1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::Hidden, cl::init(false), cl::ZeroOrMore, 95 cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> 106 CudaVersion("polly-acc-cuda-version", 107 cl::desc("The CUDA version to compile for"), cl::Hidden, 108 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<int> 111 MinCompute("polly-acc-mincompute", 112 cl::desc("Minimal number of compute statements to run on GPU."), 113 cl::Hidden, cl::init(10 * 512 * 512)); 114 115 /// Used to store information PPCG wants for kills. This information is 116 /// used by live range reordering. 117 /// 118 /// @see computeLiveRangeReordering 119 /// @see GPUNodeBuilder::createPPCGScop 120 /// @see GPUNodeBuilder::createPPCGProg 121 struct MustKillsInfo { 122 /// Collection of all kill statements that will be sequenced at the end of 123 /// PPCGScop->schedule. 124 /// 125 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 126 /// which merges schedules in *arbitrary* order. 127 /// (we don't care about the order of the kills anyway). 128 isl::schedule KillsSchedule; 129 /// Map from kill statement instances to scalars that need to be 130 /// killed. 131 /// 132 /// We currently derive kill information for: 133 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 134 /// consequently all be killed. 135 /// 2. Scalar arrays that are not used outside the Scop. This is 136 /// checked by `isScalarUsesContainedInScop`. 137 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 138 isl::union_map TaggedMustKills; 139 140 /// Tagged must kills stripped of the tags. 141 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 142 isl::union_map MustKills; 143 144 MustKillsInfo() : KillsSchedule(nullptr) {} 145 }; 146 147 /// Check if SAI's uses are entirely contained within Scop S. 148 /// If a scalar is used only with a Scop, we are free to kill it, as no data 149 /// can flow in/out of the value any more. 150 /// @see computeMustKillsInfo 151 static bool isScalarUsesContainedInScop(const Scop &S, 152 const ScopArrayInfo *SAI) { 153 assert(SAI->isValueKind() && "this function only deals with scalars." 154 " Dealing with arrays required alias analysis"); 155 156 const Region &R = S.getRegion(); 157 for (User *U : SAI->getBasePtr()->users()) { 158 Instruction *I = dyn_cast<Instruction>(U); 159 assert(I && "invalid user of scop array info"); 160 if (!R.contains(I)) 161 return false; 162 } 163 return true; 164 } 165 166 /// Compute must-kills needed to enable live range reordering with PPCG. 167 /// 168 /// @params S The Scop to compute live range reordering information 169 /// @returns live range reordering information that can be used to setup 170 /// PPCG. 171 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 172 const isl::space ParamSpace(isl::manage(S.getParamSpace())); 173 MustKillsInfo Info; 174 175 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 176 // 1.1 phi nodes in scop. 177 // 1.2 scalars that are only used within the scop 178 SmallVector<isl::id, 4> KillMemIds; 179 for (ScopArrayInfo *SAI : S.arrays()) { 180 if (SAI->isPHIKind() || 181 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 182 KillMemIds.push_back(isl::manage(SAI->getBasePtrId())); 183 } 184 185 Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace)); 186 Info.MustKills = isl::union_map::empty(isl::space(ParamSpace)); 187 188 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 189 // schedule: 190 // - filter: "[control] -> { }" 191 // So, we choose to not create this to keep the output a little nicer, 192 // at the cost of some code complexity. 193 Info.KillsSchedule = nullptr; 194 195 for (isl::id &ToKillId : KillMemIds) { 196 isl::id KillStmtId = isl::id::alloc( 197 S.getIslCtx(), 198 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 199 200 // NOTE: construction of tagged_must_kill: 201 // 2. We need to construct a map: 202 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 203 // To construct this, we use `isl_map_domain_product` on 2 maps`: 204 // 2a. StmtToScalar: 205 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 206 // 2b. PhantomRefToScalar: 207 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 208 // 209 // Combining these with `isl_map_domain_product` gives us 210 // TaggedMustKill: 211 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 212 213 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 214 isl::map StmtToScalar = isl::map::universe(isl::space(ParamSpace)); 215 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 216 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 217 218 isl::id PhantomRefId = isl::id::alloc( 219 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 220 nullptr); 221 222 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 223 isl::map PhantomRefToScalar = isl::map::universe(isl::space(ParamSpace)); 224 PhantomRefToScalar = 225 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 226 PhantomRefToScalar = 227 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 228 229 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 230 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 231 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 232 233 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 234 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 235 236 // 3. Create the kill schedule of the form: 237 // "[param] -> { Stmt_phantom[] }" 238 // Then add this to Info.KillsSchedule. 239 isl::space KillStmtSpace = ParamSpace; 240 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 241 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 242 243 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 244 if (Info.KillsSchedule) 245 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 246 else 247 Info.KillsSchedule = KillSchedule; 248 } 249 250 return Info; 251 } 252 253 /// Create the ast expressions for a ScopStmt. 254 /// 255 /// This function is a callback for to generate the ast expressions for each 256 /// of the scheduled ScopStmts. 257 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 258 void *StmtT, isl_ast_build *Build, 259 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 260 isl_id *Id, void *User), 261 void *UserIndex, 262 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 263 void *UserExpr) { 264 265 ScopStmt *Stmt = (ScopStmt *)StmtT; 266 267 isl_ctx *Ctx; 268 269 if (!Stmt || !Build) 270 return NULL; 271 272 Ctx = isl_ast_build_get_ctx(Build); 273 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 274 275 for (MemoryAccess *Acc : *Stmt) { 276 isl_map *AddrFunc = Acc->getAddressFunction(); 277 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 278 isl_id *RefId = Acc->getId(); 279 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 280 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 281 MPA = isl_multi_pw_aff_coalesce(MPA); 282 MPA = FunctionIndex(MPA, RefId, UserIndex); 283 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 284 Access = FunctionExpr(Access, RefId, UserExpr); 285 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 286 } 287 288 return RefToExpr; 289 } 290 291 /// Given a LLVM Type, compute its size in bytes, 292 static int computeSizeInBytes(const Type *T) { 293 int bytes = T->getPrimitiveSizeInBits() / 8; 294 if (bytes == 0) 295 bytes = T->getScalarSizeInBits() / 8; 296 return bytes; 297 } 298 299 /// Generate code for a GPU specific isl AST. 300 /// 301 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 302 /// generates code for general-purpose AST nodes, with special functionality 303 /// for generating GPU specific user nodes. 304 /// 305 /// @see GPUNodeBuilder::createUser 306 class GPUNodeBuilder : public IslNodeBuilder { 307 public: 308 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 309 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 310 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 311 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 312 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 313 Prog(Prog), Runtime(Runtime), Arch(Arch) { 314 getExprBuilder().setIDToSAI(&IDToSAI); 315 } 316 317 /// Create after-run-time-check initialization code. 318 void initializeAfterRTH(); 319 320 /// Finalize the generated scop. 321 virtual void finalize(); 322 323 /// Track if the full build process was successful. 324 /// 325 /// This value is set to false, if throughout the build process an error 326 /// occurred which prevents us from generating valid GPU code. 327 bool BuildSuccessful = true; 328 329 /// The maximal number of loops surrounding a sequential kernel. 330 unsigned DeepestSequential = 0; 331 332 /// The maximal number of loops surrounding a parallel kernel. 333 unsigned DeepestParallel = 0; 334 335 /// Return the name to set for the ptx_kernel. 336 std::string getKernelFuncName(int Kernel_id); 337 338 private: 339 /// A vector of array base pointers for which a new ScopArrayInfo was created. 340 /// 341 /// This vector is used to delete the ScopArrayInfo when it is not needed any 342 /// more. 343 std::vector<Value *> LocalArrays; 344 345 /// A map from ScopArrays to their corresponding device allocations. 346 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 347 348 /// The current GPU context. 349 Value *GPUContext; 350 351 /// The set of isl_ids allocated in the kernel 352 std::vector<isl_id *> KernelIds; 353 354 /// A module containing GPU code. 355 /// 356 /// This pointer is only set in case we are currently generating GPU code. 357 std::unique_ptr<Module> GPUModule; 358 359 /// The GPU program we generate code for. 360 gpu_prog *Prog; 361 362 /// The GPU Runtime implementation to use (OpenCL or CUDA). 363 GPURuntime Runtime; 364 365 /// The GPU Architecture to target. 366 GPUArch Arch; 367 368 /// Class to free isl_ids. 369 class IslIdDeleter { 370 public: 371 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 372 }; 373 374 /// A set containing all isl_ids allocated in a GPU kernel. 375 /// 376 /// By releasing this set all isl_ids will be freed. 377 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 378 379 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 380 381 /// Create code for user-defined AST nodes. 382 /// 383 /// These AST nodes can be of type: 384 /// 385 /// - ScopStmt: A computational statement (TODO) 386 /// - Kernel: A GPU kernel call (TODO) 387 /// - Data-Transfer: A GPU <-> CPU data-transfer 388 /// - In-kernel synchronization 389 /// - In-kernel memory copy statement 390 /// 391 /// @param UserStmt The ast node to generate code for. 392 virtual void createUser(__isl_take isl_ast_node *UserStmt); 393 394 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 395 396 /// Create code for a data transfer statement 397 /// 398 /// @param TransferStmt The data transfer statement. 399 /// @param Direction The direction in which to transfer data. 400 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 401 enum DataDirection Direction); 402 403 /// Find llvm::Values referenced in GPU kernel. 404 /// 405 /// @param Kernel The kernel to scan for llvm::Values 406 /// 407 /// @returns A pair, whose first element contains the set of values 408 /// referenced by the kernel, and whose second element contains the 409 /// set of functions referenced by the kernel. All functions in the 410 /// second set satisfy isValidFunctionInKernel. 411 std::pair<SetVector<Value *>, SetVector<Function *>> 412 getReferencesInKernel(ppcg_kernel *Kernel); 413 414 /// Compute the sizes of the execution grid for a given kernel. 415 /// 416 /// @param Kernel The kernel to compute grid sizes for. 417 /// 418 /// @returns A tuple with grid sizes for X and Y dimension 419 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 420 421 /// Creates a array that can be sent to the kernel on the device using a 422 /// host pointer. This is required for managed memory, when we directly send 423 /// host pointers to the device. 424 /// \note 425 /// This is to be used only with managed memory 426 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 427 ScopArrayInfo *ArrayInfo); 428 429 /// Compute the sizes of the thread blocks for a given kernel. 430 /// 431 /// @param Kernel The kernel to compute thread block sizes for. 432 /// 433 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 434 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 435 436 /// Store a specific kernel launch parameter in the array of kernel launch 437 /// parameters. 438 /// 439 /// @param Parameters The list of parameters in which to store. 440 /// @param Param The kernel launch parameter to store. 441 /// @param Index The index in the parameter list, at which to store the 442 /// parameter. 443 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 444 int Index); 445 446 /// Create kernel launch parameters. 447 /// 448 /// @param Kernel The kernel to create parameters for. 449 /// @param F The kernel function that has been created. 450 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 451 /// 452 /// @returns A stack allocated array with pointers to the parameter 453 /// values that are passed to the kernel. 