1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslAst.h" 16 #include "polly/CodeGen/IslNodeBuilder.h" 17 #include "polly/CodeGen/Utils.h" 18 #include "polly/DependenceInfo.h" 19 #include "polly/LinkAllPasses.h" 20 #include "polly/Options.h" 21 #include "polly/ScopDetection.h" 22 #include "polly/ScopInfo.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "llvm/ADT/PostOrderIterator.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/PostDominators.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<std::string> 91 CudaVersion("polly-acc-cuda-version", 92 cl::desc("The CUDA version to compile for"), cl::Hidden, 93 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 94 95 static cl::opt<int> 96 MinCompute("polly-acc-mincompute", 97 cl::desc("Minimal number of compute statements to run on GPU."), 98 cl::Hidden, cl::init(10 * 512 * 512)); 99 100 /// Create the ast expressions for a ScopStmt. 101 /// 102 /// This function is a callback for to generate the ast expressions for each 103 /// of the scheduled ScopStmts. 104 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 105 void *StmtT, isl_ast_build *Build, 106 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 107 isl_id *Id, void *User), 108 void *UserIndex, 109 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 110 void *UserExpr) { 111 112 ScopStmt *Stmt = (ScopStmt *)StmtT; 113 114 isl_ctx *Ctx; 115 116 if (!Stmt || !Build) 117 return NULL; 118 119 Ctx = isl_ast_build_get_ctx(Build); 120 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 121 122 for (MemoryAccess *Acc : *Stmt) { 123 isl_map *AddrFunc = Acc->getAddressFunction(); 124 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 125 isl_id *RefId = Acc->getId(); 126 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 127 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 128 MPA = isl_multi_pw_aff_coalesce(MPA); 129 MPA = FunctionIndex(MPA, RefId, UserIndex); 130 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 131 Access = FunctionExpr(Access, RefId, UserExpr); 132 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 133 } 134 135 return RefToExpr; 136 } 137 138 /// Generate code for a GPU specific isl AST. 139 /// 140 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 141 /// generates code for general-prupose AST nodes, with special functionality 142 /// for generating GPU specific user nodes. 143 /// 144 /// @see GPUNodeBuilder::createUser 145 class GPUNodeBuilder : public IslNodeBuilder { 146 public: 147 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 148 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 149 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 150 gpu_prog *Prog) 151 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S, StartBlock), 152 Prog(Prog) { 153 getExprBuilder().setIDToSAI(&IDToSAI); 154 } 155 156 /// Create after-run-time-check initialization code. 157 void initializeAfterRTH(); 158 159 /// Finalize the generated scop. 160 virtual void finalize(); 161 162 /// Track if the full build process was successful. 163 /// 164 /// This value is set to false, if throughout the build process an error 165 /// occurred which prevents us from generating valid GPU code. 166 bool BuildSuccessful = true; 167 168 /// The maximal number of loops surrounding a sequential kernel. 169 unsigned DeepestSequential = 0; 170 171 /// The maximal number of loops surrounding a parallel kernel. 172 unsigned DeepestParallel = 0; 173 174 private: 175 /// A vector of array base pointers for which a new ScopArrayInfo was created. 176 /// 177 /// This vector is used to delete the ScopArrayInfo when it is not needed any 178 /// more. 179 std::vector<Value *> LocalArrays; 180 181 /// A map from ScopArrays to their corresponding device allocations. 182 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 183 184 /// The current GPU context. 185 Value *GPUContext; 186 187 /// The set of isl_ids allocated in the kernel 188 std::vector<isl_id *> KernelIds; 189 190 /// A module containing GPU code. 191 /// 192 /// This pointer is only set in case we are currently generating GPU code. 193 std::unique_ptr<Module> GPUModule; 194 195 /// The GPU program we generate code for. 196 gpu_prog *Prog; 197 198 /// Class to free isl_ids. 199 class IslIdDeleter { 200 public: 201 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 202 }; 203 204 /// A set containing all isl_ids allocated in a GPU kernel. 205 /// 206 /// By releasing this set all isl_ids will be freed. 207 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 208 209 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 210 211 /// Create code for user-defined AST nodes. 212 /// 213 /// These AST nodes can be of type: 214 /// 215 /// - ScopStmt: A computational statement (TODO) 216 /// - Kernel: A GPU kernel call (TODO) 217 /// - Data-Transfer: A GPU <-> CPU data-transfer 218 /// - In-kernel synchronization 219 /// - In-kernel memory copy statement 220 /// 221 /// @param UserStmt The ast node to generate code for. 222 virtual void createUser(__isl_take isl_ast_node *UserStmt); 223 224 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 225 226 /// Create code for a data transfer statement 227 /// 228 /// @param TransferStmt The data transfer statement. 229 /// @param Direction The direction in which to transfer data. 230 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 231 enum DataDirection Direction); 232 233 /// Find llvm::Values referenced in GPU kernel. 234 /// 235 /// @param Kernel The kernel to scan for llvm::Values 236 /// 237 /// @returns A set of values referenced by the kernel. 238 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 239 240 /// Compute the sizes of the execution grid for a given kernel. 241 /// 242 /// @param Kernel The kernel to compute grid sizes for. 243 /// 244 /// @returns A tuple with grid sizes for X and Y dimension 245 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 246 247 /// Compute the sizes of the thread blocks for a given kernel. 248 /// 249 /// @param Kernel The kernel to compute thread block sizes for. 250 /// 251 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 252 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 253 254 /// Create kernel launch parameters. 255 /// 256 /// @param Kernel The kernel to create parameters for. 257 /// @param F The kernel function that has been created. 258 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 259 /// 260 /// @returns A stack allocated array with pointers to the parameter 261 /// values that are passed to the kernel. 262 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 263 SetVector<Value *> SubtreeValues); 264 265 /// Create declarations for kernel variable. 266 /// 267 /// This includes shared memory declarations. 268 /// 269 /// @param Kernel The kernel definition to create variables for. 270 /// @param FN The function into which to generate the variables. 271 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 272 273 /// Add CUDA annotations to module. 274 /// 275 /// Add a set of CUDA annotations that declares the maximal block dimensions 276 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 277 /// PTX compiler to bound the number of allocated registers to ensure the 278 /// resulting kernel is known to run with up to as many block dimensions 279 /// as specified here. 280 /// 281 /// @param M The module to add the annotations to. 282 /// @param BlockDimX The size of block dimension X. 283 /// @param BlockDimY The size of block dimension Y. 284 /// @param BlockDimZ The size of block dimension Z. 285 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 286 Value *BlockDimZ); 287 288 /// Create GPU kernel. 289 /// 290 /// Code generate the kernel described by @p KernelStmt. 291 /// 292 /// @param KernelStmt The ast node to generate kernel code for. 293 void createKernel(__isl_take isl_ast_node *KernelStmt); 294 295 /// Generate code that computes the size of an array. 296 /// 297 /// @param Array The array for which to compute a size. 298 Value *getArraySize(gpu_array_info *Array); 299 300 /// Generate code to compute the minimal offset at which an array is accessed. 301 /// 302 /// The offset of an array is the minimal array location accessed in a scop. 303 /// 304 /// Example: 305 /// 306 /// for (long i = 0; i < 100; i++) 307 /// A[i + 42] += ... 308 /// 309 /// getArrayOffset(A) results in 42. 310 /// 311 /// @param Array The array for which to compute the offset. 312 /// @returns An llvm::Value that contains the offset of the array. 313 Value *getArrayOffset(gpu_array_info *Array); 314 315 /// Prepare the kernel arguments for kernel code generation 316 /// 317 /// @param Kernel The kernel to generate code for. 318 /// @param FN The function created for the kernel. 319 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 320 321 /// Create kernel function. 322 /// 323 /// Create a kernel function located in a newly created module that can serve 324 /// as target for device code generation. Set the Builder to point to the 325 /// start block of this newly created function. 326 /// 327 /// @param Kernel The kernel to generate code for. 328 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 329 void createKernelFunction(ppcg_kernel *Kernel, 330 SetVector<Value *> &SubtreeValues); 331 332 /// Create the declaration of a kernel function. 333 /// 334 /// The kernel function takes as arguments: 335 /// 336 /// - One i8 pointer for each external array reference used in the kernel. 337 /// - Host iterators 338 /// - Parameters 339 /// - Other LLVM Value references (TODO) 340 /// 341 /// @param Kernel The kernel to generate the function declaration for. 342 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 343 /// 344 /// @returns The newly declared function. 345 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 346 SetVector<Value *> &SubtreeValues); 347 348 /// Insert intrinsic functions to obtain thread and block ids. 349 /// 350 /// @param The kernel to generate the intrinsic functions for. 351 void insertKernelIntrinsics(ppcg_kernel *Kernel); 352 353 /// Create a global-to-shared or shared-to-global copy statement. 354 /// 355 /// @param CopyStmt The copy statement to generate code for 356 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 357 358 /// Create code for a ScopStmt called in @p Expr. 359 /// 360 /// @param Expr The expression containing the call. 361 /// @param KernelStmt The kernel statement referenced in the call. 362 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 363 364 /// Create an in-kernel synchronization call. 365 void createKernelSync(); 366 367 /// Create a PTX assembly string for the current GPU kernel. 