2146 2147 if (StoredScalar) { 2148 /// In case more than one thread contains scalar stores, the generated 2149 /// code might be incorrect, if we only store at the end of the kernel. 2150 /// To support this case we need to store these scalars back at each 2151 /// memory store or at least before each kernel barrier. 2152 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2153 BuildSuccessful = 0; 2154 DEBUG( 2155 dbgs() << getUniqueScopName(&S) 2156 << " has a store to a scalar value that" 2157 " would be undefined to run in parallel. Bailing out.\n";); 2158 } 2159 } 2160 } 2161 2162 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2163 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2164 2165 for (int i = 0; i < Kernel->n_var; ++i) { 2166 struct ppcg_kernel_var &Var = Kernel->var[i]; 2167 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2168 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2169 2170 Type *ArrayTy = EleTy; 2171 SmallVector<const SCEV *, 4> Sizes; 2172 2173 Sizes.push_back(nullptr); 2174 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2175 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2176 long Bound = isl_val_get_num_si(Val); 2177 isl_val_free(Val); 2178 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2179 } 2180 2181 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2182 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2183 long Bound = isl_val_get_num_si(Val); 2184 isl_val_free(Val); 2185 ArrayTy = ArrayType::get(ArrayTy, Bound); 2186 } 2187 2188 const ScopArrayInfo *SAI; 2189 Value *Allocation; 2190 if (Var.type == ppcg_access_shared) { 2191 auto GlobalVar = new GlobalVariable( 2192 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2193 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2194 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2195 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2196 2197 Allocation = GlobalVar; 2198 } else if (Var.type == ppcg_access_private) { 2199 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2200 } else { 2201 llvm_unreachable("unknown variable type"); 2202 } 2203 SAI = 2204 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2205 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2206 IDToValue[Id] = Allocation; 2207 LocalArrays.push_back(Allocation); 2208 KernelIds.push_back(Id); 2209 IDToSAI[Id] = SAI; 2210 } 2211 } 2212 2213 void GPUNodeBuilder::createKernelFunction( 2214 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2215 SetVector<Function *> &SubtreeFunctions) { 2216 std::string Identifier = getKernelFuncName(Kernel->id); 2217 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2218 2219 switch (Arch) { 2220 case GPUArch::NVPTX64: 2221 if (Runtime == GPURuntime::CUDA) 2222 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2223 else if (Runtime == GPURuntime::OpenCL) 2224 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2225 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2226 break; 2227 case GPUArch::SPIR32: 2228 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2229 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2230 break; 2231 case GPUArch::SPIR64: 2232 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2233 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2234 break; 2235 } 2236 2237 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2238 2239 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2240 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2241 2242 DT.addNewBlock(EntryBlock, PrevBlock); 2243 2244 Builder.SetInsertPoint(EntryBlock); 2245 Builder.CreateRetVoid(); 2246 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2247 2248 ScopDetection::markFunctionAsInvalid(FN); 2249 2250 prepareKernelArguments(Kernel, FN); 2251 createKernelVariables(Kernel, FN); 2252 2253 switch (Arch) { 2254 case GPUArch::NVPTX64: 2255 insertKernelIntrinsics(Kernel); 2256 break; 2257 case GPUArch::SPIR32: 2258 case GPUArch::SPIR64: 2259 insertKernelCallsSPIR(Kernel); 2260 break; 2261 } 2262 } 2263 2264 std::string GPUNodeBuilder::createKernelASM() { 2265 llvm::Triple GPUTriple; 2266 2267 switch (Arch) { 2268 case GPUArch::NVPTX64: 2269 switch (Runtime) { 2270 case GPURuntime::CUDA: 2271 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2272 break; 2273 case GPURuntime::OpenCL: 2274 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2275 break; 2276 } 2277 break; 2278 case GPUArch::SPIR64: 2279 case GPUArch::SPIR32: 2280 std::string SPIRAssembly; 2281 raw_string_ostream IROstream(SPIRAssembly); 2282 IROstream << *GPUModule; 2283 IROstream.flush(); 2284 return SPIRAssembly; 2285 } 2286 2287 std::string ErrMsg; 2288 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2289 2290 if (!GPUTarget) { 2291 errs() << ErrMsg << "\n"; 2292 return ""; 2293 } 2294 2295 TargetOptions Options; 2296 Options.UnsafeFPMath = FastMath; 2297 2298 std::string subtarget; 2299 2300 switch (Arch) { 2301 case GPUArch::NVPTX64: 2302 subtarget = CudaVersion; 2303 break; 2304 case GPUArch::SPIR32: 2305 case GPUArch::SPIR64: 2306 llvm_unreachable("No subtarget for SPIR architecture"); 2307 } 2308 2309 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2310 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2311 2312 SmallString<0> ASMString; 2313 raw_svector_ostream ASMStream(ASMString); 2314 llvm::legacy::PassManager PM; 2315 2316 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2317 2318 if (TargetM->addPassesToEmitFile( 2319 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2320 errs() << "The target does not support generation of this file type!