1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "polly/Support/SCEVValidator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BasicAliasAnalysis.h" 25 #include "llvm/Analysis/GlobalsModRef.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/TargetSelect.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 36 37 #include "isl/union_map.h" 38 39 extern "C" { 40 #include "ppcg/cuda.h" 41 #include "ppcg/gpu.h" 42 #include "ppcg/gpu_print.h" 43 #include "ppcg/ppcg.h" 44 #include "ppcg/schedule.h" 45 } 46 47 #include "llvm/Support/Debug.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen-ppcg" 53 54 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 55 cl::desc("Dump the computed GPU Schedule"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 static cl::opt<bool> 60 DumpCode("polly-acc-dump-code", 61 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 62 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 63 64 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 65 cl::desc("Dump the kernel LLVM-IR"), 66 cl::Hidden, cl::init(false), cl::ZeroOrMore, 67 cl::cat(PollyCategory)); 68 69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 70 cl::desc("Dump the kernel assembly code"), 71 cl::Hidden, cl::init(false), cl::ZeroOrMore, 72 cl::cat(PollyCategory)); 73 74 static cl::opt<bool> FastMath("polly-acc-fastmath", 75 cl::desc("Allow unsafe math optimizations"), 76 cl::Hidden, cl::init(false), cl::ZeroOrMore, 77 cl::cat(PollyCategory)); 78 79 static cl::opt<std::string> 80 CudaVersion("polly-acc-cuda-version", 81 cl::desc("The CUDA version to compile for"), cl::Hidden, 82 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 83 84 /// Create the ast expressions for a ScopStmt. 85 /// 86 /// This function is a callback for to generate the ast expressions for each 87 /// of the scheduled ScopStmts. 88 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 89 void *StmtT, isl_ast_build *Build, 90 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 91 isl_id *Id, void *User), 92 void *UserIndex, 93 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 94 void *UserExpr) { 95 96 ScopStmt *Stmt = (ScopStmt *)StmtT; 97 98 isl_ctx *Ctx; 99 100 if (!Stmt || !Build) 101 return NULL; 102 103 Ctx = isl_ast_build_get_ctx(Build); 104 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 105 106 for (MemoryAccess *Acc : *Stmt) { 107 isl_map *AddrFunc = Acc->getAddressFunction(); 108 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 109 isl_id *RefId = Acc->getId(); 110 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 111 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 112 MPA = isl_multi_pw_aff_coalesce(MPA); 113 MPA = FunctionIndex(MPA, RefId, UserIndex); 114 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 115 Access = FunctionExpr(Access, RefId, UserExpr); 116 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 117 } 118 119 return RefToExpr; 120 } 121 122 /// Generate code for a GPU specific isl AST. 123 /// 124 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 125 /// generates code for general-prupose AST nodes, with special functionality 126 /// for generating GPU specific user nodes. 127 /// 128 /// @see GPUNodeBuilder::createUser 129 class GPUNodeBuilder : public IslNodeBuilder { 130 public: 131 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 132 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 133 DominatorTree &DT, Scop &S, gpu_prog *Prog) 134 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 135 getExprBuilder().setIDToSAI(&IDToSAI); 136 } 137 138 /// Create after-run-time-check initialization code. 139 void initializeAfterRTH(); 140 141 /// Finalize the generated scop. 142 virtual void finalize(); 143 144 private: 145 /// A vector of array base pointers for which a new ScopArrayInfo was created. 146 /// 147 /// This vector is used to delete the ScopArrayInfo when it is not needed any 148 /// more. 149 std::vector<Value *> LocalArrays; 150 151 /// A map from ScopArrays to their corresponding device allocations. 152 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 153 154 /// The current GPU context. 155 Value *GPUContext; 156 157 /// A module containing GPU code. 158 /// 159 /// This pointer is only set in case we are currently generating GPU code. 160 std::unique_ptr<Module> GPUModule; 161 162 /// The GPU program we generate code for. 163 gpu_prog *Prog; 164 165 /// Class to free isl_ids. 166 class IslIdDeleter { 167 public: 168 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 169 }; 170 171 /// A set containing all isl_ids allocated in a GPU kernel. 172 /// 173 /// By releasing this set all isl_ids will be freed. 174 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 175 176 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 177 178 /// Create code for user-defined AST nodes. 179 /// 180 /// These AST nodes can be of type: 181 /// 182 /// - ScopStmt: A computational statement (TODO) 183 /// - Kernel: A GPU kernel call (TODO) 184 /// - Data-Transfer: A GPU <-> CPU data-transfer 185 /// - In-kernel synchronization 186 /// - In-kernel memory copy statement 187 /// 188 /// @param UserStmt The ast node to generate code for. 189 virtual void createUser(__isl_take isl_ast_node *UserStmt); 190 191 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 192 193 /// Create code for a data transfer statement 194 /// 195 /// @param TransferStmt The data transfer statement. 196 /// @param Direction The direction in which to transfer data. 197 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 198 enum DataDirection Direction); 199 200 /// Find llvm::Values referenced in GPU kernel. 201 /// 202 /// @param Kernel The kernel to scan for llvm::Values 203 /// 204 /// @returns A set of values referenced by the kernel. 205 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 206 207 /// Compute the sizes of the execution grid for a given kernel. 208 /// 209 /// @param Kernel The kernel to compute grid sizes for. 210 /// 211 /// @returns A tuple with grid sizes for X and Y dimension 212 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 213 214 /// Compute the sizes of the thread blocks for a given kernel. 215 /// 216 /// @param Kernel The kernel to compute thread block sizes for. 217 /// 218 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 219 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 220 221 /// Create kernel launch parameters. 222 /// 223 /// @param Kernel The kernel to create parameters for. 224 /// @param F The kernel function that has been created. 225 /// 226 /// @returns A stack allocated array with pointers to the parameter 227 /// values that are passed to the kernel. 228 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F); 229 230 /// Create GPU kernel. 231 /// 232 /// Code generate the kernel described by @p KernelStmt. 233 /// 234 /// @param KernelStmt The ast node to generate kernel code for. 235 void createKernel(__isl_take isl_ast_node *KernelStmt); 236 237 /// Generate code that computes the size of an array. 238 /// 239 /// @param Array The array for which to compute a size. 240 Value *getArraySize(gpu_array_info *Array); 241 242 /// Create kernel function. 243 /// 244 /// Create a kernel function located in a newly created module that can serve 245 /// as target for device code generation. Set the Builder to point to the 246 /// start block of this newly created function. 247 /// 248 /// @param Kernel The kernel to generate code for. 249 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 250 void createKernelFunction(ppcg_kernel *Kernel, 251 SetVector<Value *> &SubtreeValues); 252 253 /// Create the declaration of a kernel function. 254 /// 255 /// The kernel function takes as arguments: 256 /// 257 /// - One i8 pointer for each external array reference used in the kernel. 