368 /// 369 /// @returns A string containing the corresponding PTX assembly code. 370 std::string createKernelASM(); 371 372 /// Remove references from the dominator tree to the kernel function @p F. 373 /// 374 /// @param F The function to remove references to. 375 void clearDominators(Function *F); 376 377 /// Remove references from scalar evolution to the kernel function @p F. 378 /// 379 /// @param F The function to remove references to. 380 void clearScalarEvolution(Function *F); 381 382 /// Remove references from loop info to the kernel function @p F. 383 /// 384 /// @param F The function to remove references to. 385 void clearLoops(Function *F); 386 387 /// Finalize the generation of the kernel function. 388 /// 389 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 390 /// dump its IR to stderr. 391 /// 392 /// @returns The Assembly string of the kernel. 393 std::string finalizeKernelFunction(); 394 395 /// Finalize the generation of the kernel arguments. 396 /// 397 /// This function ensures that not-read-only scalars used in a kernel are 398 /// stored back to the global memory location they ared backed up with before 399 /// the kernel terminates. 400 /// 401 /// @params Kernel The kernel to finalize kernel arguments for. 402 void finalizeKernelArguments(ppcg_kernel *Kernel); 403 404 /// Create code that allocates memory to store arrays on device. 405 void allocateDeviceArrays(); 406 407 /// Free all allocated device arrays. 408 void freeDeviceArrays(); 409 410 /// Create a call to initialize the GPU context. 411 /// 412 /// @returns A pointer to the newly initialized context. 413 Value *createCallInitContext(); 414 415 /// Create a call to get the device pointer for a kernel allocation. 416 /// 417 /// @param Allocation The Polly GPU allocation 418 /// 419 /// @returns The device parameter corresponding to this allocation. 420 Value *createCallGetDevicePtr(Value *Allocation); 421 422 /// Create a call to free the GPU context. 423 /// 424 /// @param Context A pointer to an initialized GPU context. 425 void createCallFreeContext(Value *Context); 426 427 /// Create a call to allocate memory on the device. 428 /// 429 /// @param Size The size of memory to allocate 430 /// 431 /// @returns A pointer that identifies this allocation. 432 Value *createCallAllocateMemoryForDevice(Value *Size); 433 434 /// Create a call to free a device array. 435 /// 436 /// @param Array The device array to free. 437 void createCallFreeDeviceMemory(Value *Array); 438 439 /// Create a call to copy data from host to device. 440 /// 441 /// @param HostPtr A pointer to the host data that should be copied. 442 /// @param DevicePtr A device pointer specifying the location to copy to. 443 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 444 Value *Size); 445 446 /// Create a call to copy data from device to host. 447 /// 448 /// @param DevicePtr A pointer to the device data that should be copied. 449 /// @param HostPtr A host pointer specifying the location to copy to. 450 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 451 Value *Size); 452 453 /// Create a call to get a kernel from an assembly string. 454 /// 455 /// @param Buffer The string describing the kernel. 456 /// @param Entry The name of the kernel function to call. 457 /// 458 /// @returns A pointer to a kernel object 459 Value *createCallGetKernel(Value *Buffer, Value *Entry); 460 461 /// Create a call to free a GPU kernel. 462 /// 463 /// @param GPUKernel THe kernel to free. 464 void createCallFreeKernel(Value *GPUKernel); 465 466 /// Create a call to launch a GPU kernel. 467 /// 468 /// @param GPUKernel The kernel to launch. 469 /// @param GridDimX The size of the first grid dimension. 470 /// @param GridDimY The size of the second grid dimension. 471 /// @param GridBlockX The size of the first block dimension. 472 /// @param GridBlockY The size of the second block dimension. 473 /// @param GridBlockZ The size of the third block dimension. 474 /// @param Paramters A pointer to an array that contains itself pointers to 475 /// the parameter values passed for each kernel argument. 476 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 477 Value *GridDimY, Value *BlockDimX, 478 Value *BlockDimY, Value *BlockDimZ, 479 Value *Parameters); 480 }; 481 482 void GPUNodeBuilder::initializeAfterRTH() { 483 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 484 &*Builder.GetInsertPoint(), &DT, &LI); 485 NewBB->setName("polly.acc.initialize"); 486 Builder.SetInsertPoint(&NewBB->front()); 487 488 GPUContext = createCallInitContext(); 489 allocateDeviceArrays(); 490 } 491 492 void GPUNodeBuilder::finalize() { 493 freeDeviceArrays(); 494 createCallFreeContext(GPUContext); 495 IslNodeBuilder::finalize(); 496 } 497 498 void GPUNodeBuilder::allocateDeviceArrays() { 499 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 500 501 for (int i = 0; i < Prog->n_array; ++i) { 502 gpu_array_info *Array = &Prog->array[i]; 503 auto *ScopArray = (ScopArrayInfo *)Array->user; 504 std::string DevArrayName("p_dev_array_"); 505 DevArrayName.append(Array->name); 506 507 Value *ArraySize = getArraySize(Array); 508 Value *Offset = getArrayOffset(Array); 509 if (Offset) 510 ArraySize = Builder.CreateSub( 511 ArraySize, 512 Builder.CreateMul(Offset, 513 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 514 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 515 DevArray->setName(DevArrayName); 516 DeviceAllocations[ScopArray] = DevArray; 517 } 518 519 isl_ast_build_free(Build); 520 } 521 522 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 523 Value *BlockDimY, Value *BlockDimZ) { 524 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 525 526 for (auto &F : *M) { 527 if (F.getCallingConv() != CallingConv::PTX_Kernel) 528 continue; 529 530 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 531 532 Metadata *Elements[] = { 533 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 534 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 535 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 536 ValueAsMetadata::get(V[2]), 537 }; 538 MDNode *Node = MDNode::get(M->getContext(), Elements); 539 AnnotationNode->addOperand(Node); 540 } 541 } 542 543 void GPUNodeBuilder::freeDeviceArrays() { 544 for (auto &Array : DeviceAllocations) 545 createCallFreeDeviceMemory(Array.second); 546 } 547 548 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 549 const char *Name = "polly_getKernel"; 550 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 551 Function *F = M->getFunction(Name); 552 553 // If F is not available, declare it. 554 if (!F) { 555 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 556 std::vector<Type *> Args; 557 Args.push_back(Builder.getInt8PtrTy()); 558 Args.push_back(Builder.getInt8PtrTy()); 559 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 560 F = Function::Create(Ty, Linkage, Name, M); 561 } 562 563 return Builder.CreateCall(F, {Buffer, Entry}); 564 } 565 566 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 567 const char *Name = "polly_getDevicePtr"; 568 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 569 Function *F = M->getFunction(Name); 570 571 // If F is not available, declare it. 572 if (!F) { 573 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 574 std::vector<Type *> Args; 575 Args.push_back(Builder.getInt8PtrTy()); 576 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 577 F = Function::Create(Ty, Linkage, Name, M); 578 } 579 580 return Builder.CreateCall(F, {Allocation}); 581 } 582 583 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 584 Value *GridDimY, Value *BlockDimX, 585 Value *BlockDimY, Value *BlockDimZ, 586 Value *Parameters) { 587 const char *Name = "polly_launchKernel"; 588 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 589 Function *F = M->getFunction(Name); 590 591 // If F is not available, declare it. 592 if (!F) { 593 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 594 std::vector<Type *> Args; 595 Args.push_back(Builder.getInt8PtrTy()); 596 Args.push_back(Builder.getInt32Ty()); 597 Args.push_back(Builder.getInt32Ty()); 598 Args.push_back(Builder.getInt32Ty()); 599 Args.push_back(Builder.getInt32Ty()); 600 Args.push_back(Builder.getInt32Ty()); 601 Args.push_back(Builder.getInt8PtrTy()); 602 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 603 F = Function::Create(Ty, Linkage, Name, M); 604 } 605 606 Builder.CreateCall(F, 607 {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 608 BlockDimZ, Parameters}); 609 } 610 611 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 612 const char *Name = "polly_freeKernel"; 613 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 614 Function *F = M->getFunction(Name); 615 616 // If F is not available, declare it. 617 if (!F) { 618 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 619 std::vector<Type *> Args; 620 Args.push_back(Builder.getInt8PtrTy()); 621 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 622 F = Function::Create(Ty, Linkage, Name, M); 623 } 624 625 Builder.CreateCall(F, {GPUKernel}); 626 } 627 628 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 629 const char *Name = "polly_freeDeviceMemory"; 630 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 631 Function *F = M->getFunction(Name); 632 633 // If F is not available, declare it. 634 if (!F) { 635 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 636 std::vector<Type *> Args; 637 Args.push_back(Builder.getInt8PtrTy()); 638 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 639 F = Function::Create(Ty, Linkage, Name, M); 640 } 641 642 Builder.CreateCall(F, {Array}); 643 } 644 645 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 646 const char *Name = "polly_allocateMemoryForDevice"; 647 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 648 Function *F = M->getFunction(Name); 649 650 // If F is not available, declare it. 651 if (!F) { 652 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 653 std::vector<Type *> Args; 654 Args.push_back(Builder.getInt64Ty()); 655 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 656 F = Function::Create(Ty, Linkage, Name, M); 657 } 658 659 return Builder.CreateCall(F, {Size}); 660 } 661 662 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 