\n"; 2321 return ""; 2322 } 2323 2324 PM.run(*GPUModule); 2325 2326 return ASMStream.str(); 2327 } 2328 2329 bool GPUNodeBuilder::requiresCUDALibDevice() { 2330 bool RequiresLibDevice = false; 2331 for (Function &F : GPUModule->functions()) { 2332 if (!F.isDeclaration()) 2333 continue; 2334 2335 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2336 if (CUDALibDeviceFunc.length() != 0) { 2337 F.setName(CUDALibDeviceFunc); 2338 RequiresLibDevice = true; 2339 } 2340 } 2341 2342 return RequiresLibDevice; 2343 } 2344 2345 void GPUNodeBuilder::addCUDALibDevice() { 2346 if (Arch != GPUArch::NVPTX64) 2347 return; 2348 2349 if (requiresCUDALibDevice()) { 2350 SMDiagnostic Error; 2351 2352 errs() << CUDALibDevice << "\n"; 2353 auto LibDeviceModule = 2354 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2355 2356 if (!LibDeviceModule) { 2357 BuildSuccessful = false; 2358 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2359 "kernel generation. Please set -polly-acc-libdevice " 2360 "accordingly.\n"); 2361 return; 2362 } 2363 2364 Linker L(*GPUModule); 2365 2366 // Set an nvptx64 target triple to avoid linker warnings. The original 2367 // triple of the libdevice files are nvptx-unknown-unknown. 2368 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2369 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2370 } 2371 } 2372 2373 std::string GPUNodeBuilder::finalizeKernelFunction() { 2374 2375 if (verifyModule(*GPUModule)) { 2376 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2377 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2378 DEBUG(dbgs() << "verifyModule Error:\n"; 2379 verifyModule(*GPUModule, &dbgs());); 2380 2381 if (FailOnVerifyModuleFailure) 2382 llvm_unreachable("VerifyModule failed."); 2383 2384 BuildSuccessful = false; 2385 return ""; 2386 } 2387 2388 addCUDALibDevice(); 2389 2390 if (DumpKernelIR) 2391 outs() << *GPUModule << "\n"; 2392 2393 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2394 // Optimize module. 2395 llvm::legacy::PassManager OptPasses; 2396 PassManagerBuilder PassBuilder; 2397 PassBuilder.OptLevel = 3; 2398 PassBuilder.SizeLevel = 0; 2399 PassBuilder.populateModulePassManager(OptPasses); 2400 OptPasses.run(*GPUModule); 2401 } 2402 2403 std::string Assembly = createKernelASM(); 2404 2405 if (DumpKernelASM) 2406 outs() << Assembly << "\n"; 2407 2408 GPUModule.release(); 2409 KernelIDs.clear(); 2410 2411 return Assembly; 2412 } 2413 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2414 /// @param PwAffs The list of piecewise affine functions to create an 2415 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2416 /// all the isl_pw_aff are used up by this function. 2417 /// 2418 /// @returns The `isl_pw_aff_list`. 2419 __isl_give isl_pw_aff_list * 2420 createPwAffList(isl_ctx *Context, 2421 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2422 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2423 2424 for (unsigned i = 0; i < PwAffs.size(); i++) { 2425 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2426 } 2427 return List; 2428 } 2429 2430 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2431 /// 2432 /// We loop over all `pw_aff` and align all of their spaces together to 2433 /// create a common space for all the `pw_aff`. This common space is the 2434 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2435 /// with the given `SeedSpace`. 2436 /// @param PwAffs The list of piecewise affine functions we want to align. 2437 /// This is an rvalue reference because the entire vector is 2438 /// used up by the end of the operation. 2439 /// @param SeedSpace The space to start the alignment process with. 2440 /// @returns A std::pair, whose first element is the aligned space, 2441 /// whose second element is the vector of aligned piecewise 2442 /// affines. 2443 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2444 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2445 __isl_take isl_space *SeedSpace) { 2446 assert(SeedSpace && "Invalid seed space given."); 2447 2448 isl_space *AlignSpace = SeedSpace; 2449 for (isl_pw_aff *PwAff : PwAffs) { 2450 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2451 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2452 } 2453 std::vector<isl_pw_aff *> AdjustedPwAffs; 2454 2455 for (unsigned i = 0; i < PwAffs.size(); i++) { 2456 isl_pw_aff *Adjusted = PwAffs[i]; 2457 assert(Adjusted && "Invalid pw_aff given."); 2458 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2459 AdjustedPwAffs.push_back(Adjusted); 2460 } 2461 return std::make_pair(AlignSpace, AdjustedPwAffs); 2462 } 2463 2464 namespace { 2465 class PPCGCodeGeneration : public ScopPass { 2466 public: 2467 static char ID; 2468 2469 GPURuntime Runtime = GPURuntime::CUDA; 2470 2471 GPUArch Architecture = GPUArch::NVPTX64; 2472 2473 /// The scop that is currently processed. 2474 Scop *S; 2475 2476 LoopInfo *LI; 2477 DominatorTree *DT; 2478 ScalarEvolution *SE; 2479 const DataLayout *DL; 2480 RegionInfo *RI; 2481 2482 PPCGCodeGeneration() : ScopPass(ID) {} 2483 2484 /// Construct compilation options for PPCG. 2485 /// 2486 /// @returns The compilation options. 2487 ppcg_options *createPPCGOptions() { 2488 auto DebugOptions = 2489 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2490 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2491 2492 DebugOptions->dump_schedule_constraints = false; 2493 DebugOptions->dump_schedule = false; 2494 DebugOptions->dump_final_schedule = false; 2495 DebugOptions->dump_sizes = false; 2496 DebugOptions->verbose = false; 2497 2498 Options->debug = DebugOptions; 2499 2500 Options->group_chains = false; 2501 Options->reschedule = true; 2502 Options->scale_tile_loops = false; 2503 Options->wrap = false; 2504 2505 Options->non_negative_parameters = false; 2506 Options->ctx = nullptr; 2507 Options->sizes = nullptr; 2508 2509 Options->tile = true; 2510 Options->tile_size = 32; 2511 2512 Options->isolate_full_tiles = false; 2513 2514 Options->use_private_memory = PrivateMemory; 2515 Options->use_shared_memory = SharedMemory; 2516 Options->max_shared_memory = 48 * 1024; 2517 2518 Options->target = PPCG_TARGET_CUDA; 2519 Options->openmp = false; 2520 Options->linearize_device_arrays = true; 2521 Options->allow_gnu_extensions = false; 2522 2523 Options->unroll_copy_shared = false; 2524 Options->unroll_gpu_tile = false; 2525 Options->live_range_reordering = true; 2526 2527 Options->live_range_reordering = true; 2528 Options->hybrid = false; 2529 Options->opencl_compiler_options = nullptr; 2530 Options->opencl_use_gpu = false; 2531 Options->opencl_n_include_file = 0; 2532 Options->opencl_include_files = nullptr; 2533 Options->opencl_print_kernel_types = false; 2534 Options->opencl_embed_kernel_code = false; 2535 2536 Options->save_schedule_file = nullptr; 2537 Options->load_schedule_file = nullptr; 2538 2539 return Options; 2540 } 2541 2542 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2543 /// 2544 /// Instead of a normal access of the form: 2545 /// 2546 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2547 /// 2548 /// a tagged access has the form 2549 /// 2550 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2551 /// 2552 /// where 'id' is an additional space that references the memory access that 2553 /// triggered the access. 