1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/IntrinsicsNVPTX.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Linker/Linker.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "isl/union_map.h" 40 #include <algorithm> 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/ppcg.h" 46 } 47 48 #include "llvm/Support/Debug.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen-ppcg" 54 55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 56 cl::desc("Dump the computed GPU Schedule"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, 58 cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 71 cl::desc("Dump the kernel assembly code"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> FastMath("polly-acc-fastmath", 76 cl::desc("Allow unsafe math optimizations"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 80 cl::desc("Use shared memory"), cl::Hidden, 81 cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 84 cl::desc("Use private memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 88 bool polly::PollyManagedMemory; 89 static cl::opt<bool, true> 90 XManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::location(PollyManagedMemory), cl::Hidden, 95 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> CUDALibDevice( 106 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 107 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 108 cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<std::string> 111 CudaVersion("polly-acc-cuda-version", 112 cl::desc("The CUDA version to compile for"), cl::Hidden, 113 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 114 115 static cl::opt<int> 116 MinCompute("polly-acc-mincompute", 117 cl::desc("Minimal number of compute statements to run on GPU."), 118 cl::Hidden, cl::init(10 * 512 * 512)); 119 120 GPURuntime polly::GPURuntimeChoice; 121 static cl::opt<GPURuntime, true> XGPURuntimeChoice( 122 "polly-gpu-runtime", cl::desc("The GPU Runtime API to target"), 123 cl::values(clEnumValN(GPURuntime::CUDA, "libcudart", 124 "use the CUDA Runtime API"), 125 clEnumValN(GPURuntime::OpenCL, "libopencl", 126 "use the OpenCL Runtime API")), 127 cl::location(polly::GPURuntimeChoice), cl::init(GPURuntime::CUDA), 128 cl::ZeroOrMore, cl::cat(PollyCategory)); 129 130 GPUArch polly::GPUArchChoice; 131 static cl::opt<GPUArch, true> 132 XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"), 133 cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64", 134 "target NVIDIA 64-bit architecture"), 135 clEnumValN(GPUArch::SPIR32, "spir32", 136 "target SPIR 32-bit architecture"), 137 clEnumValN(GPUArch::SPIR64, "spir64", 138 "target SPIR 64-bit architecture")), 139 cl::location(polly::GPUArchChoice), 140 cl::init(GPUArch::NVPTX64), cl::ZeroOrMore, 141 cl::cat(PollyCategory)); 142 143 extern bool polly::PerfMonitoring; 144 145 /// Return a unique name for a Scop, which is the scop region with the 146 /// function name. 147 std::string getUniqueScopName(const Scop *S) { 148 return "Scop Region: " + S->getNameStr() + 149 " | Function: " + std::string(S->getFunction().getName()); 150 } 151 152 /// Used to store information PPCG wants for kills. This information is 153 /// used by live range reordering. 154 /// 155 /// @see computeLiveRangeReordering 156 /// @see GPUNodeBuilder::createPPCGScop 157 /// @see GPUNodeBuilder::createPPCGProg 158 struct MustKillsInfo { 159 /// Collection of all kill statements that will be sequenced at the end of 160 /// PPCGScop->schedule. 161 /// 162 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 163 /// which merges schedules in *arbitrary* order. 164 /// (we don't care about the order of the kills anyway). 165 isl::schedule KillsSchedule; 166 /// Map from kill statement instances to scalars that need to be 167 /// killed. 168 /// 169 /// We currently derive kill information for: 170 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 171 /// consequently all be killed. 172 /// 2. Scalar arrays that are not used outside the Scop. This is 173 /// checked by `isScalarUsesContainedInScop`. 174 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 175 isl::union_map TaggedMustKills; 176 177 /// Tagged must kills stripped of the tags. 178 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 179 isl::union_map MustKills; 180 181 MustKillsInfo() : KillsSchedule(nullptr) {} 182 }; 183 184 /// Check if SAI's uses are entirely contained within Scop S. 185 /// If a scalar is used only with a Scop, we are free to kill it, as no data 186 /// can flow in/out of the value any more. 187 /// @see computeMustKillsInfo 188 static bool isScalarUsesContainedInScop(const Scop &S, 189 const ScopArrayInfo *SAI) { 190 assert(SAI->isValueKind() && "this function only deals with scalars." 191 " Dealing with arrays required alias analysis"); 192 193 const Region &R = S.getRegion(); 194 for (User *U : SAI->getBasePtr()->users()) { 195 Instruction *I = dyn_cast<Instruction>(U); 196 assert(I && "invalid user of scop array info"); 197 if (!R.contains(I)) 198 return false; 199 } 200 return true; 201 } 202 203 /// Compute must-kills needed to enable live range reordering with PPCG. 204 /// 205 /// @params S The Scop to compute live range reordering information 206 /// @returns live range reordering information that can be used to setup 207 /// PPCG. 208 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 209 const isl::space ParamSpace = S.getParamSpace(); 210 MustKillsInfo Info; 211 212 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 213 // 1.1 phi nodes in scop. 214 // 1.2 scalars that are only used within the scop 215 SmallVector<isl::id, 4> KillMemIds; 216 for (ScopArrayInfo *SAI : S.arrays()) { 217 if (SAI->isPHIKind() || 218 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 219 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 220 } 221 222 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 223 Info.MustKills = isl::union_map::empty(ParamSpace); 224 225 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 226 // schedule: 227 // - filter: "[control] -> { }" 228 // So, we choose to not create this to keep the output a little nicer, 229 // at the cost of some code complexity. 230 Info.KillsSchedule = nullptr; 231 232 for (isl::id &ToKillId : KillMemIds) { 233 isl::id KillStmtId = isl::id::alloc( 234 S.getIslCtx(), 235 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 236 237 // NOTE: construction of tagged_must_kill: 238 // 2. We need to construct a map: 239 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 240 // To construct this, we use `isl_map_domain_product` on 2 maps`: 241 // 2a. StmtToScalar: 242 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 243 // 2b. PhantomRefToScalar: 244 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 245 // 246 // Combining these with `isl_map_domain_product` gives us 247 // TaggedMustKill: 248 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 249 250 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 251 isl::map StmtToScalar = isl::map::universe(ParamSpace); 252 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 253 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 254 255 isl::id PhantomRefId = isl::id::alloc( 256 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 257 nullptr); 258 259 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 260 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 261 PhantomRefToScalar = 262 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 263 PhantomRefToScalar = 264 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 265 266 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 267 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 268 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 269 270 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 271 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 272 273 // 3. Create the kill schedule of the form: 274 // "[param] -> { Stmt_phantom[] }" 275 // Then add this to Info.KillsSchedule. 276 isl::space KillStmtSpace = ParamSpace; 277 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 278 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 279 280 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 281 if (Info.KillsSchedule) 282 Info.KillsSchedule = isl::manage( 283 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 284 else 285 Info.KillsSchedule = KillSchedule; 286 } 287 288 return Info; 289 } 290 291 /// Create the ast expressions for a ScopStmt. 292 /// 293 /// This function is a callback for to generate the ast expressions for each 294 /// of the scheduled ScopStmts. 295 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 296 void *StmtT, __isl_take isl_ast_build *Build_C, 297 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 298 isl_id *Id, void *User), 299 void *UserIndex, 300 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 301 void *UserExpr) { 302 303 ScopStmt *Stmt = (ScopStmt *)StmtT; 304 305 if (!Stmt || !Build_C) 306 return NULL; 307 308 isl::ast_build Build = isl::manage_copy(Build_C); 309 isl::ctx Ctx = Build.get_ctx(); 310 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 311 312 Stmt->setAstBuild(Build); 313 314 for (MemoryAccess *Acc : *Stmt) { 315 isl::map AddrFunc = Acc->getAddressFunction(); 316 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 317 318 isl::id RefId = Acc->getId(); 319 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 320 321 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 322 MPA = MPA.coalesce(); 323 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 324 325 isl::ast_expr Access = Build.access_from(MPA); 326 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 327 RefToExpr = RefToExpr.set(RefId, Access); 328 } 329 330 return RefToExpr.release(); 331 } 332 333 /// Given a LLVM Type, compute its size in bytes, 334 static int computeSizeInBytes(const Type *T) { 335 int bytes = T->getPrimitiveSizeInBits() / 8; 336 if (bytes == 0) 337 bytes = T->getScalarSizeInBits() / 8; 338 return bytes; 339 } 340 341 /// Generate code for a GPU specific isl AST. 342 /// 343 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 344 /// generates code for general-purpose AST nodes, with special functionality 345 /// for generating GPU specific user nodes. 346 /// 347 /// @see GPUNodeBuilder::createUser 348 class GPUNodeBuilder : public IslNodeBuilder { 349 public: 350 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 351 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 352 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 353 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 354 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 355 Prog(Prog), Runtime(Runtime), Arch(Arch) { 356 getExprBuilder().setIDToSAI(&IDToSAI); 357 } 358 359 /// Create after-run-time-check initialization code. 360 void initializeAfterRTH(); 361 362 /// Finalize the generated scop. 363 void finalize() override; 364 365 /// Track if the full build process was successful. 366 /// 367 /// This value is set to false, if throughout the build process an error 368 /// occurred which prevents us from generating valid GPU code. 369 bool BuildSuccessful = true; 370 371 /// The maximal number of loops surrounding a sequential kernel. 372 unsigned DeepestSequential = 0; 373 374 /// The maximal number of loops surrounding a parallel kernel. 375 unsigned DeepestParallel = 0; 376 377 /// Return the name to set for the ptx_kernel. 378 std::string getKernelFuncName(int Kernel_id); 379 380 private: 381 /// A vector of array base pointers for which a new ScopArrayInfo was created. 382 /// 383 /// This vector is used to delete the ScopArrayInfo when it is not needed any 384 /// more. 385 std::vector<Value *> LocalArrays; 386 387 /// A map from ScopArrays to their corresponding device allocations. 388 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 389 390 /// The current GPU context. 391 Value *GPUContext; 392 393 /// The set of isl_ids allocated in the kernel 394 std::vector<isl_id *> KernelIds; 395 396 /// A module containing GPU code. 397 /// 398 /// This pointer is only set in case we are currently generating GPU code. 399 std::unique_ptr<Module> GPUModule; 400 401 /// The GPU program we generate code for. 402 gpu_prog *Prog; 403 404 /// The GPU Runtime implementation to use (OpenCL or CUDA). 405 GPURuntime Runtime; 406 407 /// The GPU Architecture to target. 408 GPUArch Arch; 409 410 /// Class to free isl_ids. 411 class IslIdDeleter { 412 public: 413 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 414 }; 415 416 /// A set containing all isl_ids allocated in a GPU kernel. 417 /// 418 /// By releasing this set all isl_ids will be freed. 419 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 420 421 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 422 423 /// Create code for user-defined AST nodes. 424 /// 425 /// These AST nodes can be of type: 426 /// 427 /// - ScopStmt: A computational statement (TODO) 428 /// - Kernel: A GPU kernel call (TODO) 429 /// - Data-Transfer: A GPU <-> CPU data-transfer 430 /// - In-kernel synchronization 431 /// - In-kernel memory copy statement 432 /// 433 /// @param UserStmt The ast node to generate code for. 434 void createUser(__isl_take isl_ast_node *UserStmt) override; 435 436 void createFor(__isl_take isl_ast_node *Node) override; 437 438 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 439 440 /// Create code for a data transfer statement 441 /// 442 /// @param TransferStmt The data transfer statement. 443 /// @param Direction The direction in which to transfer data. 444 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 445 enum DataDirection Direction); 446 447 /// Find llvm::Values referenced in GPU kernel. 448 /// 449 /// @param Kernel The kernel to scan for llvm::Values 450 /// 451 /// @returns A tuple, whose: 452 /// - First element contains the set of values referenced by the 453 /// kernel 454 /// - Second element contains the set of functions referenced by the 455 /// kernel. All functions in the set satisfy 456 /// `isValidFunctionInKernel`. 457 /// - Third element contains loops that have induction variables 458 /// which are used in the kernel, *and* these loops are *neither* 459 /// in the scop, nor do they immediately surroung the Scop. 460 /// See [Code generation of induction variables of loops outside 461 /// Scops] 462 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 463 isl::space> 464 getReferencesInKernel(ppcg_kernel *Kernel); 465 466 /// Compute the sizes of the execution grid for a given kernel. 467 /// 468 /// @param Kernel The kernel to compute grid sizes for. 469 /// 470 /// @returns A tuple with grid sizes for X and Y dimension 471 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 472 473 /// Get the managed array pointer for sending host pointers to the device. 474 /// \note 475 /// This is to be used only with managed memory 476 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 477 478 /// Compute the sizes of the thread blocks for a given kernel. 479 /// 480 /// @param Kernel The kernel to compute thread block sizes for. 481 /// 482 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 483 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 484 485 /// Store a specific kernel launch parameter in the array of kernel launch 486 /// parameters. 487 /// 488 /// @param Parameters The list of parameters in which to store. 489 /// @param Param The kernel launch parameter to store. 490 /// @param Index The index in the parameter list, at which to store the 491 /// parameter. 492 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 493 int Index); 494 495 /// Create kernel launch parameters. 496 /// 497 /// @param Kernel The kernel to create parameters for. 498 /// @param F The kernel function that has been created. 