663 Value *DeviceData, 664 Value *Size) { 665 const char *Name = "polly_copyFromHostToDevice"; 666 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 667 Function *F = M->getFunction(Name); 668 669 // If F is not available, declare it. 670 if (!F) { 671 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 672 std::vector<Type *> Args; 673 Args.push_back(Builder.getInt8PtrTy()); 674 Args.push_back(Builder.getInt8PtrTy()); 675 Args.push_back(Builder.getInt64Ty()); 676 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 677 F = Function::Create(Ty, Linkage, Name, M); 678 } 679 680 Builder.CreateCall(F, {HostData, DeviceData, Size}); 681 } 682 683 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 684 Value *HostData, 685 Value *Size) { 686 const char *Name = "polly_copyFromDeviceToHost"; 687 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 688 Function *F = M->getFunction(Name); 689 690 // If F is not available, declare it. 691 if (!F) { 692 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 693 std::vector<Type *> Args; 694 Args.push_back(Builder.getInt8PtrTy()); 695 Args.push_back(Builder.getInt8PtrTy()); 696 Args.push_back(Builder.getInt64Ty()); 697 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 698 F = Function::Create(Ty, Linkage, Name, M); 699 } 700 701 Builder.CreateCall(F, {DeviceData, HostData, Size}); 702 } 703 704 Value *GPUNodeBuilder::createCallInitContext() { 705 const char *Name = "polly_initContext"; 706 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 707 Function *F = M->getFunction(Name); 708 709 // If F is not available, declare it. 710 if (!F) { 711 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 712 std::vector<Type *> Args; 713 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 714 F = Function::Create(Ty, Linkage, Name, M); 715 } 716 717 return Builder.CreateCall(F, {}); 718 } 719 720 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 721 const char *Name = "polly_freeContext"; 722 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 723 Function *F = M->getFunction(Name); 724 725 // If F is not available, declare it. 726 if (!F) { 727 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 728 std::vector<Type *> Args; 729 Args.push_back(Builder.getInt8PtrTy()); 730 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 731 F = Function::Create(Ty, Linkage, Name, M); 732 } 733 734 Builder.CreateCall(F, {Context}); 735 } 736 737 /// Check if one string is a prefix of another. 738 /// 739 /// @param String The string in which to look for the prefix. 740 /// @param Prefix The prefix to look for. 741 static bool isPrefix(std::string String, std::string Prefix) { 742 return String.find(Prefix) == 0; 743 } 744 745 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 746 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 747 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 748 749 if (!gpu_array_is_scalar(Array)) { 750 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 751 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 752 753 for (unsigned int i = 1; i < Array->n_index; i++) { 754 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 755 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 756 Res = isl_ast_expr_mul(Res, Expr); 757 } 758 759 Value *NumElements = ExprBuilder.create(Res); 760 if (NumElements->getType() != ArraySize->getType()) 761 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 762 ArraySize = Builder.CreateMul(ArraySize, NumElements); 763 } 764 isl_ast_build_free(Build); 765 return ArraySize; 766 } 767 768 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 769 if (gpu_array_is_scalar(Array)) 770 return nullptr; 771 772 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 773 774 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 775 776 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 777 778 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 779 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 780 781 if (isl_set_is_subset(Min, ZeroSet)) { 782 isl_set_free(Min); 783 isl_set_free(ZeroSet); 784 isl_ast_build_free(Build); 785 return nullptr; 786 } 787 isl_set_free(ZeroSet); 788 789 isl_ast_expr *Result = 790 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 791 792 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 793 if (i > 0) { 794 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i - 1]); 795 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 796 Result = isl_ast_expr_mul(Result, BExpr); 797 } 798 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 799 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 800 Result = isl_ast_expr_add(Result, MExpr); 801 } 802 803 Value *ResultValue = ExprBuilder.create(Result); 804 isl_set_free(Min); 805 isl_ast_build_free(Build); 806 807 return ResultValue; 808 } 809 810 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 811 enum DataDirection Direction) { 812 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 813 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 814 isl_id *Id = isl_ast_expr_get_id(Arg); 815 auto Array = (gpu_array_info *)isl_id_get_user(Id); 816 auto ScopArray = (ScopArrayInfo *)(Array->user); 817 818 Value *Size = getArraySize(Array); 819 Value *Offset = getArrayOffset(Array); 820 Value *DevPtr = DeviceAllocations[ScopArray]; 821 822 Value *HostPtr; 823 824 if (gpu_array_is_scalar(Array)) 825 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 826 else 827 HostPtr = ScopArray->getBasePtr(); 828 829 if (Offset) { 830 HostPtr = Builder.CreatePointerCast( 831 HostPtr, ScopArray->getElementType()->getPointerTo()); 832 HostPtr = Builder.CreateGEP(HostPtr, Offset); 833 } 834 835 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 836 837 if (Offset) { 838 Size = Builder.CreateSub( 839 Size, 840 Builder.CreateMul(Offset, 841 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 842 } 843 844 if (Direction == HOST_TO_DEVICE) 845 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 846 else 847 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 848 849 isl_id_free(Id); 850 isl_ast_expr_free(Arg); 851 isl_ast_expr_free(Expr); 852 isl_ast_node_free(TransferStmt); 853 } 854 855 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 856 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 857 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 858 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 859 isl_id_free(Id); 860 isl_ast_expr_free(StmtExpr); 861 862 const char *Str = isl_id_get_name(Id); 863 if (!strcmp(Str, "kernel")) { 864 createKernel(UserStmt); 865 isl_ast_expr_free(Expr); 866 return; 867 } 868 869 if (isPrefix(Str, "to_device")) { 870 createDataTransfer(UserStmt, HOST_TO_DEVICE); 871 isl_ast_expr_free(Expr); 872 return; 873 } 874 875 if (isPrefix(Str, "from_device")) { 876 createDataTransfer(UserStmt, DEVICE_TO_HOST); 877 isl_ast_expr_free(Expr); 878 return; 879 } 880 881 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 882 struct ppcg_kernel_stmt *KernelStmt = 883 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 884 isl_id_free(Anno); 885 886 switch (KernelStmt->type) { 887 case ppcg_kernel_domain: 888 createScopStmt(Expr, KernelStmt); 889 isl_ast_node_free(UserStmt); 890 return; 891 case ppcg_kernel_copy: 892 createKernelCopy(KernelStmt); 893 isl_ast_expr_free(Expr); 894 isl_ast_node_free(UserStmt); 895 return; 896 case ppcg_kernel_sync: 897 createKernelSync(); 898 isl_ast_expr_free(Expr); 899 isl_ast_node_free(UserStmt); 900 return; 901 } 902 903 isl_ast_expr_free(Expr); 904 isl_ast_node_free(UserStmt); 905 return; 906 } 907 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 908 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 909 LocalIndex = isl_ast_expr_address_of(LocalIndex); 910 Value *LocalAddr = ExprBuilder.create(LocalIndex); 911 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 912 Index = isl_ast_expr_address_of(Index); 913 Value *GlobalAddr = ExprBuilder.create(Index); 914 915 if (KernelStmt->u.c.read) { 916 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 917 Builder.CreateStore(Load, LocalAddr); 918 } else { 919 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 920 Builder.CreateStore(Load, GlobalAddr); 921 } 922 } 923 924 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 925 ppcg_kernel_stmt *KernelStmt) { 926 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 927 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 928 929 LoopToScevMapT LTS; 930 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 931 932 createSubstitutions(Expr, Stmt, LTS); 933 934 if (Stmt->isBlockStmt()) 935 BlockGen.copyStmt(*Stmt, LTS, Indexes); 936 else 937 RegionGen.copyStmt(*Stmt, LTS, Indexes); 938 } 939 940 void GPUNodeBuilder::createKernelSync() { 941 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 942 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 943 Builder.CreateCall(Sync, {}); 944 } 945 946 /// Collect llvm::Values referenced from @p Node 947 /// 948 /// This function only applies to isl_ast_nodes that are user_nodes referring 949 /// to a ScopStmt. All other node types are ignore. 950 /// 951 /// @param Node The node to collect references for. 952 /// @param User A user pointer used as storage for the data that is collected. 953 /// 954 /// @returns isl_bool_true if data could be collected successfully. 