454 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 455 SetVector<Value *> SubtreeValues); 456 457 /// Create declarations for kernel variable. 458 /// 459 /// This includes shared memory declarations. 460 /// 461 /// @param Kernel The kernel definition to create variables for. 462 /// @param FN The function into which to generate the variables. 463 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 464 465 /// Add CUDA annotations to module. 466 /// 467 /// Add a set of CUDA annotations that declares the maximal block dimensions 468 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 469 /// PTX compiler to bound the number of allocated registers to ensure the 470 /// resulting kernel is known to run with up to as many block dimensions 471 /// as specified here. 472 /// 473 /// @param M The module to add the annotations to. 474 /// @param BlockDimX The size of block dimension X. 475 /// @param BlockDimY The size of block dimension Y. 476 /// @param BlockDimZ The size of block dimension Z. 477 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 478 Value *BlockDimZ); 479 480 /// Create GPU kernel. 481 /// 482 /// Code generate the kernel described by @p KernelStmt. 483 /// 484 /// @param KernelStmt The ast node to generate kernel code for. 485 void createKernel(__isl_take isl_ast_node *KernelStmt); 486 487 /// Generate code that computes the size of an array. 488 /// 489 /// @param Array The array for which to compute a size. 490 Value *getArraySize(gpu_array_info *Array); 491 492 /// Generate code to compute the minimal offset at which an array is accessed. 493 /// 494 /// The offset of an array is the minimal array location accessed in a scop. 495 /// 496 /// Example: 497 /// 498 /// for (long i = 0; i < 100; i++) 499 /// A[i + 42] += ... 500 /// 501 /// getArrayOffset(A) results in 42. 502 /// 503 /// @param Array The array for which to compute the offset. 504 /// @returns An llvm::Value that contains the offset of the array. 505 Value *getArrayOffset(gpu_array_info *Array); 506 507 /// Prepare the kernel arguments for kernel code generation 508 /// 509 /// @param Kernel The kernel to generate code for. 510 /// @param FN The function created for the kernel. 511 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 512 513 /// Create kernel function. 514 /// 515 /// Create a kernel function located in a newly created module that can serve 516 /// as target for device code generation. Set the Builder to point to the 517 /// start block of this newly created function. 518 /// 519 /// @param Kernel The kernel to generate code for. 520 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 521 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 522 /// kernel. 523 void createKernelFunction(ppcg_kernel *Kernel, 524 SetVector<Value *> &SubtreeValues, 525 SetVector<Function *> &SubtreeFunctions); 526 527 /// Create the declaration of a kernel function. 528 /// 529 /// The kernel function takes as arguments: 530 /// 531 /// - One i8 pointer for each external array reference used in the kernel. 532 /// - Host iterators 533 /// - Parameters 534 /// - Other LLVM Value references (TODO) 535 /// 536 /// @param Kernel The kernel to generate the function declaration for. 537 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 538 /// 539 /// @returns The newly declared function. 540 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 541 SetVector<Value *> &SubtreeValues); 542 543 /// Insert intrinsic functions to obtain thread and block ids. 544 /// 545 /// @param The kernel to generate the intrinsic functions for. 546 void insertKernelIntrinsics(ppcg_kernel *Kernel); 547 548 /// Setup the creation of functions referenced by the GPU kernel. 549 /// 550 /// 1. Create new function declarations in GPUModule which are the same as 551 /// SubtreeFunctions. 552 /// 553 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 554 /// old functions (that come from the original module) to new functions 555 /// (that are created within GPUModule). That way, we generate references 556 /// to the correct function (in GPUModule) in BlockGenerator. 557 /// 558 /// @see IslNodeBuilder::ValueMap 559 /// @see BlockGenerator::GlobalMap 560 /// @see BlockGenerator::getNewValue 561 /// @see GPUNodeBuilder::getReferencesInKernel. 562 /// 563 /// @param SubtreeFunctions The set of llvm::Functions referenced by 564 /// this kernel. 565 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 566 567 /// Create a global-to-shared or shared-to-global copy statement. 568 /// 569 /// @param CopyStmt The copy statement to generate code for 570 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 571 572 /// Create code for a ScopStmt called in @p Expr. 573 /// 574 /// @param Expr The expression containing the call. 575 /// @param KernelStmt The kernel statement referenced in the call. 576 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 577 578 /// Create an in-kernel synchronization call. 579 void createKernelSync(); 580 581 /// Create a PTX assembly string for the current GPU kernel. 582 /// 583 /// @returns A string containing the corresponding PTX assembly code. 584 std::string createKernelASM(); 585 586 /// Remove references from the dominator tree to the kernel function @p F. 587 /// 588 /// @param F The function to remove references to. 589 void clearDominators(Function *F); 590 591 /// Remove references from scalar evolution to the kernel function @p F. 592 /// 593 /// @param F The function to remove references to. 594 void clearScalarEvolution(Function *F); 595 596 /// Remove references from loop info to the kernel function @p F. 597 /// 598 /// @param F The function to remove references to. 599 void clearLoops(Function *F); 600 601 /// Finalize the generation of the kernel function. 602 /// 603 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 604 /// dump its IR to stderr. 605 /// 606 /// @returns The Assembly string of the kernel. 607 std::string finalizeKernelFunction(); 608 609 /// Finalize the generation of the kernel arguments. 610 /// 611 /// This function ensures that not-read-only scalars used in a kernel are 612 /// stored back to the global memory location they are backed with before 613 /// the kernel terminates. 614 /// 615 /// @params Kernel The kernel to finalize kernel arguments for. 616 void finalizeKernelArguments(ppcg_kernel *Kernel); 617 618 /// Create code that allocates memory to store arrays on device. 619 void allocateDeviceArrays(); 620 621 /// Free all allocated device arrays. 622 void freeDeviceArrays(); 623 624 /// Create a call to initialize the GPU context. 625 /// 626 /// @returns A pointer to the newly initialized context. 627 Value *createCallInitContext(); 628 629 /// Create a call to get the device pointer for a kernel allocation. 630 /// 631 /// @param Allocation The Polly GPU allocation 632 /// 633 /// @returns The device parameter corresponding to this allocation. 634 Value *createCallGetDevicePtr(Value *Allocation); 635 636 /// Create a call to free the GPU context. 637 /// 638 /// @param Context A pointer to an initialized GPU context. 639 void createCallFreeContext(Value *Context); 640 641 /// Create a call to allocate memory on the device. 642 /// 643 /// @param Size The size of memory to allocate 644 /// 645 /// @returns A pointer that identifies this allocation. 646 Value *createCallAllocateMemoryForDevice(Value *Size); 647 648 /// Create a call to free a device array. 649 /// 650 /// @param Array The device array to free. 651 void createCallFreeDeviceMemory(Value *Array); 652 653 /// Create a call to copy data from host to device. 654 /// 655 /// @param HostPtr A pointer to the host data that should be copied. 656 /// @param DevicePtr A device pointer specifying the location to copy to. 657 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 658 Value *Size); 659 660 /// Create a call to copy data from device to host. 661 /// 662 /// @param DevicePtr A pointer to the device data that should be copied. 663 /// @param HostPtr A host pointer specifying the location to copy to. 664 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 665 Value *Size); 666 667 /// Create a call to synchronize Host & Device. 668 /// \note 669 /// This is to be used only with managed memory. 670 void createCallSynchronizeDevice(); 671 672 /// Create a call to get a kernel from an assembly string. 673 /// 674 /// @param Buffer The string describing the kernel. 675 /// @param Entry The name of the kernel function to call. 676 /// 677 /// @returns A pointer to a kernel object 678 Value *createCallGetKernel(Value *Buffer, Value *Entry); 679 680 /// Create a call to free a GPU kernel. 681 /// 682 /// @param GPUKernel THe kernel to free. 683 void createCallFreeKernel(Value *GPUKernel); 684 685 /// Create a call to launch a GPU kernel. 686 /// 687 /// @param GPUKernel The kernel to launch. 688 /// @param GridDimX The size of the first grid dimension. 689 /// @param GridDimY The size of the second grid dimension. 690 /// @param GridBlockX The size of the first block dimension. 691 /// @param GridBlockY The size of the second block dimension. 692 /// @param GridBlockZ The size of the third block dimension. 693 /// @param Parameters A pointer to an array that contains itself pointers to 694 /// the parameter values passed for each kernel argument. 695 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 696 Value *GridDimY, Value *BlockDimX, 697 Value *BlockDimY, Value *BlockDimZ, 698 Value *Parameters); 699 }; 700 701 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 702 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 703 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 704 } 705 706 void GPUNodeBuilder::initializeAfterRTH() { 707 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 708 &*Builder.GetInsertPoint(), &DT, &LI); 709 NewBB->setName("polly.acc.initialize"); 710 Builder.SetInsertPoint(&NewBB->front()); 711 712 GPUContext = createCallInitContext(); 713 714 if (!ManagedMemory) 715 allocateDeviceArrays(); 716 } 717 718 void GPUNodeBuilder::finalize() { 719 if (!ManagedMemory) 720 freeDeviceArrays(); 721 722 createCallFreeContext(GPUContext); 723 IslNodeBuilder::finalize(); 724 } 725 726 void GPUNodeBuilder::allocateDeviceArrays() { 727 assert(!ManagedMemory && "Managed memory will directly send host pointers " 728 "to the kernel. There is no need for device arrays"); 729 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 730 731 for (int i = 0; i < Prog->n_array; ++i) { 732 gpu_array_info *Array = &Prog->array[i]; 733 auto *ScopArray = (ScopArrayInfo *)Array->user; 734 std::string DevArrayName("p_dev_array_"); 735 DevArrayName.append(Array->name); 736 737 Value *ArraySize = getArraySize(Array); 738 Value *Offset = getArrayOffset(Array); 739 if (Offset) 740 ArraySize = Builder.CreateSub( 741 ArraySize, 742 Builder.CreateMul(Offset, 743 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 744 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 745 DevArray->setName(DevArrayName); 746 DeviceAllocations[ScopArray] = DevArray; 747 } 748 749 isl_ast_build_free(Build); 750 } 751 752 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 753 Value *BlockDimY, Value *BlockDimZ) { 754 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 755 756 for (auto &F : *M) { 757 if (F.getCallingConv() != CallingConv::PTX_Kernel) 758 continue; 759 760 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 761 762 Metadata *Elements[] = { 763 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 764 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 765 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 766 ValueAsMetadata::get(V[2]), 767 }; 768 MDNode *Node = MDNode::get(M->getContext(), Elements); 769 AnnotationNode->addOperand(Node); 770 } 771 } 772 773 void GPUNodeBuilder::freeDeviceArrays() { 774 assert(!ManagedMemory && "Managed memory does not use device arrays"); 775 for (auto &Array : DeviceAllocations) 776 createCallFreeDeviceMemory(Array.second); 777 } 778 779 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 780 const char *Name = "polly_getKernel"; 781 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 782 Function *F = M->getFunction(Name); 783 784 // If F is not available, declare it. 785 if (!F) { 786 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 787 std::vector<Type *> Args; 788 Args.push_back(Builder.getInt8PtrTy()); 789 Args.push_back(Builder.getInt8PtrTy()); 790 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 791 F = Function::Create(Ty, Linkage, Name, M); 792 } 793 794 return Builder.CreateCall(F, {Buffer, Entry}); 795 } 796 797 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 798 const char *Name = "polly_getDevicePtr"; 799 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 800 Function *F = M->getFunction(Name); 801 802 // If F is not available, declare it. 803 if (!F) { 804 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 805 std::vector<Type *> Args; 806 Args.push_back(Builder.getInt8PtrTy()); 807 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 808 F = Function::Create(Ty, Linkage, Name, M); 809 } 810 811 return