258 /// - Host iterators 259 /// - Parameters 260 /// - Other LLVM Value references (TODO) 261 /// 262 /// @param Kernel The kernel to generate the function declaration for. 263 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 264 /// 265 /// @returns The newly declared function. 266 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 267 SetVector<Value *> &SubtreeValues); 268 269 /// Insert intrinsic functions to obtain thread and block ids. 270 /// 271 /// @param The kernel to generate the intrinsic functions for. 272 void insertKernelIntrinsics(ppcg_kernel *Kernel); 273 274 /// Create code for a ScopStmt called in @p Expr. 275 /// 276 /// @param Expr The expression containing the call. 277 /// @param KernelStmt The kernel statement referenced in the call. 278 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 279 280 /// Create an in-kernel synchronization call. 281 void createKernelSync(); 282 283 /// Create a PTX assembly string for the current GPU kernel. 284 /// 285 /// @returns A string containing the corresponding PTX assembly code. 286 std::string createKernelASM(); 287 288 /// Remove references from the dominator tree to the kernel function @p F. 289 /// 290 /// @param F The function to remove references to. 291 void clearDominators(Function *F); 292 293 /// Remove references from scalar evolution to the kernel function @p F. 294 /// 295 /// @param F The function to remove references to. 296 void clearScalarEvolution(Function *F); 297 298 /// Remove references from loop info to the kernel function @p F. 299 /// 300 /// @param F The function to remove references to. 301 void clearLoops(Function *F); 302 303 /// Finalize the generation of the kernel function. 304 /// 305 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 306 /// dump its IR to stderr. 307 /// 308 /// @returns The Assembly string of the kernel. 309 std::string finalizeKernelFunction(); 310 311 /// Create code that allocates memory to store arrays on device. 312 void allocateDeviceArrays(); 313 314 /// Free all allocated device arrays. 315 void freeDeviceArrays(); 316 317 /// Create a call to initialize the GPU context. 318 /// 319 /// @returns A pointer to the newly initialized context. 320 Value *createCallInitContext(); 321 322 /// Create a call to get the device pointer for a kernel allocation. 323 /// 324 /// @param Allocation The Polly GPU allocation 325 /// 326 /// @returns The device parameter corresponding to this allocation. 327 Value *createCallGetDevicePtr(Value *Allocation); 328 329 /// Create a call to free the GPU context. 330 /// 331 /// @param Context A pointer to an initialized GPU context. 332 void createCallFreeContext(Value *Context); 333 334 /// Create a call to allocate memory on the device. 335 /// 336 /// @param Size The size of memory to allocate 337 /// 338 /// @returns A pointer that identifies this allocation. 339 Value *createCallAllocateMemoryForDevice(Value *Size); 340 341 /// Create a call to free a device array. 342 /// 343 /// @param Array The device array to free. 344 void createCallFreeDeviceMemory(Value *Array); 345 346 /// Create a call to copy data from host to device. 347 /// 348 /// @param HostPtr A pointer to the host data that should be copied. 349 /// @param DevicePtr A device pointer specifying the location to copy to. 350 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 351 Value *Size); 352 353 /// Create a call to copy data from device to host. 354 /// 355 /// @param DevicePtr A pointer to the device data that should be copied. 356 /// @param HostPtr A host pointer specifying the location to copy to. 357 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 358 Value *Size); 359 360 /// Create a call to get a kernel from an assembly string. 361 /// 362 /// @param Buffer The string describing the kernel. 363 /// @param Entry The name of the kernel function to call. 364 /// 365 /// @returns A pointer to a kernel object 366 Value *createCallGetKernel(Value *Buffer, Value *Entry); 367 368 /// Create a call to free a GPU kernel. 369 /// 370 /// @param GPUKernel THe kernel to free. 371 void createCallFreeKernel(Value *GPUKernel); 372 373 /// Create a call to launch a GPU kernel. 374 /// 375 /// @param GPUKernel The kernel to launch. 376 /// @param GridDimX The size of the first grid dimension. 377 /// @param GridDimY The size of the second grid dimension. 378 /// @param GridBlockX The size of the first block dimension. 379 /// @param GridBlockY The size of the second block dimension. 380 /// @param GridBlockZ The size of the third block dimension. 381 /// @param Paramters A pointer to an array that contains itself pointers to 382 /// the parameter values passed for each kernel argument. 383 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 384 Value *GridDimY, Value *BlockDimX, 385 Value *BlockDimY, Value *BlockDimZ, 386 Value *Parameters); 387 }; 388 389 void GPUNodeBuilder::initializeAfterRTH() { 390 GPUContext = createCallInitContext(); 391 allocateDeviceArrays(); 392 } 393 394 void GPUNodeBuilder::finalize() { 395 freeDeviceArrays(); 396 createCallFreeContext(GPUContext); 397 IslNodeBuilder::finalize(); 398 } 399 400 void GPUNodeBuilder::allocateDeviceArrays() { 401 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 402 403 for (int i = 0; i < Prog->n_array; ++i) { 404 gpu_array_info *Array = &Prog->array[i]; 405 auto *ScopArray = (ScopArrayInfo *)Array->user; 406 std::string DevArrayName("p_dev_array_"); 407 DevArrayName.append(Array->name); 408 409 Value *ArraySize = getArraySize(Array); 410 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 411 DevArray->setName(DevArrayName); 412 DeviceAllocations[ScopArray] = DevArray; 413 } 414 415 isl_ast_build_free(Build); 416 } 417 418 void GPUNodeBuilder::freeDeviceArrays() { 419 for (auto &Array : DeviceAllocations) 420 createCallFreeDeviceMemory(Array.second); 421 } 422 423 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 424 const char *Name = "polly_getKernel"; 425 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 426 Function *F = M->getFunction(Name); 427 428 // If F is not available, declare it. 429 if (!F) { 430 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 431 std::vector<Type *> Args; 432 Args.push_back(Builder.getInt8PtrTy()); 433 Args.push_back(Builder.getInt8PtrTy()); 434 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 435 F = Function::Create(Ty, Linkage, Name, M); 436 } 437 438 return Builder.CreateCall(F, {Buffer, Entry}); 439 } 440 441 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 442 const char *Name = "polly_getDevicePtr"; 443 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 444 Function *F = M->getFunction(Name); 445 446 // If F is not available, declare it. 447 if (!F) { 448 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 449 std::vector<Type *> Args; 450 Args.push_back(Builder.getInt8PtrTy()); 451 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 452 F = Function::Create(Ty, Linkage, Name, M); 453 } 454 455 return Builder.CreateCall(F, {Allocation}); 456 } 457 458 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 459 Value *GridDimY, Value *BlockDimX, 460 Value *BlockDimY, Value *BlockDimZ, 461 Value *Parameters) { 462 const char *Name = "polly_launchKernel"; 463 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 464 Function *F = M->getFunction(Name); 465 466 // If F is not available, declare it. 467 if (!F) { 468 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 469 std::vector<Type *> Args; 470 Args.push_back(Builder.getInt8PtrTy()); 471 Args.push_back(Builder.getInt32Ty()); 472 Args.push_back(Builder.getInt32Ty()); 473 Args.push_back(Builder.getInt32Ty()); 474 Args.push_back(Builder.getInt32Ty()); 475 Args.push_back(Builder.getInt32Ty()); 476 Args.push_back(Builder.getInt8PtrTy()); 477 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 478 F = Function::Create(Ty, Linkage, Name, M); 479 } 480 481 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 482 BlockDimZ, Parameters}); 483 } 484 485 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 