2554 /// 2555 /// @param AccessTy The type of the memory accesses to collect. 2556 /// 2557 /// @return The relation describing all tagged memory accesses. 2558 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2559 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2560 2561 for (auto &Stmt : *S) 2562 for (auto &Acc : Stmt) 2563 if (Acc->getType() == AccessTy) { 2564 isl_map *Relation = Acc->getAccessRelation().release(); 2565 Relation = 2566 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2567 2568 isl_space *Space = isl_map_get_space(Relation); 2569 Space = isl_space_range(Space); 2570 Space = isl_space_from_range(Space); 2571 Space = 2572 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2573 isl_map *Universe = isl_map_universe(Space); 2574 Relation = isl_map_domain_product(Relation, Universe); 2575 Accesses = isl_union_map_add_map(Accesses, Relation); 2576 } 2577 2578 return Accesses; 2579 } 2580 2581 /// Get the set of all read accesses, tagged with the access id. 2582 /// 2583 /// @see getTaggedAccesses 2584 isl_union_map *getTaggedReads() { 2585 return getTaggedAccesses(MemoryAccess::READ); 2586 } 2587 2588 /// Get the set of all may (and must) accesses, tagged with the access id. 2589 /// 2590 /// @see getTaggedAccesses 2591 isl_union_map *getTaggedMayWrites() { 2592 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2593 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2594 } 2595 2596 /// Get the set of all must accesses, tagged with the access id. 2597 /// 2598 /// @see getTaggedAccesses 2599 isl_union_map *getTaggedMustWrites() { 2600 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2601 } 2602 2603 /// Collect parameter and array names as isl_ids. 2604 /// 2605 /// To reason about the different parameters and arrays used, ppcg requires 2606 /// a list of all isl_ids in use. As PPCG traditionally performs 2607 /// source-to-source compilation each of these isl_ids is mapped to the 2608 /// expression that represents it. As we do not have a corresponding 2609 /// expression in Polly, we just map each id to a 'zero' expression to match 2610 /// the data format that ppcg expects. 2611 /// 2612 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2613 __isl_give isl_id_to_ast_expr *getNames() { 2614 auto *Names = isl_id_to_ast_expr_alloc( 2615 S->getIslCtx(), 2616 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2617 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2618 2619 for (const SCEV *P : S->parameters()) { 2620 isl_id *Id = S->getIdForParam(P).release(); 2621 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2622 } 2623 2624 for (auto &Array : S->arrays()) { 2625 auto Id = Array->getBasePtrId().release(); 2626 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2627 } 2628 2629 isl_ast_expr_free(Zero); 2630 2631 return Names; 2632 } 2633 2634 /// Create a new PPCG scop from the current scop. 2635 /// 2636 /// The PPCG scop is initialized with data from the current polly::Scop. From 2637 /// this initial data, the data-dependences in the PPCG scop are initialized. 2638 /// We do not use Polly's dependence analysis for now, to ensure we match 2639 /// the PPCG default behaviour more closely. 2640 /// 2641 /// @returns A new ppcg scop. 2642 ppcg_scop *createPPCGScop() { 2643 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2644 2645 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2646 2647 PPCGScop->options = createPPCGOptions(); 2648 // enable live range reordering 2649 PPCGScop->options->live_range_reordering = 1; 2650 2651 PPCGScop->start = 0; 2652 PPCGScop->end = 0; 2653 2654 PPCGScop->context = S->getContext().release(); 2655 PPCGScop->domain = S->getDomains().release(); 2656 // TODO: investigate this further. PPCG calls collect_call_domains. 2657 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2658 PPCGScop->tagged_reads = getTaggedReads(); 2659 PPCGScop->reads = S->getReads().release(); 2660 PPCGScop->live_in = nullptr; 2661 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2662 PPCGScop->may_writes = S->getWrites().release(); 2663 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2664 PPCGScop->must_writes = S->getMustWrites().release(); 2665 PPCGScop->live_out = nullptr; 2666 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2667 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2668 2669 PPCGScop->tagger = nullptr; 2670 PPCGScop->independence = 2671 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2672 PPCGScop->dep_flow = nullptr; 2673 PPCGScop->tagged_dep_flow = nullptr; 2674 PPCGScop->dep_false = nullptr; 2675 PPCGScop->dep_forced = nullptr; 2676 PPCGScop->dep_order = nullptr; 2677 PPCGScop->tagged_dep_order = nullptr; 2678 2679 PPCGScop->schedule = S->getScheduleTree().release(); 2680 // If we have something non-trivial to kill, add it to the schedule 2681 if (KillsInfo.KillsSchedule.get()) 2682 PPCGScop->schedule = isl_schedule_sequence( 2683 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2684 2685 PPCGScop->names = getNames(); 2686 PPCGScop->pet = nullptr; 2687 2688 compute_tagger(PPCGScop); 2689 compute_dependences(PPCGScop); 2690 eliminate_dead_code(PPCGScop); 2691 2692 return PPCGScop; 2693 } 2694 2695 /// Collect the array accesses in a statement. 2696 /// 2697 /// @param Stmt The statement for which to collect the accesses. 2698 /// 2699 /// @returns A list of array accesses. 