Builder.CreateCall(F, {Allocation}); 812 } 813 814 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 815 Value *GridDimY, Value *BlockDimX, 816 Value *BlockDimY, Value *BlockDimZ, 817 Value *Parameters) { 818 const char *Name = "polly_launchKernel"; 819 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 820 Function *F = M->getFunction(Name); 821 822 // If F is not available, declare it. 823 if (!F) { 824 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 825 std::vector<Type *> Args; 826 Args.push_back(Builder.getInt8PtrTy()); 827 Args.push_back(Builder.getInt32Ty()); 828 Args.push_back(Builder.getInt32Ty()); 829 Args.push_back(Builder.getInt32Ty()); 830 Args.push_back(Builder.getInt32Ty()); 831 Args.push_back(Builder.getInt32Ty()); 832 Args.push_back(Builder.getInt8PtrTy()); 833 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 834 F = Function::Create(Ty, Linkage, Name, M); 835 } 836 837 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 838 BlockDimZ, Parameters}); 839 } 840 841 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 842 const char *Name = "polly_freeKernel"; 843 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 844 Function *F = M->getFunction(Name); 845 846 // If F is not available, declare it. 847 if (!F) { 848 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 849 std::vector<Type *> Args; 850 Args.push_back(Builder.getInt8PtrTy()); 851 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 852 F = Function::Create(Ty, Linkage, Name, M); 853 } 854 855 Builder.CreateCall(F, {GPUKernel}); 856 } 857 858 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 859 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 860 "for device"); 861 const char *Name = "polly_freeDeviceMemory"; 862 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 863 Function *F = M->getFunction(Name); 864 865 // If F is not available, declare it. 866 if (!F) { 867 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 868 std::vector<Type *> Args; 869 Args.push_back(Builder.getInt8PtrTy()); 870 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 871 F = Function::Create(Ty, Linkage, Name, M); 872 } 873 874 Builder.CreateCall(F, {Array}); 875 } 876 877 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 878 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 879 "for device"); 880 const char *Name = "polly_allocateMemoryForDevice"; 881 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 882 Function *F = M->getFunction(Name); 883 884 // If F is not available, declare it. 885 if (!F) { 886 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 887 std::vector<Type *> Args; 888 Args.push_back(Builder.getInt64Ty()); 889 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 890 F = Function::Create(Ty, Linkage, Name, M); 891 } 892 893 return Builder.CreateCall(F, {Size}); 894 } 895 896 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 897 Value *DeviceData, 898 Value *Size) { 899 assert(!ManagedMemory && "Managed memory does not transfer memory between " 900 "device and host"); 901 const char *Name = "polly_copyFromHostToDevice"; 902 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 903 Function *F = M->getFunction(Name); 904 905 // If F is not available, declare it. 906 if (!F) { 907 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 908 std::vector<Type *> Args; 909 Args.push_back(Builder.getInt8PtrTy()); 910 Args.push_back(Builder.getInt8PtrTy()); 911 Args.push_back(Builder.getInt64Ty()); 912 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 913 F = Function::Create(Ty, Linkage, Name, M); 914 } 915 916 Builder.CreateCall(F, {HostData, DeviceData, Size}); 917 } 918 919 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 920 Value *HostData, 921 Value *Size) { 922 assert(!ManagedMemory && "Managed memory does not transfer memory between " 923 "device and host"); 924 const char *Name = "polly_copyFromDeviceToHost"; 925 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 926 Function *F = M->getFunction(Name); 927 928 // If F is not available, declare it. 929 if (!F) { 930 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 931 std::vector<Type *> Args; 932 Args.push_back(Builder.getInt8PtrTy()); 933 Args.push_back(Builder.getInt8PtrTy()); 934 Args.push_back(Builder.getInt64Ty()); 935 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 936 F = Function::Create(Ty, Linkage, Name, M); 937 } 938 939 Builder.CreateCall(F, {DeviceData, HostData, Size}); 940 } 941 942 void GPUNodeBuilder::createCallSynchronizeDevice() { 943 assert(ManagedMemory && "explicit synchronization is only necessary for " 944 "managed memory"); 945 const char *Name = "polly_synchronizeDevice"; 946 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 947 Function *F = M->getFunction(Name); 948 949 // If F is not available, declare it. 950 if (!F) { 951 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 952 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 953 F = Function::Create(Ty, Linkage, Name, M); 954 } 955 956 Builder.CreateCall(F); 957 } 958 959 Value *GPUNodeBuilder::createCallInitContext() { 960 const char *Name; 961 962 switch (Runtime) { 963 case GPURuntime::CUDA: 964 Name = "polly_initContextCUDA"; 965 break; 966 case GPURuntime::OpenCL: 967 Name = "polly_initContextCL"; 968 break; 969 } 970 971 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 972 Function *F = M->getFunction(Name); 973 974 // If F is not available, declare it. 975 if (!F) { 976 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 977 std::vector<Type *> Args; 978 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 979 F = Function::Create(Ty, Linkage, Name, M); 980 } 981 982 return Builder.CreateCall(F, {}); 983 } 984 985 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 986 const char *Name = "polly_freeContext"; 987 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 988 Function *F = M->getFunction(Name); 989 990 // If F is not available, declare it. 991 if (!F) { 992 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 993 std::vector<Type *> Args; 994 Args.push_back(Builder.getInt8PtrTy()); 995 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 996 F = Function::Create(Ty, Linkage, Name, M); 997 } 998 999 Builder.CreateCall(F, {Context}); 1000 } 1001 1002 /// Check if one string is a prefix of another. 1003 /// 1004 /// @param String The string in which to look for the prefix. 1005 /// @param Prefix The prefix to look for. 1006 static bool isPrefix(std::string String, std::string Prefix) { 1007 return String.find(Prefix) == 0; 1008 } 1009 1010 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1011 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 1012 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1013 1014 if (!gpu_array_is_scalar(Array)) { 1015 auto OffsetDimZero = isl_multi_pw_aff_get_pw_aff(Array->bound, 0); 1016 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 1017 1018 for (unsigned int i = 1; i < Array->n_index; i++) { 1019 isl_pw_aff *Bound_I = isl_multi_pw_aff_get_pw_aff(Array->bound, i); 1020 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1021 Res = isl_ast_expr_mul(Res, Expr); 1022 } 1023 1024 Value *NumElements = ExprBuilder.create(Res); 1025 if (NumElements->getType() != ArraySize->getType()) 1026 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1027 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1028 } 1029 isl_ast_build_free(Build); 1030 return ArraySize; 1031 } 1032 1033 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1034 if (gpu_array_is_scalar(Array)) 1035 return nullptr; 1036 1037 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 1038 1039 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 1040 1041 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 1042 1043 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 1044 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 1045 1046 if (isl_set_is_subset(Min, ZeroSet)) { 1047 isl_set_free(Min); 1048 isl_set_free(ZeroSet); 1049 isl_ast_build_free(Build); 1050 return nullptr; 1051 } 1052 isl_set_free(ZeroSet); 1053 1054 isl_ast_expr *Result = 1055 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 1056 1057 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 1058 if (i > 0) { 1059 isl_pw_aff *Bound_I = isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1); 1060 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1061 Result = isl_ast_expr_mul(Result, BExpr); 1062 } 1063 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 1064 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 1065 Result = isl_ast_expr_add(Result, MExpr); 1066 } 1067 1068 Value *ResultValue = ExprBuilder.create(Result); 1069 isl_set_free(Min); 1070 isl_ast_build_free(Build); 1071 1072 return ResultValue; 1073 } 1074 1075 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 1076 ScopArrayInfo *ArrayInfo) { 1077 1078 assert(ManagedMemory && "Only used when you wish to get a host " 1079 "pointer for sending data to the kernel, " 1080 "with managed memory"); 1081 std::map<ScopArrayInfo *, Value *>::iterator it; 1082 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 1083 return it->second; 1084 } else { 1085 Value *HostPtr; 1086 1087 if (gpu_array_is_scalar(Array)) 1088 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 1089 else 1090 HostPtr = ArrayInfo->getBasePtr(); 1091 1092 Value *Offset = getArrayOffset(Array); 1093 if (Offset) { 1094 HostPtr = Builder.CreatePointerCast( 1095 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 1096 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1097 } 1098 1099 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1100 DeviceAllocations[ArrayInfo] = HostPtr; 1101 return HostPtr; 1102 } 1103 } 1104 1105 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1106 enum DataDirection Direction) { 1107 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1108 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1109 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1110 isl_id *Id = isl_ast_expr_get_id(Arg); 1111 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1112 auto ScopArray = (ScopArrayInfo *)(Array->user); 1113 1114 Value *Size = getArraySize(Array); 1115 Value *Offset = getArrayOffset(Array); 1116 Value *DevPtr = DeviceAllocations[ScopArray]; 1117 1118 Value *HostPtr; 1119 1120 if (gpu_array_is_scalar(Array)) 1121 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1122 else 1123 HostPtr = ScopArray->getBasePtr(); 1124 1125 if (Offset) { 1126 HostPtr = Builder.CreatePointerCast( 1127 HostPtr, ScopArray->getElementType()->getPointerTo()); 1128 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1129 } 1130 1131 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1132 1133 if (Offset) { 1134 Size = Builder.CreateSub( 1135 Size, Builder.CreateMul( 1136 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1137 } 1138 1139 if (Direction == HOST_TO_DEVICE) 1140 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1141 else 1142 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1143 1144 isl_id_free(Id); 1145 isl_ast_expr_free(Arg); 1146 isl_ast_expr_free(Expr); 1147 isl_ast_node_free(TransferStmt); 1148 } 1149 1150 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1151 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1152 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1153 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1154 isl_id_free(Id); 1155 isl_ast_expr_free(StmtExpr); 1156 1157 const char *Str = isl_id_get_name(Id); 1158 if (!strcmp(Str, "kernel")) { 1159 createKernel(UserStmt); 1160 isl_ast_expr_free(Expr); 1161 return; 1162 } 1163 if (!strcmp(Str, "init_device")) { 1164 initializeAfterRTH(); 1165 isl_ast_node_free(UserStmt); 1166 isl_ast_expr_free(Expr); 1167 return; 1168 } 1169 if (!strcmp(Str, "clear_device")) { 1170 finalize(); 1171 isl_ast_node_free(UserStmt); 1172 isl_ast_expr_free(Expr); 1173 return; 1174 } 1175 if (isPrefix(Str, "to_device")) { 1176 if (!ManagedMemory) 1177 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1178 else 1179 isl_ast_node_free(UserStmt); 1180 1181 isl_ast_expr_free(Expr); 1182 return; 1183 } 1184 1185 if (isPrefix(Str, "from_device")) { 1186 if (!ManagedMemory) { 1187 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1188 } else { 1189 createCallSynchronizeDevice(); 1190 isl_ast_node_free(UserStmt); 1191 } 1192 isl_ast_expr_free(Expr); 1193 return; 1194 } 1195 1196 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1197 struct ppcg_kernel_stmt *KernelStmt = 1198 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1199 isl_id_free(Anno); 1200 1201 switch (KernelStmt->type) { 1202 case ppcg_kernel_domain: 1203 createScopStmt(Expr, KernelStmt); 1204 isl_ast_node_free(UserStmt); 1205 return; 1206 case ppcg_kernel_copy: 1207 createKernelCopy(KernelStmt); 1208 isl_ast_expr_free(Expr); 1209 isl_ast_node_free(UserStmt); 1210 return; 1211 case ppcg_kernel_sync: 1212 createKernelSync(); 1213 isl_ast_expr_free(Expr); 1214 isl_ast_node_free(UserStmt); 1215 return; 1216 } 1217 1218 isl_ast_expr_free(Expr); 1219 isl_ast_node_free(UserStmt); 1220 return; 1221 } 1222 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1223 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1224 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1225 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1226 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1227 Index = isl_ast_expr_address_of(Index); 1228 Value *GlobalAddr = ExprBuilder.create(Index); 1229 1230 if (KernelStmt->u.c.read) { 1231 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1232 Builder.CreateStore(Load, LocalAddr); 1233 } else { 1234 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1235 Builder.CreateStore(Load, GlobalAddr); 1236 } 1237 } 1238 1239 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1240 ppcg_kernel_stmt *KernelStmt) { 1241 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1242 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1243 1244 LoopToScevMapT LTS; 1245 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1246 1247 createSubstitutions(Expr, Stmt, LTS); 1248 1249 if (Stmt->isBlockStmt()) 1250 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1251 else 1252 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1253 } 1254 1255 void GPUNodeBuilder::createKernelSync() { 1256 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1257 1258 Function *Sync; 1259 1260 switch (Arch) { 1261 case GPUArch::NVPTX64: 1262 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1263 break; 1264 } 1265 1266 Builder.CreateCall(Sync, {}); 1267 } 1268 1269 /// Collect llvm::Values referenced from @p Node 1270 /// 1271 /// This function only applies to isl_ast_nodes that are user_nodes referring 1272 /// to a ScopStmt. All other node types are ignore. 