486 const char *Name = "polly_freeKernel"; 487 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 488 Function *F = M->getFunction(Name); 489 490 // If F is not available, declare it. 491 if (!F) { 492 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 493 std::vector<Type *> Args; 494 Args.push_back(Builder.getInt8PtrTy()); 495 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 496 F = Function::Create(Ty, Linkage, Name, M); 497 } 498 499 Builder.CreateCall(F, {GPUKernel}); 500 } 501 502 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 503 const char *Name = "polly_freeDeviceMemory"; 504 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 505 Function *F = M->getFunction(Name); 506 507 // If F is not available, declare it. 508 if (!F) { 509 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 510 std::vector<Type *> Args; 511 Args.push_back(Builder.getInt8PtrTy()); 512 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 513 F = Function::Create(Ty, Linkage, Name, M); 514 } 515 516 Builder.CreateCall(F, {Array}); 517 } 518 519 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 520 const char *Name = "polly_allocateMemoryForDevice"; 521 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 522 Function *F = M->getFunction(Name); 523 524 // If F is not available, declare it. 525 if (!F) { 526 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 527 std::vector<Type *> Args; 528 Args.push_back(Builder.getInt64Ty()); 529 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 530 F = Function::Create(Ty, Linkage, Name, M); 531 } 532 533 return Builder.CreateCall(F, {Size}); 534 } 535 536 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 537 Value *DeviceData, 538 Value *Size) { 539 const char *Name = "polly_copyFromHostToDevice"; 540 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 541 Function *F = M->getFunction(Name); 542 543 // If F is not available, declare it. 544 if (!F) { 545 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 546 std::vector<Type *> Args; 547 Args.push_back(Builder.getInt8PtrTy()); 548 Args.push_back(Builder.getInt8PtrTy()); 549 Args.push_back(Builder.getInt64Ty()); 550 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 551 F = Function::Create(Ty, Linkage, Name, M); 552 } 553 554 Builder.CreateCall(F, {HostData, DeviceData, Size}); 555 } 556 557 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 558 Value *HostData, 559 Value *Size) { 560 const char *Name = "polly_copyFromDeviceToHost"; 561 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 562 Function *F = M->getFunction(Name); 563 564 // If F is not available, declare it. 565 if (!F) { 566 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 567 std::vector<Type *> Args; 568 Args.push_back(Builder.getInt8PtrTy()); 569 Args.push_back(Builder.getInt8PtrTy()); 570 Args.push_back(Builder.getInt64Ty()); 571 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 572 F = Function::Create(Ty, Linkage, Name, M); 573 } 574 575 Builder.CreateCall(F, {DeviceData, HostData, Size}); 576 } 577 578 Value *GPUNodeBuilder::createCallInitContext() { 579 const char *Name = "polly_initContext"; 580 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 581 Function *F = M->getFunction(Name); 582 583 // If F is not available, declare it. 584 if (!F) { 585 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 586 std::vector<Type *> Args; 587 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 588 F = Function::Create(Ty, Linkage, Name, M); 589 } 590 591 return Builder.CreateCall(F, {}); 592 } 593 594 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 595 const char *Name = "polly_freeContext"; 596 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 597 Function *F = M->getFunction(Name); 598 599 // If F is not available, declare it. 600 if (!F) { 601 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 602 std::vector<Type *> Args; 603 Args.push_back(Builder.getInt8PtrTy()); 604 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 605 F = Function::Create(Ty, Linkage, Name, M); 606 } 607 608 Builder.CreateCall(F, {Context}); 609 } 610 611 /// Check if one string is a prefix of another. 612 /// 613 /// @param String The string in which to look for the prefix. 614 /// @param Prefix The prefix to look for. 615 static bool isPrefix(std::string String, std::string Prefix) { 616 return String.find(Prefix) == 0; 617 } 618 619 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 620 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 621 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 622 623 if (!gpu_array_is_scalar(Array)) { 624 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 625 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 626 627 for (unsigned int i = 1; i < Array->n_index; i++) { 628 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 629 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 630 Res = isl_ast_expr_mul(Res, Expr); 631 } 632 633 Value *NumElements = ExprBuilder.create(Res); 634 ArraySize = Builder.CreateMul(ArraySize, NumElements); 635 } 636 isl_ast_build_free(Build); 637 return ArraySize; 638 } 639 640 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 641 enum DataDirection Direction) { 642 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 643 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 644 isl_id *Id = isl_ast_expr_get_id(Arg); 645 auto Array = (gpu_array_info *)isl_id_get_user(Id); 646 auto ScopArray = (ScopArrayInfo *)(Array->user); 647 648 Value *Size = getArraySize(Array); 649 Value *HostPtr = ScopArray->getBasePtr(); 650 651 Value *DevPtr = DeviceAllocations[ScopArray]; 652 653 if (gpu_array_is_scalar(Array)) { 654 HostPtr = Builder.CreateAlloca(ScopArray->getElementType()); 655 Builder.CreateStore(ScopArray->getBasePtr(), HostPtr); 656 } 657 658 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 659 660 if (Direction == HOST_TO_DEVICE) 661 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 662 else 663 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 664 665 isl_id_free(Id); 666 isl_ast_expr_free(Arg); 667 isl_ast_expr_free(Expr); 668 isl_ast_node_free(TransferStmt); 669 } 670 671 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 672 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 673 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 674 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 675 isl_id_free(Id); 676 isl_ast_expr_free(StmtExpr); 677 678 const char *Str = isl_id_get_name(Id); 679 if (!strcmp(Str, "kernel")) { 680 createKernel(UserStmt); 681 isl_ast_expr_free(Expr); 682 return; 683 } 684 685 if (isPrefix(Str, "to_device")) { 686 createDataTransfer(UserStmt, HOST_TO_DEVICE); 687 isl_ast_expr_free(Expr); 688 return; 689 } 690 691 if (isPrefix(Str, "from_device")) { 692 createDataTransfer(UserStmt, DEVICE_TO_HOST); 693 isl_ast_expr_free(Expr); 694 return; 695 } 696 697 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 698 struct ppcg_kernel_stmt *KernelStmt = 699 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 700 isl_id_free(Anno); 701 702 switch (KernelStmt->type) { 703 case ppcg_kernel_domain: 704 createScopStmt(Expr, KernelStmt); 705 isl_ast_node_free(UserStmt); 706 return; 707 case ppcg_kernel_copy: 708 // TODO: Create kernel copy stmt 709 isl_ast_expr_free(Expr); 710 isl_ast_node_free(UserStmt); 711 return; 712 case ppcg_kernel_sync: 713 createKernelSync(); 714 isl_ast_expr_free(Expr); 715 isl_ast_node_free(UserStmt); 716 return; 717 } 718 719 isl_ast_expr_free(Expr); 720 isl_ast_node_free(UserStmt); 721 return; 722 } 723 724 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 725 ppcg_kernel_stmt *KernelStmt) { 726 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 727 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 728 729 LoopToScevMapT LTS; 730 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 731 732 createSubstitutions(Expr, Stmt, LTS); 733 734 if (Stmt->isBlockStmt()) 735 BlockGen.copyStmt(*Stmt, LTS, Indexes); 736 else 737 assert(0 && "Region statement not supported\n"); 738 } 739 740 void GPUNodeBuilder::createKernelSync() { 741 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 742 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 743 Builder.CreateCall(Sync, {}); 744 } 745 746 /// Collect llvm::Values referenced from @p Node 747 /// 748 /// This function only applies to isl_ast_nodes that are user_nodes referring 749 /// to a ScopStmt. All other node types are ignore. 