2700 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2701 gpu_stmt_access *Accesses = nullptr; 2702 2703 for (MemoryAccess *Acc : Stmt) { 2704 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2705 Access->read = Acc->isRead(); 2706 Access->write = Acc->isWrite(); 2707 Access->access = Acc->getAccessRelation().release(); 2708 isl_space *Space = isl_map_get_space(Access->access); 2709 Space = isl_space_range(Space); 2710 Space = isl_space_from_range(Space); 2711 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2712 isl_map *Universe = isl_map_universe(Space); 2713 Access->tagged_access = 2714 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2715 Access->exact_write = !Acc->isMayWrite(); 2716 Access->ref_id = Acc->getId().release(); 2717 Access->next = Accesses; 2718 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2719 Accesses = Access; 2720 } 2721 2722 return Accesses; 2723 } 2724 2725 /// Collect the list of GPU statements. 2726 /// 2727 /// Each statement has an id, a pointer to the underlying data structure, 2728 /// as well as a list with all memory accesses. 2729 /// 2730 /// TODO: Initialize the list of memory accesses. 2731 /// 2732 /// @returns A linked-list of statements. 2733 gpu_stmt *getStatements() { 2734 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2735 std::distance(S->begin(), S->end())); 2736 2737 int i = 0; 2738 for (auto &Stmt : *S) { 2739 gpu_stmt *GPUStmt = &Stmts[i]; 2740 2741 GPUStmt->id = Stmt.getDomainId().release(); 2742 2743 // We use the pet stmt pointer to keep track of the Polly statements. 2744 GPUStmt->stmt = (pet_stmt *)&Stmt; 2745 GPUStmt->accesses = getStmtAccesses(Stmt); 2746 i++; 2747 } 2748 2749 return Stmts; 2750 } 2751 2752 /// Derive the extent of an array. 2753 /// 2754 /// The extent of an array is the set of elements that are within the 2755 /// accessed array. For the inner dimensions, the extent constraints are 2756 /// 0 and the size of the corresponding array dimension. For the first 2757 /// (outermost) dimension, the extent constraints are the minimal and maximal 2758 /// subscript value for the first dimension. 2759 /// 2760 /// @param Array The array to derive the extent for. 2761 /// 2762 /// @returns An isl_set describing the extent of the array. 2763 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2764 unsigned NumDims = Array->getNumberOfDimensions(); 2765 isl_union_map *Accesses = S->getAccesses().release(); 2766 Accesses = 2767 isl_union_map_intersect_domain(Accesses, S->getDomains().release()); 2768 Accesses = isl_union_map_detect_equalities(Accesses); 2769 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2770 AccessUSet = isl_union_set_coalesce(AccessUSet); 2771 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2772 AccessUSet = isl_union_set_coalesce(AccessUSet); 2773 2774 if (isl_union_set_is_empty(AccessUSet)) { 2775 isl_union_set_free(AccessUSet); 2776 return isl_set_empty(Array->getSpace().release()); 2777 } 2778 2779 if (Array->getNumberOfDimensions() == 0) { 2780 isl_union_set_free(AccessUSet); 2781 return isl_set_universe(Array->getSpace().release()); 2782 } 2783 2784 isl_set *AccessSet = 2785 isl_union_set_extract_set(AccessUSet, Array->getSpace().release()); 2786 2787 isl_union_set_free(AccessUSet); 2788 isl_local_space *LS = 2789 isl_local_space_from_space(Array->getSpace().release()); 2790 2791 isl_pw_aff *Val = 2792 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2793 2794 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2795 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2796 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2797 isl_pw_aff_dim(Val, isl_dim_in)); 2798 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2799 isl_pw_aff_dim(Val, isl_dim_in)); 2800 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, 2801 Array->getBasePtrId().release()); 2802 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, 2803 Array->getBasePtrId().release()); 2804 2805 isl_set *Extent = isl_set_universe(Array->getSpace().release()); 2806 2807 Extent = isl_set_intersect( 2808 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2809 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2810 2811 for (unsigned i = 1; i < NumDims; ++i) 2812 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2813 2814 for (unsigned i = 0; i < NumDims; ++i) { 2815 isl_pw_aff *PwAff = 2816 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release()); 2817 2818 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2819 // Fortran array will we have a legitimate dimension. 2820 if (!PwAff) { 2821 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2822 continue; 2823 } 2824 2825 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2826 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set, 2827 i)); 2828 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2829 isl_pw_aff_dim(Val, isl_dim_in)); 2830 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2831 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2832 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2833 Extent = isl_set_intersect(Set, Extent); 2834 } 2835 2836 return Extent; 2837 } 2838 2839 /// Derive the bounds of an array. 2840 /// 2841 /// For the first dimension we derive the bound of the array from the extent 2842 /// of this dimension. For inner dimensions we obtain their size directly from 2843 /// ScopArrayInfo. 2844 /// 2845 /// @param PPCGArray The array to compute bounds for. 2846 /// @param Array The polly array from which to take the information. 