955 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 956 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 957 return isl_bool_true; 958 959 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 960 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 961 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 962 const char *Str = isl_id_get_name(Id); 963 isl_id_free(Id); 964 isl_ast_expr_free(StmtExpr); 965 isl_ast_expr_free(Expr); 966 967 if (!isPrefix(Str, "Stmt")) 968 return isl_bool_true; 969 970 Id = isl_ast_node_get_annotation(Node); 971 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 972 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 973 isl_id_free(Id); 974 975 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 976 977 return isl_bool_true; 978 } 979 980 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 981 SetVector<Value *> SubtreeValues; 982 SetVector<const SCEV *> SCEVs; 983 SetVector<const Loop *> Loops; 984 SubtreeReferences References = { 985 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 986 987 for (const auto &I : IDToValue) 988 SubtreeValues.insert(I.second); 989 990 isl_ast_node_foreach_descendant_top_down( 991 Kernel->tree, collectReferencesInGPUStmt, &References); 992 993 for (const SCEV *Expr : SCEVs) 994 findValues(Expr, SE, SubtreeValues); 995 996 for (auto &SAI : S.arrays()) 997 SubtreeValues.remove(SAI->getBasePtr()); 998 999 isl_space *Space = S.getParamSpace(); 1000 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1001 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1002 assert(IDToValue.count(Id)); 1003 Value *Val = IDToValue[Id]; 1004 SubtreeValues.remove(Val); 1005 isl_id_free(Id); 1006 } 1007 isl_space_free(Space); 1008 1009 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1010 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1011 assert(IDToValue.count(Id)); 1012 Value *Val = IDToValue[Id]; 1013 SubtreeValues.remove(Val); 1014 isl_id_free(Id); 1015 } 1016 1017 return SubtreeValues; 1018 } 1019 1020 void GPUNodeBuilder::clearDominators(Function *F) { 1021 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1022 std::vector<BasicBlock *> Nodes; 1023 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1024 Nodes.push_back(I->getBlock()); 1025 1026 for (BasicBlock *BB : Nodes) 1027 DT.eraseNode(BB); 1028 } 1029 1030 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1031 for (BasicBlock &BB : *F) { 1032 Loop *L = LI.getLoopFor(&BB); 1033 if (L) 1034 SE.forgetLoop(L); 1035 } 1036 } 1037 1038 void GPUNodeBuilder::clearLoops(Function *F) { 1039 for (BasicBlock &BB : *F) { 1040 Loop *L = LI.getLoopFor(&BB); 1041 if (L) 1042 SE.forgetLoop(L); 1043 LI.removeBlock(&BB); 1044 } 1045 } 1046 1047 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1048 std::vector<Value *> Sizes; 1049 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1050 1051 for (long i = 0; i < Kernel->n_grid; i++) { 1052 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1053 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1054 Value *Res = ExprBuilder.create(GridSize); 1055 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1056 Sizes.push_back(Res); 1057 } 1058 isl_ast_build_free(Context); 1059 1060 for (long i = Kernel->n_grid; i < 3; i++) 1061 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1062 1063 return std::make_tuple(Sizes[0], Sizes[1]); 1064 } 1065 1066 std::tuple<Value *, Value *, Value *> 1067 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1068 std::vector<Value *> Sizes; 1069 1070 for (long i = 0; i < Kernel->n_block; i++) { 1071 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1072 Sizes.push_back(Res); 1073 } 1074 1075 for (long i = Kernel->n_block; i < 3; i++) 1076 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1077 1078 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1079 } 1080 1081 Value * 1082 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1083 SetVector<Value *> SubtreeValues) { 1084 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 1085 std::distance(F->arg_begin(), F->arg_end())); 1086 1087 BasicBlock *EntryBlock = 1088 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1089 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1090 Instruction *Parameters = 1091 new AllocaInst(ArrayTy, Launch + "_params", EntryBlock->getTerminator()); 1092 1093 int Index = 0; 1094 for (long i = 0; i < Prog->n_array; i++) { 1095 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1096 continue; 1097 1098 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1099 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1100 1101 Value *DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1102 DevArray = createCallGetDevicePtr(DevArray); 1103 1104 Value *Offset = getArrayOffset(&Prog->array[i]); 1105 1106 if (Offset) { 1107 DevArray = Builder.CreatePointerCast( 1108 DevArray, SAI->getElementType()->getPointerTo()); 1109 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1110 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1111 } 1112 Value *Slot = Builder.CreateGEP( 1113 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1114 1115 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1116 Value *ValPtr = BlockGen.getOrCreateAlloca(SAI); 1117 Value *ValPtrCast = 1118 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1119 Builder.CreateStore(ValPtrCast, Slot); 1120 } else { 1121 Instruction *Param = new AllocaInst( 1122 Builder.getInt8PtrTy(), Launch + "_param_" + std::to_string(Index), 1123 EntryBlock->getTerminator()); 1124 Builder.CreateStore(DevArray, Param); 1125 Value *ParamTyped = 1126 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1127 Builder.CreateStore(ParamTyped, Slot); 1128 } 1129 Index++; 1130 } 1131 1132 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1133 1134 for (long i = 0; i < NumHostIters; i++) { 1135 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1136 Value *Val = IDToValue[Id]; 1137 isl_id_free(Id); 1138 Instruction *Param = new AllocaInst( 1139 Val->getType(), Launch + "_param_" + std::to_string(Index), 1140 EntryBlock->getTerminator()); 1141 Builder.CreateStore(Val, Param); 1142 Value *Slot = Builder.CreateGEP( 1143 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1144 Value *ParamTyped = 1145 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1146 Builder.CreateStore(ParamTyped, Slot); 1147 Index++; 1148 } 1149 1150 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1151 1152 for (long i = 0; i < NumVars; i++) { 1153 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1154 Value *Val = IDToValue[Id]; 1155 isl_id_free(Id); 1156 Instruction *Param = new AllocaInst( 1157 Val->getType(), Launch + "_param_" + std::to_string(Index), 1158 EntryBlock->getTerminator()); 1159 Builder.CreateStore(Val, Param); 1160 Value *Slot = Builder.CreateGEP( 1161 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1162 Value *ParamTyped = 1163 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1164 Builder.CreateStore(ParamTyped, Slot); 1165 Index++; 1166 } 1167 1168 for (auto Val : SubtreeValues) { 1169 Instruction *Param = new AllocaInst( 1170 Val->getType(), Launch + "_param_" + std::to_string(Index), 1171 EntryBlock->getTerminator()); 1172 Builder.CreateStore(Val, Param); 1173 Value *Slot = Builder.CreateGEP( 1174 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1175 Value *ParamTyped = 1176 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1177 Builder.CreateStore(ParamTyped, Slot); 1178 Index++; 1179 } 1180 1181 auto Location = EntryBlock->getTerminator(); 1182 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1183 Launch + "_params_i8ptr", Location); 1184 } 1185 1186 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1187 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1188 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1189 isl_id_free(Id); 1190 isl_ast_node_free(KernelStmt); 1191 1192 if (Kernel->n_grid > 1) 1193 DeepestParallel = 1194 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1195 else 1196 DeepestSequential = 1197 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1198 1199 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1200 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1201 1202 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 1203 1204 assert(Kernel->tree && "Device AST of kernel node is empty"); 1205 1206 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1207 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1208 ValueMapT HostValueMap = ValueMap; 1209 BlockGenerator::ScalarAllocaMapTy HostScalarMap = ScalarMap; 1210 BlockGenerator::ScalarAllocaMapTy HostPHIOpMap = PHIOpMap; 1211 ScalarMap.clear(); 1212 PHIOpMap.clear(); 1213 1214 SetVector<const Loop *> Loops; 1215 1216 // Create for all loops we depend on values that contain the current loop 1217 // iteration. These values are necessary to generate code for SCEVs that 1218 // depend on such loops. As a result we need to pass them to the subfunction. 1219 for (const Loop *L : Loops) { 1220 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1221 SE.getUnknown(Builder.getInt64(1)), 1222 L, SCEV::FlagAnyWrap); 1223 Value *V = generateSCEV(OuterLIV); 1224 OutsideLoopIterations[L] = SE.getUnknown(V); 1225 SubtreeValues.insert(V); 1226 } 1227 1228 createKernelFunction(Kernel, SubtreeValues); 1229 1230 create(isl_ast_node_copy(Kernel->tree)); 1231 1232 finalizeKernelArguments(Kernel); 1233 Function *F = Builder.GetInsertBlock()->getParent(); 1234 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1235 clearDominators(F); 1236 clearScalarEvolution(F); 1237 clearLoops(F); 1238 1239 IDToValue = HostIDs; 1240 1241 ValueMap = std::move(HostValueMap); 1242 ScalarMap = std::move(HostScalarMap); 1243 PHIOpMap = std::move(HostPHIOpMap); 1244 EscapeMap.clear(); 1245 IDToSAI.clear(); 1246 Annotator.resetAlternativeAliasBases(); 1247 for (auto &BasePtr : LocalArrays) 1248 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1249 LocalArrays.clear(); 1250 1251 std::string ASMString = finalizeKernelFunction(); 1252 Builder.SetInsertPoint(&HostInsertPoint); 1253 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1254 1255 std::string Name = "kernel_" + std::to_string(Kernel->id); 1256 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1257 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1258 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1259 1260 Value *GridDimX, *GridDimY; 1261 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1262 1263 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1264 BlockDimZ, Parameters); 1265 createCallFreeKernel(GPUKernel); 1266 1267 for (auto Id : KernelIds) 1268 isl_id_free(Id); 1269 1270 KernelIds.clear(); 1271 } 1272 1273 /// Compute the DataLayout string for the NVPTX backend. 1274 /// 1275 /// @param is64Bit Are we looking for a 64 bit architecture? 