499 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 500 /// 501 /// @returns A stack allocated array with pointers to the parameter 502 /// values that are passed to the kernel. 503 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 504 SetVector<Value *> SubtreeValues); 505 506 /// Create declarations for kernel variable. 507 /// 508 /// This includes shared memory declarations. 509 /// 510 /// @param Kernel The kernel definition to create variables for. 511 /// @param FN The function into which to generate the variables. 512 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 513 514 /// Add CUDA annotations to module. 515 /// 516 /// Add a set of CUDA annotations that declares the maximal block dimensions 517 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 518 /// PTX compiler to bound the number of allocated registers to ensure the 519 /// resulting kernel is known to run with up to as many block dimensions 520 /// as specified here. 521 /// 522 /// @param M The module to add the annotations to. 523 /// @param BlockDimX The size of block dimension X. 524 /// @param BlockDimY The size of block dimension Y. 525 /// @param BlockDimZ The size of block dimension Z. 526 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 527 Value *BlockDimZ); 528 529 /// Create GPU kernel. 530 /// 531 /// Code generate the kernel described by @p KernelStmt. 532 /// 533 /// @param KernelStmt The ast node to generate kernel code for. 534 void createKernel(__isl_take isl_ast_node *KernelStmt); 535 536 /// Generate code that computes the size of an array. 537 /// 538 /// @param Array The array for which to compute a size. 539 Value *getArraySize(gpu_array_info *Array); 540 541 /// Generate code to compute the minimal offset at which an array is accessed. 542 /// 543 /// The offset of an array is the minimal array location accessed in a scop. 544 /// 545 /// Example: 546 /// 547 /// for (long i = 0; i < 100; i++) 548 /// A[i + 42] += ... 549 /// 550 /// getArrayOffset(A) results in 42. 551 /// 552 /// @param Array The array for which to compute the offset. 553 /// @returns An llvm::Value that contains the offset of the array. 554 Value *getArrayOffset(gpu_array_info *Array); 555 556 /// Prepare the kernel arguments for kernel code generation 557 /// 558 /// @param Kernel The kernel to generate code for. 559 /// @param FN The function created for the kernel. 560 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 561 562 /// Create kernel function. 563 /// 564 /// Create a kernel function located in a newly created module that can serve 565 /// as target for device code generation. Set the Builder to point to the 566 /// start block of this newly created function. 567 /// 568 /// @param Kernel The kernel to generate code for. 569 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 570 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 571 /// kernel. 572 void createKernelFunction(ppcg_kernel *Kernel, 573 SetVector<Value *> &SubtreeValues, 574 SetVector<Function *> &SubtreeFunctions); 575 576 /// Create the declaration of a kernel function. 577 /// 578 /// The kernel function takes as arguments: 579 /// 580 /// - One i8 pointer for each external array reference used in the kernel. 581 /// - Host iterators 582 /// - Parameters 583 /// - Other LLVM Value references (TODO) 584 /// 585 /// @param Kernel The kernel to generate the function declaration for. 586 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 587 /// 588 /// @returns The newly declared function. 589 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 590 SetVector<Value *> &SubtreeValues); 591 592 /// Insert intrinsic functions to obtain thread and block ids. 593 /// 594 /// @param The kernel to generate the intrinsic functions for. 595 void insertKernelIntrinsics(ppcg_kernel *Kernel); 596 597 /// Insert function calls to retrieve the SPIR group/local ids. 598 /// 599 /// @param Kernel The kernel to generate the function calls for. 600 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 601 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 602 603 /// Setup the creation of functions referenced by the GPU kernel. 604 /// 605 /// 1. Create new function declarations in GPUModule which are the same as 606 /// SubtreeFunctions. 607 /// 608 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 609 /// old functions (that come from the original module) to new functions 610 /// (that are created within GPUModule). That way, we generate references 611 /// to the correct function (in GPUModule) in BlockGenerator. 612 /// 613 /// @see IslNodeBuilder::ValueMap 614 /// @see BlockGenerator::GlobalMap 615 /// @see BlockGenerator::getNewValue 616 /// @see GPUNodeBuilder::getReferencesInKernel. 617 /// 618 /// @param SubtreeFunctions The set of llvm::Functions referenced by 619 /// this kernel. 620 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 621 622 /// Create a global-to-shared or shared-to-global copy statement. 623 /// 624 /// @param CopyStmt The copy statement to generate code for 625 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 626 627 /// Create code for a ScopStmt called in @p Expr. 628 /// 629 /// @param Expr The expression containing the call. 630 /// @param KernelStmt The kernel statement referenced in the call. 631 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 632 633 /// Create an in-kernel synchronization call. 634 void createKernelSync(); 635 636 /// Create a PTX assembly string for the current GPU kernel. 637 /// 638 /// @returns A string containing the corresponding PTX assembly code. 639 std::string createKernelASM(); 640 641 /// Remove references from the dominator tree to the kernel function @p F. 642 /// 643 /// @param F The function to remove references to. 644 void clearDominators(Function *F); 645 646 /// Remove references from scalar evolution to the kernel function @p F. 647 /// 648 /// @param F The function to remove references to. 649 void clearScalarEvolution(Function *F); 650 651 /// Remove references from loop info to the kernel function @p F. 652 /// 653 /// @param F The function to remove references to. 654 void clearLoops(Function *F); 655 656 /// Check if the scop requires to be linked with CUDA's libdevice. 657 bool requiresCUDALibDevice(); 658 659 /// Link with the NVIDIA libdevice library (if needed and available). 660 void addCUDALibDevice(); 661 662 /// Finalize the generation of the kernel function. 663 /// 664 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 665 /// dump its IR to stderr. 666 /// 667 /// @returns The Assembly string of the kernel. 668 std::string finalizeKernelFunction(); 669 670 /// Finalize the generation of the kernel arguments. 671 /// 672 /// This function ensures that not-read-only scalars used in a kernel are 673 /// stored back to the global memory location they are backed with before 674 /// the kernel terminates. 675 /// 676 /// @params Kernel The kernel to finalize kernel arguments for. 677 void finalizeKernelArguments(ppcg_kernel *Kernel); 678 679 /// Create code that allocates memory to store arrays on device. 680 void allocateDeviceArrays(); 681 682 /// Create code to prepare the managed device pointers. 683 void prepareManagedDeviceArrays(); 684 685 /// Free all allocated device arrays. 686 void freeDeviceArrays(); 687 688 /// Create a call to initialize the GPU context. 689 /// 690 /// @returns A pointer to the newly initialized context. 691 Value *createCallInitContext(); 692 693 /// Create a call to get the device pointer for a kernel allocation. 694 /// 695 /// @param Allocation The Polly GPU allocation 696 /// 697 /// @returns The device parameter corresponding to this allocation. 698 Value *createCallGetDevicePtr(Value *Allocation); 699 700 /// Create a call to free the GPU context. 701 /// 702 /// @param Context A pointer to an initialized GPU context. 703 void createCallFreeContext(Value *Context); 704 705 /// Create a call to allocate memory on the device. 706 /// 707 /// @param Size The size of memory to allocate 708 /// 709 /// @returns A pointer that identifies this allocation. 710 Value *createCallAllocateMemoryForDevice(Value *Size); 711 712 /// Create a call to free a device array. 713 /// 714 /// @param Array The device array to free. 715 void createCallFreeDeviceMemory(Value *Array); 716 717 /// Create a call to copy data from host to device. 718 /// 719 /// @param HostPtr A pointer to the host data that should be copied. 720 /// @param DevicePtr A device pointer specifying the location to copy to. 721 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 722 Value *Size); 723 724 /// Create a call to copy data from device to host. 725 /// 726 /// @param DevicePtr A pointer to the device data that should be copied. 727 /// @param HostPtr A host pointer specifying the location to copy to. 728 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 729 Value *Size); 730 731 /// Create a call to synchronize Host & Device. 732 /// \note 733 /// This is to be used only with managed memory. 734 void createCallSynchronizeDevice(); 735 736 /// Create a call to get a kernel from an assembly string. 737 /// 738 /// @param Buffer The string describing the kernel. 739 /// @param Entry The name of the kernel function to call. 740 /// 741 /// @returns A pointer to a kernel object 742 Value *createCallGetKernel(Value *Buffer, Value *Entry); 743 744 /// Create a call to free a GPU kernel. 745 /// 746 /// @param GPUKernel THe kernel to free. 747 void createCallFreeKernel(Value *GPUKernel); 748 749 /// Create a call to launch a GPU kernel. 750 /// 751 /// @param GPUKernel The kernel to launch. 752 /// @param GridDimX The size of the first grid dimension. 753 /// @param GridDimY The size of the second grid dimension. 754 /// @param GridBlockX The size of the first block dimension. 755 /// @param GridBlockY The size of the second block dimension. 756 /// @param GridBlockZ The size of the third block dimension. 757 /// @param Parameters A pointer to an array that contains itself pointers to 758 /// the parameter values passed for each kernel argument. 759 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 760 Value *GridDimY, Value *BlockDimX, 761 Value *BlockDimY, Value *BlockDimZ, 762 Value *Parameters); 763 }; 764 765 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 766 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 767 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 768 } 769 770 void GPUNodeBuilder::initializeAfterRTH() { 771 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 772 &*Builder.GetInsertPoint(), &DT, &LI); 773 NewBB->setName("polly.acc.initialize"); 774 Builder.SetInsertPoint(&NewBB->front()); 775 776 GPUContext = createCallInitContext(); 777 778 if (!PollyManagedMemory) 779 allocateDeviceArrays(); 780 else 781 prepareManagedDeviceArrays(); 782 } 783 784 void GPUNodeBuilder::finalize() { 785 if (!PollyManagedMemory) 786 freeDeviceArrays(); 787 788 createCallFreeContext(GPUContext); 789 IslNodeBuilder::finalize(); 790 } 791 792 void GPUNodeBuilder::allocateDeviceArrays() { 793 assert(!PollyManagedMemory && 794 "Managed memory will directly send host pointers " 795 "to the kernel. There is no need for device arrays"); 796 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 797 798 for (int i = 0; i < Prog->n_array; ++i) { 799 gpu_array_info *Array = &Prog->array[i]; 800 auto *ScopArray = (ScopArrayInfo *)Array->user; 801 std::string DevArrayName("p_dev_array_"); 802 DevArrayName.append(Array->name); 803 804 Value *ArraySize = getArraySize(Array); 805 Value *Offset = getArrayOffset(Array); 806 if (Offset) 807 ArraySize = Builder.CreateSub( 808 ArraySize, 809 Builder.CreateMul(Offset, 810 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 811 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 812 // It makes no sense to have an array of size 0. The CUDA API will 813 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 814 // choose to be defensive and catch this at the compile phase. It is 815 // most likely that we are doing something wrong with size computation. 816 if (SizeSCEV->isZero()) { 817 errs() << getUniqueScopName(&S) 818 << " has computed array size 0: " << *ArraySize 819 << " | for array: " << *(ScopArray->getBasePtr()) 820 << ". This is illegal, exiting.\n"; 821 report_fatal_error("array size was computed to be 0"); 822 } 823 824 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 825 DevArray->setName(DevArrayName); 826 DeviceAllocations[ScopArray] = DevArray; 827 } 828 829 isl_ast_build_free(Build); 830 } 831 832 void GPUNodeBuilder::prepareManagedDeviceArrays() { 833 assert(PollyManagedMemory && 834 "Device array most only be prepared in managed-memory mode"); 835 for (int i = 0; i < Prog->n_array; ++i) { 836 gpu_array_info *Array = &Prog->array[i]; 837 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 838 Value *HostPtr; 839 840 if (gpu_array_is_scalar(Array)) 841 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 842 else 843 HostPtr = ScopArray->getBasePtr(); 844 HostPtr = getLatestValue(HostPtr); 845 846 Value *Offset = getArrayOffset(Array); 847 if (Offset) { 848 HostPtr = Builder.CreatePointerCast( 849 HostPtr, ScopArray->getElementType()->getPointerTo()); 850 HostPtr = Builder.CreateGEP(HostPtr, Offset); 851 } 852 853 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 854 DeviceAllocations[ScopArray] = HostPtr; 855 } 856 } 857 858 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 859 Value *BlockDimY, Value *BlockDimZ) { 860 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 861 862 for (auto &F : *M) { 863 if (F.getCallingConv() != CallingConv::PTX_Kernel) 864 continue; 865 866 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 867 868 Metadata *Elements[] = { 869 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 870 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 871 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 872 ValueAsMetadata::get(V[2]), 873 }; 874 MDNode *Node = MDNode::get(M->getContext(), Elements); 875 AnnotationNode->addOperand(Node); 876 } 877 } 878 879 void GPUNodeBuilder::freeDeviceArrays() { 880 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 881 for (auto &Array : DeviceAllocations) 882 createCallFreeDeviceMemory(Array.second); 883 } 884 885 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 886 const char *Name = "polly_getKernel"; 887 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 888 Function *F = M->getFunction(Name); 889 890 // If F is not available, declare it. 891 if (!F) { 892 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 893 std::vector<Type *> Args; 894 Args.push_back(Builder.getInt8PtrTy()); 895 Args.push_back(Builder.getInt8PtrTy()); 896 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 897 F = Function::Create(Ty, Linkage, Name, M); 898 } 899 900 return Builder.CreateCall(F, {Buffer, Entry}); 901 } 902 903 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 904 const char *Name = "polly_getDevicePtr"; 905 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 906 Function *F = M->getFunction(Name); 907 908 // If F is not available, declare it. 909 if (!F) { 910 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 911 std::vector<Type *> Args; 912 Args.push_back(Builder.getInt8PtrTy()); 913 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 914 F = Function::Create(Ty, Linkage, Name, M); 915 } 916 917 return Builder.CreateCall(F, {Allocation}); 918 } 919 920 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 921 Value *GridDimY, Value *BlockDimX, 922 Value *BlockDimY, Value *BlockDimZ, 923 Value *Parameters) { 924 const char *Name = "polly_launchKernel"; 925 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 926 Function *F = M->getFunction(Name); 927 928 // If F is not available, declare it. 929 if (!F) { 930 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 931 std::vector<Type *> Args; 932 Args.push_back(Builder.getInt8PtrTy()); 933 Args.push_back(Builder.getInt32Ty()); 934 Args.push_back(Builder.getInt32Ty()); 935 Args.push_back(Builder.getInt32Ty()); 936 Args.push_back(Builder.getInt32Ty()); 937 Args.push_back(Builder.getInt32Ty()); 938 Args.push_back(Builder.getInt8PtrTy()); 939 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 940 F = Function::Create(Ty, Linkage, Name, M); 941 } 942 943 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 944 BlockDimZ, Parameters}); 945 } 946 947 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 948 const char *Name = "polly_freeKernel"; 949 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 950 Function *F = M->getFunction(Name); 951 952 // If F is not available, declare it. 953 if (!F) { 954 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 955 std::vector<Type *> Args; 956 Args.push_back(Builder.getInt8PtrTy()); 957 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 958 F = Function::Create(Ty, Linkage, Name, M); 959 } 960 961 Builder.CreateCall(F, {GPUKernel}); 962 } 963 964 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 965 assert(!PollyManagedMemory && 966 "Managed memory does not allocate or free memory " 967 "for device"); 968 const char *Name = "polly_freeDeviceMemory"; 969 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 970 Function *F = M->getFunction(Name); 971 972 // If F is not available, declare it. 973 if (!F) { 974 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 975 std::vector<Type *> Args; 976 Args.push_back(Builder.getInt8PtrTy()); 977 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 978 F = Function::Create(Ty, Linkage, Name, M); 979 } 980 981 Builder.CreateCall(F, {Array}); 982 } 983 984 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 985 assert(!PollyManagedMemory && 986 "Managed memory does not allocate or free memory " 987 "for device"); 988 const char *Name = "polly_allocateMemoryForDevice"; 989 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 990 Function *F = M->getFunction(Name); 991 992 // If F is not available, declare it. 993 if (!F) { 994 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 995 std::vector<Type *> Args; 996 Args.push_back(Builder.getInt64Ty()); 997 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 998 F = Function::Create(Ty, Linkage, Name, M); 999 } 1000 1001 return Builder.CreateCall(F, {Size}); 1002 } 1003 1004 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 1005 Value *DeviceData, 1006 Value *Size) { 1007 assert(!PollyManagedMemory && 1008 "Managed memory does not transfer memory between " 1009 "device and host"); 1010 const char *Name = "polly_copyFromHostToDevice"; 1011 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1012 Function *F = M->getFunction(Name); 1013 1014 // If F is not available, declare it. 1015 if (!F) { 1016 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1017 std::vector<Type *> Args; 1018 Args.push_back(Builder.getInt8PtrTy()); 1019 Args.push_back(Builder.getInt8PtrTy()); 1020 Args.push_back(Builder.getInt64Ty()); 1021 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1022 F = Function::Create(Ty, Linkage, Name, M); 1023 } 1024 1025 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1026 } 1027 1028 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1029 Value *HostData, 1030 Value *Size) { 1031 assert(!PollyManagedMemory && 1032 "Managed memory does not transfer memory between " 1033 "device and host"); 1034 const char *Name = "polly_copyFromDeviceToHost"; 1035 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1036 Function *F = M->getFunction(Name); 1037 1038 // If F is not available, declare it. 1039 if (!F) { 1040 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1041 std::vector<Type *> Args; 1042 Args.push_back(Builder.getInt8PtrTy()); 1043 Args.push_back(Builder.getInt8PtrTy()); 1044 Args.push_back(Builder.getInt64Ty()); 1045 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1046 F = Function::Create(Ty, Linkage, Name, M); 1047 } 1048 1049 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1050 } 1051 1052 void GPUNodeBuilder::createCallSynchronizeDevice() { 1053 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1054 "managed memory"); 1055 const char *Name = "polly_synchronizeDevice"; 1056 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1057 Function *F = M->getFunction(Name); 1058 1059 // If F is not available, declare it. 1060 if (!F) { 1061 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1062 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1063 F = Function::Create(Ty, Linkage, Name, M); 1064 } 1065 1066 Builder.CreateCall(F); 1067 } 1068 1069 Value *GPUNodeBuilder::createCallInitContext() { 1070 const char *Name; 1071 1072 switch (Runtime) { 1073 case GPURuntime::CUDA: 1074 Name = "polly_initContextCUDA"; 1075 break; 1076 case GPURuntime::OpenCL: 1077 Name = "polly_initContextCL"; 1078 break; 1079 } 1080 1081 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1082 Function *F = M->getFunction(Name); 1083 1084 // If F is not available, declare it. 1085 if (!F) { 1086 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1087 std::vector<Type *> Args; 1088 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1089 F = Function::Create(Ty, Linkage, Name, M); 1090 } 1091 1092 return Builder.CreateCall(F, {}); 1093 } 1094 1095 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1096 const char *Name = "polly_freeContext"; 1097 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1098 Function *F = M->getFunction(Name); 1099 1100 // If F is not available, declare it. 1101 if (!F) { 1102 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1103 std::vector<Type *> Args; 1104 Args.push_back(Builder.getInt8PtrTy()); 1105 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1106 F = Function::Create(Ty, Linkage, Name, M); 1107 } 1108 1109 Builder.CreateCall(F, {Context}); 1110 } 1111 1112 /// Check if one string is a prefix of another. 1113 /// 1114 /// @param String The string in which to look for the prefix. 1115 /// @param Prefix The prefix to look for. 1116 static bool isPrefix(std::string String, std::string Prefix) { 1117 return String.find(Prefix) == 0; 1118 } 1119 1120 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1121 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1122 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1123 1124 if (!gpu_array_is_scalar(Array)) { 1125 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1126 1127 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1128 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1129 1130 for (unsigned int i = 1; i < Array->n_index; i++) { 1131 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1132 isl::ast_expr Expr = Build.expr_from(Bound_I); 1133 Res = Res.mul(Expr); 1134 } 1135 1136 Value *NumElements = ExprBuilder.create(Res.release()); 1137 if (NumElements->getType() != ArraySize->getType()) 1138 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1139 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1140 } 1141 return ArraySize; 1142 } 1143 1144 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1145 if (gpu_array_is_scalar(Array)) 1146 return nullptr; 1147 1148 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1149 1150 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1151 1152 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1153 1154 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1155 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1156 1157 if (Min.is_subset(ZeroSet)) { 1158 return nullptr; 1159 } 1160 1161 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1162 1163 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1164 if (i > 0) { 1165 isl::pw_aff Bound_I = 1166 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1167 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1168 Result = Result.mul(BExpr); 1169 } 1170 isl::pw_aff DimMin = Min.dim_min(i); 1171 isl::ast_expr MExpr = Build.expr_from(DimMin); 1172 Result = Result.add(MExpr); 1173 } 1174 1175 return ExprBuilder.create(Result.release()); 1176 } 1177 1178 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1179 ScopArrayInfo *ArrayInfo) { 1180 assert(PollyManagedMemory && "Only used when you wish to get a host " 1181 "pointer for sending data to the kernel, " 1182 "with managed memory"); 1183 std::map<ScopArrayInfo *, Value *>::iterator it; 1184 it = DeviceAllocations.find(ArrayInfo); 1185 assert(it != DeviceAllocations.end() && 1186 "Device array expected to be available"); 1187 return it->second; 1188 } 1189 1190 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1191 enum DataDirection Direction) { 1192 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1193 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1194 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1195 isl_id *Id = isl_ast_expr_get_id(Arg); 1196 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1197 auto ScopArray = (ScopArrayInfo *)(Array->user); 1198 1199 Value *Size = getArraySize(Array); 1200 Value *Offset = getArrayOffset(Array); 1201 Value *DevPtr = DeviceAllocations[ScopArray]; 1202 1203 Value *HostPtr; 1204 1205 if (gpu_array_is_scalar(Array)) 1206 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1207 else 1208 HostPtr = ScopArray->getBasePtr(); 1209 HostPtr = getLatestValue(HostPtr); 1210 1211 if (Offset) { 1212 HostPtr = Builder.CreatePointerCast( 1213 HostPtr, ScopArray->getElementType()->getPointerTo()); 1214 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1215 } 1216 1217 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1218 1219 if (Offset) { 1220 Size = Builder.CreateSub( 1221 Size, Builder.CreateMul( 1222 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1223 } 1224 1225 if (Direction == HOST_TO_DEVICE) 1226 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1227 else 1228 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1229 1230 isl_id_free(Id); 1231 isl_ast_expr_free(Arg); 1232 isl_ast_expr_free(Expr); 1233 isl_ast_node_free(TransferStmt); 1234 } 1235 1236 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1237 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1238 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1239 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1240 isl_id_free(Id); 1241 isl_ast_expr_free(StmtExpr); 1242 1243 const char *Str = isl_id_get_name(Id); 1244 if (!strcmp(Str, "kernel")) { 1245 createKernel(UserStmt); 1246 if (PollyManagedMemory) 1247 createCallSynchronizeDevice(); 1248 isl_ast_expr_free(Expr); 1249 return; 1250 } 1251 if (!strcmp(Str, "init_device")) { 1252 initializeAfterRTH(); 1253 isl_ast_node_free(UserStmt); 1254 isl_ast_expr_free(Expr); 1255 return; 1256 } 1257 if (!strcmp(Str, "clear_device")) { 1258 finalize(); 1259 isl_ast_node_free(UserStmt); 1260 isl_ast_expr_free(Expr); 1261 return; 1262 } 1263 if (isPrefix(Str, "to_device")) { 1264 if (!PollyManagedMemory) 1265 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1266 else 1267 isl_ast_node_free(UserStmt); 1268 1269 isl_ast_expr_free(Expr); 1270 return; 1271 } 1272 1273 if (isPrefix(Str, "from_device")) { 1274 if (!PollyManagedMemory) { 1275 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1276 } else { 1277 isl_ast_node_free(UserStmt); 1278 } 1279 isl_ast_expr_free(Expr); 1280 return; 1281 } 1282 1283 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1284 struct ppcg_kernel_stmt *KernelStmt = 1285 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1286 isl_id_free(Anno); 1287 1288 switch (KernelStmt->type) { 1289 case ppcg_kernel_domain: 1290 createScopStmt(Expr, KernelStmt); 1291 isl_ast_node_free(UserStmt); 1292 return; 1293 case ppcg_kernel_copy: 1294 createKernelCopy(KernelStmt); 1295 isl_ast_expr_free(Expr); 1296 isl_ast_node_free(UserStmt); 1297 return; 1298 case ppcg_kernel_sync: 1299 createKernelSync(); 1300 isl_ast_expr_free(Expr); 1301 isl_ast_node_free(UserStmt); 1302 return; 1303 } 1304 1305 isl_ast_expr_free(Expr); 1306 isl_ast_node_free(UserStmt); 1307 } 1308 1309 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1310 createForSequential(isl::manage(Node), false); 1311 } 1312 1313 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1314 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1315 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1316 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1317 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1318 Index = isl_ast_expr_address_of(Index); 1319 Value *GlobalAddr = ExprBuilder.create(Index); 1320 Type *IndexTy = cast<PointerType>(GlobalAddr->getType())->getElementType(); 1321 1322 if (KernelStmt->u.c.read) { 1323 LoadInst *Load = Builder.CreateLoad(IndexTy, GlobalAddr, "shared.read"); 1324 Builder.CreateStore(Load, LocalAddr); 1325 } else { 1326 LoadInst *Load = Builder.CreateLoad(IndexTy, LocalAddr, "shared.write"); 1327 Builder.CreateStore(Load, GlobalAddr); 1328 } 1329 } 1330 1331 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1332 ppcg_kernel_stmt *KernelStmt) { 1333 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1334 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1335 1336 LoopToScevMapT LTS; 1337 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1338 1339 createSubstitutions(Expr, Stmt, LTS); 1340 1341 if (Stmt->isBlockStmt()) 1342 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1343 else 1344 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1345 } 1346 1347 void GPUNodeBuilder::createKernelSync() { 1348 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1349 const char *SpirName = "__gen_ocl_barrier_global"; 1350 1351 Function *Sync; 1352 1353 switch (Arch) { 1354 case GPUArch::SPIR64: 1355 case GPUArch::SPIR32: 1356 Sync = M->getFunction(SpirName); 1357 1358 // If Sync is not available, declare it. 1359 if (!Sync) { 1360 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1361 std::vector<Type *> Args; 1362 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1363 Sync = Function::Create(Ty, Linkage, SpirName, M); 1364 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1365 } 1366 break; 1367 case GPUArch::NVPTX64: 1368 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1369 break; 1370 } 1371 1372 Builder.CreateCall(Sync, {}); 1373 } 1374 1375 /// Collect llvm::Values referenced from @p Node 1376 /// 1377 /// This function only applies to isl_ast_nodes that are user_nodes referring 1378 /// to a ScopStmt. All other node types are ignore. 1379 /// 1380 /// @param Node The node to collect references for. 1381 /// @param User A user pointer used as storage for the data that is collected. 1382 /// 1383 /// @returns isl_bool_true if data could be collected successfully. 1384 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1385 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1386 return isl_bool_true; 1387 1388 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1389 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1390 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1391 const char *Str = isl_id_get_name(Id); 1392 isl_id_free(Id); 1393 isl_ast_expr_free(StmtExpr); 1394 isl_ast_expr_free(Expr); 1395 1396 if (!isPrefix(Str, "Stmt")) 1397 return isl_bool_true; 1398 1399 Id = isl_ast_node_get_annotation(Node); 1400 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1401 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1402 isl_id_free(Id); 1403 1404 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1405 1406 return isl_bool_true; 1407 } 1408 1409 /// A list of functions that are available in NVIDIA's libdevice. 