2847 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2848 std::vector<isl_pw_aff *> Bounds; 2849 2850 if (PPCGArray.n_index > 0) { 2851 if (isl_set_is_empty(PPCGArray.extent)) { 2852 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2853 isl_local_space *LS = isl_local_space_from_space( 2854 isl_space_params(isl_set_get_space(Dom))); 2855 isl_set_free(Dom); 2856 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2857 Bounds.push_back(Zero); 2858 } else { 2859 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2860 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2861 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2862 isl_set_free(Dom); 2863 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2864 isl_local_space *LS = 2865 isl_local_space_from_space(isl_set_get_space(Dom)); 2866 isl_aff *One = isl_aff_zero_on_domain(LS); 2867 One = isl_aff_add_constant_si(One, 1); 2868 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2869 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2870 Bounds.push_back(Bound); 2871 } 2872 } 2873 2874 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2875 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2876 auto LS = isl_pw_aff_get_domain_space(Bound); 2877 auto Aff = isl_multi_aff_zero(LS); 2878 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2879 Bounds.push_back(Bound); 2880 } 2881 2882 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2883 /// to have the same parameter dimensions. So, we need to align them to an 2884 /// appropriate space. 2885 /// Scop::Context is _not_ an appropriate space, because when we have 2886 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2887 /// contain all parameter dimensions. 2888 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2889 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2890 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2891 2892 isl_space *AlignSpace = nullptr; 2893 std::vector<isl_pw_aff *> AlignedBounds; 2894 std::tie(AlignSpace, AlignedBounds) = 2895 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2896 2897 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2898 2899 isl_pw_aff_list *BoundsList = 2900 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2901 2902 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2903 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2904 2905 assert(BoundsSpace && "Unable to access space of array."); 2906 assert(BoundsList && "Unable to access list of bounds."); 2907 2908 PPCGArray.bound = 2909 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2910 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2911 } 2912 2913 /// Create the arrays for @p PPCGProg. 2914 /// 2915 /// @param PPCGProg The program to compute the arrays for. 2916 void createArrays(gpu_prog *PPCGProg, 2917 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2918 int i = 0; 2919 for (auto &Array : ValidSAIs) { 2920 std::string TypeName; 2921 raw_string_ostream OS(TypeName); 2922 2923 OS << *Array->getElementType(); 2924 TypeName = OS.str(); 2925 2926 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2927 2928 PPCGArray.space = Array->getSpace().release(); 2929 PPCGArray.type = strdup(TypeName.c_str()); 2930 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 2931 PPCGArray.name = strdup(Array->getName().c_str()); 2932 PPCGArray.extent = nullptr; 2933 PPCGArray.n_index = Array->getNumberOfDimensions(); 2934 PPCGArray.extent = getExtent(Array); 2935 PPCGArray.n_ref = 0; 2936 PPCGArray.refs = nullptr; 2937 PPCGArray.accessed = true; 2938 PPCGArray.read_only_scalar = 2939 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2940 PPCGArray.has_compound_element = false; 2941 PPCGArray.local = false; 2942 PPCGArray.declare_local = false; 2943 PPCGArray.global = false; 2944 PPCGArray.linearize = false; 2945 PPCGArray.dep_order = nullptr; 2946 PPCGArray.user = Array; 2947 2948 PPCGArray.bound = nullptr; 2949 setArrayBounds(PPCGArray, Array); 2950 i++; 2951 2952 collect_references(PPCGProg, &PPCGArray); 2953 } 2954 } 2955 2956 /// Create an identity map between the arrays in the scop. 2957 /// 2958 /// @returns An identity map between the arrays in the scop. 2959 isl_union_map *getArrayIdentity() { 2960 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 2961 2962 for (auto &Array : S->arrays()) { 2963 isl_space *Space = Array->getSpace().release(); 2964 Space = isl_space_map_from_set(Space); 2965 isl_map *Identity = isl_map_identity(Space); 2966 Maps = isl_union_map_add_map(Maps, Identity); 2967 } 2968 2969 return Maps; 2970 } 2971 2972 /// Create a default-initialized PPCG GPU program. 2973 /// 2974 /// @returns A new gpu program description. 2975 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2976 2977 if (!PPCGScop) 2978 return nullptr; 2979 2980 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2981 2982 PPCGProg->ctx = S->getIslCtx(); 2983 PPCGProg->scop = PPCGScop; 2984 PPCGProg->context = isl_set_copy(PPCGScop->context); 2985 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2986 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2987 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2988 PPCGProg->tagged_must_kill = 2989 isl_union_map_copy(PPCGScop->tagged_must_kills); 2990 PPCGProg->to_inner = getArrayIdentity(); 2991 PPCGProg->to_outer = getArrayIdentity(); 2992 // TODO: verify that this assignment is correct. 2993 PPCGProg->any_to_outer = nullptr; 2994 2995 // this needs to be set when live range reordering is enabled. 2996 // NOTE: I believe that is conservatively correct. I'm not sure 2997 // what the semantics of this is. 2998 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2999 PPCGProg->array_order = 3000 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 3001 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3002 PPCGProg->stmts = getStatements(); 3003 3004 // Only consider arrays that have a non-empty extent. 3005 // Otherwise, this will cause us to consider the following kinds of 3006 // empty arrays: 3007 // 1. Invariant loads that are represented by SAI objects. 