1273 /// 1274 /// @param Node The node to collect references for. 1275 /// @param User A user pointer used as storage for the data that is collected. 1276 /// 1277 /// @returns isl_bool_true if data could be collected successfully. 1278 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1279 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1280 return isl_bool_true; 1281 1282 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1283 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1284 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1285 const char *Str = isl_id_get_name(Id); 1286 isl_id_free(Id); 1287 isl_ast_expr_free(StmtExpr); 1288 isl_ast_expr_free(Expr); 1289 1290 if (!isPrefix(Str, "Stmt")) 1291 return isl_bool_true; 1292 1293 Id = isl_ast_node_get_annotation(Node); 1294 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1295 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1296 isl_id_free(Id); 1297 1298 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1299 1300 return isl_bool_true; 1301 } 1302 1303 /// Check if F is a function that we can code-generate in a GPU kernel. 1304 static bool isValidFunctionInKernel(llvm::Function *F) { 1305 assert(F && "F is an invalid pointer"); 1306 // We string compare against the name of the function to allow 1307 // all variants of the intrinsic "llvm.sqrt.*" 1308 return F->isIntrinsic() && F->getName().startswith("llvm.sqrt"); 1309 } 1310 1311 /// Do not take `Function` as a subtree value. 1312 /// 1313 /// We try to take the reference of all subtree values and pass them along 1314 /// to the kernel from the host. Taking an address of any function and 1315 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1316 /// `Function`s. 1317 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1318 1319 /// Return `Function`s from `RawSubtreeValues`. 1320 static SetVector<Function *> 1321 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues) { 1322 SetVector<Function *> SubtreeFunctions; 1323 for (Value *It : RawSubtreeValues) { 1324 Function *F = dyn_cast<Function>(It); 1325 if (F) { 1326 assert(isValidFunctionInKernel(F) && "Code should have bailed out by " 1327 "this point if an invalid function " 1328 "were present in a kernel."); 1329 SubtreeFunctions.insert(F); 1330 } 1331 } 1332 return SubtreeFunctions; 1333 } 1334 1335 std::pair<SetVector<Value *>, SetVector<Function *>> 1336 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1337 SetVector<Value *> SubtreeValues; 1338 SetVector<const SCEV *> SCEVs; 1339 SetVector<const Loop *> Loops; 1340 SubtreeReferences References = { 1341 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1342 1343 for (const auto &I : IDToValue) 1344 SubtreeValues.insert(I.second); 1345 1346 isl_ast_node_foreach_descendant_top_down( 1347 Kernel->tree, collectReferencesInGPUStmt, &References); 1348 1349 for (const SCEV *Expr : SCEVs) 1350 findValues(Expr, SE, SubtreeValues); 1351 1352 for (auto &SAI : S.arrays()) 1353 SubtreeValues.remove(SAI->getBasePtr()); 1354 1355 isl_space *Space = S.getParamSpace(); 1356 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1357 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1358 assert(IDToValue.count(Id)); 1359 Value *Val = IDToValue[Id]; 1360 SubtreeValues.remove(Val); 1361 isl_id_free(Id); 1362 } 1363 isl_space_free(Space); 1364 1365 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1366 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1367 assert(IDToValue.count(Id)); 1368 Value *Val = IDToValue[Id]; 1369 SubtreeValues.remove(Val); 1370 isl_id_free(Id); 1371 } 1372 1373 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1374 // SubtreeValues. This is important, because we should not lose any 1375 // SubtreeValues in the process of constructing the 1376 // "ValidSubtree{Values, Functions} sets. Nor should the set 1377 // ValidSubtree{Values, Functions} have any common element. 1378 auto ValidSubtreeValuesIt = 1379 make_filter_range(SubtreeValues, isValidSubtreeValue); 1380 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1381 ValidSubtreeValuesIt.end()); 1382 SetVector<Function *> ValidSubtreeFunctions( 1383 getFunctionsFromRawSubtreeValues(SubtreeValues)); 1384 1385 // @see IslNodeBuilder::getReferencesInSubtree 1386 SetVector<Value *> ReplacedValues; 1387 for (Value *V : ValidSubtreeValues) { 1388 auto It = ValueMap.find(V); 1389 if (It == ValueMap.end()) 1390 ReplacedValues.insert(V); 1391 else 1392 ReplacedValues.insert(It->second); 1393 } 1394 return std::make_pair(ReplacedValues, ValidSubtreeFunctions); 1395 } 1396 1397 void GPUNodeBuilder::clearDominators(Function *F) { 1398 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1399 std::vector<BasicBlock *> Nodes; 1400 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1401 Nodes.push_back(I->getBlock()); 1402 1403 for (BasicBlock *BB : Nodes) 1404 DT.eraseNode(BB); 1405 } 1406 1407 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1408 for (BasicBlock &BB : *F) { 1409 Loop *L = LI.getLoopFor(&BB); 1410 if (L) 1411 SE.forgetLoop(L); 1412 } 1413 } 1414 1415 void GPUNodeBuilder::clearLoops(Function *F) { 1416 for (BasicBlock &BB : *F) { 1417 Loop *L = LI.getLoopFor(&BB); 1418 if (L) 1419 SE.forgetLoop(L); 1420 LI.removeBlock(&BB); 1421 } 1422 } 1423 1424 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1425 std::vector<Value *> Sizes; 1426 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1427 1428 for (long i = 0; i < Kernel->n_grid; i++) { 1429 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1430 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1431 Value *Res = ExprBuilder.create(GridSize); 1432 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1433 Sizes.push_back(Res); 1434 } 1435 isl_ast_build_free(Context); 1436 1437 for (long i = Kernel->n_grid; i < 3; i++) 1438 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1439 1440 return std::make_tuple(Sizes[0], Sizes[1]); 1441 } 1442 1443 std::tuple<Value *, Value *, Value *> 1444 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1445 std::vector<Value *> Sizes; 1446 1447 for (long i = 0; i < Kernel->n_block; i++) { 1448 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1449 Sizes.push_back(Res); 1450 } 1451 1452 for (long i = Kernel->n_block; i < 3; i++) 1453 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1454 1455 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1456 } 1457 1458 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1459 Instruction *Param, int Index) { 1460 Value *Slot = Builder.CreateGEP( 1461 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1462 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1463 Builder.CreateStore(ParamTyped, Slot); 1464 } 1465 1466 Value * 1467 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1468 SetVector<Value *> SubtreeValues) { 1469 const int NumArgs = F->arg_size(); 1470 std::vector<int> ArgSizes(NumArgs); 1471 1472 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1473 1474 BasicBlock *EntryBlock = 1475 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1476 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1477 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1478 Instruction *Parameters = new AllocaInst( 1479 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1480 1481 int Index = 0; 1482 for (long i = 0; i < Prog->n_array; i++) { 1483 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1484 continue; 1485 1486 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1487 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1488 1489 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1490 1491 Value *DevArray = nullptr; 1492 if (ManagedMemory) { 1493 DevArray = getOrCreateManagedDeviceArray( 1494 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1495 } else { 1496 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1497 DevArray = createCallGetDevicePtr(DevArray); 1498 } 1499 assert(DevArray != nullptr && "Array to be offloaded to device not " 1500 "initialized"); 1501 Value *Offset = getArrayOffset(&Prog->array[i]); 1502 1503 if (Offset) { 1504 DevArray = Builder.CreatePointerCast( 1505 DevArray, SAI->getElementType()->getPointerTo()); 1506 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1507 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1508 } 1509 Value *Slot = Builder.CreateGEP( 1510 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1511 1512 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1513 Value *ValPtr = nullptr; 1514 if (ManagedMemory) 1515 ValPtr = DevArray; 1516 else 1517 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1518 1519 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1520 " to be stored into Parameters"); 1521 Value *ValPtrCast = 1522 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1523 Builder.CreateStore(ValPtrCast, Slot); 1524 } else { 1525 Instruction *Param = 1526 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1527 Launch + "_param_" + std::to_string(Index), 1528 EntryBlock->getTerminator()); 1529 Builder.CreateStore(DevArray, Param); 1530 Value *ParamTyped = 1531 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1532 Builder.CreateStore(ParamTyped, Slot); 1533 } 1534 Index++; 1535 } 1536 1537 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1538 1539 for (long i = 0; i < NumHostIters; i++) { 1540 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1541 Value *Val = IDToValue[Id]; 1542 isl_id_free(Id); 1543 1544 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1545 1546 Instruction *Param = 1547 new AllocaInst(Val->getType(), AddressSpace, 1548 Launch + "_param_" + std::to_string(Index), 1549 EntryBlock->getTerminator()); 1550 Builder.CreateStore(Val, Param); 1551 insertStoreParameter(Parameters, Param, Index); 1552 Index++; 1553 } 1554 1555 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1556 1557 for (long i = 0; i < NumVars; i++) { 1558 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1559 Value *Val = IDToValue[Id]; 1560 if (ValueMap.count(Val)) 1561 Val = ValueMap[Val]; 1562 isl_id_free(Id); 1563 1564 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1565 1566 Instruction *Param = 1567 new AllocaInst(Val->getType(), AddressSpace, 1568 Launch + "_param_" + std::to_string(Index), 1569 EntryBlock->getTerminator()); 1570 Builder.CreateStore(Val, Param); 1571 insertStoreParameter(Parameters, Param, Index); 1572 Index++; 1573 } 1574 1575 for (auto Val : SubtreeValues) { 1576 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1577 1578 Instruction *Param = 1579 new AllocaInst(Val->getType(), AddressSpace, 1580 Launch + "_param_" + std::to_string(Index), 1581 EntryBlock->getTerminator()); 1582 Builder.CreateStore(Val, Param); 1583 insertStoreParameter(Parameters, Param, Index); 1584 Index++; 1585 } 1586 1587 for (int i = 0; i < NumArgs; i++) { 1588 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1589 Instruction *Param = 1590 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1591 Launch + "_param_size_" + std::to_string(i), 1592 EntryBlock->getTerminator()); 1593 Builder.CreateStore(Val, Param); 1594 insertStoreParameter(Parameters, Param, Index); 1595 Index++; 1596 } 1597 1598 auto Location = EntryBlock->getTerminator(); 1599 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1600 Launch + "_params_i8ptr", Location); 1601 } 1602 1603 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1604 SetVector<Function *> SubtreeFunctions) { 1605 for (auto Fn : SubtreeFunctions) { 1606 const std::string ClonedFnName = Fn->getName(); 1607 Function *Clone = GPUModule->getFunction(ClonedFnName); 1608 if (!Clone) 1609 Clone = 1610 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1611 ClonedFnName, GPUModule.get()); 1612 assert(Clone && "Expected cloned function to be initialized."); 1613 assert(ValueMap.find(Fn) == ValueMap.end() && 1614 "Fn already present in ValueMap"); 1615 ValueMap[Fn] = Clone; 1616 } 1617 } 1618 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1619 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1620 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1621 isl_id_free(Id); 1622 isl_ast_node_free(KernelStmt); 1623 1624 if (Kernel->n_grid > 1) 1625 DeepestParallel = 1626 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1627 else 1628 DeepestSequential = 1629 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1630 1631 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1632 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1633 1634 SetVector<Value *> SubtreeValues; 1635 SetVector<Function *> SubtreeFunctions; 1636 std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel); 1637 1638 assert(Kernel->tree && "Device AST of kernel node is empty"); 1639 1640 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1641 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1642 ValueMapT HostValueMap = ValueMap; 1643 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1644 ScalarMap.clear(); 1645 1646 SetVector<const Loop *> Loops; 1647 1648 // Create for all loops we depend on values that contain the current loop 1649 // iteration. These values are necessary to generate code for SCEVs that 1650 // depend on such loops. As a result we need to pass them to the subfunction. 