750 /// 751 /// @param Node The node to collect references for. 752 /// @param User A user pointer used as storage for the data that is collected. 753 /// 754 /// @returns isl_bool_true if data could be collected successfully. 755 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 756 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 757 return isl_bool_true; 758 759 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 760 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 761 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 762 const char *Str = isl_id_get_name(Id); 763 isl_id_free(Id); 764 isl_ast_expr_free(StmtExpr); 765 isl_ast_expr_free(Expr); 766 767 if (!isPrefix(Str, "Stmt")) 768 return isl_bool_true; 769 770 Id = isl_ast_node_get_annotation(Node); 771 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 772 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 773 isl_id_free(Id); 774 775 addReferencesFromStmt(Stmt, User); 776 777 return isl_bool_true; 778 } 779 780 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 781 SetVector<Value *> SubtreeValues; 782 SetVector<const SCEV *> SCEVs; 783 SetVector<const Loop *> Loops; 784 SubtreeReferences References = { 785 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 786 787 for (const auto &I : IDToValue) 788 SubtreeValues.insert(I.second); 789 790 isl_ast_node_foreach_descendant_top_down( 791 Kernel->tree, collectReferencesInGPUStmt, &References); 792 793 for (const SCEV *Expr : SCEVs) 794 findValues(Expr, SE, SubtreeValues); 795 796 for (auto &SAI : S.arrays()) 797 SubtreeValues.remove(SAI.second->getBasePtr()); 798 799 isl_space *Space = S.getParamSpace(); 800 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 801 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 802 assert(IDToValue.count(Id)); 803 Value *Val = IDToValue[Id]; 804 SubtreeValues.remove(Val); 805 isl_id_free(Id); 806 } 807 isl_space_free(Space); 808 809 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 810 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 811 assert(IDToValue.count(Id)); 812 Value *Val = IDToValue[Id]; 813 SubtreeValues.remove(Val); 814 isl_id_free(Id); 815 } 816 817 return SubtreeValues; 818 } 819 820 void GPUNodeBuilder::clearDominators(Function *F) { 821 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 822 std::vector<BasicBlock *> Nodes; 823 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 824 Nodes.push_back(I->getBlock()); 825 826 for (BasicBlock *BB : Nodes) 827 DT.eraseNode(BB); 828 } 829 830 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 831 for (BasicBlock &BB : *F) { 832 Loop *L = LI.getLoopFor(&BB); 833 if (L) 834 SE.forgetLoop(L); 835 } 836 } 837 838 void GPUNodeBuilder::clearLoops(Function *F) { 839 for (BasicBlock &BB : *F) { 840 Loop *L = LI.getLoopFor(&BB); 841 if (L) 842 SE.forgetLoop(L); 843 LI.removeBlock(&BB); 844 } 845 } 846 847 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 848 std::vector<Value *> Sizes; 849 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 850 851 for (long i = 0; i < Kernel->n_grid; i++) { 852 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 853 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 854 Value *Res = ExprBuilder.create(GridSize); 855 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 856 Sizes.push_back(Res); 857 } 858 isl_ast_build_free(Context); 859 860 for (long i = Kernel->n_grid; i < 3; i++) 861 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 862 863 return std::make_tuple(Sizes[0], Sizes[1]); 864 } 865 866 std::tuple<Value *, Value *, Value *> 867 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 868 std::vector<Value *> Sizes; 869 870 for (long i = 0; i < Kernel->n_block; i++) { 871 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 872 Sizes.push_back(Res); 873 } 874 875 for (long i = Kernel->n_block; i < 3; i++) 876 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 877 878 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 879 } 880 881 Value *GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, 882 Function *F) { 883 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 884 std::distance(F->arg_begin(), F->arg_end())); 885 886 BasicBlock *EntryBlock = 887 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 888 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 889 Instruction *Parameters = 890 new AllocaInst(ArrayTy, Launch + "_params", EntryBlock->getTerminator()); 891 892 int Index = 0; 893 for (long i = 0; i < Prog->n_array; i++) { 894 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 895 continue; 896 897 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 898 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 899 900 Value *DevArray = DeviceAllocations[(ScopArrayInfo *)SAI]; 901 DevArray = createCallGetDevicePtr(DevArray); 902 Instruction *Param = new AllocaInst( 903 Builder.getInt8PtrTy(), Launch + "_param_" + std::to_string(Index), 904 EntryBlock->getTerminator()); 905 Builder.CreateStore(DevArray, Param); 906 Value *Slot = Builder.CreateGEP( 907 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 908 Value *ParamTyped = 909 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 910 Builder.CreateStore(ParamTyped, Slot); 911 Index++; 912 } 913 914 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 915 916 for (long i = 0; i < NumHostIters; i++) { 917 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 918 Value *Val = IDToValue[Id]; 919 isl_id_free(Id); 920 Instruction *Param = new AllocaInst( 921 Val->getType(), Launch + "_param_" + std::to_string(Index), 922 EntryBlock->getTerminator()); 923 Builder.CreateStore(Val, Param); 924 Value *Slot = Builder.CreateGEP( 925 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 926 Value *ParamTyped = 927 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 928 Builder.CreateStore(ParamTyped, Slot); 929 Index++; 930 } 931 932 auto Location = EntryBlock->getTerminator(); 933 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 934 Launch + "_params_i8ptr", Location); 935 } 936 937 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 938 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 939 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 940 isl_id_free(Id); 941 isl_ast_node_free(KernelStmt); 942 943 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 944 945 assert(Kernel->tree && "Device AST of kernel node is empty"); 946 947 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 948 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 949 ValueMapT HostValueMap = ValueMap; 950 951 SetVector<const Loop *> Loops; 952 953 // Create for all loops we depend on values that contain the current loop 954 // iteration. These values are necessary to generate code for SCEVs that 955 // depend on such loops. As a result we need to pass them to the subfunction. 