3008 // 2. Arrays with statically known zero size. 3009 auto ValidSAIsRange = 3010 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3011 return !isl::manage(getExtent(SAI)).is_empty(); 3012 }); 3013 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3014 ValidSAIsRange.end()); 3015 3016 PPCGProg->n_array = 3017 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3018 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 3019 PPCGProg->n_array); 3020 3021 createArrays(PPCGProg, ValidSAIs); 3022 3023 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3024 return PPCGProg; 3025 } 3026 3027 struct PrintGPUUserData { 3028 struct cuda_info *CudaInfo; 3029 struct gpu_prog *PPCGProg; 3030 std::vector<ppcg_kernel *> Kernels; 3031 }; 3032 3033 /// Print a user statement node in the host code. 3034 /// 3035 /// We use ppcg's printing facilities to print the actual statement and 3036 /// additionally build up a list of all kernels that are encountered in the 3037 /// host ast. 3038 /// 3039 /// @param P The printer to print to 3040 /// @param Options The printing options to use 3041 /// @param Node The node to print 3042 /// @param User A user pointer to carry additional data. This pointer is 3043 /// expected to be of type PrintGPUUserData. 3044 /// 3045 /// @returns A printer to which the output has been printed. 3046 static __isl_give isl_printer * 3047 printHostUser(__isl_take isl_printer *P, 3048 __isl_take isl_ast_print_options *Options, 3049 __isl_take isl_ast_node *Node, void *User) { 3050 auto Data = (struct PrintGPUUserData *)User; 3051 auto Id = isl_ast_node_get_annotation(Node); 3052 3053 if (Id) { 3054 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3055 3056 // If this is a user statement, format it ourselves as ppcg would 3057 // otherwise try to call pet functionality that is not available in 3058 // Polly. 3059 if (IsUser) { 3060 P = isl_printer_start_line(P); 3061 P = isl_printer_print_ast_node(P, Node); 3062 P = isl_printer_end_line(P); 3063 isl_id_free(Id); 3064 isl_ast_print_options_free(Options); 3065 return P; 3066 } 3067 3068 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3069 isl_id_free(Id); 3070 Data->Kernels.push_back(Kernel); 3071 } 3072 3073 return print_host_user(P, Options, Node, User); 3074 } 3075 3076 /// Print C code corresponding to the control flow in @p Kernel. 3077 /// 3078 /// @param Kernel The kernel to print 3079 void printKernel(ppcg_kernel *Kernel) { 3080 auto *P = isl_printer_to_str(S->getIslCtx()); 3081 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3082 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3083 P = isl_ast_node_print(Kernel->tree, P, Options); 3084 char *String = isl_printer_get_str(P); 3085 printf("%s\n", String); 3086 free(String); 3087 isl_printer_free(P); 3088 } 3089 3090 /// Print C code corresponding to the GPU code described by @p Tree. 3091 /// 3092 /// @param Tree An AST describing GPU code 3093 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3094 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3095 auto *P = isl_printer_to_str(S->getIslCtx()); 3096 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3097 3098 PrintGPUUserData Data; 3099 Data.PPCGProg = PPCGProg; 3100 3101 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3102 Options = 3103 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3104 P = isl_ast_node_print(Tree, P, Options); 3105 char *String = isl_printer_get_str(P); 3106 printf("# host\n"); 3107 printf("%s\n", String); 3108 free(String); 3109 isl_printer_free(P); 3110 3111 for (auto Kernel : Data.Kernels) { 3112 printf("# kernel%d\n", Kernel->id); 3113 printKernel(Kernel); 3114 } 3115 } 3116 3117 // Generate a GPU program using PPCG. 3118 // 3119 // GPU mapping consists of multiple steps: 3120 // 3121 // 1) Compute new schedule for the program. 3122 // 2) Map schedule to GPU (TODO) 3123 // 3) Generate code for new schedule (TODO) 3124 // 3125 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3126 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3127 // strategy directly from this pass. 3128 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3129 3130 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3131 3132 PPCGGen->ctx = S->getIslCtx(); 3133 PPCGGen->options = PPCGScop->options; 3134 PPCGGen->print = nullptr; 3135 PPCGGen->print_user = nullptr; 3136 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3137 PPCGGen->prog = PPCGProg; 3138 PPCGGen->tree = nullptr; 3139 PPCGGen->types.n = 0; 3140 PPCGGen->types.name = nullptr; 3141 PPCGGen->sizes = nullptr; 3142 PPCGGen->used_sizes = nullptr; 3143 PPCGGen->kernel_id = 0; 3144 3145 // Set scheduling strategy to same strategy PPCG is using. 3146 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3147 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3148 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3149 3150 isl_schedule *Schedule = get_schedule(PPCGGen); 3151 3152 int has_permutable = has_any_permutable_node(Schedule); 3153 3154 Schedule = 3155 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3156 3157 if (!has_permutable || has_permutable < 0) { 3158 Schedule = isl_schedule_free(Schedule); 3159 DEBUG(dbgs() << getUniqueScopName(S) 3160 << " does not have permutable bands. Bailing out\n";); 3161 } else { 3162 Schedule = map_to_device(PPCGGen, Schedule); 3163 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3164 } 3165 3166 if (DumpSchedule) { 3167 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3168 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3169 P = isl_printer_print_str(P, "Schedule\n"); 3170 P = isl_printer_print_str(P, "========\n"); 3171 if (Schedule) 3172 P = isl_printer_print_schedule(P, Schedule); 3173 else 3174 P = isl_printer_print_str(P, "No schedule found\n"); 3175 3176 printf("%s\n", isl_printer_get_str(P)); 3177 isl_printer_free(P); 3178 } 3179 3180 if (DumpCode) { 3181 printf("Code\n"); 3182 printf("====\n"); 3183 if (PPCGGen->tree) 3184 printGPUTree(PPCGGen->tree, PPCGProg); 3185 else 3186 printf("No code generated\n"); 3187 } 3188 3189 isl_schedule_free(Schedule); 3190 3191 return PPCGGen; 3192 } 3193 3194 /// Free gpu_gen structure. 3195 /// 3196 /// @param PPCGGen The ppcg_gen object to free. 3197 void freePPCGGen(gpu_gen *PPCGGen) { 3198 isl_ast_node_free(PPCGGen->tree); 3199 isl_union_map_free(PPCGGen->sizes); 3200 isl_union_map_free(PPCGGen->used_sizes); 3201 free(PPCGGen); 3202 } 3203 3204 /// Free the options in the ppcg scop structure. 3205 /// 3206 /// ppcg is not freeing these options for us. To avoid leaks we do this 3207 /// ourselves. 