1651 for (const Loop *L : Loops) { 1652 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1653 SE.getUnknown(Builder.getInt64(1)), 1654 L, SCEV::FlagAnyWrap); 1655 Value *V = generateSCEV(OuterLIV); 1656 OutsideLoopIterations[L] = SE.getUnknown(V); 1657 SubtreeValues.insert(V); 1658 } 1659 1660 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1661 setupKernelSubtreeFunctions(SubtreeFunctions); 1662 1663 create(isl_ast_node_copy(Kernel->tree)); 1664 1665 finalizeKernelArguments(Kernel); 1666 Function *F = Builder.GetInsertBlock()->getParent(); 1667 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1668 clearDominators(F); 1669 clearScalarEvolution(F); 1670 clearLoops(F); 1671 1672 IDToValue = HostIDs; 1673 1674 ValueMap = std::move(HostValueMap); 1675 ScalarMap = std::move(HostScalarMap); 1676 EscapeMap.clear(); 1677 IDToSAI.clear(); 1678 Annotator.resetAlternativeAliasBases(); 1679 for (auto &BasePtr : LocalArrays) 1680 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1681 LocalArrays.clear(); 1682 1683 std::string ASMString = finalizeKernelFunction(); 1684 Builder.SetInsertPoint(&HostInsertPoint); 1685 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1686 1687 std::string Name = getKernelFuncName(Kernel->id); 1688 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1689 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1690 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1691 1692 Value *GridDimX, *GridDimY; 1693 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1694 1695 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1696 BlockDimZ, Parameters); 1697 createCallFreeKernel(GPUKernel); 1698 1699 for (auto Id : KernelIds) 1700 isl_id_free(Id); 1701 1702 KernelIds.clear(); 1703 } 1704 1705 /// Compute the DataLayout string for the NVPTX backend. 1706 /// 1707 /// @param is64Bit Are we looking for a 64 bit architecture? 1708 static std::string computeNVPTXDataLayout(bool is64Bit) { 1709 std::string Ret = ""; 1710 1711 if (!is64Bit) { 1712 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1713 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1714 "64-v128:128:128-n16:32:64"; 1715 } else { 1716 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1717 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1718 "64-v128:128:128-n16:32:64"; 1719 } 1720 1721 return Ret; 1722 } 1723 1724 Function * 1725 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1726 SetVector<Value *> &SubtreeValues) { 1727 std::vector<Type *> Args; 1728 std::string Identifier = getKernelFuncName(Kernel->id); 1729 1730 for (long i = 0; i < Prog->n_array; i++) { 1731 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1732 continue; 1733 1734 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1735 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1736 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1737 Args.push_back(SAI->getElementType()); 1738 } else { 1739 static const int UseGlobalMemory = 1; 1740 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1741 } 1742 } 1743 1744 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1745 1746 for (long i = 0; i < NumHostIters; i++) 1747 Args.push_back(Builder.getInt64Ty()); 1748 1749 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1750 1751 for (long i = 0; i < NumVars; i++) { 1752 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1753 Value *Val = IDToValue[Id]; 1754 isl_id_free(Id); 1755 Args.push_back(Val->getType()); 1756 } 1757 1758 for (auto *V : SubtreeValues) 1759 Args.push_back(V->getType()); 1760 1761 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1762 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1763 GPUModule.get()); 1764 1765 switch (Arch) { 1766 case GPUArch::NVPTX64: 1767 FN->setCallingConv(CallingConv::PTX_Kernel); 1768 break; 1769 } 1770 1771 auto Arg = FN->arg_begin(); 1772 for (long i = 0; i < Kernel->n_array; i++) { 1773 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1774 continue; 1775 1776 Arg->setName(Kernel->array[i].array->name); 1777 1778 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1779 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1780 Type *EleTy = SAI->getElementType(); 1781 Value *Val = &*Arg; 1782 SmallVector<const SCEV *, 4> Sizes; 1783 isl_ast_build *Build = 1784 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1785 Sizes.push_back(nullptr); 1786 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1787 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1788 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1789 auto V = ExprBuilder.create(DimSize); 1790 Sizes.push_back(SE.getSCEV(V)); 1791 } 1792 const ScopArrayInfo *SAIRep = 1793 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1794 LocalArrays.push_back(Val); 1795 1796 isl_ast_build_free(Build); 1797 KernelIds.push_back(Id); 1798 IDToSAI[Id] = SAIRep; 1799 Arg++; 1800 } 1801 1802 for (long i = 0; i < NumHostIters; i++) { 1803 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1804 Arg->setName(isl_id_get_name(Id)); 1805 IDToValue[Id] = &*Arg; 1806 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1807 Arg++; 1808 } 1809 1810 for (long i = 0; i < NumVars; i++) { 1811 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1812 Arg->setName(isl_id_get_name(Id)); 1813 Value *Val = IDToValue[Id]; 1814 ValueMap[Val] = &*Arg; 1815 IDToValue[Id] = &*Arg; 1816 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1817 Arg++; 1818 } 1819 1820 for (auto *V : SubtreeValues) { 1821 Arg->setName(V->getName()); 1822 ValueMap[V] = &*Arg; 1823 Arg++; 1824 } 1825 1826 return FN; 1827 } 1828 1829 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1830 Intrinsic::ID IntrinsicsBID[2]; 1831 Intrinsic::ID IntrinsicsTID[3]; 1832 1833 switch (Arch) { 1834 case GPUArch::NVPTX64: 1835 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1836 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1837 1838 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1839 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1840 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1841 break; 1842 } 1843 1844 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1845 std::string Name = isl_id_get_name(Id); 1846 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1847 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1848 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1849 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1850 IDToValue[Id] = Val; 1851 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1852 }; 1853 1854 for (int i = 0; i < Kernel->n_grid; ++i) { 1855 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1856 addId(Id, IntrinsicsBID[i]); 1857 } 1858 1859 for (int i = 0; i < Kernel->n_block; ++i) { 1860 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1861 addId(Id, IntrinsicsTID[i]); 1862 } 1863 } 1864 1865 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1866 auto Arg = FN->arg_begin(); 1867 for (long i = 0; i < Kernel->n_array; i++) { 1868 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1869 continue; 1870 1871 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1872 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1873 isl_id_free(Id); 1874 1875 if (SAI->getNumberOfDimensions() > 0) { 1876 Arg++; 1877 continue; 1878 } 1879 1880 Value *Val = &*Arg; 1881 1882 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1883 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1884 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1885 Val = Builder.CreateLoad(TypedArgPtr); 1886 } 1887 1888 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1889 Builder.CreateStore(Val, Alloca); 1890 1891 Arg++; 1892 } 1893 } 1894 1895 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1896 auto *FN = Builder.GetInsertBlock()->getParent(); 1897 auto Arg = FN->arg_begin(); 1898 1899 bool StoredScalar = false; 1900 for (long i = 0; i < Kernel->n_array; i++) { 1901 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1902 continue; 1903 1904 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1905 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1906 isl_id_free(Id); 1907 1908 if (SAI->getNumberOfDimensions() > 0) { 1909 Arg++; 1910 continue; 1911 } 1912 1913 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1914 Arg++; 1915 continue; 1916 } 1917 1918 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1919 Value *ArgPtr = &*Arg; 1920 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1921 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1922 Value *Val = Builder.CreateLoad(Alloca); 1923 Builder.CreateStore(Val, TypedArgPtr); 1924 StoredScalar = true; 1925 1926 Arg++; 1927 } 1928 1929 if (StoredScalar) 1930 /// In case more than one thread contains scalar stores, the generated 1931 /// code might be incorrect, if we only store at the end of the kernel. 1932 /// To support this case we need to store these scalars back at each 1933 /// memory store or at least before each kernel barrier. 1934 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1935 BuildSuccessful = 0; 1936 } 1937 1938 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1939 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1940 1941 for (int i = 0; i < Kernel->n_var; ++i) { 1942 struct ppcg_kernel_var &Var = Kernel->var[i]; 1943 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1944 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1945 1946 Type *ArrayTy = EleTy; 1947 SmallVector<const SCEV *, 4> Sizes; 1948 1949 Sizes.push_back(nullptr); 1950 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1951 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1952 long Bound = isl_val_get_num_si(Val); 1953 isl_val_free(Val); 1954 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1955 } 1956 1957 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1958 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1959 long Bound = isl_val_get_num_si(Val); 1960 isl_val_free(Val); 1961 ArrayTy = ArrayType::get(ArrayTy, Bound); 1962 } 1963 1964 const ScopArrayInfo *SAI; 1965 Value *Allocation; 1966 if (Var.type == ppcg_access_shared) { 1967 auto GlobalVar = new GlobalVariable( 1968 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1969 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1970 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1971 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1972 1973 Allocation = GlobalVar; 1974 } else if (Var.type == ppcg_access_private) { 1975 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1976 } else { 1977 llvm_unreachable("unknown variable type"); 1978 } 1979 SAI = 1980 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1981 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1982 IDToValue[Id] = Allocation; 1983 LocalArrays.push_back(Allocation); 1984 KernelIds.push_back(Id); 1985 IDToSAI[Id] = SAI; 1986 } 1987 } 1988 1989 void GPUNodeBuilder::createKernelFunction( 1990 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 1991 SetVector<Function *> &SubtreeFunctions) { 1992 std::string Identifier = getKernelFuncName(Kernel->id); 1993 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1994 1995 switch (Arch) { 1996 case GPUArch::NVPTX64: 1997 if (Runtime == GPURuntime::CUDA) 1998 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1999 