1410 const std::set<std::string> CUDALibDeviceFunctions = { 1411 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1412 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1413 1414 // A map from intrinsics to their corresponding libdevice functions. 1415 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1416 {"llvm.exp.f64", "exp"}, 1417 {"llvm.exp.f32", "expf"}, 1418 {"llvm.powi.f64", "powi"}, 1419 {"llvm.powi.f32", "powif"}}; 1420 1421 /// Return the corresponding CUDA libdevice function name @p Name. 1422 /// Note that this function will try to convert instrinsics in the list 1423 /// IntrinsicToLibdeviceFunc into libdevice functions. 1424 /// This is because some intrinsics such as `exp` 1425 /// are not supported by the NVPTX backend. 1426 /// If this restriction of the backend is lifted, we should refactor our code 1427 /// so that we use intrinsics whenever possible. 1428 /// 1429 /// Return "" if we are not compiling for CUDA. 1430 std::string getCUDALibDeviceFuntion(StringRef NameRef) { 1431 std::string Name = NameRef.str(); 1432 auto It = IntrinsicToLibdeviceFunc.find(Name); 1433 if (It != IntrinsicToLibdeviceFunc.end()) 1434 return getCUDALibDeviceFuntion(It->second); 1435 1436 if (CUDALibDeviceFunctions.count(Name)) 1437 return ("__nv_" + Name); 1438 1439 return ""; 1440 } 1441 1442 /// Check if F is a function that we can code-generate in a GPU kernel. 1443 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1444 assert(F && "F is an invalid pointer"); 1445 // We string compare against the name of the function to allow 1446 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1447 // "llvm.copysign". 1448 const StringRef Name = F->getName(); 1449 1450 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1451 return true; 1452 1453 return F->isIntrinsic() && 1454 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1455 Name.startswith("llvm.copysign")); 1456 } 1457 1458 /// Do not take `Function` as a subtree value. 1459 /// 1460 /// We try to take the reference of all subtree values and pass them along 1461 /// to the kernel from the host. Taking an address of any function and 1462 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1463 /// `Function`s. 1464 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1465 1466 /// Return `Function`s from `RawSubtreeValues`. 1467 static SetVector<Function *> 1468 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1469 bool AllowCUDALibDevice) { 1470 SetVector<Function *> SubtreeFunctions; 1471 for (Value *It : RawSubtreeValues) { 1472 Function *F = dyn_cast<Function>(It); 1473 if (F) { 1474 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1475 "Code should have bailed out by " 1476 "this point if an invalid function " 1477 "were present in a kernel."); 1478 SubtreeFunctions.insert(F); 1479 } 1480 } 1481 return SubtreeFunctions; 1482 } 1483 1484 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1485 isl::space> 1486 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1487 SetVector<Value *> SubtreeValues; 1488 SetVector<const SCEV *> SCEVs; 1489 SetVector<const Loop *> Loops; 1490 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1491 SubtreeReferences References = { 1492 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1493 &ParamSpace}; 1494 1495 for (const auto &I : IDToValue) 1496 SubtreeValues.insert(I.second); 1497 1498 // NOTE: this is populated in IslNodeBuilder::addParameters 1499 // See [Code generation of induction variables of loops outside Scops]. 1500 for (const auto &I : OutsideLoopIterations) 1501 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1502 1503 isl_ast_node_foreach_descendant_top_down( 1504 Kernel->tree, collectReferencesInGPUStmt, &References); 1505 1506 for (const SCEV *Expr : SCEVs) { 1507 findValues(Expr, SE, SubtreeValues); 1508 findLoops(Expr, Loops); 1509 } 1510 1511 Loops.remove_if([this](const Loop *L) { 1512 return S.contains(L) || L->contains(S.getEntry()); 1513 }); 1514 1515 for (auto &SAI : S.arrays()) 1516 SubtreeValues.remove(SAI->getBasePtr()); 1517 1518 isl_space *Space = S.getParamSpace().release(); 1519 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1520 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1521 assert(IDToValue.count(Id)); 1522 Value *Val = IDToValue[Id]; 1523 SubtreeValues.remove(Val); 1524 isl_id_free(Id); 1525 } 1526 isl_space_free(Space); 1527 1528 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1529 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1530 assert(IDToValue.count(Id)); 1531 Value *Val = IDToValue[Id]; 1532 SubtreeValues.remove(Val); 1533 isl_id_free(Id); 1534 } 1535 1536 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1537 // SubtreeValues. This is important, because we should not lose any 1538 // SubtreeValues in the process of constructing the 1539 // "ValidSubtree{Values, Functions} sets. Nor should the set 1540 // ValidSubtree{Values, Functions} have any common element. 1541 auto ValidSubtreeValuesIt = 1542 make_filter_range(SubtreeValues, isValidSubtreeValue); 1543 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1544 ValidSubtreeValuesIt.end()); 1545 1546 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1547 1548 SetVector<Function *> ValidSubtreeFunctions( 1549 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1550 1551 // @see IslNodeBuilder::getReferencesInSubtree 1552 SetVector<Value *> ReplacedValues; 1553 for (Value *V : ValidSubtreeValues) { 1554 auto It = ValueMap.find(V); 1555 if (It == ValueMap.end()) 1556 ReplacedValues.insert(V); 1557 else 1558 ReplacedValues.insert(It->second); 1559 } 1560 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1561 ParamSpace); 1562 } 1563 1564 void GPUNodeBuilder::clearDominators(Function *F) { 1565 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1566 std::vector<BasicBlock *> Nodes; 1567 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1568 Nodes.push_back(I->getBlock()); 1569 1570 for (BasicBlock *BB : Nodes) 1571 DT.eraseNode(BB); 1572 } 1573 1574 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1575 for (BasicBlock &BB : *F) { 1576 Loop *L = LI.getLoopFor(&BB); 1577 if (L) 1578 SE.forgetLoop(L); 1579 } 1580 } 1581 1582 void GPUNodeBuilder::clearLoops(Function *F) { 1583 SmallSet<Loop *, 1> WorkList; 1584 for (BasicBlock &BB : *F) { 1585 Loop *L = LI.getLoopFor(&BB); 1586 if (L) 1587 WorkList.insert(L); 1588 } 1589 for (auto *L : WorkList) 1590 LI.erase(L); 1591 } 1592 1593 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1594 std::vector<Value *> Sizes; 1595 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1596 1597 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1598 for (long i = 0; i < Kernel->n_grid; i++) { 1599 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1600 isl::ast_expr GridSize = Context.expr_from(Size); 1601 Value *Res = ExprBuilder.create(GridSize.release()); 1602 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1603 Sizes.push_back(Res); 1604 } 1605 1606 for (long i = Kernel->n_grid; i < 3; i++) 1607 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1608 1609 return std::make_tuple(Sizes[0], Sizes[1]); 1610 } 1611 1612 std::tuple<Value *, Value *, Value *> 1613 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1614 std::vector<Value *> Sizes; 1615 1616 for (long i = 0; i < Kernel->n_block; i++) { 1617 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1618 Sizes.push_back(Res); 1619 } 1620 1621 for (long i = Kernel->n_block; i < 3; i++) 1622 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1623 1624 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1625 } 1626 1627 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1628 Instruction *Param, int Index) { 1629 Value *Slot = Builder.CreateGEP( 1630 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1631 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1632 Builder.CreateStore(ParamTyped, Slot); 1633 } 1634 1635 Value * 1636 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1637 SetVector<Value *> SubtreeValues) { 1638 const int NumArgs = F->arg_size(); 1639 std::vector<int> ArgSizes(NumArgs); 1640 1641 // If we are using the OpenCL Runtime, we need to add the kernel argument 1642 // sizes to the end of the launch-parameter list, so OpenCL can determine 1643 // how big the respective kernel arguments are. 1644 // Here we need to reserve adequate space for that. 1645 Type *ArrayTy; 1646 if (Runtime == GPURuntime::OpenCL) 1647 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1648 else 1649 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1650 1651 BasicBlock *EntryBlock = 1652 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1653 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1654 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1655 Instruction *Parameters = new AllocaInst( 1656 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1657 1658 int Index = 0; 1659 for (long i = 0; i < Prog->n_array; i++) { 1660 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1661 continue; 1662 1663 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1664 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1665 1666 if (Runtime == GPURuntime::OpenCL) 1667 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1668 1669 Value *DevArray = nullptr; 1670 if (PollyManagedMemory) { 1671 DevArray = getManagedDeviceArray(&Prog->array[i], 1672 const_cast<ScopArrayInfo *>(SAI)); 1673 } else { 1674 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1675 DevArray = createCallGetDevicePtr(DevArray); 1676 } 1677 assert(DevArray != nullptr && "Array to be offloaded to device not " 1678 "initialized"); 1679 Value *Offset = getArrayOffset(&Prog->array[i]); 1680 1681 if (Offset) { 1682 DevArray = Builder.CreatePointerCast( 1683 DevArray, SAI->getElementType()->getPointerTo()); 1684 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1685 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1686 } 1687 Value *Slot = Builder.CreateGEP( 1688 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1689 1690 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1691 Value *ValPtr = nullptr; 1692 if (PollyManagedMemory) 1693 ValPtr = DevArray; 1694 else 1695 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1696 1697 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1698 " to be stored into Parameters"); 1699 Value *ValPtrCast = 1700 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1701 Builder.CreateStore(ValPtrCast, Slot); 1702 } else { 1703 Instruction *Param = 1704 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1705 Launch + "_param_" + std::to_string(Index), 1706 EntryBlock->getTerminator()); 1707 Builder.CreateStore(DevArray, Param); 1708 Value *ParamTyped = 1709 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1710 Builder.CreateStore(ParamTyped, Slot); 1711 } 1712 Index++; 1713 } 1714 1715 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1716 1717 for (long i = 0; i < NumHostIters; i++) { 1718 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1719 Value *Val = IDToValue[Id]; 1720 isl_id_free(Id); 1721 1722 if (Runtime == GPURuntime::OpenCL) 1723 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1724 1725 Instruction *Param = 1726 new AllocaInst(Val->getType(), AddressSpace, 1727 Launch + "_param_" + std::to_string(Index), 1728 EntryBlock->getTerminator()); 1729 Builder.CreateStore(Val, Param); 1730 insertStoreParameter(Parameters, Param, Index); 1731 Index++; 1732 } 1733 1734 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1735 1736 for (long i = 0; i < NumVars; i++) { 1737 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1738 Value *Val = IDToValue[Id]; 1739 if (ValueMap.count(Val)) 1740 Val = ValueMap[Val]; 1741 isl_id_free(Id); 1742 1743 if (Runtime == GPURuntime::OpenCL) 1744 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1745 1746 Instruction *Param = 1747 new AllocaInst(Val->getType(), AddressSpace, 1748 Launch + "_param_" + std::to_string(Index), 1749 EntryBlock->getTerminator()); 1750 Builder.CreateStore(Val, Param); 1751 insertStoreParameter(Parameters, Param, Index); 1752 Index++; 1753 } 1754 1755 for (auto Val : SubtreeValues) { 1756 if (Runtime == GPURuntime::OpenCL) 1757 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1758 1759 Instruction *Param = 1760 new AllocaInst(Val->getType(), AddressSpace, 1761 Launch + "_param_" + std::to_string(Index), 1762 EntryBlock->getTerminator()); 1763 Builder.CreateStore(Val, Param); 1764 insertStoreParameter(Parameters, Param, Index); 1765 Index++; 1766 } 1767 1768 if (Runtime == GPURuntime::OpenCL) { 1769 for (int i = 0; i < NumArgs; i++) { 1770 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1771 Instruction *Param = 1772 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1773 Launch + "_param_size_" + std::to_string(i), 1774 EntryBlock->getTerminator()); 1775 Builder.CreateStore(Val, Param); 1776 insertStoreParameter(Parameters, Param, Index); 1777 Index++; 1778 } 1779 } 1780 1781 auto Location = EntryBlock->getTerminator(); 1782 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1783 Launch + "_params_i8ptr", Location); 1784 } 1785 1786 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1787 SetVector<Function *> SubtreeFunctions) { 1788 for (auto Fn : SubtreeFunctions) { 1789 const std::string ClonedFnName = Fn->getName().str(); 1790 Function *Clone = GPUModule->getFunction(ClonedFnName); 1791 if (!Clone) 1792 Clone = 1793 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1794 ClonedFnName, GPUModule.get()); 1795 assert(Clone && "Expected cloned function to be initialized."); 1796 assert(ValueMap.find(Fn) == ValueMap.end() && 1797 "Fn already present in ValueMap"); 1798 ValueMap[Fn] = Clone; 1799 } 1800 } 1801 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1802 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1803 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1804 isl_id_free(Id); 1805 isl_ast_node_free(KernelStmt); 1806 1807 if (Kernel->n_grid > 1) 1808 DeepestParallel = std::max( 1809 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1810 else 1811 DeepestSequential = std::max( 1812 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1813 1814 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1815 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1816 1817 SetVector<Value *> SubtreeValues; 1818 SetVector<Function *> SubtreeFunctions; 1819 SetVector<const Loop *> Loops; 1820 isl::space ParamSpace; 1821 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1822 getReferencesInKernel(Kernel); 1823 1824 // Add parameters that appear only in the access function to the kernel 1825 // space. This is important to make sure that all isl_ids are passed as 1826 // parameters to the kernel, even though we may not have all parameters 1827 // in the context to improve compile time. 1828 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1829 1830 assert(Kernel->tree && "Device AST of kernel node is empty"); 1831 1832 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1833 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1834 ValueMapT HostValueMap = ValueMap; 1835 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1836 ScalarMap.clear(); 1837 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1838 EscapeMap.clear(); 1839 1840 // Create for all loops we depend on values that contain the current loop 1841 // iteration. These values are necessary to generate code for SCEVs that 1842 // depend on such loops. As a result we need to pass them to the subfunction. 