956 for (const Loop *L : Loops) { 957 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 958 SE.getUnknown(Builder.getInt64(1)), 959 L, SCEV::FlagAnyWrap); 960 Value *V = generateSCEV(OuterLIV); 961 OutsideLoopIterations[L] = SE.getUnknown(V); 962 SubtreeValues.insert(V); 963 } 964 965 createKernelFunction(Kernel, SubtreeValues); 966 967 create(isl_ast_node_copy(Kernel->tree)); 968 969 Function *F = Builder.GetInsertBlock()->getParent(); 970 clearDominators(F); 971 clearScalarEvolution(F); 972 clearLoops(F); 973 974 Builder.SetInsertPoint(&HostInsertPoint); 975 IDToValue = HostIDs; 976 977 ValueMap = HostValueMap; 978 ScalarMap.clear(); 979 PHIOpMap.clear(); 980 EscapeMap.clear(); 981 IDToSAI.clear(); 982 Annotator.resetAlternativeAliasBases(); 983 for (auto &BasePtr : LocalArrays) 984 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 985 LocalArrays.clear(); 986 987 Value *Parameters = createLaunchParameters(Kernel, F); 988 989 std::string ASMString = finalizeKernelFunction(); 990 std::string Name = "kernel_" + std::to_string(Kernel->id); 991 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 992 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 993 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 994 995 Value *GridDimX, *GridDimY; 996 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 997 998 Value *BlockDimX, *BlockDimY, *BlockDimZ; 999 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1000 1001 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1002 BlockDimZ, Parameters); 1003 createCallFreeKernel(GPUKernel); 1004 } 1005 1006 /// Compute the DataLayout string for the NVPTX backend. 1007 /// 1008 /// @param is64Bit Are we looking for a 64 bit architecture? 1009 static std::string computeNVPTXDataLayout(bool is64Bit) { 1010 std::string Ret = "e"; 1011 1012 if (!is64Bit) 1013 Ret += "-p:32:32"; 1014 1015 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 1016 1017 return Ret; 1018 } 1019 1020 Function * 1021 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1022 SetVector<Value *> &SubtreeValues) { 1023 std::vector<Type *> Args; 1024 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1025 1026 for (long i = 0; i < Prog->n_array; i++) { 1027 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1028 continue; 1029 1030 Args.push_back(Builder.getInt8PtrTy()); 1031 } 1032 1033 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1034 1035 for (long i = 0; i < NumHostIters; i++) 1036 Args.push_back(Builder.getInt64Ty()); 1037 1038 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1039 1040 for (long i = 0; i < NumVars; i++) 1041 Args.push_back(Builder.getInt64Ty()); 1042 1043 for (auto *V : SubtreeValues) 1044 Args.push_back(V->getType()); 1045 1046 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1047 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1048 GPUModule.get()); 1049 FN->setCallingConv(CallingConv::PTX_Kernel); 1050 1051 auto Arg = FN->arg_begin(); 1052 for (long i = 0; i < Kernel->n_array; i++) { 1053 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1054 continue; 1055 1056 Arg->setName(Kernel->array[i].array->name); 1057 1058 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1059 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1060 Type *EleTy = SAI->getElementType(); 1061 Value *Val = &*Arg; 1062 SmallVector<const SCEV *, 4> Sizes; 1063 isl_ast_build *Build = 1064 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1065 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1066 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1067 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1068 auto V = ExprBuilder.create(DimSize); 1069 Sizes.push_back(SE.getSCEV(V)); 1070 } 1071 const ScopArrayInfo *SAIRep = 1072 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 1073 LocalArrays.push_back(Val); 1074 1075 isl_ast_build_free(Build); 1076 isl_id_free(Id); 1077 IDToSAI[Id] = SAIRep; 1078 Arg++; 1079 } 1080 1081 for (long i = 0; i < NumHostIters; i++) { 1082 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1083 Arg->setName(isl_id_get_name(Id)); 1084 IDToValue[Id] = &*Arg; 1085 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1086 Arg++; 1087 } 1088 1089 for (long i = 0; i < NumVars; i++) { 1090 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1091 Arg->setName(isl_id_get_name(Id)); 1092 IDToValue[Id] = &*Arg; 1093 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1094 Arg++; 1095 } 1096 1097 for (auto *V : SubtreeValues) { 1098 Arg->setName(V->getName()); 1099 ValueMap[V] = &*Arg; 1100 Arg++; 1101 } 1102 1103 return FN; 1104 } 1105 1106 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1107 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 1108 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 1109 1110 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 1111 Intrinsic::nvvm_read_ptx_sreg_tid_y, 1112 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 1113 1114 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1115 std::string Name = isl_id_get_name(Id); 1116 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1117 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1118 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1119 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1120 IDToValue[Id] = Val; 1121 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1122 }; 1123 1124 for (int i = 0; i < Kernel->n_grid; ++i) { 1125 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1126 addId(Id, IntrinsicsBID[i]); 1127 } 1128 1129 for (int i = 0; i < Kernel->n_block; ++i) { 1130 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1131 addId(Id, IntrinsicsTID[i]); 1132 } 1133 } 1134 1135 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1136 SetVector<Value *> &SubtreeValues) { 1137 1138 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1139 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1140 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1141 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1142 1143 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1144 1145 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1146 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1147 1148 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1149 DT.addNewBlock(EntryBlock, PrevBlock); 1150 1151 Builder.SetInsertPoint(EntryBlock); 1152 Builder.CreateRetVoid(); 1153 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1154 1155 insertKernelIntrinsics(Kernel); 1156 } 1157 1158 std::string GPUNodeBuilder::createKernelASM() { 1159 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1160 std::string ErrMsg; 1161 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1162 1163 if (!GPUTarget) { 1164 errs() << ErrMsg << "\n"; 1165 return ""; 1166 } 1167 1168 TargetOptions Options; 1169 Options.UnsafeFPMath = FastMath; 1170 std::unique_ptr<TargetMachine> TargetM( 1171 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 1172 Options, Optional<Reloc::Model>())); 1173 1174 SmallString<0> ASMString; 1175 raw_svector_ostream ASMStream(ASMString); 1176 llvm::legacy::PassManager PM; 1177 1178 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1179 1180 if (TargetM->addPassesToEmitFile( 1181 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1182 errs() << "The target does not support generation of this file type!\n"; 1183 return ""; 1184 } 1185 1186 PM.run(*GPUModule); 1187 1188 return ASMStream.str(); 1189 } 1190 1191 std::string GPUNodeBuilder::finalizeKernelFunction() { 1192 // Verify module. 1193 llvm::legacy::PassManager Passes; 1194 Passes.add(createVerifierPass()); 1195 Passes.run(*GPUModule); 1196 1197 if (DumpKernelIR) 1198 outs() << *GPUModule << "\n"; 1199 1200 // Optimize module. 1201 llvm::legacy::PassManager OptPasses; 1202 PassManagerBuilder PassBuilder; 1203 PassBuilder.OptLevel = 3; 1204 PassBuilder.SizeLevel = 0; 1205 PassBuilder.populateModulePassManager(OptPasses); 1206 OptPasses.run(*GPUModule); 1207 1208 std::string Assembly = createKernelASM(); 1209 1210 if (DumpKernelASM) 1211 outs() << Assembly << "\n"; 1212 1213 GPUModule.release(); 1214 KernelIDs.clear(); 1215 1216 return Assembly; 1217 } 1218 1219 namespace { 1220 class PPCGCodeGeneration : public ScopPass { 1221 public: 1222 static char ID; 1223 1224 /// The scop that is currently processed. 