else if (Runtime == GPURuntime::OpenCL) 2000 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2001 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2002 break; 2003 } 2004 2005 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2006 2007 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2008 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2009 2010 DT.addNewBlock(EntryBlock, PrevBlock); 2011 2012 Builder.SetInsertPoint(EntryBlock); 2013 Builder.CreateRetVoid(); 2014 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2015 2016 ScopDetection::markFunctionAsInvalid(FN); 2017 2018 prepareKernelArguments(Kernel, FN); 2019 createKernelVariables(Kernel, FN); 2020 insertKernelIntrinsics(Kernel); 2021 } 2022 2023 std::string GPUNodeBuilder::createKernelASM() { 2024 llvm::Triple GPUTriple; 2025 2026 switch (Arch) { 2027 case GPUArch::NVPTX64: 2028 switch (Runtime) { 2029 case GPURuntime::CUDA: 2030 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2031 break; 2032 case GPURuntime::OpenCL: 2033 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2034 break; 2035 } 2036 break; 2037 } 2038 2039 std::string ErrMsg; 2040 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2041 2042 if (!GPUTarget) { 2043 errs() << ErrMsg << "\n"; 2044 return ""; 2045 } 2046 2047 TargetOptions Options; 2048 Options.UnsafeFPMath = FastMath; 2049 2050 std::string subtarget; 2051 2052 switch (Arch) { 2053 case GPUArch::NVPTX64: 2054 subtarget = CudaVersion; 2055 break; 2056 } 2057 2058 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2059 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2060 2061 SmallString<0> ASMString; 2062 raw_svector_ostream ASMStream(ASMString); 2063 llvm::legacy::PassManager PM; 2064 2065 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2066 2067 if (TargetM->addPassesToEmitFile( 2068 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2069 errs() << "The target does not support generation of this file type!\n"; 2070 return ""; 2071 } 2072 2073 PM.run(*GPUModule); 2074 2075 return ASMStream.str(); 2076 } 2077 2078 std::string GPUNodeBuilder::finalizeKernelFunction() { 2079 2080 if (verifyModule(*GPUModule)) { 2081 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2082 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2083 2084 if (FailOnVerifyModuleFailure) 2085 llvm_unreachable("VerifyModule failed."); 2086 2087 BuildSuccessful = false; 2088 return ""; 2089 } 2090 2091 if (DumpKernelIR) 2092 outs() << *GPUModule << "\n"; 2093 2094 // Optimize module. 2095 llvm::legacy::PassManager OptPasses; 2096 PassManagerBuilder PassBuilder; 2097 PassBuilder.OptLevel = 3; 2098 PassBuilder.SizeLevel = 0; 2099 PassBuilder.populateModulePassManager(OptPasses); 2100 OptPasses.run(*GPUModule); 2101 2102 std::string Assembly = createKernelASM(); 2103 2104 if (DumpKernelASM) 2105 outs() << Assembly << "\n"; 2106 2107 GPUModule.release(); 2108 KernelIDs.clear(); 2109 2110 return Assembly; 2111 } 2112 2113 namespace { 2114 class PPCGCodeGeneration : public ScopPass { 2115 public: 2116 static char ID; 2117 2118 GPURuntime Runtime = GPURuntime::CUDA; 2119 2120 GPUArch Architecture = GPUArch::NVPTX64; 2121 2122 /// The scop that is currently processed. 2123 Scop *S; 2124 2125 LoopInfo *LI; 2126 DominatorTree *DT; 2127 ScalarEvolution *SE; 2128 const DataLayout *DL; 2129 RegionInfo *RI; 2130 2131 PPCGCodeGeneration() : ScopPass(ID) {} 2132 2133 /// Construct compilation options for PPCG. 2134 /// 2135 /// @returns The compilation options. 2136 ppcg_options *createPPCGOptions() { 2137 auto DebugOptions = 2138 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2139 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2140 2141 DebugOptions->dump_schedule_constraints = false; 2142 DebugOptions->dump_schedule = false; 2143 DebugOptions->dump_final_schedule = false; 2144 DebugOptions->dump_sizes = false; 2145 DebugOptions->verbose = false; 2146 2147 Options->debug = DebugOptions; 2148 2149 Options->group_chains = false; 2150 Options->reschedule = true; 2151 Options->scale_tile_loops = false; 2152 Options->wrap = false; 2153 2154 Options->non_negative_parameters = false; 2155 Options->ctx = nullptr; 2156 Options->sizes = nullptr; 2157 2158 Options->tile = true; 2159 Options->tile_size = 32; 2160 2161 Options->isolate_full_tiles = false; 2162 2163 Options->use_private_memory = PrivateMemory; 2164 Options->use_shared_memory = SharedMemory; 2165 Options->max_shared_memory = 48 * 1024; 2166 2167 Options->target = PPCG_TARGET_CUDA; 2168 Options->openmp = false; 2169 Options->linearize_device_arrays = true; 2170 Options->allow_gnu_extensions = false; 2171 2172 Options->unroll_copy_shared = false; 2173 Options->unroll_gpu_tile = false; 2174 Options->live_range_reordering = true; 2175 2176 Options->live_range_reordering = true; 2177 Options->hybrid = false; 2178 Options->opencl_compiler_options = nullptr; 2179 Options->opencl_use_gpu = false; 2180 Options->opencl_n_include_file = 0; 2181 Options->opencl_include_files = nullptr; 2182 Options->opencl_print_kernel_types = false; 2183 Options->opencl_embed_kernel_code = false; 2184 2185 Options->save_schedule_file = nullptr; 2186 Options->load_schedule_file = nullptr; 2187 2188 return Options; 2189 } 2190 2191 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2192 /// 2193 /// Instead of a normal access of the form: 2194 /// 2195 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2196 /// 2197 /// a tagged access has the form 2198 /// 2199 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2200 /// 2201 /// where 'id' is an additional space that references the memory access that 2202 /// triggered the access. 2203 /// 2204 /// @param AccessTy The type of the memory accesses to collect. 2205 /// 2206 /// @return The relation describing all tagged memory accesses. 2207 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2208 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2209 2210 for (auto &Stmt : *S) 2211 for (auto &Acc : Stmt) 2212 if (Acc->getType() == AccessTy) { 2213 isl_map *Relation = Acc->getAccessRelation(); 2214 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2215 2216 isl_space *Space = isl_map_get_space(Relation); 2217 Space = isl_space_range(Space); 2218 Space = isl_space_from_range(Space); 2219 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2220 isl_map *Universe = isl_map_universe(Space); 2221 Relation = isl_map_domain_product(Relation, Universe); 2222 Accesses = isl_union_map_add_map(Accesses, Relation); 2223 } 2224 2225 return Accesses; 2226 } 2227 2228 /// Get the set of all read accesses, tagged with the access id. 2229 /// 2230 /// @see getTaggedAccesses 2231 isl_union_map *getTaggedReads() { 2232 return getTaggedAccesses(MemoryAccess::READ); 2233 } 2234 2235 /// Get the set of all may (and must) accesses, tagged with the access id. 2236 /// 2237 /// @see getTaggedAccesses 2238 isl_union_map *getTaggedMayWrites() { 2239 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2240 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2241 } 2242 2243 /// Get the set of all must accesses, tagged with the access id. 2244 /// 2245 /// @see getTaggedAccesses 2246 isl_union_map *getTaggedMustWrites() { 2247 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2248 } 2249 2250 /// Collect parameter and array names as isl_ids. 2251 /// 2252 /// To reason about the different parameters and arrays used, ppcg requires 2253 /// a list of all isl_ids in use. As PPCG traditionally performs 2254 /// source-to-source compilation each of these isl_ids is mapped to the 2255 /// expression that represents it. As we do not have a corresponding 2256 /// expression in Polly, we just map each id to a 'zero' expression to match 2257 /// the data format that ppcg expects. 2258 /// 2259 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2260 __isl_give isl_id_to_ast_expr *getNames() { 2261 auto *Names = isl_id_to_ast_expr_alloc( 2262 S->getIslCtx(), 2263 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2264 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2265 auto *Space = S->getParamSpace(); 2266 2267 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 2268 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 2269 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2270 } 2271 2272 for (auto &Array : S->arrays()) { 2273 auto Id = Array->getBasePtrId(); 2274 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2275 } 2276 2277 isl_space_free(Space); 2278 isl_ast_expr_free(Zero); 2279 2280 return Names; 2281 } 2282 2283 /// Create a new PPCG scop from the current scop. 2284 /// 2285 /// The PPCG scop is initialized with data from the current polly::Scop. From 2286 /// this initial data, the data-dependences in the PPCG scop are initialized. 2287 /// We do not use Polly's dependence analysis for now, to ensure we match 2288 /// the PPCG default behaviour more closely. 2289 /// 2290 /// @returns A new ppcg scop. 2291 ppcg_scop *createPPCGScop() { 2292 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2293 2294 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2295 2296 PPCGScop->options = createPPCGOptions(); 2297 // enable live range reordering 2298 PPCGScop->options->live_range_reordering = 1; 2299 2300 PPCGScop->start = 0; 2301 PPCGScop->end = 0; 2302 2303 PPCGScop->context = S->getContext(); 2304 PPCGScop->domain = S->getDomains(); 2305 // TODO: investigate this further. PPCG calls collect_call_domains. 2306 PPCGScop->call = isl_union_set_from_set(S->getContext()); 2307 PPCGScop->tagged_reads = getTaggedReads(); 2308 PPCGScop->reads = S->getReads(); 2309 PPCGScop->live_in = nullptr; 2310 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2311 PPCGScop->may_writes = S->getWrites(); 2312 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2313 PPCGScop->must_writes = S->getMustWrites(); 2314 PPCGScop->live_out = nullptr; 2315 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2316 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2317 2318 PPCGScop->tagger = nullptr; 2319 PPCGScop->independence = 2320 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2321 PPCGScop->dep_flow = nullptr; 2322 PPCGScop->tagged_dep_flow = nullptr; 2323 PPCGScop->dep_false = nullptr; 2324 PPCGScop->dep_forced = nullptr; 2325 PPCGScop->dep_order = nullptr; 2326 PPCGScop->tagged_dep_order = nullptr; 2327 2328 PPCGScop->schedule = S->getScheduleTree(); 2329 // If we have something non-trivial to kill, add it to the schedule 2330 if (KillsInfo.KillsSchedule.get()) 2331 PPCGScop->schedule = isl_schedule_sequence( 2332 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2333 2334 PPCGScop->names = getNames(); 2335 PPCGScop->pet = nullptr; 2336 2337 compute_tagger(PPCGScop); 2338 compute_dependences(PPCGScop); 2339 eliminate_dead_code(PPCGScop); 2340 2341 return PPCGScop; 2342 } 2343 2344 /// Collect the array accesses in a statement. 2345 /// 2346 /// @param Stmt The statement for which to collect the accesses. 2347 /// 2348 /// @returns A list of array accesses. 2349 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2350 gpu_stmt_access *Accesses = nullptr; 2351 2352 for (MemoryAccess *Acc : Stmt) { 2353 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2354 Access->read = Acc->isRead(); 2355 Access->write = Acc->isWrite(); 2356 Access->access = Acc->getAccessRelation(); 2357 isl_space *Space = isl_map_get_space(Access->access); 2358 Space = isl_space_range(Space); 2359 Space = isl_space_from_range(Space); 2360 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2361 isl_map *Universe = isl_map_universe(Space); 2362 Access->tagged_access = 2363 isl_map_domain_product(Acc->getAccessRelation(), Universe); 2364 Access->exact_write = !Acc->isMayWrite(); 2365 Access->ref_id = Acc->getId(); 2366 Access->next = Accesses; 2367 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2368 Accesses = Access; 2369 } 2370 2371 return Accesses; 2372 } 2373 2374 /// Collect the list of GPU statements. 2375 /// 2376 /// Each statement has an id, a pointer to the underlying data structure, 2377 /// as well as a list with all memory accesses. 2378 /// 2379 /// TODO: Initialize the list of memory accesses. 2380 /// 2381 /// @returns A linked-list of statements. 2382 gpu_stmt *getStatements() { 2383 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2384 std::distance(S->begin(), S->end())); 2385 2386 int i = 0; 2387 for (auto &Stmt : *S) { 2388 gpu_stmt *GPUStmt = &Stmts[i]; 2389 2390 GPUStmt->id = Stmt.getDomainId(); 2391 2392 // We use the pet stmt pointer to keep track of the Polly statements. 2393 GPUStmt->stmt = (pet_stmt *)&Stmt; 2394 GPUStmt->accesses = getStmtAccesses(Stmt); 2395 i++; 2396 } 2397 2398 return Stmts; 2399 } 2400 2401 /// Derive the extent of an array. 2402 /// 2403 /// The extent of an array is the set of elements that are within the 2404 /// accessed array. For the inner dimensions, the extent constraints are 2405 /// 0 and the size of the corresponding array dimension. For the first 2406 /// (outermost) dimension, the extent constraints are the minimal and maximal 2407 /// subscript value for the first dimension. 