1843 for (const Loop *L : Loops) { 1844 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1845 SE.getUnknown(Builder.getInt64(1)), 1846 L, SCEV::FlagAnyWrap); 1847 Value *V = generateSCEV(OuterLIV); 1848 OutsideLoopIterations[L] = SE.getUnknown(V); 1849 SubtreeValues.insert(V); 1850 } 1851 1852 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1853 setupKernelSubtreeFunctions(SubtreeFunctions); 1854 1855 create(isl_ast_node_copy(Kernel->tree)); 1856 1857 finalizeKernelArguments(Kernel); 1858 Function *F = Builder.GetInsertBlock()->getParent(); 1859 if (Arch == GPUArch::NVPTX64) 1860 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1861 clearDominators(F); 1862 clearScalarEvolution(F); 1863 clearLoops(F); 1864 1865 IDToValue = HostIDs; 1866 1867 ValueMap = std::move(HostValueMap); 1868 ScalarMap = std::move(HostScalarMap); 1869 EscapeMap = std::move(HostEscapeMap); 1870 IDToSAI.clear(); 1871 Annotator.resetAlternativeAliasBases(); 1872 for (auto &BasePtr : LocalArrays) 1873 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1874 LocalArrays.clear(); 1875 1876 std::string ASMString = finalizeKernelFunction(); 1877 Builder.SetInsertPoint(&HostInsertPoint); 1878 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1879 1880 std::string Name = getKernelFuncName(Kernel->id); 1881 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1882 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1883 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1884 1885 Value *GridDimX, *GridDimY; 1886 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1887 1888 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1889 BlockDimZ, Parameters); 1890 createCallFreeKernel(GPUKernel); 1891 1892 for (auto Id : KernelIds) 1893 isl_id_free(Id); 1894 1895 KernelIds.clear(); 1896 } 1897 1898 /// Compute the DataLayout string for the NVPTX backend. 1899 /// 1900 /// @param is64Bit Are we looking for a 64 bit architecture? 1901 static std::string computeNVPTXDataLayout(bool is64Bit) { 1902 std::string Ret = ""; 1903 1904 if (!is64Bit) { 1905 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1906 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1907 "64-v128:128:128-n16:32:64"; 1908 } else { 1909 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1910 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1911 "64-v128:128:128-n16:32:64"; 1912 } 1913 1914 return Ret; 1915 } 1916 1917 /// Compute the DataLayout string for a SPIR kernel. 1918 /// 1919 /// @param is64Bit Are we looking for a 64 bit architecture? 1920 static std::string computeSPIRDataLayout(bool is64Bit) { 1921 std::string Ret = ""; 1922 1923 if (!is64Bit) { 1924 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1925 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1926 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1927 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1928 } else { 1929 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1930 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1931 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1932 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1933 } 1934 1935 return Ret; 1936 } 1937 1938 Function * 1939 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1940 SetVector<Value *> &SubtreeValues) { 1941 std::vector<Type *> Args; 1942 std::string Identifier = getKernelFuncName(Kernel->id); 1943 1944 std::vector<Metadata *> MemoryType; 1945 1946 for (long i = 0; i < Prog->n_array; i++) { 1947 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1948 continue; 1949 1950 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1951 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1952 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1953 Args.push_back(SAI->getElementType()); 1954 MemoryType.push_back( 1955 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1956 } else { 1957 static const int UseGlobalMemory = 1; 1958 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1959 MemoryType.push_back( 1960 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1961 } 1962 } 1963 1964 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1965 1966 for (long i = 0; i < NumHostIters; i++) { 1967 Args.push_back(Builder.getInt64Ty()); 1968 MemoryType.push_back( 1969 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1970 } 1971 1972 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1973 1974 for (long i = 0; i < NumVars; i++) { 1975 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1976 Value *Val = IDToValue[Id]; 1977 isl_id_free(Id); 1978 Args.push_back(Val->getType()); 1979 MemoryType.push_back( 1980 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1981 } 1982 1983 for (auto *V : SubtreeValues) { 1984 Args.push_back(V->getType()); 1985 MemoryType.push_back( 1986 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1987 } 1988 1989 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1990 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1991 GPUModule.get()); 1992 1993 std::vector<Metadata *> EmptyStrings; 1994 1995 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1996 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1997 } 1998 1999 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 2000 FN->setMetadata("kernel_arg_addr_space", 2001 MDNode::get(FN->getContext(), MemoryType)); 2002 FN->setMetadata("kernel_arg_name", 2003 MDNode::get(FN->getContext(), EmptyStrings)); 2004 FN->setMetadata("kernel_arg_access_qual", 2005 MDNode::get(FN->getContext(), EmptyStrings)); 2006 FN->setMetadata("kernel_arg_type", 2007 MDNode::get(FN->getContext(), EmptyStrings)); 2008 FN->setMetadata("kernel_arg_type_qual", 2009 MDNode::get(FN->getContext(), EmptyStrings)); 2010 FN->setMetadata("kernel_arg_base_type", 2011 MDNode::get(FN->getContext(), EmptyStrings)); 2012 } 2013 2014 switch (Arch) { 2015 case GPUArch::NVPTX64: 2016 FN->setCallingConv(CallingConv::PTX_Kernel); 2017 break; 2018 case GPUArch::SPIR32: 2019 case GPUArch::SPIR64: 2020 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2021 break; 2022 } 2023 2024 auto Arg = FN->arg_begin(); 2025 for (long i = 0; i < Kernel->n_array; i++) { 2026 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2027 continue; 2028 2029 Arg->setName(Kernel->array[i].array->name); 2030 2031 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2032 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2033 Type *EleTy = SAI->getElementType(); 2034 Value *Val = &*Arg; 2035 SmallVector<const SCEV *, 4> Sizes; 2036 isl_ast_build *Build = 2037 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2038 Sizes.push_back(nullptr); 2039 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2040 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2041 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2042 auto V = ExprBuilder.create(DimSize); 2043 Sizes.push_back(SE.getSCEV(V)); 2044 } 2045 const ScopArrayInfo *SAIRep = 2046 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2047 LocalArrays.push_back(Val); 2048 2049 isl_ast_build_free(Build); 2050 KernelIds.push_back(Id); 2051 IDToSAI[Id] = SAIRep; 2052 Arg++; 2053 } 2054 2055 for (long i = 0; i < NumHostIters; i++) { 2056 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2057 Arg->setName(isl_id_get_name(Id)); 2058 IDToValue[Id] = &*Arg; 2059 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2060 Arg++; 2061 } 2062 2063 for (long i = 0; i < NumVars; i++) { 2064 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2065 Arg->setName(isl_id_get_name(Id)); 2066 Value *Val = IDToValue[Id]; 2067 ValueMap[Val] = &*Arg; 2068 IDToValue[Id] = &*Arg; 2069 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2070 Arg++; 2071 } 2072 2073 for (auto *V : SubtreeValues) { 2074 Arg->setName(V->getName()); 2075 ValueMap[V] = &*Arg; 2076 Arg++; 2077 } 2078 2079 return FN; 2080 } 2081 2082 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2083 Intrinsic::ID IntrinsicsBID[2]; 2084 Intrinsic::ID IntrinsicsTID[3]; 2085 2086 switch (Arch) { 2087 case GPUArch::SPIR64: 2088 case GPUArch::SPIR32: 2089 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2090 case GPUArch::NVPTX64: 2091 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2092 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2093 2094 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2095 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2096 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2097 break; 2098 } 2099 2100 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2101 std::string Name = isl_id_get_name(Id); 2102 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2103 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2104 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2105 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2106 IDToValue[Id] = Val; 2107 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2108 }; 2109 2110 for (int i = 0; i < Kernel->n_grid; ++i) { 2111 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2112 addId(Id, IntrinsicsBID[i]); 2113 } 2114 2115 for (int i = 0; i < Kernel->n_block; ++i) { 2116 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2117 addId(Id, IntrinsicsTID[i]); 2118 } 2119 } 2120 2121 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2122 bool SizeTypeIs64bit) { 2123 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2124 "__gen_ocl_get_group_id1", 2125 "__gen_ocl_get_group_id2"}; 2126 2127 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2128 "__gen_ocl_get_local_id1", 2129 "__gen_ocl_get_local_id2"}; 2130 IntegerType *SizeT = 2131 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2132 2133 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2134 IntegerType *SizeT) mutable { 2135 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2136 Function *FN = M->getFunction(Name); 2137 2138 // If FN is not available, declare it. 2139 if (!FN) { 2140 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2141 std::vector<Type *> Args; 2142 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2143 FN = Function::Create(Ty, Linkage, Name, M); 2144 FN->setCallingConv(CallingConv::SPIR_FUNC); 2145 } 2146 2147 Value *Val = Builder.CreateCall(FN, {}); 2148 if (SizeT == Builder.getInt32Ty()) 2149 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2150 IDToValue[Id] = Val; 2151 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2152 }; 2153 2154 for (int i = 0; i < Kernel->n_grid; ++i) 2155 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2156 2157 for (int i = 0; i < Kernel->n_block; ++i) 2158 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2159 } 2160 2161 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2162 auto Arg = FN->arg_begin(); 2163 for (long i = 0; i < Kernel->n_array; i++) { 2164 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2165 continue; 2166 2167 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2168 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2169 isl_id_free(Id); 2170 2171 if (SAI->getNumberOfDimensions() > 0) { 2172 Arg++; 2173 continue; 2174 } 2175 2176 Value *Val = &*Arg; 2177 2178 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2179 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2180 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2181 Val = Builder.CreateLoad(SAI->getElementType(), TypedArgPtr); 2182 } 2183 2184 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2185 Builder.CreateStore(Val, Alloca); 2186 2187 Arg++; 2188 } 2189 } 2190 2191 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2192 auto *FN = Builder.GetInsertBlock()->getParent(); 2193 auto Arg = FN->arg_begin(); 2194 2195 bool StoredScalar = false; 2196 for (long i = 0; i < Kernel->n_array; i++) { 2197 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2198 continue; 2199 2200 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2201 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2202 isl_id_free(Id); 2203 2204 if (SAI->getNumberOfDimensions() > 0) { 2205 Arg++; 2206 continue; 2207 } 2208 2209 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2210 Arg++; 2211 continue; 2212 } 2213 2214 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2215 Value *ArgPtr = &*Arg; 2216 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2217 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2218 Value *Val = Builder.CreateLoad(SAI->getElementType(), Alloca); 2219 Builder.CreateStore(Val, TypedArgPtr); 2220 StoredScalar = true; 2221 2222 Arg++; 2223 } 2224 2225 if (StoredScalar) { 2226 /// In case more than one thread contains scalar stores, the generated 2227 /// code might be incorrect, if we only store at the end of the kernel. 2228 /// To support this case we need to store these scalars back at each 2229 /// memory store or at least before each kernel barrier. 2230 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2231 BuildSuccessful = 0; 2232 LLVM_DEBUG( 2233 dbgs() << getUniqueScopName(&S) 2234 << " has a store to a scalar value that" 2235 " would be undefined to run in parallel. Bailing out.\n";); 2236 } 2237 } 2238 } 2239 2240 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2241 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2242 2243 for (int i = 0; i < Kernel->n_var; ++i) { 2244 struct ppcg_kernel_var &Var = Kernel->var[i]; 2245 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2246 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2247 2248 Type *ArrayTy = EleTy; 2249 SmallVector<const SCEV *, 4> Sizes; 2250 2251 Sizes.push_back(nullptr); 2252 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2253 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2254 long Bound = isl_val_get_num_si(Val); 2255 isl_val_free(Val); 2256 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2257 } 2258 2259 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2260 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2261 long Bound = isl_val_get_num_si(Val); 2262 isl_val_free(Val); 2263 ArrayTy = ArrayType::get(ArrayTy, Bound); 2264 } 2265 2266 const ScopArrayInfo *SAI; 2267 Value *Allocation; 2268 if (Var.type == ppcg_access_shared) { 2269 auto GlobalVar = new GlobalVariable( 2270 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2271 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2272 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); 2273 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2274 2275 Allocation = GlobalVar; 2276 } else if (Var.type == ppcg_access_private) { 2277 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2278 } else { 2279 llvm_unreachable("unknown variable type"); 2280 } 2281 SAI = 2282 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2283 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2284 IDToValue[Id] = Allocation; 2285 LocalArrays.push_back(Allocation); 2286 KernelIds.push_back(Id); 2287 IDToSAI[Id] = SAI; 2288 } 2289 } 2290 2291 void GPUNodeBuilder::createKernelFunction( 2292 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2293 SetVector<Function *> &SubtreeFunctions) { 2294 std::string Identifier = getKernelFuncName(Kernel->id); 2295 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2296 2297 switch (Arch) { 2298 case GPUArch::NVPTX64: 2299 if (Runtime == GPURuntime::CUDA) 2300 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2301 else if (Runtime == GPURuntime::OpenCL) 2302 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2303 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2304 break; 2305 case GPUArch::SPIR32: 2306 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2307 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2308 break; 2309 case GPUArch::SPIR64: 2310 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2311 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2312 break; 2313 } 2314 2315 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2316 2317 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2318 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2319 2320 DT.addNewBlock(EntryBlock, PrevBlock); 2321 2322 Builder.SetInsertPoint(EntryBlock); 2323 Builder.CreateRetVoid(); 2324 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2325 2326 ScopDetection::markFunctionAsInvalid(FN); 2327 2328 prepareKernelArguments(Kernel, FN); 2329 createKernelVariables(Kernel, FN); 2330 2331 switch (Arch) { 2332 case GPUArch::NVPTX64: 2333 insertKernelIntrinsics(Kernel); 2334 break; 2335 case GPUArch::SPIR32: 2336 insertKernelCallsSPIR(Kernel, false); 2337 break; 2338 case GPUArch::SPIR64: 2339 insertKernelCallsSPIR(Kernel, true); 2340 break; 2341 } 2342 } 2343 2344 std::string GPUNodeBuilder::createKernelASM() { 2345 llvm::Triple GPUTriple; 2346 2347 switch (Arch) { 2348 case GPUArch::NVPTX64: 2349 switch (Runtime) { 2350 case GPURuntime::CUDA: 2351 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2352 break; 2353 case GPURuntime::OpenCL: 2354 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2355 break; 2356 } 2357 break; 2358 case GPUArch::SPIR64: 2359 case GPUArch::SPIR32: 2360 std::string SPIRAssembly; 2361 raw_string_ostream IROstream(SPIRAssembly); 2362 IROstream << *GPUModule; 2363 IROstream.flush(); 2364 return SPIRAssembly; 2365 } 2366 2367 std::string ErrMsg; 2368 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2369 2370 if (!GPUTarget) { 2371 errs() << ErrMsg << "\n"; 2372 return ""; 2373 } 2374 2375 TargetOptions Options; 2376 Options.UnsafeFPMath = FastMath; 2377 2378 std::string subtarget; 2379 2380 switch (Arch) { 2381 case GPUArch::NVPTX64: 2382 subtarget = CudaVersion; 2383 break; 2384 case GPUArch::SPIR32: 2385 case GPUArch::SPIR64: 2386 llvm_unreachable("No subtarget for SPIR architecture"); 2387 } 2388 2389 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2390 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2391 2392 SmallString<0> ASMString; 2393 raw_svector_ostream ASMStream(ASMString); 2394 llvm::legacy::PassManager PM; 2395 2396 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2397 2398 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, 2399 true /* verify */)) { 2400 errs() << "The target does not support generation of this file type!