1276 static std::string computeNVPTXDataLayout(bool is64Bit) { 1277 std::string Ret = "e"; 1278 1279 if (!is64Bit) 1280 Ret += "-p:32:32"; 1281 1282 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 1283 1284 return Ret; 1285 } 1286 1287 Function * 1288 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1289 SetVector<Value *> &SubtreeValues) { 1290 std::vector<Type *> Args; 1291 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1292 1293 for (long i = 0; i < Prog->n_array; i++) { 1294 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1295 continue; 1296 1297 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1298 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1299 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1300 Args.push_back(SAI->getElementType()); 1301 } else { 1302 Args.push_back(Builder.getInt8PtrTy()); 1303 } 1304 } 1305 1306 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1307 1308 for (long i = 0; i < NumHostIters; i++) 1309 Args.push_back(Builder.getInt64Ty()); 1310 1311 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1312 1313 for (long i = 0; i < NumVars; i++) { 1314 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1315 Value *Val = IDToValue[Id]; 1316 isl_id_free(Id); 1317 Args.push_back(Val->getType()); 1318 } 1319 1320 for (auto *V : SubtreeValues) 1321 Args.push_back(V->getType()); 1322 1323 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1324 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1325 GPUModule.get()); 1326 FN->setCallingConv(CallingConv::PTX_Kernel); 1327 1328 auto Arg = FN->arg_begin(); 1329 for (long i = 0; i < Kernel->n_array; i++) { 1330 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1331 continue; 1332 1333 Arg->setName(Kernel->array[i].array->name); 1334 1335 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1336 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1337 Type *EleTy = SAI->getElementType(); 1338 Value *Val = &*Arg; 1339 SmallVector<const SCEV *, 4> Sizes; 1340 isl_ast_build *Build = 1341 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1342 Sizes.push_back(nullptr); 1343 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1344 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1345 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1346 auto V = ExprBuilder.create(DimSize); 1347 Sizes.push_back(SE.getSCEV(V)); 1348 } 1349 const ScopArrayInfo *SAIRep = 1350 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1351 LocalArrays.push_back(Val); 1352 1353 isl_ast_build_free(Build); 1354 KernelIds.push_back(Id); 1355 IDToSAI[Id] = SAIRep; 1356 Arg++; 1357 } 1358 1359 for (long i = 0; i < NumHostIters; i++) { 1360 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1361 Arg->setName(isl_id_get_name(Id)); 1362 IDToValue[Id] = &*Arg; 1363 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1364 Arg++; 1365 } 1366 1367 for (long i = 0; i < NumVars; i++) { 1368 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1369 Arg->setName(isl_id_get_name(Id)); 1370 Value *Val = IDToValue[Id]; 1371 ValueMap[Val] = &*Arg; 1372 IDToValue[Id] = &*Arg; 1373 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1374 Arg++; 1375 } 1376 1377 for (auto *V : SubtreeValues) { 1378 Arg->setName(V->getName()); 1379 ValueMap[V] = &*Arg; 1380 Arg++; 1381 } 1382 1383 return FN; 1384 } 1385 1386 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1387 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 1388 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 1389 1390 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 1391 Intrinsic::nvvm_read_ptx_sreg_tid_y, 1392 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 1393 1394 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1395 std::string Name = isl_id_get_name(Id); 1396 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1397 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1398 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1399 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1400 IDToValue[Id] = Val; 1401 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1402 }; 1403 1404 for (int i = 0; i < Kernel->n_grid; ++i) { 1405 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1406 addId(Id, IntrinsicsBID[i]); 1407 } 1408 1409 for (int i = 0; i < Kernel->n_block; ++i) { 1410 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1411 addId(Id, IntrinsicsTID[i]); 1412 } 1413 } 1414 1415 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1416 auto Arg = FN->arg_begin(); 1417 for (long i = 0; i < Kernel->n_array; i++) { 1418 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1419 continue; 1420 1421 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1422 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1423 isl_id_free(Id); 1424 1425 if (SAI->getNumberOfDimensions() > 0) { 1426 Arg++; 1427 continue; 1428 } 1429 1430 Value *Val = &*Arg; 1431 1432 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1433 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1434 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1435 Val = Builder.CreateLoad(TypedArgPtr); 1436 } 1437 1438 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1439 Builder.CreateStore(Val, Alloca); 1440 1441 Arg++; 1442 } 1443 } 1444 1445 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1446 auto *FN = Builder.GetInsertBlock()->getParent(); 1447 auto Arg = FN->arg_begin(); 1448 1449 bool StoredScalar = false; 1450 for (long i = 0; i < Kernel->n_array; i++) { 1451 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1452 continue; 1453 1454 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1455 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1456 isl_id_free(Id); 1457 1458 if (SAI->getNumberOfDimensions() > 0) { 1459 Arg++; 1460 continue; 1461 } 1462 1463 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1464 Arg++; 1465 continue; 1466 } 1467 1468 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1469 Value *ArgPtr = &*Arg; 1470 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1471 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1472 Value *Val = Builder.CreateLoad(Alloca); 1473 Builder.CreateStore(Val, TypedArgPtr); 1474 StoredScalar = true; 1475 1476 Arg++; 1477 } 1478 1479 if (StoredScalar) 1480 /// In case more than one thread contains scalar stores, the generated 1481 /// code might be incorrect, if we only store at the end of the kernel. 1482 /// To support this case we need to store these scalars back at each 1483 /// memory store or at least before each kernel barrier. 1484 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1485 BuildSuccessful = 0; 1486 } 1487 1488 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1489 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1490 1491 for (int i = 0; i < Kernel->n_var; ++i) { 1492 struct ppcg_kernel_var &Var = Kernel->var[i]; 1493 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1494 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1495 1496 Type *ArrayTy = EleTy; 1497 SmallVector<const SCEV *, 4> Sizes; 1498 1499 Sizes.push_back(nullptr); 1500 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1501 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1502 long Bound = isl_val_get_num_si(Val); 1503 isl_val_free(Val); 1504 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1505 } 1506 1507 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1508 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1509 long Bound = isl_val_get_num_si(Val); 1510 isl_val_free(Val); 1511 ArrayTy = ArrayType::get(ArrayTy, Bound); 1512 } 1513 1514 const ScopArrayInfo *SAI; 1515 Value *Allocation; 1516 if (Var.type == ppcg_access_shared) { 1517 auto GlobalVar = new GlobalVariable( 1518 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1519 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1520 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1521 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1522 1523 Allocation = GlobalVar; 1524 } else if (Var.type == ppcg_access_private) { 1525 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1526 } else { 1527 llvm_unreachable("unknown variable type"); 1528 } 1529 SAI = 1530 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1531 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1532 IDToValue[Id] = Allocation; 1533 LocalArrays.push_back(Allocation); 1534 KernelIds.push_back(Id); 1535 IDToSAI[Id] = SAI; 1536 } 1537 } 1538 1539 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1540 SetVector<Value *> &SubtreeValues) { 1541 1542 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1543 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1544 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1545 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1546 1547 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1548 1549 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1550 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1551 1552 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1553 DT.addNewBlock(EntryBlock, PrevBlock); 1554 1555 Builder.SetInsertPoint(EntryBlock); 1556 Builder.CreateRetVoid(); 1557 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1558 1559 ScopDetection::markFunctionAsInvalid(FN); 1560 1561 prepareKernelArguments(Kernel, FN); 1562 createKernelVariables(Kernel, FN); 1563 insertKernelIntrinsics(Kernel); 1564 } 1565 1566 std::string GPUNodeBuilder::createKernelASM() { 1567 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1568 std::string ErrMsg; 1569 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1570 1571 if (!GPUTarget) { 1572 errs() << ErrMsg << "\n"; 1573 return ""; 1574 } 1575 1576 TargetOptions Options; 1577 Options.UnsafeFPMath = FastMath; 1578 std::unique_ptr<TargetMachine> TargetM( 1579 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 1580 Options, Optional<Reloc::Model>())); 1581 1582 SmallString<0> ASMString; 1583 raw_svector_ostream ASMStream(ASMString); 1584 llvm::legacy::PassManager PM; 1585 1586 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1587 1588 if (TargetM->addPassesToEmitFile( 1589 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1590 errs() << "The target does not support generation of this file type!\n"; 1591 return ""; 1592 } 1593 1594 PM.run(*GPUModule); 1595 1596 return ASMStream.str(); 1597 } 1598 1599 std::string GPUNodeBuilder::finalizeKernelFunction() { 1600 if (verifyModule(*GPUModule)) { 1601 BuildSuccessful = false; 1602 return ""; 1603 } 1604 1605 if (DumpKernelIR) 1606 outs() << *GPUModule << "\n"; 1607 1608 // Optimize module. 1609 llvm::legacy::PassManager OptPasses; 1610 PassManagerBuilder PassBuilder; 1611 PassBuilder.OptLevel = 3; 1612 PassBuilder.SizeLevel = 0; 1613 PassBuilder.populateModulePassManager(OptPasses); 1614 OptPasses.run(*GPUModule); 1615 1616 std::string Assembly = createKernelASM(); 1617 1618 if (DumpKernelASM) 1619 outs() << Assembly << "\n"; 1620 1621 GPUModule.release(); 1622 KernelIDs.clear(); 1623 1624 return Assembly; 1625 } 1626 1627 namespace { 1628 class PPCGCodeGeneration : public ScopPass { 1629 public: 1630 static char ID; 1631 1632 /// The scop that is currently processed. 