2408 /// 2409 /// @param Array The array to derive the extent for. 2410 /// 2411 /// @returns An isl_set describing the extent of the array. 2412 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2413 unsigned NumDims = Array->getNumberOfDimensions(); 2414 isl_union_map *Accesses = S->getAccesses(); 2415 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2416 Accesses = isl_union_map_detect_equalities(Accesses); 2417 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2418 AccessUSet = isl_union_set_coalesce(AccessUSet); 2419 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2420 AccessUSet = isl_union_set_coalesce(AccessUSet); 2421 2422 if (isl_union_set_is_empty(AccessUSet)) { 2423 isl_union_set_free(AccessUSet); 2424 return isl_set_empty(Array->getSpace()); 2425 } 2426 2427 if (Array->getNumberOfDimensions() == 0) { 2428 isl_union_set_free(AccessUSet); 2429 return isl_set_universe(Array->getSpace()); 2430 } 2431 2432 isl_set *AccessSet = 2433 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 2434 2435 isl_union_set_free(AccessUSet); 2436 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 2437 2438 isl_pw_aff *Val = 2439 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2440 2441 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2442 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2443 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2444 isl_pw_aff_dim(Val, isl_dim_in)); 2445 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2446 isl_pw_aff_dim(Val, isl_dim_in)); 2447 OuterMin = 2448 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 2449 OuterMax = 2450 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 2451 2452 isl_set *Extent = isl_set_universe(Array->getSpace()); 2453 2454 Extent = isl_set_intersect( 2455 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2456 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2457 2458 for (unsigned i = 1; i < NumDims; ++i) 2459 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2460 2461 for (unsigned i = 0; i < NumDims; ++i) { 2462 isl_pw_aff *PwAff = 2463 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 2464 2465 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2466 // Fortran array will we have a legitimate dimension. 2467 if (!PwAff) { 2468 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2469 continue; 2470 } 2471 2472 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2473 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 2474 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2475 isl_pw_aff_dim(Val, isl_dim_in)); 2476 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2477 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2478 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2479 Extent = isl_set_intersect(Set, Extent); 2480 } 2481 2482 return Extent; 2483 } 2484 2485 /// Derive the bounds of an array. 2486 /// 2487 /// For the first dimension we derive the bound of the array from the extent 2488 /// of this dimension. For inner dimensions we obtain their size directly from 2489 /// ScopArrayInfo. 2490 /// 2491 /// @param PPCGArray The array to compute bounds for. 2492 /// @param Array The polly array from which to take the information. 2493 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2494 isl_pw_aff_list *BoundsList = 2495 isl_pw_aff_list_alloc(S->getIslCtx(), PPCGArray.n_index); 2496 std::vector<isl::pw_aff> PwAffs; 2497 2498 isl_space *AlignSpace = S->getParamSpace(); 2499 AlignSpace = isl_space_add_dims(AlignSpace, isl_dim_set, 1); 2500 2501 if (PPCGArray.n_index > 0) { 2502 if (isl_set_is_empty(PPCGArray.extent)) { 2503 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2504 isl_local_space *LS = isl_local_space_from_space( 2505 isl_space_params(isl_set_get_space(Dom))); 2506 isl_set_free(Dom); 2507 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2508 Zero = isl_pw_aff_align_params(Zero, isl_space_copy(AlignSpace)); 2509 PwAffs.push_back(isl::manage(isl_pw_aff_copy(Zero))); 2510 BoundsList = isl_pw_aff_list_insert(BoundsList, 0, Zero); 2511 } else { 2512 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2513 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2514 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2515 isl_set_free(Dom); 2516 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2517 isl_local_space *LS = 2518 isl_local_space_from_space(isl_set_get_space(Dom)); 2519 isl_aff *One = isl_aff_zero_on_domain(LS); 2520 One = isl_aff_add_constant_si(One, 1); 2521 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2522 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2523 Bound = isl_pw_aff_align_params(Bound, isl_space_copy(AlignSpace)); 2524 PwAffs.push_back(isl::manage(isl_pw_aff_copy(Bound))); 2525 BoundsList = isl_pw_aff_list_insert(BoundsList, 0, Bound); 2526 } 2527 } 2528 2529 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2530 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2531 auto LS = isl_pw_aff_get_domain_space(Bound); 2532 auto Aff = isl_multi_aff_zero(LS); 2533 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2534 Bound = isl_pw_aff_align_params(Bound, isl_space_copy(AlignSpace)); 2535 PwAffs.push_back(isl::manage(isl_pw_aff_copy(Bound))); 2536 BoundsList = isl_pw_aff_list_insert(BoundsList, i, Bound); 2537 } 2538 2539 isl_space_free(AlignSpace); 2540 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2541 2542 assert(BoundsSpace && "Unable to access space of array."); 2543 assert(BoundsList && "Unable to access list of bounds."); 2544 2545 PPCGArray.bound = 2546 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2547 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2548 } 2549 2550 /// Create the arrays for @p PPCGProg. 2551 /// 2552 /// @param PPCGProg The program to compute the arrays for. 2553 void createArrays(gpu_prog *PPCGProg) { 2554 int i = 0; 2555 for (auto &Array : S->arrays()) { 2556 std::string TypeName; 2557 raw_string_ostream OS(TypeName); 2558 2559 OS << *Array->getElementType(); 2560 TypeName = OS.str(); 2561 2562 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2563 2564 PPCGArray.space = Array->getSpace(); 2565 PPCGArray.type = strdup(TypeName.c_str()); 2566 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2567 PPCGArray.name = strdup(Array->getName().c_str()); 2568 PPCGArray.extent = nullptr; 2569 PPCGArray.n_index = Array->getNumberOfDimensions(); 2570 PPCGArray.extent = getExtent(Array); 2571 PPCGArray.n_ref = 0; 2572 PPCGArray.refs = nullptr; 2573 PPCGArray.accessed = true; 2574 PPCGArray.read_only_scalar = 2575 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2576 PPCGArray.has_compound_element = false; 2577 PPCGArray.local = false; 2578 PPCGArray.declare_local = false; 2579 PPCGArray.global = false; 2580 PPCGArray.linearize = false; 2581 PPCGArray.dep_order = nullptr; 2582 PPCGArray.user = Array; 2583 2584 PPCGArray.bound = nullptr; 2585 setArrayBounds(PPCGArray, Array); 2586 i++; 2587 2588 collect_references(PPCGProg, &PPCGArray); 2589 } 2590 } 2591 2592 /// Create an identity map between the arrays in the scop. 2593 /// 2594 /// @returns An identity map between the arrays in the scop. 2595 isl_union_map *getArrayIdentity() { 2596 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2597 2598 for (auto &Array : S->arrays()) { 2599 isl_space *Space = Array->getSpace(); 2600 Space = isl_space_map_from_set(Space); 2601 isl_map *Identity = isl_map_identity(Space); 2602 Maps = isl_union_map_add_map(Maps, Identity); 2603 } 2604 2605 return Maps; 2606 } 2607 2608 /// Create a default-initialized PPCG GPU program. 2609 /// 2610 /// @returns A new gpu program description. 2611 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2612 2613 if (!PPCGScop) 2614 return nullptr; 2615 2616 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2617 2618 PPCGProg->ctx = S->getIslCtx(); 2619 PPCGProg->scop = PPCGScop; 2620 PPCGProg->context = isl_set_copy(PPCGScop->context); 2621 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2622 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2623 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2624 PPCGProg->tagged_must_kill = 2625 isl_union_map_copy(PPCGScop->tagged_must_kills); 2626 PPCGProg->to_inner = getArrayIdentity(); 2627 PPCGProg->to_outer = getArrayIdentity(); 2628 // TODO: verify that this assignment is correct. 2629 PPCGProg->any_to_outer = nullptr; 2630 2631 // this needs to be set when live range reordering is enabled. 2632 // NOTE: I believe that is conservatively correct. I'm not sure 2633 // what the semantics of this is. 2634 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2635 PPCGProg->array_order = 2636 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2637 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2638 PPCGProg->stmts = getStatements(); 2639 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2640 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2641 PPCGProg->n_array); 2642 2643 createArrays(PPCGProg); 2644 2645 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2646 return PPCGProg; 2647 } 2648 2649 struct PrintGPUUserData { 2650 struct cuda_info *CudaInfo; 2651 struct gpu_prog *PPCGProg; 2652 std::vector<ppcg_kernel *> Kernels; 2653 }; 2654 2655 /// Print a user statement node in the host code. 2656 /// 2657 /// We use ppcg's printing facilities to print the actual statement and 2658 /// additionally build up a list of all kernels that are encountered in the 2659 /// host ast. 2660 /// 2661 /// @param P The printer to print to 2662 /// @param Options The printing options to use 2663 /// @param Node The node to print 2664 /// @param User A user pointer to carry additional data. This pointer is 2665 /// expected to be of type PrintGPUUserData. 2666 /// 2667 /// @returns A printer to which the output has been printed. 2668 static __isl_give isl_printer * 2669 printHostUser(__isl_take isl_printer *P, 2670 __isl_take isl_ast_print_options *Options, 2671 __isl_take isl_ast_node *Node, void *User) { 2672 auto Data = (struct PrintGPUUserData *)User; 2673 auto Id = isl_ast_node_get_annotation(Node); 2674 2675 if (Id) { 2676 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2677 2678 // If this is a user statement, format it ourselves as ppcg would 2679 // otherwise try to call pet functionality that is not available in 2680 // Polly. 2681 if (IsUser) { 2682 P = isl_printer_start_line(P); 2683 P = isl_printer_print_ast_node(P, Node); 2684 P = isl_printer_end_line(P); 2685 isl_id_free(Id); 2686 isl_ast_print_options_free(Options); 2687 return P; 2688 } 2689 2690 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2691 isl_id_free(Id); 2692 Data->Kernels.push_back(Kernel); 2693 } 2694 2695 return print_host_user(P, Options, Node, User); 2696 } 2697 2698 /// Print C code corresponding to the control flow in @p Kernel. 2699 /// 2700 /// @param Kernel The kernel to print 2701 void printKernel(ppcg_kernel *Kernel) { 2702 auto *P = isl_printer_to_str(S->getIslCtx()); 2703 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2704 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2705 P = isl_ast_node_print(Kernel->tree, P, Options); 2706 char *String = isl_printer_get_str(P); 2707 printf("%s\n", String); 2708 free(String); 2709 isl_printer_free(P); 2710 } 2711 2712 /// Print C code corresponding to the GPU code described by @p Tree. 2713 /// 2714 /// @param Tree An AST describing GPU code 2715 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2716 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2717 auto *P = isl_printer_to_str(S->getIslCtx()); 2718 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2719 2720 PrintGPUUserData Data; 2721 Data.PPCGProg = PPCGProg; 2722 2723 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2724 Options = 2725 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2726 P = isl_ast_node_print(Tree, P, Options); 2727 char *String = isl_printer_get_str(P); 2728 printf("# host\n"); 2729 printf("%s\n", String); 2730 free(String); 2731 isl_printer_free(P); 2732 2733 for (auto Kernel : Data.Kernels) { 2734 printf("# kernel%d\n", Kernel->id); 2735 printKernel(Kernel); 2736 } 2737 } 2738 2739 // Generate a GPU program using PPCG. 2740 // 2741 // GPU mapping consists of multiple steps: 2742 // 2743 // 1) Compute new schedule for the program. 2744 // 2) Map schedule to GPU (TODO) 2745 // 3) Generate code for new schedule (TODO) 2746 // 2747 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2748 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2749 // strategy directly from this pass. 2750 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2751 2752 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2753 2754 PPCGGen->ctx = S->getIslCtx(); 2755 PPCGGen->options = PPCGScop->options; 2756 PPCGGen->print = nullptr; 2757 PPCGGen->print_user = nullptr; 2758 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2759 PPCGGen->prog = PPCGProg; 2760 PPCGGen->tree = nullptr; 2761 PPCGGen->types.n = 0; 2762 PPCGGen->types.name = nullptr; 2763 PPCGGen->sizes = nullptr; 2764 PPCGGen->used_sizes = nullptr; 2765 PPCGGen->kernel_id = 0; 2766 2767 // Set scheduling strategy to same strategy PPCG is using. 