3208 /// 3209 /// @param PPCGScop The scop referencing the options to free. 3210 void freeOptions(ppcg_scop *PPCGScop) { 3211 free(PPCGScop->options->debug); 3212 PPCGScop->options->debug = nullptr; 3213 free(PPCGScop->options); 3214 PPCGScop->options = nullptr; 3215 } 3216 3217 /// Approximate the number of points in the set. 3218 /// 3219 /// This function returns an ast expression that overapproximates the number 3220 /// of points in an isl set through the rectangular hull surrounding this set. 3221 /// 3222 /// @param Set The set to count. 3223 /// @param Build The isl ast build object to use for creating the ast 3224 /// expression. 3225 /// 3226 /// @returns An approximation of the number of points in the set. 3227 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3228 __isl_keep isl_ast_build *Build) { 3229 3230 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3231 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3232 3233 isl_space *Space = isl_set_get_space(Set); 3234 Space = isl_space_params(Space); 3235 auto *Univ = isl_set_universe(Space); 3236 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3237 3238 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 3239 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3240 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3241 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3242 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3243 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3244 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3245 } 3246 3247 isl_set_free(Set); 3248 isl_pw_aff_free(OneAff); 3249 3250 return Expr; 3251 } 3252 3253 /// Approximate a number of dynamic instructions executed by a given 3254 /// statement. 3255 /// 3256 /// @param Stmt The statement for which to compute the number of dynamic 3257 /// instructions. 3258 /// @param Build The isl ast build object to use for creating the ast 3259 /// expression. 3260 /// @returns An approximation of the number of dynamic instructions executed 3261 /// by @p Stmt. 3262 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3263 __isl_keep isl_ast_build *Build) { 3264 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3265 3266 long InstCount = 0; 3267 3268 if (Stmt.isBlockStmt()) { 3269 auto *BB = Stmt.getBasicBlock(); 3270 InstCount = std::distance(BB->begin(), BB->end()); 3271 } else { 3272 auto *R = Stmt.getRegion(); 3273 3274 for (auto *BB : R->blocks()) { 3275 InstCount += std::distance(BB->begin(), BB->end()); 3276 } 3277 } 3278 3279 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3280 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3281 return isl_ast_expr_mul(InstExpr, Iterations); 3282 } 3283 3284 /// Approximate dynamic instructions executed in scop. 3285 /// 3286 /// @param S The scop for which to approximate dynamic instructions. 3287 /// @param Build The isl ast build object to use for creating the ast 3288 /// expression. 3289 /// @returns An approximation of the number of dynamic instructions executed 3290 /// in @p S. 3291 __isl_give isl_ast_expr * 3292 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3293 isl_ast_expr *Instructions; 3294 3295 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3296 Instructions = isl_ast_expr_from_val(Zero); 3297 3298 for (ScopStmt &Stmt : S) { 3299 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3300 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3301 } 3302 return Instructions; 3303 } 3304 3305 /// Create a check that ensures sufficient compute in scop. 3306 /// 3307 /// @param S The scop for which to ensure sufficient compute. 3308 /// @param Build The isl ast build object to use for creating the ast 3309 /// expression. 3310 /// @returns An expression that evaluates to TRUE in case of sufficient 3311 /// compute and to FALSE, otherwise. 3312 __isl_give isl_ast_expr * 3313 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3314 auto Iterations = getNumberOfIterations(S, Build); 3315 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3316 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3317 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3318 } 3319 3320 /// Check if the basic block contains a function we cannot codegen for GPU 3321 /// kernels. 3322 /// 3323 /// If this basic block does something with a `Function` other than calling 3324 /// a function that we support in a kernel, return true. 3325 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3326 bool AllowCUDALibDevice) { 3327 for (const Instruction &Inst : *BB) { 3328 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3329 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3330 AllowCUDALibDevice)) { 3331 continue; 3332 } 3333 3334 for (Value *SrcVal : Inst.operands()) { 3335 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 3336 if (!p) 3337 continue; 3338 if (isa<FunctionType>(p->getElementType())) 3339 return true; 3340 } 3341 } 3342 return false; 3343 } 3344 3345 /// Return whether the Scop S uses functions in a way that we do not support. 3346 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3347 for (auto &Stmt : S) { 3348 if (Stmt.isBlockStmt()) { 3349 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3350 AllowCUDALibDevice)) 3351 return true; 3352 } else { 3353 assert(Stmt.isRegionStmt() && 3354 "Stmt was neither block nor region statement"); 3355 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3356 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3357 return true; 3358 } 3359 } 3360 return false; 3361 } 3362 3363 /// Generate code for a given GPU AST described by @p Root. 3364 /// 3365 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3366 /// @param Prog The GPU Program to generate code for. 3367 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3368 ScopAnnotator Annotator; 3369 Annotator.buildAliasScopes(*S); 3370 3371 Region *R = &S->getRegion(); 3372 3373 simplifyRegion(R, DT, LI, RI); 3374 3375 BasicBlock *EnteringBB = R->getEnteringBlock(); 3376 3377 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3378 3379 // Only build the run-time condition and parameters _after_ having 3380 // introduced the conditional branch. This is important as the