1633 Scop *S; 1634 1635 LoopInfo *LI; 1636 DominatorTree *DT; 1637 ScalarEvolution *SE; 1638 const DataLayout *DL; 1639 RegionInfo *RI; 1640 1641 PPCGCodeGeneration() : ScopPass(ID) {} 1642 1643 /// Construct compilation options for PPCG. 1644 /// 1645 /// @returns The compilation options. 1646 ppcg_options *createPPCGOptions() { 1647 auto DebugOptions = 1648 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1649 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1650 1651 DebugOptions->dump_schedule_constraints = false; 1652 DebugOptions->dump_schedule = false; 1653 DebugOptions->dump_final_schedule = false; 1654 DebugOptions->dump_sizes = false; 1655 DebugOptions->verbose = false; 1656 1657 Options->debug = DebugOptions; 1658 1659 Options->reschedule = true; 1660 Options->scale_tile_loops = false; 1661 Options->wrap = false; 1662 1663 Options->non_negative_parameters = false; 1664 Options->ctx = nullptr; 1665 Options->sizes = nullptr; 1666 1667 Options->tile_size = 32; 1668 1669 Options->use_private_memory = PrivateMemory; 1670 Options->use_shared_memory = SharedMemory; 1671 Options->max_shared_memory = 48 * 1024; 1672 1673 Options->target = PPCG_TARGET_CUDA; 1674 Options->openmp = false; 1675 Options->linearize_device_arrays = true; 1676 Options->live_range_reordering = false; 1677 1678 Options->opencl_compiler_options = nullptr; 1679 Options->opencl_use_gpu = false; 1680 Options->opencl_n_include_file = 0; 1681 Options->opencl_include_files = nullptr; 1682 Options->opencl_print_kernel_types = false; 1683 Options->opencl_embed_kernel_code = false; 1684 1685 Options->save_schedule_file = nullptr; 1686 Options->load_schedule_file = nullptr; 1687 1688 return Options; 1689 } 1690 1691 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1692 /// 1693 /// Instead of a normal access of the form: 1694 /// 1695 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1696 /// 1697 /// a tagged access has the form 1698 /// 1699 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1700 /// 1701 /// where 'id' is an additional space that references the memory access that 1702 /// triggered the access. 1703 /// 1704 /// @param AccessTy The type of the memory accesses to collect. 1705 /// 1706 /// @return The relation describing all tagged memory accesses. 1707 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1708 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1709 1710 for (auto &Stmt : *S) 1711 for (auto &Acc : Stmt) 1712 if (Acc->getType() == AccessTy) { 1713 isl_map *Relation = Acc->getAccessRelation(); 1714 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1715 1716 isl_space *Space = isl_map_get_space(Relation); 1717 Space = isl_space_range(Space); 1718 Space = isl_space_from_range(Space); 1719 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1720 isl_map *Universe = isl_map_universe(Space); 1721 Relation = isl_map_domain_product(Relation, Universe); 1722 Accesses = isl_union_map_add_map(Accesses, Relation); 1723 } 1724 1725 return Accesses; 1726 } 1727 1728 /// Get the set of all read accesses, tagged with the access id. 1729 /// 1730 /// @see getTaggedAccesses 1731 isl_union_map *getTaggedReads() { 1732 return getTaggedAccesses(MemoryAccess::READ); 1733 } 1734 1735 /// Get the set of all may (and must) accesses, tagged with the access id. 1736 /// 1737 /// @see getTaggedAccesses 1738 isl_union_map *getTaggedMayWrites() { 1739 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1740 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1741 } 1742 1743 /// Get the set of all must accesses, tagged with the access id. 1744 /// 1745 /// @see getTaggedAccesses 1746 isl_union_map *getTaggedMustWrites() { 1747 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1748 } 1749 1750 /// Collect parameter and array names as isl_ids. 1751 /// 1752 /// To reason about the different parameters and arrays used, ppcg requires 1753 /// a list of all isl_ids in use. As PPCG traditionally performs 1754 /// source-to-source compilation each of these isl_ids is mapped to the 1755 /// expression that represents it. As we do not have a corresponding 1756 /// expression in Polly, we just map each id to a 'zero' expression to match 1757 /// the data format that ppcg expects. 1758 /// 1759 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1760 __isl_give isl_id_to_ast_expr *getNames() { 1761 auto *Names = isl_id_to_ast_expr_alloc( 1762 S->getIslCtx(), 1763 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1764 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1765 auto *Space = S->getParamSpace(); 1766 1767 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1768 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1769 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1770 } 1771 1772 for (auto &Array : S->arrays()) { 1773 auto Id = Array->getBasePtrId(); 1774 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1775 } 1776 1777 isl_space_free(Space); 1778 isl_ast_expr_free(Zero); 1779 1780 return Names; 1781 } 1782 1783 /// Create a new PPCG scop from the current scop. 1784 /// 1785 /// The PPCG scop is initialized with data from the current polly::Scop. From 1786 /// this initial data, the data-dependences in the PPCG scop are initialized. 1787 /// We do not use Polly's dependence analysis for now, to ensure we match 1788 /// the PPCG default behaviour more closely. 1789 /// 1790 /// @returns A new ppcg scop. 1791 ppcg_scop *createPPCGScop() { 1792 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1793 1794 PPCGScop->options = createPPCGOptions(); 1795 1796 PPCGScop->start = 0; 1797 PPCGScop->end = 0; 1798 1799 PPCGScop->context = S->getContext(); 1800 PPCGScop->domain = S->getDomains(); 1801 PPCGScop->call = nullptr; 1802 PPCGScop->tagged_reads = getTaggedReads(); 1803 PPCGScop->reads = S->getReads(); 1804 PPCGScop->live_in = nullptr; 1805 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1806 PPCGScop->may_writes = S->getWrites(); 1807 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1808 PPCGScop->must_writes = S->getMustWrites(); 1809 PPCGScop->live_out = nullptr; 1810 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1811 PPCGScop->tagger = nullptr; 1812 1813 PPCGScop->independence = nullptr; 1814 PPCGScop->dep_flow = nullptr; 1815 PPCGScop->tagged_dep_flow = nullptr; 1816 PPCGScop->dep_false = nullptr; 1817 PPCGScop->dep_forced = nullptr; 1818 PPCGScop->dep_order = nullptr; 1819 PPCGScop->tagged_dep_order = nullptr; 1820 1821 PPCGScop->schedule = S->getScheduleTree(); 1822 PPCGScop->names = getNames(); 1823 1824 PPCGScop->pet = nullptr; 1825 1826 compute_tagger(PPCGScop); 1827 compute_dependences(PPCGScop); 1828 1829 return PPCGScop; 1830 } 1831 1832 /// Collect the array acesses in a statement. 1833 /// 1834 /// @param Stmt The statement for which to collect the accesses. 1835 /// 1836 /// @returns A list of array accesses. 1837 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1838 gpu_stmt_access *Accesses = nullptr; 1839 1840 for (MemoryAccess *Acc : Stmt) { 1841 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1842 Access->read = Acc->isRead(); 1843 Access->write = Acc->isWrite(); 1844 Access->access = Acc->getAccessRelation(); 1845 isl_space *Space = isl_map_get_space(Access->access); 1846 Space = isl_space_range(Space); 1847 Space = isl_space_from_range(Space); 1848 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1849 isl_map *Universe = isl_map_universe(Space); 1850 Access->tagged_access = 1851 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1852 Access->exact_write = !Acc->isMayWrite(); 1853 Access->ref_id = Acc->getId(); 1854 Access->next = Accesses; 1855 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 1856 Accesses = Access; 1857 } 1858 1859 return Accesses; 1860 } 1861 1862 /// Collect the list of GPU statements. 1863 /// 1864 /// Each statement has an id, a pointer to the underlying data structure, 1865 /// as well as a list with all memory accesses. 1866 /// 1867 /// TODO: Initialize the list of memory accesses. 1868 /// 1869 /// @returns A linked-list of statements. 1870 gpu_stmt *getStatements() { 1871 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1872 std::distance(S->begin(), S->end())); 1873 1874 int i = 0; 1875 for (auto &Stmt : *S) { 1876 gpu_stmt *GPUStmt = &Stmts[i]; 1877 1878 GPUStmt->id = Stmt.getDomainId(); 1879 1880 // We use the pet stmt pointer to keep track of the Polly statements. 1881 GPUStmt->stmt = (pet_stmt *)&Stmt; 1882 GPUStmt->accesses = getStmtAccesses(Stmt); 1883 i++; 1884 } 1885 1886 return Stmts; 1887 } 1888 1889 /// Derive the extent of an array. 1890 /// 1891 /// The extent of an array is the set of elements that are within the 1892 /// accessed array. For the inner dimensions, the extent constraints are 1893 /// 0 and the size of the corresponding array dimension. For the first 1894 /// (outermost) dimension, the extent constraints are the minimal and maximal 1895 /// subscript value for the first dimension. 1896 /// 1897 /// @param Array The array to derive the extent for. 1898 /// 1899 /// @returns An isl_set describing the extent of the array. 1900 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1901 unsigned NumDims = Array->getNumberOfDimensions(); 1902 isl_union_map *Accesses = S->getAccesses(); 1903 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1904 Accesses = isl_union_map_detect_equalities(Accesses); 1905 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1906 AccessUSet = isl_union_set_coalesce(AccessUSet); 1907 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 1908 AccessUSet = isl_union_set_coalesce(AccessUSet); 1909 1910 if (isl_union_set_is_empty(AccessUSet)) { 1911 isl_union_set_free(AccessUSet); 1912 return isl_set_empty(Array->getSpace()); 1913 } 1914 1915 if (Array->getNumberOfDimensions() == 0) { 1916 isl_union_set_free(AccessUSet); 1917 return isl_set_universe(Array->getSpace()); 1918 } 1919 1920 isl_set *AccessSet = 1921 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1922 1923 isl_union_set_free(AccessUSet); 1924 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 1925 1926 isl_pw_aff *Val = 1927 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 1928 1929 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 1930 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 1931 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 1932 isl_pw_aff_dim(Val, isl_dim_in)); 1933 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 1934 isl_pw_aff_dim(Val, isl_dim_in)); 1935 OuterMin = 1936 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 1937 OuterMax = 1938 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 1939 1940 isl_set *Extent = isl_set_universe(Array->getSpace()); 1941 1942 Extent = isl_set_intersect( 1943 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 1944 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 1945 1946 for (unsigned i = 1; i < NumDims; ++i) 1947 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 1948 1949 for (unsigned i = 1; i < NumDims; ++i) { 1950 isl_pw_aff *PwAff = 1951 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 1952 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 1953 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 1954 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 1955 isl_pw_aff_dim(Val, isl_dim_in)); 1956 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 1957 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 1958 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 1959 Extent = isl_set_intersect(Set, Extent); 1960 } 1961 1962 return Extent; 1963 } 1964 1965 /// Derive the bounds of an array. 