1225 Scop *S; 1226 1227 LoopInfo *LI; 1228 DominatorTree *DT; 1229 ScalarEvolution *SE; 1230 const DataLayout *DL; 1231 RegionInfo *RI; 1232 1233 PPCGCodeGeneration() : ScopPass(ID) {} 1234 1235 /// Construct compilation options for PPCG. 1236 /// 1237 /// @returns The compilation options. 1238 ppcg_options *createPPCGOptions() { 1239 auto DebugOptions = 1240 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1241 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1242 1243 DebugOptions->dump_schedule_constraints = false; 1244 DebugOptions->dump_schedule = false; 1245 DebugOptions->dump_final_schedule = false; 1246 DebugOptions->dump_sizes = false; 1247 1248 Options->debug = DebugOptions; 1249 1250 Options->reschedule = true; 1251 Options->scale_tile_loops = false; 1252 Options->wrap = false; 1253 1254 Options->non_negative_parameters = false; 1255 Options->ctx = nullptr; 1256 Options->sizes = nullptr; 1257 1258 Options->tile_size = 32; 1259 1260 Options->use_private_memory = false; 1261 Options->use_shared_memory = false; 1262 Options->max_shared_memory = 0; 1263 1264 Options->target = PPCG_TARGET_CUDA; 1265 Options->openmp = false; 1266 Options->linearize_device_arrays = true; 1267 Options->live_range_reordering = false; 1268 1269 Options->opencl_compiler_options = nullptr; 1270 Options->opencl_use_gpu = false; 1271 Options->opencl_n_include_file = 0; 1272 Options->opencl_include_files = nullptr; 1273 Options->opencl_print_kernel_types = false; 1274 Options->opencl_embed_kernel_code = false; 1275 1276 Options->save_schedule_file = nullptr; 1277 Options->load_schedule_file = nullptr; 1278 1279 return Options; 1280 } 1281 1282 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1283 /// 1284 /// Instead of a normal access of the form: 1285 /// 1286 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1287 /// 1288 /// a tagged access has the form 1289 /// 1290 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1291 /// 1292 /// where 'id' is an additional space that references the memory access that 1293 /// triggered the access. 1294 /// 1295 /// @param AccessTy The type of the memory accesses to collect. 1296 /// 1297 /// @return The relation describing all tagged memory accesses. 1298 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1299 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1300 1301 for (auto &Stmt : *S) 1302 for (auto &Acc : Stmt) 1303 if (Acc->getType() == AccessTy) { 1304 isl_map *Relation = Acc->getAccessRelation(); 1305 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1306 1307 isl_space *Space = isl_map_get_space(Relation); 1308 Space = isl_space_range(Space); 1309 Space = isl_space_from_range(Space); 1310 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1311 isl_map *Universe = isl_map_universe(Space); 1312 Relation = isl_map_domain_product(Relation, Universe); 1313 Accesses = isl_union_map_add_map(Accesses, Relation); 1314 } 1315 1316 return Accesses; 1317 } 1318 1319 /// Get the set of all read accesses, tagged with the access id. 1320 /// 1321 /// @see getTaggedAccesses 1322 isl_union_map *getTaggedReads() { 1323 return getTaggedAccesses(MemoryAccess::READ); 1324 } 1325 1326 /// Get the set of all may (and must) accesses, tagged with the access id. 1327 /// 1328 /// @see getTaggedAccesses 1329 isl_union_map *getTaggedMayWrites() { 1330 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1331 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1332 } 1333 1334 /// Get the set of all must accesses, tagged with the access id. 1335 /// 1336 /// @see getTaggedAccesses 1337 isl_union_map *getTaggedMustWrites() { 1338 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1339 } 1340 1341 /// Collect parameter and array names as isl_ids. 1342 /// 1343 /// To reason about the different parameters and arrays used, ppcg requires 1344 /// a list of all isl_ids in use. As PPCG traditionally performs 1345 /// source-to-source compilation each of these isl_ids is mapped to the 1346 /// expression that represents it. As we do not have a corresponding 1347 /// expression in Polly, we just map each id to a 'zero' expression to match 1348 /// the data format that ppcg expects. 1349 /// 1350 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1351 __isl_give isl_id_to_ast_expr *getNames() { 1352 auto *Names = isl_id_to_ast_expr_alloc( 1353 S->getIslCtx(), 1354 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1355 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1356 auto *Space = S->getParamSpace(); 1357 1358 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1359 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1360 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1361 } 1362 1363 for (auto &Array : S->arrays()) { 1364 auto Id = Array.second->getBasePtrId(); 1365 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1366 } 1367 1368 isl_space_free(Space); 1369 isl_ast_expr_free(Zero); 1370 1371 return Names; 1372 } 1373 1374 /// Create a new PPCG scop from the current scop. 1375 /// 1376 /// The PPCG scop is initialized with data from the current polly::Scop. From 1377 /// this initial data, the data-dependences in the PPCG scop are initialized. 1378 /// We do not use Polly's dependence analysis for now, to ensure we match 1379 /// the PPCG default behaviour more closely. 1380 /// 1381 /// @returns A new ppcg scop. 1382 ppcg_scop *createPPCGScop() { 1383 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1384 1385 PPCGScop->options = createPPCGOptions(); 1386 1387 PPCGScop->start = 0; 1388 PPCGScop->end = 0; 1389 1390 PPCGScop->context = S->getContext(); 1391 PPCGScop->domain = S->getDomains(); 1392 PPCGScop->call = nullptr; 1393 PPCGScop->tagged_reads = getTaggedReads(); 1394 PPCGScop->reads = S->getReads(); 1395 PPCGScop->live_in = nullptr; 1396 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1397 PPCGScop->may_writes = S->getWrites(); 1398 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1399 PPCGScop->must_writes = S->getMustWrites(); 1400 PPCGScop->live_out = nullptr; 1401 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1402 PPCGScop->tagger = nullptr; 1403 1404 PPCGScop->independence = nullptr; 1405 PPCGScop->dep_flow = nullptr; 1406 PPCGScop->tagged_dep_flow = nullptr; 1407 PPCGScop->dep_false = nullptr; 1408 PPCGScop->dep_forced = nullptr; 1409 PPCGScop->dep_order = nullptr; 1410 PPCGScop->tagged_dep_order = nullptr; 1411 1412 PPCGScop->schedule = S->getScheduleTree(); 1413 PPCGScop->names = getNames(); 1414 1415 PPCGScop->pet = nullptr; 1416 1417 compute_tagger(PPCGScop); 1418 compute_dependences(PPCGScop); 1419 1420 return PPCGScop; 1421 } 1422 1423 /// Collect the array acesses in a statement. 1424 /// 1425 /// @param Stmt The statement for which to collect the accesses. 1426 /// 1427 /// @returns A list of array accesses. 1428 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1429 gpu_stmt_access *Accesses = nullptr; 1430 1431 for (MemoryAccess *Acc : Stmt) { 1432 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1433 Access->read = Acc->isRead(); 1434 Access->write = Acc->isWrite(); 1435 Access->access = Acc->getAccessRelation(); 1436 isl_space *Space = isl_map_get_space(Access->access); 1437 Space = isl_space_range(Space); 1438 Space = isl_space_from_range(Space); 1439 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1440 isl_map *Universe = isl_map_universe(Space); 1441 Access->tagged_access = 1442 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1443 Access->exact_write = Acc->isWrite(); 1444 Access->ref_id = Acc->getId(); 1445 Access->next = Accesses; 1446 Accesses = Access; 1447 } 1448 1449 return Accesses; 1450 } 1451 1452 /// Collect the list of GPU statements. 1453 /// 1454 /// Each statement has an id, a pointer to the underlying data structure, 1455 /// as well as a list with all memory accesses. 1456 /// 1457 /// TODO: Initialize the list of memory accesses. 1458 /// 1459 /// @returns A linked-list of statements. 