\n"; 2401 return ""; 2402 } 2403 2404 PM.run(*GPUModule); 2405 2406 return ASMStream.str().str(); 2407 } 2408 2409 bool GPUNodeBuilder::requiresCUDALibDevice() { 2410 bool RequiresLibDevice = false; 2411 for (Function &F : GPUModule->functions()) { 2412 if (!F.isDeclaration()) 2413 continue; 2414 2415 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2416 if (CUDALibDeviceFunc.length() != 0) { 2417 // We need to handle the case where a module looks like this: 2418 // @expf(..) 2419 // @llvm.exp.f64(..) 2420 // Both of these functions would be renamed to `__nv_expf`. 2421 // 2422 // So, we must first check for the existence of the libdevice function. 2423 // If this exists, we replace our current function with it. 2424 // 2425 // If it does not exist, we rename the current function to the 2426 // libdevice functiono name. 2427 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2428 F.replaceAllUsesWith(Replacement); 2429 else 2430 F.setName(CUDALibDeviceFunc); 2431 RequiresLibDevice = true; 2432 } 2433 } 2434 2435 return RequiresLibDevice; 2436 } 2437 2438 void GPUNodeBuilder::addCUDALibDevice() { 2439 if (Arch != GPUArch::NVPTX64) 2440 return; 2441 2442 if (requiresCUDALibDevice()) { 2443 SMDiagnostic Error; 2444 2445 errs() << CUDALibDevice << "\n"; 2446 auto LibDeviceModule = 2447 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2448 2449 if (!LibDeviceModule) { 2450 BuildSuccessful = false; 2451 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2452 "kernel generation. Please set -polly-acc-libdevice " 2453 "accordingly.\n"); 2454 return; 2455 } 2456 2457 Linker L(*GPUModule); 2458 2459 // Set an nvptx64 target triple to avoid linker warnings. The original 2460 // triple of the libdevice files are nvptx-unknown-unknown. 2461 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2462 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2463 } 2464 } 2465 2466 std::string GPUNodeBuilder::finalizeKernelFunction() { 2467 2468 if (verifyModule(*GPUModule)) { 2469 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2470 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2471 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2472 verifyModule(*GPUModule, &dbgs());); 2473 2474 if (FailOnVerifyModuleFailure) 2475 llvm_unreachable("VerifyModule failed."); 2476 2477 BuildSuccessful = false; 2478 return ""; 2479 } 2480 2481 addCUDALibDevice(); 2482 2483 if (DumpKernelIR) 2484 outs() << *GPUModule << "\n"; 2485 2486 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2487 // Optimize module. 2488 llvm::legacy::PassManager OptPasses; 2489 PassManagerBuilder PassBuilder; 2490 PassBuilder.OptLevel = 3; 2491 PassBuilder.SizeLevel = 0; 2492 PassBuilder.populateModulePassManager(OptPasses); 2493 OptPasses.run(*GPUModule); 2494 } 2495 2496 std::string Assembly = createKernelASM(); 2497 2498 if (DumpKernelASM) 2499 outs() << Assembly << "\n"; 2500 2501 GPUModule.release(); 2502 KernelIDs.clear(); 2503 2504 return Assembly; 2505 } 2506 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2507 /// @param PwAffs The list of piecewise affine functions to create an 2508 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2509 /// all the isl_pw_aff are used up by this function. 2510 /// 2511 /// @returns The `isl_pw_aff_list`. 2512 __isl_give isl_pw_aff_list * 2513 createPwAffList(isl_ctx *Context, 2514 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2515 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2516 2517 for (unsigned i = 0; i < PwAffs.size(); i++) { 2518 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2519 } 2520 return List; 2521 } 2522 2523 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2524 /// 2525 /// We loop over all `pw_aff` and align all of their spaces together to 2526 /// create a common space for all the `pw_aff`. This common space is the 2527 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2528 /// with the given `SeedSpace`. 2529 /// @param PwAffs The list of piecewise affine functions we want to align. 2530 /// This is an rvalue reference because the entire vector is 2531 /// used up by the end of the operation. 2532 /// @param SeedSpace The space to start the alignment process with. 2533 /// @returns A std::pair, whose first element is the aligned space, 2534 /// whose second element is the vector of aligned piecewise 2535 /// affines. 2536 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2537 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2538 __isl_take isl_space *SeedSpace) { 2539 assert(SeedSpace && "Invalid seed space given."); 2540 2541 isl_space *AlignSpace = SeedSpace; 2542 for (isl_pw_aff *PwAff : PwAffs) { 2543 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2544 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2545 } 2546 std::vector<isl_pw_aff *> AdjustedPwAffs; 2547 2548 for (unsigned i = 0; i < PwAffs.size(); i++) { 2549 isl_pw_aff *Adjusted = PwAffs[i]; 2550 assert(Adjusted && "Invalid pw_aff given."); 2551 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2552 AdjustedPwAffs.push_back(Adjusted); 2553 } 2554 return std::make_pair(AlignSpace, AdjustedPwAffs); 2555 } 2556 2557 namespace { 2558 class PPCGCodeGeneration : public ScopPass { 2559 public: 2560 static char ID; 2561 2562 GPURuntime Runtime = GPURuntime::CUDA; 2563 2564 GPUArch Architecture = GPUArch::NVPTX64; 2565 2566 /// The scop that is currently processed. 2567 Scop *S; 2568 2569 LoopInfo *LI; 2570 DominatorTree *DT; 2571 ScalarEvolution *SE; 2572 const DataLayout *DL; 2573 RegionInfo *RI; 2574 2575 PPCGCodeGeneration() : ScopPass(ID) { 2576 // Apply defaults. 2577 Runtime = GPURuntimeChoice; 2578 Architecture = GPUArchChoice; 2579 } 2580 2581 /// Construct compilation options for PPCG. 2582 /// 2583 /// @returns The compilation options. 2584 ppcg_options *createPPCGOptions() { 2585 auto DebugOptions = 2586 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2587 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2588 2589 DebugOptions->dump_schedule_constraints = false; 2590 DebugOptions->dump_schedule = false; 2591 DebugOptions->dump_final_schedule = false; 2592 DebugOptions->dump_sizes = false; 2593 DebugOptions->verbose = false; 2594 2595 Options->debug = DebugOptions; 2596 2597 Options->group_chains = false; 2598 Options->reschedule = true; 2599 Options->scale_tile_loops = false; 2600 Options->wrap = false; 2601 2602 Options->non_negative_parameters = false; 2603 Options->ctx = nullptr; 2604 Options->sizes = nullptr; 2605 2606 Options->tile = true; 2607 Options->tile_size = 32; 2608 2609 Options->isolate_full_tiles = false; 2610 2611 Options->use_private_memory = PrivateMemory; 2612 Options->use_shared_memory = SharedMemory; 2613 Options->max_shared_memory = 48 * 1024; 2614 2615 Options->target = PPCG_TARGET_CUDA; 2616 Options->openmp = false; 2617 Options->linearize_device_arrays = true; 2618 Options->allow_gnu_extensions = false; 2619 2620 Options->unroll_copy_shared = false; 2621 Options->unroll_gpu_tile = false; 2622 Options->live_range_reordering = true; 2623 2624 Options->live_range_reordering = true; 2625 Options->hybrid = false; 2626 Options->opencl_compiler_options = nullptr; 2627 Options->opencl_use_gpu = false; 2628 Options->opencl_n_include_file = 0; 2629 Options->opencl_include_files = nullptr; 2630 Options->opencl_print_kernel_types = false; 2631 Options->opencl_embed_kernel_code = false; 2632 2633 Options->save_schedule_file = nullptr; 2634 Options->load_schedule_file = nullptr; 2635 2636 return Options; 2637 } 2638 2639 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2640 /// 2641 /// Instead of a normal access of the form: 2642 /// 2643 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2644 /// 2645 /// a tagged access has the form 2646 /// 2647 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2648 /// 2649 /// where 'id' is an additional space that references the memory access that 2650 /// triggered the access. 2651 /// 2652 /// @param AccessTy The type of the memory accesses to collect. 2653 /// 2654 /// @return The relation describing all tagged memory accesses. 2655 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2656 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2657 2658 for (auto &Stmt : *S) 2659 for (auto &Acc : Stmt) 2660 if (Acc->getType() == AccessTy) { 2661 isl_map *Relation = Acc->getAccessRelation().release(); 2662 Relation = 2663 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2664 2665 isl_space *Space = isl_map_get_space(Relation); 2666 Space = isl_space_range(Space); 2667 Space = isl_space_from_range(Space); 2668 Space = 2669 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2670 isl_map *Universe = isl_map_universe(Space); 2671 Relation = isl_map_domain_product(Relation, Universe); 2672 Accesses = isl_union_map_add_map(Accesses, Relation); 2673 } 2674 2675 return Accesses; 2676 } 2677 2678 /// Get the set of all read accesses, tagged with the access id. 2679 /// 2680 /// @see getTaggedAccesses 2681 isl_union_map *getTaggedReads() { 2682 return getTaggedAccesses(MemoryAccess::READ); 2683 } 2684 2685 /// Get the set of all may (and must) accesses, tagged with the access id. 2686 /// 2687 /// @see getTaggedAccesses 2688 isl_union_map *getTaggedMayWrites() { 2689 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2690 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2691 } 2692 2693 /// Get the set of all must accesses, tagged with the access id. 2694 /// 2695 /// @see getTaggedAccesses 2696 isl_union_map *getTaggedMustWrites() { 2697 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2698 } 2699 2700 /// Collect parameter and array names as isl_ids. 2701 /// 2702 /// To reason about the different parameters and arrays used, ppcg requires 2703 /// a list of all isl_ids in use. As PPCG traditionally performs 2704 /// source-to-source compilation each of these isl_ids is mapped to the 2705 /// expression that represents it. As we do not have a corresponding 2706 /// expression in Polly, we just map each id to a 'zero' expression to match 2707 /// the data format that ppcg expects. 2708 /// 2709 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2710 __isl_give isl_id_to_ast_expr *getNames() { 2711 auto *Names = isl_id_to_ast_expr_alloc( 2712 S->getIslCtx().get(), 2713 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2714 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2715 2716 for (const SCEV *P : S->parameters()) { 2717 isl_id *Id = S->getIdForParam(P).release(); 2718 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2719 } 2720 2721 for (auto &Array : S->arrays()) { 2722 auto Id = Array->getBasePtrId().release(); 2723 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2724 } 2725 2726 isl_ast_expr_free(Zero); 2727 2728 return Names; 2729 } 2730 2731 /// Create a new PPCG scop from the current scop. 2732 /// 2733 /// The PPCG scop is initialized with data from the current polly::Scop. From 2734 /// this initial data, the data-dependences in the PPCG scop are initialized. 2735 /// We do not use Polly's dependence analysis for now, to ensure we match 2736 /// the PPCG default behaviour more closely. 2737 /// 2738 /// @returns A new ppcg scop. 2739 ppcg_scop *createPPCGScop() { 2740 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2741 2742 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2743 2744 PPCGScop->options = createPPCGOptions(); 2745 // enable live range reordering 2746 PPCGScop->options->live_range_reordering = 1; 2747 2748 PPCGScop->start = 0; 2749 PPCGScop->end = 0; 2750 2751 PPCGScop->context = S->getContext().release(); 2752 PPCGScop->domain = S->getDomains().release(); 2753 // TODO: investigate this further. PPCG calls collect_call_domains. 2754 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2755 PPCGScop->tagged_reads = getTaggedReads(); 2756 PPCGScop->reads = S->getReads().release(); 2757 PPCGScop->live_in = nullptr; 2758 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2759 PPCGScop->may_writes = S->getWrites().release(); 2760 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2761 PPCGScop->must_writes = S->getMustWrites().release(); 2762 PPCGScop->live_out = nullptr; 2763 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2764 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2765 2766 PPCGScop->tagger = nullptr; 2767 PPCGScop->independence = 2768 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2769 PPCGScop->dep_flow = nullptr; 2770 PPCGScop->tagged_dep_flow = nullptr; 2771 PPCGScop->dep_false = nullptr; 2772 PPCGScop->dep_forced = nullptr; 2773 PPCGScop->dep_order = nullptr; 2774 PPCGScop->tagged_dep_order = nullptr; 2775 2776 PPCGScop->schedule = S->getScheduleTree().release(); 2777 // If we have something non-trivial to kill, add it to the schedule 2778 if (KillsInfo.KillsSchedule.get()) 2779 PPCGScop->schedule = isl_schedule_sequence( 2780 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2781 2782 PPCGScop->names = getNames(); 2783 PPCGScop->pet = nullptr; 2784 2785 compute_tagger(PPCGScop); 2786 compute_dependences(PPCGScop); 2787 eliminate_dead_code(PPCGScop); 2788 2789 return PPCGScop; 2790 } 2791 2792 /// Collect the array accesses in a statement. 2793 /// 2794 /// @param Stmt The statement for which to collect the accesses. 2795 /// 2796 /// @returns A list of array accesses. 