1966 /// 1967 /// For the first dimension we derive the bound of the array from the extent 1968 /// of this dimension. For inner dimensions we obtain their size directly from 1969 /// ScopArrayInfo. 1970 /// 1971 /// @param PPCGArray The array to compute bounds for. 1972 /// @param Array The polly array from which to take the information. 1973 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1974 if (PPCGArray.n_index > 0) { 1975 if (isl_set_is_empty(PPCGArray.extent)) { 1976 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1977 isl_local_space *LS = isl_local_space_from_space( 1978 isl_space_params(isl_set_get_space(Dom))); 1979 isl_set_free(Dom); 1980 isl_aff *Zero = isl_aff_zero_on_domain(LS); 1981 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 1982 } else { 1983 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1984 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1985 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1986 isl_set_free(Dom); 1987 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1988 isl_local_space *LS = 1989 isl_local_space_from_space(isl_set_get_space(Dom)); 1990 isl_aff *One = isl_aff_zero_on_domain(LS); 1991 One = isl_aff_add_constant_si(One, 1); 1992 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1993 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1994 PPCGArray.bound[0] = Bound; 1995 } 1996 } 1997 1998 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1999 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2000 auto LS = isl_pw_aff_get_domain_space(Bound); 2001 auto Aff = isl_multi_aff_zero(LS); 2002 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2003 PPCGArray.bound[i] = Bound; 2004 } 2005 } 2006 2007 /// Create the arrays for @p PPCGProg. 2008 /// 2009 /// @param PPCGProg The program to compute the arrays for. 2010 void createArrays(gpu_prog *PPCGProg) { 2011 int i = 0; 2012 for (auto &Array : S->arrays()) { 2013 std::string TypeName; 2014 raw_string_ostream OS(TypeName); 2015 2016 OS << *Array->getElementType(); 2017 TypeName = OS.str(); 2018 2019 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2020 2021 PPCGArray.space = Array->getSpace(); 2022 PPCGArray.type = strdup(TypeName.c_str()); 2023 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2024 PPCGArray.name = strdup(Array->getName().c_str()); 2025 PPCGArray.extent = nullptr; 2026 PPCGArray.n_index = Array->getNumberOfDimensions(); 2027 PPCGArray.bound = 2028 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 2029 PPCGArray.extent = getExtent(Array); 2030 PPCGArray.n_ref = 0; 2031 PPCGArray.refs = nullptr; 2032 PPCGArray.accessed = true; 2033 PPCGArray.read_only_scalar = 2034 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2035 PPCGArray.has_compound_element = false; 2036 PPCGArray.local = false; 2037 PPCGArray.declare_local = false; 2038 PPCGArray.global = false; 2039 PPCGArray.linearize = false; 2040 PPCGArray.dep_order = nullptr; 2041 PPCGArray.user = Array; 2042 2043 setArrayBounds(PPCGArray, Array); 2044 i++; 2045 2046 collect_references(PPCGProg, &PPCGArray); 2047 } 2048 } 2049 2050 /// Create an identity map between the arrays in the scop. 2051 /// 2052 /// @returns An identity map between the arrays in the scop. 2053 isl_union_map *getArrayIdentity() { 2054 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2055 2056 for (auto &Array : S->arrays()) { 2057 isl_space *Space = Array->getSpace(); 2058 Space = isl_space_map_from_set(Space); 2059 isl_map *Identity = isl_map_identity(Space); 2060 Maps = isl_union_map_add_map(Maps, Identity); 2061 } 2062 2063 return Maps; 2064 } 2065 2066 /// Create a default-initialized PPCG GPU program. 2067 /// 2068 /// @returns A new gpu grogram description. 2069 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2070 2071 if (!PPCGScop) 2072 return nullptr; 2073 2074 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2075 2076 PPCGProg->ctx = S->getIslCtx(); 2077 PPCGProg->scop = PPCGScop; 2078 PPCGProg->context = isl_set_copy(PPCGScop->context); 2079 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2080 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2081 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2082 PPCGProg->tagged_must_kill = 2083 isl_union_map_copy(PPCGScop->tagged_must_kills); 2084 PPCGProg->to_inner = getArrayIdentity(); 2085 PPCGProg->to_outer = getArrayIdentity(); 2086 PPCGProg->any_to_outer = nullptr; 2087 PPCGProg->array_order = nullptr; 2088 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2089 PPCGProg->stmts = getStatements(); 2090 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2091 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2092 PPCGProg->n_array); 2093 2094 createArrays(PPCGProg); 2095 2096 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2097 2098 return PPCGProg; 2099 } 2100 2101 struct PrintGPUUserData { 2102 struct cuda_info *CudaInfo; 2103 struct gpu_prog *PPCGProg; 2104 std::vector<ppcg_kernel *> Kernels; 2105 }; 2106 2107 /// Print a user statement node in the host code. 2108 /// 2109 /// We use ppcg's printing facilities to print the actual statement and 2110 /// additionally build up a list of all kernels that are encountered in the 2111 /// host ast. 2112 /// 2113 /// @param P The printer to print to 2114 /// @param Options The printing options to use 2115 /// @param Node The node to print 2116 /// @param User A user pointer to carry additional data. This pointer is 2117 /// expected to be of type PrintGPUUserData. 2118 /// 2119 /// @returns A printer to which the output has been printed. 2120 static __isl_give isl_printer * 2121 printHostUser(__isl_take isl_printer *P, 2122 __isl_take isl_ast_print_options *Options, 2123 __isl_take isl_ast_node *Node, void *User) { 2124 auto Data = (struct PrintGPUUserData *)User; 2125 auto Id = isl_ast_node_get_annotation(Node); 2126 2127 if (Id) { 2128 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2129 2130 // If this is a user statement, format it ourselves as ppcg would 2131 // otherwise try to call pet functionality that is not available in 2132 // Polly. 2133 if (IsUser) { 2134 P = isl_printer_start_line(P); 2135 P = isl_printer_print_ast_node(P, Node); 2136 P = isl_printer_end_line(P); 2137 isl_id_free(Id); 2138 isl_ast_print_options_free(Options); 2139 return P; 2140 } 2141 2142 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2143 isl_id_free(Id); 2144 Data->Kernels.push_back(Kernel); 2145 } 2146 2147 return print_host_user(P, Options, Node, User); 2148 } 2149 2150 /// Print C code corresponding to the control flow in @p Kernel. 2151 /// 2152 /// @param Kernel The kernel to print 2153 void printKernel(ppcg_kernel *Kernel) { 2154 auto *P = isl_printer_to_str(S->getIslCtx()); 2155 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2156 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2157 P = isl_ast_node_print(Kernel->tree, P, Options); 2158 char *String = isl_printer_get_str(P); 2159 printf("%s\n", String); 2160 free(String); 2161 isl_printer_free(P); 2162 } 2163 2164 /// Print C code corresponding to the GPU code described by @p Tree. 2165 /// 2166 /// @param Tree An AST describing GPU code 2167 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2168 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2169 auto *P = isl_printer_to_str(S->getIslCtx()); 2170 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2171 2172 PrintGPUUserData Data; 2173 Data.PPCGProg = PPCGProg; 2174 2175 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2176 Options = 2177 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2178 P = isl_ast_node_print(Tree, P, Options); 2179 char *String = isl_printer_get_str(P); 2180 printf("# host\n"); 2181 printf("%s\n", String); 2182 free(String); 2183 isl_printer_free(P); 2184 2185 for (auto Kernel : Data.Kernels) { 2186 printf("# kernel%d\n", Kernel->id); 2187 printKernel(Kernel); 2188 } 2189 } 2190 2191 // Generate a GPU program using PPCG. 2192 // 2193 // GPU mapping consists of multiple steps: 2194 // 2195 // 1) Compute new schedule for the program. 2196 // 2) Map schedule to GPU (TODO) 2197 // 3) Generate code for new schedule (TODO) 2198 // 2199 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2200 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2201 // strategy directly from this pass. 2202 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2203 2204 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2205 2206 PPCGGen->ctx = S->getIslCtx(); 2207 PPCGGen->options = PPCGScop->options; 2208 PPCGGen->print = nullptr; 2209 PPCGGen->print_user = nullptr; 2210 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2211 PPCGGen->prog = PPCGProg; 2212 PPCGGen->tree = nullptr; 2213 PPCGGen->types.n = 0; 2214 PPCGGen->types.name = nullptr; 2215 PPCGGen->sizes = nullptr; 2216 PPCGGen->used_sizes = nullptr; 2217 PPCGGen->kernel_id = 0; 2218 2219 // Set scheduling strategy to same strategy PPCG is using. 