2768 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2769 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2770 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2771 2772 isl_schedule *Schedule = get_schedule(PPCGGen); 2773 2774 int has_permutable = has_any_permutable_node(Schedule); 2775 2776 if (!has_permutable || has_permutable < 0) { 2777 Schedule = isl_schedule_free(Schedule); 2778 } else { 2779 Schedule = map_to_device(PPCGGen, Schedule); 2780 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2781 } 2782 2783 if (DumpSchedule) { 2784 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2785 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2786 P = isl_printer_print_str(P, "Schedule\n"); 2787 P = isl_printer_print_str(P, "========\n"); 2788 if (Schedule) 2789 P = isl_printer_print_schedule(P, Schedule); 2790 else 2791 P = isl_printer_print_str(P, "No schedule found\n"); 2792 2793 printf("%s\n", isl_printer_get_str(P)); 2794 isl_printer_free(P); 2795 } 2796 2797 if (DumpCode) { 2798 printf("Code\n"); 2799 printf("====\n"); 2800 if (PPCGGen->tree) 2801 printGPUTree(PPCGGen->tree, PPCGProg); 2802 else 2803 printf("No code generated\n"); 2804 } 2805 2806 isl_schedule_free(Schedule); 2807 2808 return PPCGGen; 2809 } 2810 2811 /// Free gpu_gen structure. 2812 /// 2813 /// @param PPCGGen The ppcg_gen object to free. 2814 void freePPCGGen(gpu_gen *PPCGGen) { 2815 isl_ast_node_free(PPCGGen->tree); 2816 isl_union_map_free(PPCGGen->sizes); 2817 isl_union_map_free(PPCGGen->used_sizes); 2818 free(PPCGGen); 2819 } 2820 2821 /// Free the options in the ppcg scop structure. 2822 /// 2823 /// ppcg is not freeing these options for us. To avoid leaks we do this 2824 /// ourselves. 2825 /// 2826 /// @param PPCGScop The scop referencing the options to free. 2827 void freeOptions(ppcg_scop *PPCGScop) { 2828 free(PPCGScop->options->debug); 2829 PPCGScop->options->debug = nullptr; 2830 free(PPCGScop->options); 2831 PPCGScop->options = nullptr; 2832 } 2833 2834 /// Approximate the number of points in the set. 2835 /// 2836 /// This function returns an ast expression that overapproximates the number 2837 /// of points in an isl set through the rectangular hull surrounding this set. 2838 /// 2839 /// @param Set The set to count. 2840 /// @param Build The isl ast build object to use for creating the ast 2841 /// expression. 2842 /// 2843 /// @returns An approximation of the number of points in the set. 2844 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2845 __isl_keep isl_ast_build *Build) { 2846 2847 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2848 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2849 2850 isl_space *Space = isl_set_get_space(Set); 2851 Space = isl_space_params(Space); 2852 auto *Univ = isl_set_universe(Space); 2853 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2854 2855 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2856 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2857 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2858 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2859 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2860 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2861 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2862 } 2863 2864 isl_set_free(Set); 2865 isl_pw_aff_free(OneAff); 2866 2867 return Expr; 2868 } 2869 2870 /// Approximate a number of dynamic instructions executed by a given 2871 /// statement. 2872 /// 2873 /// @param Stmt The statement for which to compute the number of dynamic 2874 /// instructions. 2875 /// @param Build The isl ast build object to use for creating the ast 2876 /// expression. 2877 /// @returns An approximation of the number of dynamic instructions executed 2878 /// by @p Stmt. 2879 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2880 __isl_keep isl_ast_build *Build) { 2881 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2882 2883 long InstCount = 0; 2884 2885 if (Stmt.isBlockStmt()) { 2886 auto *BB = Stmt.getBasicBlock(); 2887 InstCount = std::distance(BB->begin(), BB->end()); 2888 } else { 2889 auto *R = Stmt.getRegion(); 2890 2891 for (auto *BB : R->blocks()) { 2892 InstCount += std::distance(BB->begin(), BB->end()); 2893 } 2894 } 2895 2896 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2897 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2898 return isl_ast_expr_mul(InstExpr, Iterations); 2899 } 2900 2901 /// Approximate dynamic instructions executed in scop. 2902 /// 2903 /// @param S The scop for which to approximate dynamic instructions. 2904 /// @param Build The isl ast build object to use for creating the ast 2905 /// expression. 2906 /// @returns An approximation of the number of dynamic instructions executed 2907 /// in @p S. 2908 __isl_give isl_ast_expr * 2909 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2910 isl_ast_expr *Instructions; 2911 2912 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2913 Instructions = isl_ast_expr_from_val(Zero); 2914 2915 for (ScopStmt &Stmt : S) { 2916 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2917 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2918 } 2919 return Instructions; 2920 } 2921 2922 /// Create a check that ensures sufficient compute in scop. 2923 /// 2924 /// @param S The scop for which to ensure sufficient compute. 2925 /// @param Build The isl ast build object to use for creating the ast 2926 /// expression. 2927 /// @returns An expression that evaluates to TRUE in case of sufficient 2928 /// compute and to FALSE, otherwise. 2929 __isl_give isl_ast_expr * 2930 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2931 auto Iterations = getNumberOfIterations(S, Build); 2932 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2933 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2934 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2935 } 2936 2937 /// Check if the basic block contains a function we cannot codegen for GPU 2938 /// kernels. 2939 /// 2940 /// If this basic block does something with a `Function` other than calling 2941 /// a function that we support in a kernel, return true. 2942 bool containsInvalidKernelFunctionInBllock(const BasicBlock *BB) { 2943 for (const Instruction &Inst : *BB) { 2944 const CallInst *Call = dyn_cast<CallInst>(&Inst); 2945 if (Call && isValidFunctionInKernel(Call->getCalledFunction())) { 2946 continue; 2947 } 2948 2949 for (Value *SrcVal : Inst.operands()) { 2950 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 2951 if (!p) 2952 continue; 2953 if (isa<FunctionType>(p->getElementType())) 2954 return true; 2955 } 2956 } 2957 return false; 2958 } 2959 2960 /// Return whether the Scop S uses functions in a way that we do not support. 2961 bool containsInvalidKernelFunction(const Scop &S) { 2962 for (auto &Stmt : S) { 2963 if (Stmt.isBlockStmt()) { 2964 if (containsInvalidKernelFunctionInBllock(Stmt.getBasicBlock())) 2965 return true; 2966 } else { 2967 assert(Stmt.isRegionStmt() && 2968 "Stmt was neither block nor region statement"); 2969 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 2970 if (containsInvalidKernelFunctionInBllock(BB)) 2971 return true; 2972 } 2973 } 2974 return false; 2975 } 2976 2977 /// Generate code for a given GPU AST described by @p Root. 2978 /// 2979 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2980 /// @param Prog The GPU Program to generate code for. 2981 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2982 ScopAnnotator Annotator; 2983 Annotator.buildAliasScopes(*S); 2984 2985 Region *R = &S->getRegion(); 2986 2987 simplifyRegion(R, DT, LI, RI); 2988 2989 BasicBlock *EnteringBB = R->getEnteringBlock(); 2990 2991 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2992 2993 // Only build the run-time condition and parameters _after_ having 2994 // introduced the conditional branch. This is important as the conditional 2995 // branch will guard the original scop from new induction variables that 2996 // the SCEVExpander may introduce while code generating the parameters and 2997 // which may introduce scalar dependences that prevent us from correctly 2998 // code generating this scop. 2999 BBPair StartExitBlocks; 3000 BranchInst *CondBr = nullptr; 3001 std::tie(StartExitBlocks, CondBr) = 3002 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3003 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3004 3005 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3006 3007 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3008 StartBlock, Prog, Runtime, Architecture); 3009 3010 // TODO: Handle LICM 3011 auto SplitBlock = StartBlock->getSinglePredecessor(); 3012 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3013 NodeBuilder.addParameters(S->getContext()); 3014 3015 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3016 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3017 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3018 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3019 isl_ast_build_free(Build); 3020 3021 // preload invariant loads. Note: This should happen before the RTC 3022 // because the RTC may depend on values that are invariant load hoisted. 3023 NodeBuilder.preloadInvariantLoads(); 3024 3025 Value *RTC = NodeBuilder.createRTC(Condition); 3026 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3027 3028 Builder.SetInsertPoint(&*StartBlock->begin()); 3029 3030 NodeBuilder.create(Root); 3031 3032 /// In case a sequential kernel has more surrounding loops as any parallel 3033 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3034 /// point in running it on a GPU. 3035 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3036 CondBr->setOperand(0, Builder.getFalse()); 3037 3038 if (!NodeBuilder.BuildSuccessful) 3039 CondBr->setOperand(0, Builder.getFalse()); 3040 } 3041 3042 bool runOnScop(Scop &CurrentScop) override { 3043 S = &CurrentScop; 3044 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3045 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3046 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3047 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3048 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3049 3050 // We currently do not support functions other than intrinsics inside 3051 // kernels, as code generation will need to offload function calls to the 3052 // kernel. This may lead to a kernel trying to call a function on the host. 3053 // This also allows us to prevent codegen from trying to take the 3054 // address of an intrinsic function to send to the kernel. 3055 if (containsInvalidKernelFunction(CurrentScop)) { 3056 DEBUG( 3057 dbgs() 3058 << "Scop contains function which cannot be materialised in a GPU " 3059 "kernel. Bailing out.\n";); 3060 return false; 3061 } 3062 3063 auto PPCGScop = createPPCGScop(); 3064 auto PPCGProg = createPPCGProg(PPCGScop); 3065 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3066 3067 if (PPCGGen->tree) { 3068 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3069 CurrentScop.markAsToBeSkipped(); 3070 } 3071 3072 freeOptions(PPCGScop); 3073 freePPCGGen(PPCGGen); 3074 gpu_prog_free(PPCGProg); 3075 ppcg_scop_free(PPCGScop); 3076 3077 return true; 3078 } 3079 3080 void printScop(raw_ostream &, Scop &) const override {} 3081 3082 void getAnalysisUsage(AnalysisUsage &AU) const override { 3083 AU.addRequired<DominatorTreeWrapperPass>(); 3084 AU.addRequired<RegionInfoPass>(); 3085 AU.addRequired<ScalarEvolutionWrapperPass>(); 3086 AU.addRequired<ScopDetectionWrapperPass>(); 3087 AU.addRequired<ScopInfoRegionPass>(); 3088 AU.addRequired<LoopInfoWrapperPass>(); 3089 3090 AU.addPreserved<AAResultsWrapperPass>(); 3091 AU.addPreserved<BasicAAWrapperPass>(); 3092 AU.addPreserved<LoopInfoWrapperPass>(); 3093 AU.addPreserved<DominatorTreeWrapperPass>(); 3094 AU.addPreserved<GlobalsAAWrapperPass>(); 3095 AU.addPreserved<ScopDetectionWrapperPass>(); 3096 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3097 AU.addPreserved<SCEVAAWrapperPass>(); 3098 3099 // FIXME: We do not yet add regions for the newly generated code to the 3100 // region tree. 3101 AU.addPreserved<RegionInfoPass>(); 3102 AU.addPreserved<ScopInfoRegionPass>(); 3103 } 3104 }; 3105 } // namespace 3106 3107 char PPCGCodeGeneration::ID = 1; 3108 3109 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3110 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3111 generator->Runtime = Runtime; 3112 generator->Architecture = Arch; 3113 return generator; 3114 } 3115 3116 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3117 "Polly - Apply PPCG translation to SCOP", false, false) 3118 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3119 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3121 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3122 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3123 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3124 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3125 "Polly - Apply PPCG translation to SCOP", false, false) 3126