1460 gpu_stmt *getStatements() { 1461 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1462 std::distance(S->begin(), S->end())); 1463 1464 int i = 0; 1465 for (auto &Stmt : *S) { 1466 gpu_stmt *GPUStmt = &Stmts[i]; 1467 1468 GPUStmt->id = Stmt.getDomainId(); 1469 1470 // We use the pet stmt pointer to keep track of the Polly statements. 1471 GPUStmt->stmt = (pet_stmt *)&Stmt; 1472 GPUStmt->accesses = getStmtAccesses(Stmt); 1473 i++; 1474 } 1475 1476 return Stmts; 1477 } 1478 1479 /// Derive the extent of an array. 1480 /// 1481 /// The extent of an array is defined by the set of memory locations for 1482 /// which a memory access in the iteration domain exists. 1483 /// 1484 /// @param Array The array to derive the extent for. 1485 /// 1486 /// @returns An isl_set describing the extent of the array. 1487 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1488 isl_union_map *Accesses = S->getAccesses(); 1489 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1490 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1491 isl_set *AccessSet = 1492 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1493 isl_union_set_free(AccessUSet); 1494 1495 return AccessSet; 1496 } 1497 1498 /// Derive the bounds of an array. 1499 /// 1500 /// For the first dimension we derive the bound of the array from the extent 1501 /// of this dimension. For inner dimensions we obtain their size directly from 1502 /// ScopArrayInfo. 1503 /// 1504 /// @param PPCGArray The array to compute bounds for. 1505 /// @param Array The polly array from which to take the information. 1506 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1507 if (PPCGArray.n_index > 0) { 1508 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1509 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1510 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1511 isl_set_free(Dom); 1512 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1513 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 1514 isl_aff *One = isl_aff_zero_on_domain(LS); 1515 One = isl_aff_add_constant_si(One, 1); 1516 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1517 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1518 PPCGArray.bound[0] = Bound; 1519 } 1520 1521 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1522 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1523 auto LS = isl_pw_aff_get_domain_space(Bound); 1524 auto Aff = isl_multi_aff_zero(LS); 1525 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1526 PPCGArray.bound[i] = Bound; 1527 } 1528 } 1529 1530 /// Create the arrays for @p PPCGProg. 1531 /// 1532 /// @param PPCGProg The program to compute the arrays for. 1533 void createArrays(gpu_prog *PPCGProg) { 1534 int i = 0; 1535 for (auto &Element : S->arrays()) { 1536 ScopArrayInfo *Array = Element.second.get(); 1537 1538 std::string TypeName; 1539 raw_string_ostream OS(TypeName); 1540 1541 OS << *Array->getElementType(); 1542 TypeName = OS.str(); 1543 1544 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1545 1546 PPCGArray.space = Array->getSpace(); 1547 PPCGArray.type = strdup(TypeName.c_str()); 1548 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1549 PPCGArray.name = strdup(Array->getName().c_str()); 1550 PPCGArray.extent = nullptr; 1551 PPCGArray.n_index = Array->getNumberOfDimensions(); 1552 PPCGArray.bound = 1553 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1554 PPCGArray.extent = getExtent(Array); 1555 PPCGArray.n_ref = 0; 1556 PPCGArray.refs = nullptr; 1557 PPCGArray.accessed = true; 1558 PPCGArray.read_only_scalar = false; 1559 PPCGArray.has_compound_element = false; 1560 PPCGArray.local = false; 1561 PPCGArray.declare_local = false; 1562 PPCGArray.global = false; 1563 PPCGArray.linearize = false; 1564 PPCGArray.dep_order = nullptr; 1565 PPCGArray.user = Array; 1566 1567 setArrayBounds(PPCGArray, Array); 1568 i++; 1569 1570 collect_references(PPCGProg, &PPCGArray); 1571 } 1572 } 1573 1574 /// Create an identity map between the arrays in the scop. 1575 /// 1576 /// @returns An identity map between the arrays in the scop. 1577 isl_union_map *getArrayIdentity() { 1578 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1579 1580 for (auto &Item : S->arrays()) { 1581 ScopArrayInfo *Array = Item.second.get(); 1582 isl_space *Space = Array->getSpace(); 1583 Space = isl_space_map_from_set(Space); 1584 isl_map *Identity = isl_map_identity(Space); 1585 Maps = isl_union_map_add_map(Maps, Identity); 1586 } 1587 1588 return Maps; 1589 } 1590 1591 /// Create a default-initialized PPCG GPU program. 1592 /// 1593 /// @returns A new gpu grogram description. 1594 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1595 1596 if (!PPCGScop) 1597 return nullptr; 1598 1599 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1600 1601 PPCGProg->ctx = S->getIslCtx(); 1602 PPCGProg->scop = PPCGScop; 1603 PPCGProg->context = isl_set_copy(PPCGScop->context); 1604 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1605 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1606 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1607 PPCGProg->tagged_must_kill = 1608 isl_union_map_copy(PPCGScop->tagged_must_kills); 1609 PPCGProg->to_inner = getArrayIdentity(); 1610 PPCGProg->to_outer = getArrayIdentity(); 1611 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1612 PPCGProg->any_to_outer = nullptr; 1613 PPCGProg->array_order = nullptr; 1614 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1615 PPCGProg->stmts = getStatements(); 1616 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1617 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1618 PPCGProg->n_array); 1619 1620 createArrays(PPCGProg); 1621 1622 return PPCGProg; 1623 } 1624 1625 struct PrintGPUUserData { 1626 struct cuda_info *CudaInfo; 1627 struct gpu_prog *PPCGProg; 1628 std::vector<ppcg_kernel *> Kernels; 1629 }; 1630 1631 /// Print a user statement node in the host code. 1632 /// 1633 /// We use ppcg's printing facilities to print the actual statement and 1634 /// additionally build up a list of all kernels that are encountered in the 1635 /// host ast. 1636 /// 1637 /// @param P The printer to print to 1638 /// @param Options The printing options to use 1639 /// @param Node The node to print 1640 /// @param User A user pointer to carry additional data. This pointer is 1641 /// expected to be of type PrintGPUUserData. 1642 /// 1643 /// @returns A printer to which the output has been printed. 1644 static __isl_give isl_printer * 1645 printHostUser(__isl_take isl_printer *P, 1646 __isl_take isl_ast_print_options *Options, 1647 __isl_take isl_ast_node *Node, void *User) { 1648 auto Data = (struct PrintGPUUserData *)User; 1649 auto Id = isl_ast_node_get_annotation(Node); 1650 1651 if (Id) { 1652 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1653 1654 // If this is a user statement, format it ourselves as ppcg would 1655 // otherwise try to call pet functionality that is not available in 1656 // Polly. 1657 if (IsUser) { 1658 P = isl_printer_start_line(P); 1659 P = isl_printer_print_ast_node(P, Node); 1660 P = isl_printer_end_line(P); 1661 isl_id_free(Id); 1662 isl_ast_print_options_free(Options); 1663 return P; 1664 } 1665 1666 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1667 isl_id_free(Id); 1668 Data->Kernels.push_back(Kernel); 1669 } 1670 1671 return print_host_user(P, Options, Node, User); 1672 } 1673 1674 /// Print C code corresponding to the control flow in @p Kernel. 