2220 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2221 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2222 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2223 2224 isl_schedule *Schedule = get_schedule(PPCGGen); 2225 2226 int has_permutable = has_any_permutable_node(Schedule); 2227 2228 if (!has_permutable || has_permutable < 0) { 2229 Schedule = isl_schedule_free(Schedule); 2230 } else { 2231 Schedule = map_to_device(PPCGGen, Schedule); 2232 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2233 } 2234 2235 if (DumpSchedule) { 2236 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2237 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2238 P = isl_printer_print_str(P, "Schedule\n"); 2239 P = isl_printer_print_str(P, "========\n"); 2240 if (Schedule) 2241 P = isl_printer_print_schedule(P, Schedule); 2242 else 2243 P = isl_printer_print_str(P, "No schedule found\n"); 2244 2245 printf("%s\n", isl_printer_get_str(P)); 2246 isl_printer_free(P); 2247 } 2248 2249 if (DumpCode) { 2250 printf("Code\n"); 2251 printf("====\n"); 2252 if (PPCGGen->tree) 2253 printGPUTree(PPCGGen->tree, PPCGProg); 2254 else 2255 printf("No code generated\n"); 2256 } 2257 2258 isl_schedule_free(Schedule); 2259 2260 return PPCGGen; 2261 } 2262 2263 /// Free gpu_gen structure. 2264 /// 2265 /// @param PPCGGen The ppcg_gen object to free. 2266 void freePPCGGen(gpu_gen *PPCGGen) { 2267 isl_ast_node_free(PPCGGen->tree); 2268 isl_union_map_free(PPCGGen->sizes); 2269 isl_union_map_free(PPCGGen->used_sizes); 2270 free(PPCGGen); 2271 } 2272 2273 /// Free the options in the ppcg scop structure. 2274 /// 2275 /// ppcg is not freeing these options for us. To avoid leaks we do this 2276 /// ourselves. 2277 /// 2278 /// @param PPCGScop The scop referencing the options to free. 2279 void freeOptions(ppcg_scop *PPCGScop) { 2280 free(PPCGScop->options->debug); 2281 PPCGScop->options->debug = nullptr; 2282 free(PPCGScop->options); 2283 PPCGScop->options = nullptr; 2284 } 2285 2286 /// Approximate the number of points in the set. 2287 /// 2288 /// This function returns an ast expression that overapproximates the number 2289 /// of points in an isl set through the rectangular hull surrounding this set. 2290 /// 2291 /// @param Set The set to count. 2292 /// @param Build The isl ast build object to use for creating the ast 2293 /// expression. 2294 /// 2295 /// @returns An approximation of the number of points in the set. 2296 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2297 __isl_keep isl_ast_build *Build) { 2298 2299 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2300 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2301 2302 isl_space *Space = isl_set_get_space(Set); 2303 Space = isl_space_params(Space); 2304 auto *Univ = isl_set_universe(Space); 2305 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2306 2307 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2308 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2309 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2310 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2311 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2312 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2313 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2314 } 2315 2316 isl_set_free(Set); 2317 isl_pw_aff_free(OneAff); 2318 2319 return Expr; 2320 } 2321 2322 /// Approximate a number of dynamic instructions executed by a given 2323 /// statement. 2324 /// 2325 /// @param Stmt The statement for which to compute the number of dynamic 2326 /// instructions. 2327 /// @param Build The isl ast build object to use for creating the ast 2328 /// expression. 2329 /// @returns An approximation of the number of dynamic instructions executed 2330 /// by @p Stmt. 2331 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2332 __isl_keep isl_ast_build *Build) { 2333 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2334 2335 long InstCount = 0; 2336 2337 if (Stmt.isBlockStmt()) { 2338 auto *BB = Stmt.getBasicBlock(); 2339 InstCount = std::distance(BB->begin(), BB->end()); 2340 } else { 2341 auto *R = Stmt.getRegion(); 2342 2343 for (auto *BB : R->blocks()) { 2344 InstCount += std::distance(BB->begin(), BB->end()); 2345 } 2346 } 2347 2348 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2349 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2350 return isl_ast_expr_mul(InstExpr, Iterations); 2351 } 2352 2353 /// Approximate dynamic instructions executed in scop. 2354 /// 2355 /// @param S The scop for which to approximate dynamic instructions. 2356 /// @param Build The isl ast build object to use for creating the ast 2357 /// expression. 2358 /// @returns An approximation of the number of dynamic instructions executed 2359 /// in @p S. 2360 __isl_give isl_ast_expr * 2361 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2362 isl_ast_expr *Instructions; 2363 2364 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2365 Instructions = isl_ast_expr_from_val(Zero); 2366 2367 for (ScopStmt &Stmt : S) { 2368 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2369 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2370 } 2371 return Instructions; 2372 } 2373 2374 /// Create a check that ensures sufficient compute in scop. 2375 /// 2376 /// @param S The scop for which to ensure sufficient compute. 2377 /// @param Build The isl ast build object to use for creating the ast 2378 /// expression. 2379 /// @returns An expression that evaluates to TRUE in case of sufficient 2380 /// compute and to FALSE, otherwise. 2381 __isl_give isl_ast_expr * 2382 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2383 auto Iterations = getNumberOfIterations(S, Build); 2384 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2385 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2386 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2387 } 2388 2389 /// Generate code for a given GPU AST described by @p Root. 2390 /// 2391 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2392 /// @param Prog The GPU Program to generate code for. 2393 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2394 ScopAnnotator Annotator; 2395 Annotator.buildAliasScopes(*S); 2396 2397 Region *R = &S->getRegion(); 2398 2399 simplifyRegion(R, DT, LI, RI); 2400 2401 BasicBlock *EnteringBB = R->getEnteringBlock(); 2402 2403 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2404 2405 // Only build the run-time condition and parameters _after_ having 2406 // introduced the conditional branch. This is important as the conditional 2407 // branch will guard the original scop from new induction variables that 2408 // the SCEVExpander may introduce while code generating the parameters and 2409 // which may introduce scalar dependences that prevent us from correctly 2410 // code generating this scop. 2411 BasicBlock *StartBlock = 2412 executeScopConditionally(*S, this, Builder.getTrue()); 2413 2414 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 2415 StartBlock, Prog); 2416 2417 // TODO: Handle LICM 2418 auto SplitBlock = StartBlock->getSinglePredecessor(); 2419 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2420 NodeBuilder.addParameters(S->getContext()); 2421 2422 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2423 isl_ast_expr *Condition = IslAst::buildRunCondition(S, Build); 2424 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 2425 Condition = isl_ast_expr_and(Condition, SufficientCompute); 2426 isl_ast_build_free(Build); 2427 2428 Value *RTC = NodeBuilder.createRTC(Condition); 2429 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2430 2431 Builder.SetInsertPoint(&*StartBlock->begin()); 2432 2433 NodeBuilder.initializeAfterRTH(); 2434 NodeBuilder.create(Root); 2435 NodeBuilder.finalize(); 2436 2437 /// In case a sequential kernel has more surrounding loops as any parallel 2438 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 2439 /// point in running it on a CPU. 2440 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 2441 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2442 2443 if (!NodeBuilder.BuildSuccessful) 2444 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2445 } 2446 2447 bool runOnScop(Scop &CurrentScop) override { 2448 S = &CurrentScop; 2449 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2450 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2451 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2452 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 2453 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2454 2455 // We currently do not support scops with invariant loads. 2456 if (S->hasInvariantAccesses()) 2457 return false; 2458 2459 auto PPCGScop = createPPCGScop(); 2460 auto PPCGProg = createPPCGProg(PPCGScop); 2461 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2462 2463 if (PPCGGen->tree) 2464 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2465 2466 freeOptions(PPCGScop); 2467 freePPCGGen(PPCGGen); 2468 gpu_prog_free(PPCGProg); 2469 ppcg_scop_free(PPCGScop); 2470 2471 return true; 2472 } 2473 2474 void printScop(raw_ostream &, Scop &) const override {} 2475 2476 void getAnalysisUsage(AnalysisUsage &AU) const override { 2477 AU.addRequired<DominatorTreeWrapperPass>(); 2478 AU.addRequired<RegionInfoPass>(); 2479 AU.addRequired<ScalarEvolutionWrapperPass>(); 2480 AU.addRequired<ScopDetection>(); 2481 AU.addRequired<ScopInfoRegionPass>(); 2482 AU.addRequired<LoopInfoWrapperPass>(); 2483 2484 AU.addPreserved<AAResultsWrapperPass>(); 2485 AU.addPreserved<BasicAAWrapperPass>(); 2486 AU.addPreserved<LoopInfoWrapperPass>(); 2487 AU.addPreserved<DominatorTreeWrapperPass>(); 2488 AU.addPreserved<GlobalsAAWrapperPass>(); 2489 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2490 AU.addPreserved<ScopDetection>(); 2491 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2492 AU.addPreserved<SCEVAAWrapperPass>(); 2493 2494 // FIXME: We do not yet add regions for the newly generated code to the 2495 // region tree. 2496 AU.addPreserved<RegionInfoPass>(); 2497 AU.addPreserved<ScopInfoRegionPass>(); 2498 } 2499 }; 2500 } 2501 2502 char PPCGCodeGeneration::ID = 1; 2503 2504 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 2505 2506 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 2507 "Polly - Apply PPCG translation to SCOP", false, false) 2508 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2509 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 2510 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 2511 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 2512 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 2513 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 2514 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 2515 "Polly - Apply PPCG translation to SCOP", false, false) 2516