conditional 3381 // branch will guard the original scop from new induction variables that 3382 // the SCEVExpander may introduce while code generating the parameters and 3383 // which may introduce scalar dependences that prevent us from correctly 3384 // code generating this scop. 3385 BBPair StartExitBlocks; 3386 BranchInst *CondBr = nullptr; 3387 std::tie(StartExitBlocks, CondBr) = 3388 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3389 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3390 3391 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3392 3393 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3394 StartBlock, Prog, Runtime, Architecture); 3395 3396 // TODO: Handle LICM 3397 auto SplitBlock = StartBlock->getSinglePredecessor(); 3398 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3399 3400 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3401 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3402 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3403 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3404 isl_ast_build_free(Build); 3405 3406 // preload invariant loads. Note: This should happen before the RTC 3407 // because the RTC may depend on values that are invariant load hoisted. 3408 if (!NodeBuilder.preloadInvariantLoads()) { 3409 DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3410 S->getFunction().getName() + 3411 " | Scop Region: " + S->getNameStr()); 3412 // adjust the dominator tree accordingly. 3413 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3414 assert(ExitingBlock); 3415 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3416 assert(MergeBlock); 3417 polly::markBlockUnreachable(*StartBlock, Builder); 3418 polly::markBlockUnreachable(*ExitingBlock, Builder); 3419 auto *ExitingBB = S->getExitingBlock(); 3420 assert(ExitingBB); 3421 3422 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3423 DT->eraseNode(ExitingBlock); 3424 isl_ast_expr_free(Condition); 3425 isl_ast_node_free(Root); 3426 } else { 3427 3428 NodeBuilder.addParameters(S->getContext().release()); 3429 Value *RTC = NodeBuilder.createRTC(Condition); 3430 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3431 3432 Builder.SetInsertPoint(&*StartBlock->begin()); 3433 3434 NodeBuilder.create(Root); 3435 } 3436 3437 /// In case a sequential kernel has more surrounding loops as any parallel 3438 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3439 /// point in running it on a GPU. 3440 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3441 CondBr->setOperand(0, Builder.getFalse()); 3442 3443 if (!NodeBuilder.BuildSuccessful) 3444 CondBr->setOperand(0, Builder.getFalse()); 3445 } 3446 3447 bool runOnScop(Scop &CurrentScop) override { 3448 S = &CurrentScop; 3449 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3450 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3451 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3452 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3453 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3454 3455 // We currently do not support functions other than intrinsics inside 3456 // kernels, as code generation will need to offload function calls to the 3457 // kernel. This may lead to a kernel trying to call a function on the host. 3458 // This also allows us to prevent codegen from trying to take the 3459 // address of an intrinsic function to send to the kernel. 3460 if (containsInvalidKernelFunction(CurrentScop, 3461 Architecture == GPUArch::NVPTX64)) { 3462 DEBUG( 3463 dbgs() << getUniqueScopName(S) 3464 << " contains function which cannot be materialised in a GPU " 3465 "kernel. Bailing out.\n";); 3466 return false; 3467 } 3468 3469 auto PPCGScop = createPPCGScop(); 3470 auto PPCGProg = createPPCGProg(PPCGScop); 3471 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3472 3473 if (PPCGGen->tree) { 3474 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3475 CurrentScop.markAsToBeSkipped(); 3476 } else { 3477 DEBUG(dbgs() << getUniqueScopName(S) 3478 << " has empty PPCGGen->tree. Bailing out.\n"); 3479 } 3480 3481 freeOptions(PPCGScop); 3482 freePPCGGen(PPCGGen); 3483 gpu_prog_free(PPCGProg); 3484 ppcg_scop_free(PPCGScop); 3485 3486 return true; 3487 } 3488 3489 void printScop(raw_ostream &, Scop &) const override {} 3490 3491 void getAnalysisUsage(AnalysisUsage &AU) const override { 3492 AU.addRequired<DominatorTreeWrapperPass>(); 3493 AU.addRequired<RegionInfoPass>(); 3494 AU.addRequired<ScalarEvolutionWrapperPass>(); 3495 AU.addRequired<ScopDetectionWrapperPass>(); 3496 AU.addRequired<ScopInfoRegionPass>(); 3497 AU.addRequired<LoopInfoWrapperPass>(); 3498 3499 AU.addPreserved<AAResultsWrapperPass>(); 3500 AU.addPreserved<BasicAAWrapperPass>(); 3501 AU.addPreserved<LoopInfoWrapperPass>(); 3502 AU.addPreserved<DominatorTreeWrapperPass>(); 3503 AU.addPreserved<GlobalsAAWrapperPass>(); 3504 AU.addPreserved<ScopDetectionWrapperPass>(); 3505 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3506 AU.addPreserved<SCEVAAWrapperPass>(); 3507 3508 // FIXME: We do not yet add regions for the newly generated code to the 3509 // region tree. 3510 AU.addPreserved<RegionInfoPass>(); 3511 AU.addPreserved<ScopInfoRegionPass>(); 3512 } 3513 }; 3514 } // namespace 3515 3516 char PPCGCodeGeneration::ID = 1; 3517 3518 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3519 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3520 generator->Runtime = Runtime; 3521 generator->Architecture = Arch; 3522 return generator; 3523 } 3524 3525 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3526 "Polly - Apply PPCG translation to SCOP", false, false) 3527 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3528 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3529 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3530 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3531 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3532 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3533 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3534 "Polly - Apply PPCG translation to SCOP", false, false) 3535