2797 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2798 gpu_stmt_access *Accesses = nullptr; 2799 2800 for (MemoryAccess *Acc : Stmt) { 2801 auto Access = 2802 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2803 Access->read = Acc->isRead(); 2804 Access->write = Acc->isWrite(); 2805 Access->access = Acc->getAccessRelation().release(); 2806 isl_space *Space = isl_map_get_space(Access->access); 2807 Space = isl_space_range(Space); 2808 Space = isl_space_from_range(Space); 2809 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2810 isl_map *Universe = isl_map_universe(Space); 2811 Access->tagged_access = 2812 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2813 Access->exact_write = !Acc->isMayWrite(); 2814 Access->ref_id = Acc->getId().release(); 2815 Access->next = Accesses; 2816 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2817 // TODO: Also mark one-element accesses to arrays as fixed-element. 2818 Access->fixed_element = 2819 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2820 Accesses = Access; 2821 } 2822 2823 return Accesses; 2824 } 2825 2826 /// Collect the list of GPU statements. 2827 /// 2828 /// Each statement has an id, a pointer to the underlying data structure, 2829 /// as well as a list with all memory accesses. 2830 /// 2831 /// TODO: Initialize the list of memory accesses. 2832 /// 2833 /// @returns A linked-list of statements. 2834 gpu_stmt *getStatements() { 2835 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2836 std::distance(S->begin(), S->end())); 2837 2838 int i = 0; 2839 for (auto &Stmt : *S) { 2840 gpu_stmt *GPUStmt = &Stmts[i]; 2841 2842 GPUStmt->id = Stmt.getDomainId().release(); 2843 2844 // We use the pet stmt pointer to keep track of the Polly statements. 2845 GPUStmt->stmt = (pet_stmt *)&Stmt; 2846 GPUStmt->accesses = getStmtAccesses(Stmt); 2847 i++; 2848 } 2849 2850 return Stmts; 2851 } 2852 2853 /// Derive the extent of an array. 2854 /// 2855 /// The extent of an array is the set of elements that are within the 2856 /// accessed array. For the inner dimensions, the extent constraints are 2857 /// 0 and the size of the corresponding array dimension. For the first 2858 /// (outermost) dimension, the extent constraints are the minimal and maximal 2859 /// subscript value for the first dimension. 2860 /// 2861 /// @param Array The array to derive the extent for. 2862 /// 2863 /// @returns An isl_set describing the extent of the array. 2864 isl::set getExtent(ScopArrayInfo *Array) { 2865 unsigned NumDims = Array->getNumberOfDimensions(); 2866 2867 if (Array->getNumberOfDimensions() == 0) 2868 return isl::set::universe(Array->getSpace()); 2869 2870 isl::union_map Accesses = S->getAccesses(Array); 2871 isl::union_set AccessUSet = Accesses.range(); 2872 AccessUSet = AccessUSet.coalesce(); 2873 AccessUSet = AccessUSet.detect_equalities(); 2874 AccessUSet = AccessUSet.coalesce(); 2875 2876 if (AccessUSet.is_empty()) 2877 return isl::set::empty(Array->getSpace()); 2878 2879 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2880 2881 isl::local_space LS = isl::local_space(Array->getSpace()); 2882 2883 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2884 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2885 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2886 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2887 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2888 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2889 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2890 2891 isl::set Extent = isl::set::universe(Array->getSpace()); 2892 2893 Extent = Extent.intersect(OuterMin.le_set(Val)); 2894 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2895 2896 for (unsigned i = 1; i < NumDims; ++i) 2897 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2898 2899 for (unsigned i = 0; i < NumDims; ++i) { 2900 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2901 2902 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2903 // Fortran array will we have a legitimate dimension. 2904 if (PwAff.is_null()) { 2905 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2906 continue; 2907 } 2908 2909 isl::pw_aff Val = isl::aff::var_on_domain( 2910 isl::local_space(Array->getSpace()), isl::dim::set, i); 2911 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2912 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2913 isl::set Set = PwAff.gt_set(Val); 2914 Extent = Set.intersect(Extent); 2915 } 2916 2917 return Extent; 2918 } 2919 2920 /// Derive the bounds of an array. 2921 /// 2922 /// For the first dimension we derive the bound of the array from the extent 2923 /// of this dimension. For inner dimensions we obtain their size directly from 2924 /// ScopArrayInfo. 2925 /// 2926 /// @param PPCGArray The array to compute bounds for. 2927 /// @param Array The polly array from which to take the information. 2928 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2929 std::vector<isl_pw_aff *> Bounds; 2930 2931 if (PPCGArray.n_index > 0) { 2932 if (isl_set_is_empty(PPCGArray.extent)) { 2933 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2934 isl_local_space *LS = isl_local_space_from_space( 2935 isl_space_params(isl_set_get_space(Dom))); 2936 isl_set_free(Dom); 2937 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2938 Bounds.push_back(Zero); 2939 } else { 2940 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2941 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2942 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2943 isl_set_free(Dom); 2944 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2945 isl_local_space *LS = 2946 isl_local_space_from_space(isl_set_get_space(Dom)); 2947 isl_aff *One = isl_aff_zero_on_domain(LS); 2948 One = isl_aff_add_constant_si(One, 1); 2949 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2950 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2951 Bounds.push_back(Bound); 2952 } 2953 } 2954 2955 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2956 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2957 auto LS = isl_pw_aff_get_domain_space(Bound); 2958 auto Aff = isl_multi_aff_zero(LS); 2959 2960 // We need types to work out, which is why we perform this weird dance 2961 // with `Aff` and `Bound`. Consider this example: 2962 2963 // LS: [p] -> { [] } 2964 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2965 // This `~` is used to denote a "null space" (which is different from 2966 // a *zero dimensional* space), which is something that ISL does not 2967 // show you when pretty printing. 2968 2969 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2970 // space, not a "null space" which does not exist at all. 2971 2972 // When we pullback (precompose) `Bound` with `Zero`, we get: 2973 // Bound . Zero = 2974 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2975 // [p] -> { ~ -> [(10p)] } = 2976 // [p] -> [(10p)] (as ISL pretty prints it) 2977 // Bound Pullback: [p] -> { [(10p)] } 2978 2979 // We want this kind of an expression for Bound, without a 2980 // zero dimensional input, but with a "null space" input for the types 2981 // to work out later on, as far as I (Siddharth Bhat) understand. 2982 // I was unable to find a reference to this in the ISL manual. 2983 // References: Tobias Grosser. 2984 2985 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2986 Bounds.push_back(Bound); 2987 } 2988 2989 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2990 /// to have the same parameter dimensions. So, we need to align them to an 2991 /// appropriate space. 2992 /// Scop::Context is _not_ an appropriate space, because when we have 2993 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2994 /// contain all parameter dimensions. 2995 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2996 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2997 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2998 2999 isl_space *AlignSpace = nullptr; 3000 std::vector<isl_pw_aff *> AlignedBounds; 3001 std::tie(AlignSpace, AlignedBounds) = 3002 alignPwAffs(std::move(Bounds), SeedAlignSpace); 3003 3004 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 3005 3006 isl_pw_aff_list *BoundsList = 3007 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 3008 3009 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 3010 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 3011 3012 assert(BoundsSpace && "Unable to access space of array."); 3013 assert(BoundsList && "Unable to access list of bounds."); 3014 3015 PPCGArray.bound = 3016 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 3017 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 3018 } 3019 3020 /// Create the arrays for @p PPCGProg. 3021 /// 3022 /// @param PPCGProg The program to compute the arrays for. 3023 void createArrays(gpu_prog *PPCGProg, 3024 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 3025 int i = 0; 3026 for (auto &Array : ValidSAIs) { 3027 std::string TypeName; 3028 raw_string_ostream OS(TypeName); 3029 3030 OS << *Array->getElementType(); 3031 TypeName = OS.str(); 3032 3033 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3034 3035 PPCGArray.space = Array->getSpace().release(); 3036 PPCGArray.type = strdup(TypeName.c_str()); 3037 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3038 PPCGArray.name = strdup(Array->getName().c_str()); 3039 PPCGArray.extent = nullptr; 3040 PPCGArray.n_index = Array->getNumberOfDimensions(); 3041 PPCGArray.extent = getExtent(Array).release(); 3042 PPCGArray.n_ref = 0; 3043 PPCGArray.refs = nullptr; 3044 PPCGArray.accessed = true; 3045 PPCGArray.read_only_scalar = 3046 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3047 PPCGArray.has_compound_element = false; 3048 PPCGArray.local = false; 3049 PPCGArray.declare_local = false; 3050 PPCGArray.global = false; 3051 PPCGArray.linearize = false; 3052 PPCGArray.dep_order = nullptr; 3053 PPCGArray.user = Array; 3054 3055 PPCGArray.bound = nullptr; 3056 setArrayBounds(PPCGArray, Array); 3057 i++; 3058 3059 collect_references(PPCGProg, &PPCGArray); 3060 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3061 } 3062 } 3063 3064 /// Create an identity map between the arrays in the scop. 3065 /// 3066 /// @returns An identity map between the arrays in the scop. 3067 isl_union_map *getArrayIdentity() { 3068 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3069 3070 for (auto &Array : S->arrays()) { 3071 isl_space *Space = Array->getSpace().release(); 3072 Space = isl_space_map_from_set(Space); 3073 isl_map *Identity = isl_map_identity(Space); 3074 Maps = isl_union_map_add_map(Maps, Identity); 3075 } 3076 3077 return Maps; 3078 } 3079 3080 /// Create a default-initialized PPCG GPU program. 3081 /// 3082 /// @returns A new gpu program description. 3083 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3084 3085 if (!PPCGScop) 3086 return nullptr; 3087 3088 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3089 3090 PPCGProg->ctx = S->getIslCtx().get(); 3091 PPCGProg->scop = PPCGScop; 3092 PPCGProg->context = isl_set_copy(PPCGScop->context); 3093 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3094 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3095 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3096 PPCGProg->tagged_must_kill = 3097 isl_union_map_copy(PPCGScop->tagged_must_kills); 3098 PPCGProg->to_inner = getArrayIdentity(); 3099 PPCGProg->to_outer = getArrayIdentity(); 3100 // TODO: verify that this assignment is correct. 3101 PPCGProg->any_to_outer = nullptr; 3102 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3103 PPCGProg->stmts = getStatements(); 3104 3105 // Only consider arrays that have a non-empty extent. 3106 // Otherwise, this will cause us to consider the following kinds of 3107 // empty arrays: 3108 // 1. Invariant loads that are represented by SAI objects. 3109 // 2. Arrays with statically known zero size. 3110 auto ValidSAIsRange = 3111 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3112 return !getExtent(SAI).is_empty(); 3113 }); 3114 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3115 ValidSAIsRange.end()); 3116 3117 PPCGProg->n_array = 3118 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3119 PPCGProg->array = isl_calloc_array( 3120 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3121 3122 createArrays(PPCGProg, ValidSAIs); 3123 3124 PPCGProg->array_order = nullptr; 3125 collect_order_dependences(PPCGProg); 3126 3127 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3128 return PPCGProg; 3129 } 3130 3131 struct PrintGPUUserData { 3132 struct cuda_info *CudaInfo; 3133 struct gpu_prog *PPCGProg; 3134 std::vector<ppcg_kernel *> Kernels; 3135 }; 3136 3137 /// Print a user statement node in the host code. 3138 /// 3139 /// We use ppcg's printing facilities to print the actual statement and 3140 /// additionally build up a list of all kernels that are encountered in the 3141 /// host ast. 3142 /// 3143 /// @param P The printer to print to 3144 /// @param Options The printing options to use 3145 /// @param Node The node to print 3146 /// @param User A user pointer to carry additional data. This pointer is 3147 /// expected to be of type PrintGPUUserData. 3148 /// 3149 /// @returns A printer to which the output has been printed. 3150 static __isl_give isl_printer * 3151 printHostUser(__isl_take isl_printer *P, 3152 __isl_take isl_ast_print_options *Options, 3153 __isl_take isl_ast_node *Node, void *User) { 3154 auto Data = (struct PrintGPUUserData *)User; 3155 auto Id = isl_ast_node_get_annotation(Node); 3156 3157 if (Id) { 3158 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3159 3160 // If this is a user statement, format it ourselves as ppcg would 3161 // otherwise try to call pet functionality that is not available in 3162 // Polly. 3163 if (IsUser) { 3164 P = isl_printer_start_line(P); 3165 P = isl_printer_print_ast_node(P, Node); 3166 P = isl_printer_end_line(P); 3167 isl_id_free(Id); 3168 isl_ast_print_options_free(Options); 3169 return P; 3170 } 3171 3172 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3173 isl_id_free(Id); 3174 Data->Kernels.push_back(Kernel); 3175 } 3176 3177 return print_host_user(P, Options, Node, User); 3178 } 3179 3180 /// Print C code corresponding to the control flow in @p Kernel. 3181 /// 3182 /// @param Kernel The kernel to print 3183 void printKernel(ppcg_kernel *Kernel) { 3184 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3185 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3186 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3187 P = isl_ast_node_print(Kernel->tree, P, Options); 3188 char *String = isl_printer_get_str(P); 3189 outs() << String << "\n"; 3190 free(String); 3191 isl_printer_free(P); 3192 } 3193 3194 /// Print C code corresponding to the GPU code described by @p Tree. 3195 /// 3196 /// @param Tree An AST describing GPU code 3197 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3198 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3199 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3200 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3201 3202 PrintGPUUserData Data; 3203 Data.PPCGProg = PPCGProg; 3204 3205 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3206 Options = 3207 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3208 P = isl_ast_node_print(Tree, P, Options); 3209 char *String = isl_printer_get_str(P); 3210 outs() << "# host\n"; 3211 outs() << String << "\n"; 3212 free(String); 3213 isl_printer_free(P); 3214 3215 for (auto Kernel : Data.Kernels) { 3216 outs() << "# kernel" << Kernel->id << "\n"; 3217 printKernel(Kernel); 3218 } 3219 } 3220 3221 // Generate a GPU program using PPCG. 3222 // 3223 // GPU mapping consists of multiple steps: 3224 // 3225 // 1) Compute new schedule for the program. 