1675 /// 1676 /// @param Kernel The kernel to print 1677 void printKernel(ppcg_kernel *Kernel) { 1678 auto *P = isl_printer_to_str(S->getIslCtx()); 1679 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1680 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1681 P = isl_ast_node_print(Kernel->tree, P, Options); 1682 char *String = isl_printer_get_str(P); 1683 printf("%s\n", String); 1684 free(String); 1685 isl_printer_free(P); 1686 } 1687 1688 /// Print C code corresponding to the GPU code described by @p Tree. 1689 /// 1690 /// @param Tree An AST describing GPU code 1691 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1692 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1693 auto *P = isl_printer_to_str(S->getIslCtx()); 1694 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1695 1696 PrintGPUUserData Data; 1697 Data.PPCGProg = PPCGProg; 1698 1699 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1700 Options = 1701 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1702 P = isl_ast_node_print(Tree, P, Options); 1703 char *String = isl_printer_get_str(P); 1704 printf("# host\n"); 1705 printf("%s\n", String); 1706 free(String); 1707 isl_printer_free(P); 1708 1709 for (auto Kernel : Data.Kernels) { 1710 printf("# kernel%d\n", Kernel->id); 1711 printKernel(Kernel); 1712 } 1713 } 1714 1715 // Generate a GPU program using PPCG. 1716 // 1717 // GPU mapping consists of multiple steps: 1718 // 1719 // 1) Compute new schedule for the program. 1720 // 2) Map schedule to GPU (TODO) 1721 // 3) Generate code for new schedule (TODO) 1722 // 1723 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1724 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1725 // strategy directly from this pass. 1726 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1727 1728 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1729 1730 PPCGGen->ctx = S->getIslCtx(); 1731 PPCGGen->options = PPCGScop->options; 1732 PPCGGen->print = nullptr; 1733 PPCGGen->print_user = nullptr; 1734 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1735 PPCGGen->prog = PPCGProg; 1736 PPCGGen->tree = nullptr; 1737 PPCGGen->types.n = 0; 1738 PPCGGen->types.name = nullptr; 1739 PPCGGen->sizes = nullptr; 1740 PPCGGen->used_sizes = nullptr; 1741 PPCGGen->kernel_id = 0; 1742 1743 // Set scheduling strategy to same strategy PPCG is using. 1744 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1745 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1746 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1747 1748 isl_schedule *Schedule = get_schedule(PPCGGen); 1749 1750 int has_permutable = has_any_permutable_node(Schedule); 1751 1752 if (!has_permutable || has_permutable < 0) { 1753 Schedule = isl_schedule_free(Schedule); 1754 } else { 1755 Schedule = map_to_device(PPCGGen, Schedule); 1756 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1757 } 1758 1759 if (DumpSchedule) { 1760 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1761 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1762 P = isl_printer_print_str(P, "Schedule\n"); 1763 P = isl_printer_print_str(P, "========\n"); 1764 if (Schedule) 1765 P = isl_printer_print_schedule(P, Schedule); 1766 else 1767 P = isl_printer_print_str(P, "No schedule found\n"); 1768 1769 printf("%s\n", isl_printer_get_str(P)); 1770 isl_printer_free(P); 1771 } 1772 1773 if (DumpCode) { 1774 printf("Code\n"); 1775 printf("====\n"); 1776 if (PPCGGen->tree) 1777 printGPUTree(PPCGGen->tree, PPCGProg); 1778 else 1779 printf("No code generated\n"); 1780 } 1781 1782 isl_schedule_free(Schedule); 1783 1784 return PPCGGen; 1785 } 1786 1787 /// Free gpu_gen structure. 1788 /// 1789 /// @param PPCGGen The ppcg_gen object to free. 1790 void freePPCGGen(gpu_gen *PPCGGen) { 1791 isl_ast_node_free(PPCGGen->tree); 1792 isl_union_map_free(PPCGGen->sizes); 1793 isl_union_map_free(PPCGGen->used_sizes); 1794 free(PPCGGen); 1795 } 1796 1797 /// Free the options in the ppcg scop structure. 1798 /// 1799 /// ppcg is not freeing these options for us. To avoid leaks we do this 1800 /// ourselves. 1801 /// 1802 /// @param PPCGScop The scop referencing the options to free. 1803 void freeOptions(ppcg_scop *PPCGScop) { 1804 free(PPCGScop->options->debug); 1805 PPCGScop->options->debug = nullptr; 1806 free(PPCGScop->options); 1807 PPCGScop->options = nullptr; 1808 } 1809 1810 /// Generate code for a given GPU AST described by @p Root. 1811 /// 1812 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1813 /// @param Prog The GPU Program to generate code for. 1814 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1815 ScopAnnotator Annotator; 1816 Annotator.buildAliasScopes(*S); 1817 1818 Region *R = &S->getRegion(); 1819 1820 simplifyRegion(R, DT, LI, RI); 1821 1822 BasicBlock *EnteringBB = R->getEnteringBlock(); 1823 1824 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1825 1826 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1827 Prog); 1828 1829 // Only build the run-time condition and parameters _after_ having 1830 // introduced the conditional branch. This is important as the conditional 1831 // branch will guard the original scop from new induction variables that 1832 // the SCEVExpander may introduce while code generating the parameters and 1833 // which may introduce scalar dependences that prevent us from correctly 1834 // code generating this scop. 1835 BasicBlock *StartBlock = 1836 executeScopConditionally(*S, this, Builder.getTrue()); 1837 1838 // TODO: Handle LICM 1839 // TODO: Verify run-time checks 1840 auto SplitBlock = StartBlock->getSinglePredecessor(); 1841 Builder.SetInsertPoint(SplitBlock->getTerminator()); 1842 NodeBuilder.addParameters(S->getContext()); 1843 Builder.SetInsertPoint(&*StartBlock->begin()); 1844 1845 NodeBuilder.initializeAfterRTH(); 1846 NodeBuilder.create(Root); 1847 NodeBuilder.finalize(); 1848 } 1849 1850 bool runOnScop(Scop &CurrentScop) override { 1851 S = &CurrentScop; 1852 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1853 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1854 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1855 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 1856 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 1857 1858 // We currently do not support scops with invariant loads. 1859 if (S->hasInvariantAccesses()) 1860 return false; 1861 1862 auto PPCGScop = createPPCGScop(); 1863 auto PPCGProg = createPPCGProg(PPCGScop); 1864 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 1865 1866 if (PPCGGen->tree) 1867 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 1868 1869 freeOptions(PPCGScop); 1870 freePPCGGen(PPCGGen); 1871 gpu_prog_free(PPCGProg); 1872 ppcg_scop_free(PPCGScop); 1873 1874 return true; 1875 } 1876 1877 void printScop(raw_ostream &, Scop &) const override {} 1878 1879 void getAnalysisUsage(AnalysisUsage &AU) const override { 1880 AU.addRequired<DominatorTreeWrapperPass>(); 1881 AU.addRequired<RegionInfoPass>(); 1882 AU.addRequired<ScalarEvolutionWrapperPass>(); 1883 AU.addRequired<ScopDetection>(); 1884 AU.addRequired<ScopInfoRegionPass>(); 1885 AU.addRequired<LoopInfoWrapperPass>(); 1886 1887 AU.addPreserved<AAResultsWrapperPass>(); 1888 AU.addPreserved<BasicAAWrapperPass>(); 1889 AU.addPreserved<LoopInfoWrapperPass>(); 1890 AU.addPreserved<DominatorTreeWrapperPass>(); 1891 AU.addPreserved<GlobalsAAWrapperPass>(); 1892 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1893 AU.addPreserved<ScopDetection>(); 1894 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1895 AU.addPreserved<SCEVAAWrapperPass>(); 1896 1897 // FIXME: We do not yet add regions for the newly generated code to the 1898 // region tree. 1899 AU.addPreserved<RegionInfoPass>(); 1900 AU.addPreserved<ScopInfoRegionPass>(); 1901 } 1902 }; 1903 } 1904 1905 char PPCGCodeGeneration::ID = 1; 1906 1907 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1908 1909 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1910 "Polly - Apply PPCG translation to SCOP", false, false) 1911 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1912 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1913 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1914 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1915 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1916 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1917 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1918 "Polly - Apply PPCG translation to SCOP", false, false) 1919