3226 // 2) Map schedule to GPU (TODO) 3227 // 3) Generate code for new schedule (TODO) 3228 // 3229 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3230 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3231 // strategy directly from this pass. 3232 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3233 3234 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3235 3236 PPCGGen->ctx = S->getIslCtx().get(); 3237 PPCGGen->options = PPCGScop->options; 3238 PPCGGen->print = nullptr; 3239 PPCGGen->print_user = nullptr; 3240 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3241 PPCGGen->prog = PPCGProg; 3242 PPCGGen->tree = nullptr; 3243 PPCGGen->types.n = 0; 3244 PPCGGen->types.name = nullptr; 3245 PPCGGen->sizes = nullptr; 3246 PPCGGen->used_sizes = nullptr; 3247 PPCGGen->kernel_id = 0; 3248 3249 // Set scheduling strategy to same strategy PPCG is using. 3250 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3251 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3252 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3253 3254 isl_schedule *Schedule = get_schedule(PPCGGen); 3255 3256 int has_permutable = has_any_permutable_node(Schedule); 3257 3258 Schedule = 3259 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3260 3261 if (!has_permutable || has_permutable < 0) { 3262 Schedule = isl_schedule_free(Schedule); 3263 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3264 << " does not have permutable bands. Bailing out\n";); 3265 } else { 3266 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3267 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3268 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3269 } 3270 3271 if (DumpSchedule) { 3272 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3273 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3274 P = isl_printer_print_str(P, "Schedule\n"); 3275 P = isl_printer_print_str(P, "========\n"); 3276 if (Schedule) 3277 P = isl_printer_print_schedule(P, Schedule); 3278 else 3279 P = isl_printer_print_str(P, "No schedule found\n"); 3280 3281 outs() << isl_printer_get_str(P) << "\n"; 3282 isl_printer_free(P); 3283 } 3284 3285 if (DumpCode) { 3286 outs() << "Code\n"; 3287 outs() << "====\n"; 3288 if (PPCGGen->tree) 3289 printGPUTree(PPCGGen->tree, PPCGProg); 3290 else 3291 outs() << "No code generated\n"; 3292 } 3293 3294 isl_schedule_free(Schedule); 3295 3296 return PPCGGen; 3297 } 3298 3299 /// Free gpu_gen structure. 3300 /// 3301 /// @param PPCGGen The ppcg_gen object to free. 3302 void freePPCGGen(gpu_gen *PPCGGen) { 3303 isl_ast_node_free(PPCGGen->tree); 3304 isl_union_map_free(PPCGGen->sizes); 3305 isl_union_map_free(PPCGGen->used_sizes); 3306 free(PPCGGen); 3307 } 3308 3309 /// Free the options in the ppcg scop structure. 3310 /// 3311 /// ppcg is not freeing these options for us. To avoid leaks we do this 3312 /// ourselves. 3313 /// 3314 /// @param PPCGScop The scop referencing the options to free. 3315 void freeOptions(ppcg_scop *PPCGScop) { 3316 free(PPCGScop->options->debug); 3317 PPCGScop->options->debug = nullptr; 3318 free(PPCGScop->options); 3319 PPCGScop->options = nullptr; 3320 } 3321 3322 /// Approximate the number of points in the set. 3323 /// 3324 /// This function returns an ast expression that overapproximates the number 3325 /// of points in an isl set through the rectangular hull surrounding this set. 3326 /// 3327 /// @param Set The set to count. 3328 /// @param Build The isl ast build object to use for creating the ast 3329 /// expression. 3330 /// 3331 /// @returns An approximation of the number of points in the set. 3332 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3333 __isl_keep isl_ast_build *Build) { 3334 3335 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3336 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3337 3338 isl_space *Space = isl_set_get_space(Set); 3339 Space = isl_space_params(Space); 3340 auto *Univ = isl_set_universe(Space); 3341 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3342 3343 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3344 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3345 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3346 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3347 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3348 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3349 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3350 } 3351 3352 isl_set_free(Set); 3353 isl_pw_aff_free(OneAff); 3354 3355 return Expr; 3356 } 3357 3358 /// Approximate a number of dynamic instructions executed by a given 3359 /// statement. 3360 /// 3361 /// @param Stmt The statement for which to compute the number of dynamic 3362 /// instructions. 3363 /// @param Build The isl ast build object to use for creating the ast 3364 /// expression. 3365 /// @returns An approximation of the number of dynamic instructions executed 3366 /// by @p Stmt. 3367 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3368 __isl_keep isl_ast_build *Build) { 3369 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3370 3371 long InstCount = 0; 3372 3373 if (Stmt.isBlockStmt()) { 3374 auto *BB = Stmt.getBasicBlock(); 3375 InstCount = std::distance(BB->begin(), BB->end()); 3376 } else { 3377 auto *R = Stmt.getRegion(); 3378 3379 for (auto *BB : R->blocks()) { 3380 InstCount += std::distance(BB->begin(), BB->end()); 3381 } 3382 } 3383 3384 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3385 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3386 return isl_ast_expr_mul(InstExpr, Iterations); 3387 } 3388 3389 /// Approximate dynamic instructions executed in scop. 3390 /// 3391 /// @param S The scop for which to approximate dynamic instructions. 3392 /// @param Build The isl ast build object to use for creating the ast 3393 /// expression. 3394 /// @returns An approximation of the number of dynamic instructions executed 3395 /// in @p S. 3396 __isl_give isl_ast_expr * 3397 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3398 isl_ast_expr *Instructions; 3399 3400 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3401 Instructions = isl_ast_expr_from_val(Zero); 3402 3403 for (ScopStmt &Stmt : S) { 3404 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3405 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3406 } 3407 return Instructions; 3408 } 3409 3410 /// Create a check that ensures sufficient compute in scop. 3411 /// 3412 /// @param S The scop for which to ensure sufficient compute. 3413 /// @param Build The isl ast build object to use for creating the ast 3414 /// expression. 3415 /// @returns An expression that evaluates to TRUE in case of sufficient 3416 /// compute and to FALSE, otherwise. 3417 __isl_give isl_ast_expr * 3418 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3419 auto Iterations = getNumberOfIterations(S, Build); 3420 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3421 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3422 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3423 } 3424 3425 /// Check if the basic block contains a function we cannot codegen for GPU 3426 /// kernels. 3427 /// 3428 /// If this basic block does something with a `Function` other than calling 3429 /// a function that we support in a kernel, return true. 3430 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3431 bool AllowCUDALibDevice) { 3432 for (const Instruction &Inst : *BB) { 3433 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3434 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3435 AllowCUDALibDevice)) 3436 continue; 3437 3438 for (Value *Op : Inst.operands()) 3439 // Look for (<func-type>*) among operands of Inst 3440 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3441 if (isa<FunctionType>(PtrTy->getElementType())) { 3442 LLVM_DEBUG(dbgs() 3443 << Inst << " has illegal use of function in kernel.\n"); 3444 return true; 3445 } 3446 } 3447 } 3448 return false; 3449 } 3450 3451 /// Return whether the Scop S uses functions in a way that we do not support. 3452 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3453 for (auto &Stmt : S) { 3454 if (Stmt.isBlockStmt()) { 3455 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3456 AllowCUDALibDevice)) 3457 return true; 3458 } else { 3459 assert(Stmt.isRegionStmt() && 3460 "Stmt was neither block nor region statement"); 3461 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3462 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3463 return true; 3464 } 3465 } 3466 return false; 3467 } 3468 3469 /// Generate code for a given GPU AST described by @p Root. 3470 /// 3471 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3472 /// @param Prog The GPU Program to generate code for. 3473 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3474 ScopAnnotator Annotator; 3475 Annotator.buildAliasScopes(*S); 3476 3477 Region *R = &S->getRegion(); 3478 3479 simplifyRegion(R, DT, LI, RI); 3480 3481 BasicBlock *EnteringBB = R->getEnteringBlock(); 3482 3483 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 3484 IRInserter(Annotator)); 3485 Builder.SetInsertPoint(EnteringBB->getTerminator()); 3486 3487 // Only build the run-time condition and parameters _after_ having 3488 // introduced the conditional branch. This is important as the conditional 3489 // branch will guard the original scop from new induction variables that 3490 // the SCEVExpander may introduce while code generating the parameters and 3491 // which may introduce scalar dependences that prevent us from correctly 3492 // code generating this scop. 3493 BBPair StartExitBlocks; 3494 BranchInst *CondBr = nullptr; 3495 std::tie(StartExitBlocks, CondBr) = 3496 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3497 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3498 3499 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3500 3501 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3502 StartBlock, Prog, Runtime, Architecture); 3503 3504 // TODO: Handle LICM 3505 auto SplitBlock = StartBlock->getSinglePredecessor(); 3506 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3507 3508 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3509 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3510 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3511 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3512 isl_ast_build_free(Build); 3513 3514 // preload invariant loads. Note: This should happen before the RTC 3515 // because the RTC may depend on values that are invariant load hoisted. 3516 if (!NodeBuilder.preloadInvariantLoads()) { 3517 // Patch the introduced branch condition to ensure that we always execute 3518 // the original SCoP. 3519 auto *FalseI1 = Builder.getFalse(); 3520 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3521 SplitBBTerm->setOperand(0, FalseI1); 3522 3523 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3524 S->getFunction().getName() + 3525 " | Scop Region: " + S->getNameStr()); 3526 // adjust the dominator tree accordingly. 3527 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3528 assert(ExitingBlock); 3529 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3530 assert(MergeBlock); 3531 polly::markBlockUnreachable(*StartBlock, Builder); 3532 polly::markBlockUnreachable(*ExitingBlock, Builder); 3533 auto *ExitingBB = S->getExitingBlock(); 3534 assert(ExitingBB); 3535 3536 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3537 DT->eraseNode(ExitingBlock); 3538 isl_ast_expr_free(Condition); 3539 isl_ast_node_free(Root); 3540 } else { 3541 3542 if (polly::PerfMonitoring) { 3543 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3544 P.initialize(); 3545 P.insertRegionStart(SplitBlock->getTerminator()); 3546 3547 // TODO: actually think if this is the correct exiting block to place 3548 // the `end` performance marker. Invariant load hoisting changes 3549 // the CFG in a way that I do not precisely understand, so I 3550 // (Siddharth<[email protected]>) should come back to this and 3551 // think about which exiting block to use. 3552 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3553 assert(ExitingBlock); 3554 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3555 P.insertRegionEnd(MergeBlock->getTerminator()); 3556 } 3557 3558 NodeBuilder.addParameters(S->getContext().release()); 3559 Value *RTC = NodeBuilder.createRTC(Condition); 3560 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3561 3562 Builder.SetInsertPoint(&*StartBlock->begin()); 3563 3564 NodeBuilder.create(Root); 3565 } 3566 3567 /// In case a sequential kernel has more surrounding loops as any parallel 3568 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3569 /// point in running it on a GPU. 3570 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3571 CondBr->setOperand(0, Builder.getFalse()); 3572 3573 if (!NodeBuilder.BuildSuccessful) 3574 CondBr->setOperand(0, Builder.getFalse()); 3575 } 3576 3577 bool runOnScop(Scop &CurrentScop) override { 3578 S = &CurrentScop; 3579 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3580 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3581 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3582 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3583 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3584 3585 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3586 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3587 3588 // We currently do not support functions other than intrinsics inside 3589 // kernels, as code generation will need to offload function calls to the 3590 // kernel. This may lead to a kernel trying to call a function on the host. 3591 // This also allows us to prevent codegen from trying to take the 3592 // address of an intrinsic function to send to the kernel. 3593 if (containsInvalidKernelFunction(CurrentScop, 3594 Architecture == GPUArch::NVPTX64)) { 3595 LLVM_DEBUG( 3596 dbgs() << getUniqueScopName(S) 3597 << " contains function which cannot be materialised in a GPU " 3598 "kernel. Bailing out.\n";); 3599 return false; 3600 } 3601 3602 auto PPCGScop = createPPCGScop(); 3603 auto PPCGProg = createPPCGProg(PPCGScop); 3604 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3605 3606 if (PPCGGen->tree) { 3607 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3608 CurrentScop.markAsToBeSkipped(); 3609 } else { 3610 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3611 << " has empty PPCGGen->tree. Bailing out.\n"); 3612 } 3613 3614 freeOptions(PPCGScop); 3615 freePPCGGen(PPCGGen); 3616 gpu_prog_free(PPCGProg); 3617 ppcg_scop_free(PPCGScop); 3618 3619 return true; 3620 } 3621 3622 void printScop(raw_ostream &, Scop &) const override {} 3623 3624 void getAnalysisUsage(AnalysisUsage &AU) const override { 3625 ScopPass::getAnalysisUsage(AU); 3626 3627 AU.addRequired<DominatorTreeWrapperPass>(); 3628 AU.addRequired<RegionInfoPass>(); 3629 AU.addRequired<ScalarEvolutionWrapperPass>(); 3630 AU.addRequired<ScopDetectionWrapperPass>(); 3631 AU.addRequired<ScopInfoRegionPass>(); 3632 AU.addRequired<LoopInfoWrapperPass>(); 3633 3634 // FIXME: We do not yet add regions for the newly generated code to the 3635 // region tree. 3636 } 3637 }; 3638 } // namespace 3639 3640 char PPCGCodeGeneration::ID = 1; 3641 3642 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3643 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3644 generator->Runtime = Runtime; 3645 generator->Architecture = Arch; 3646 return generator; 3647 } 3648 3649 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3650 "Polly - Apply PPCG translation to SCOP", false, false) 3651 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3652 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3653 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3654 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3655 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3656 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3657 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3658 "Polly - Apply PPCG translation to SCOP", false, false) 3659