1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
10 // GPU mapping strategy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/CodeGen/PPCGCodeGeneration.h"
15 #include "polly/CodeGen/CodeGeneration.h"
16 #include "polly/CodeGen/IslAst.h"
17 #include "polly/CodeGen/IslNodeBuilder.h"
18 #include "polly/CodeGen/PerfMonitor.h"
19 #include "polly/CodeGen/Utils.h"
20 #include "polly/DependenceInfo.h"
21 #include "polly/LinkAllPasses.h"
22 #include "polly/Options.h"
23 #include "polly/ScopDetection.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/IntrinsicsNVPTX.h"
29 #include "llvm/IR/LegacyPassManager.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/IRReader/IRReader.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Linker/Linker.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "isl/union_map.h"
40 
41 extern "C" {
42 #include "ppcg/cuda.h"
43 #include "ppcg/gpu.h"
44 #include "ppcg/ppcg.h"
45 }
46 
47 #include "llvm/Support/Debug.h"
48 
49 using namespace polly;
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "polly-codegen-ppcg"
53 
54 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
55                                   cl::desc("Dump the computed GPU Schedule"),
56                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
57                                   cl::cat(PollyCategory));
58 
59 static cl::opt<bool>
60     DumpCode("polly-acc-dump-code",
61              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
62              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
63 
64 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
65                                   cl::desc("Dump the kernel LLVM-IR"),
66                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
67                                   cl::cat(PollyCategory));
68 
69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
70                                    cl::desc("Dump the kernel assembly code"),
71                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
72                                    cl::cat(PollyCategory));
73 
74 static cl::opt<bool> FastMath("polly-acc-fastmath",
75                               cl::desc("Allow unsafe math optimizations"),
76                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
77                               cl::cat(PollyCategory));
78 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
79                                   cl::desc("Use shared memory"), cl::Hidden,
80                                   cl::init(false), cl::ZeroOrMore,
81                                   cl::cat(PollyCategory));
82 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
83                                    cl::desc("Use private memory"), cl::Hidden,
84                                    cl::init(false), cl::ZeroOrMore,
85                                    cl::cat(PollyCategory));
86 
87 bool polly::PollyManagedMemory;
88 static cl::opt<bool, true>
89     XManagedMemory("polly-acc-codegen-managed-memory",
90                    cl::desc("Generate Host kernel code assuming"
91                             " that all memory has been"
92                             " declared as managed memory"),
93                    cl::location(PollyManagedMemory), cl::Hidden,
94                    cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
95 
96 static cl::opt<bool>
97     FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
98                               cl::desc("Fail and generate a backtrace if"
99                                        " verifyModule fails on the GPU "
100                                        " kernel module."),
101                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
102                               cl::cat(PollyCategory));
103 
104 static cl::opt<std::string> CUDALibDevice(
105     "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
106     cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
107     cl::ZeroOrMore, cl::cat(PollyCategory));
108 
109 static cl::opt<std::string>
110     CudaVersion("polly-acc-cuda-version",
111                 cl::desc("The CUDA version to compile for"), cl::Hidden,
112                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
113 
114 static cl::opt<int>
115     MinCompute("polly-acc-mincompute",
116                cl::desc("Minimal number of compute statements to run on GPU."),
117                cl::Hidden, cl::init(10 * 512 * 512));
118 
119 extern bool polly::PerfMonitoring;
120 
121 /// Return  a unique name for a Scop, which is the scop region with the
122 /// function name.
123 std::string getUniqueScopName(const Scop *S) {
124   return "Scop Region: " + S->getNameStr() +
125          " | Function: " + std::string(S->getFunction().getName());
126 }
127 
128 /// Used to store information PPCG wants for kills. This information is
129 /// used by live range reordering.
130 ///
131 /// @see computeLiveRangeReordering
132 /// @see GPUNodeBuilder::createPPCGScop
133 /// @see GPUNodeBuilder::createPPCGProg
134 struct MustKillsInfo {
135   /// Collection of all kill statements that will be sequenced at the end of
136   /// PPCGScop->schedule.
137   ///
138   /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
139   /// which merges schedules in *arbitrary* order.
140   /// (we don't care about the order of the kills anyway).
141   isl::schedule KillsSchedule;
142   /// Map from kill statement instances to scalars that need to be
143   /// killed.
144   ///
145   /// We currently derive kill information for:
146   ///  1. phi nodes. PHI nodes are not alive outside the scop and can
147   ///     consequently all be killed.
148   ///  2. Scalar arrays that are not used outside the Scop. This is
149   ///     checked by `isScalarUsesContainedInScop`.
150   /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
151   isl::union_map TaggedMustKills;
152 
153   /// Tagged must kills stripped of the tags.
154   /// [params] -> { Stmt_phantom[]  -> scalar_to_kill[] }
155   isl::union_map MustKills;
156 
157   MustKillsInfo() : KillsSchedule(nullptr) {}
158 };
159 
160 /// Check if SAI's uses are entirely contained within Scop S.
161 /// If a scalar is used only with a Scop, we are free to kill it, as no data
162 /// can flow in/out of the value any more.
163 /// @see computeMustKillsInfo
164 static bool isScalarUsesContainedInScop(const Scop &S,
165                                         const ScopArrayInfo *SAI) {
166   assert(SAI->isValueKind() && "this function only deals with scalars."
167                                " Dealing with arrays required alias analysis");
168 
169   const Region &R = S.getRegion();
170   for (User *U : SAI->getBasePtr()->users()) {
171     Instruction *I = dyn_cast<Instruction>(U);
172     assert(I && "invalid user of scop array info");
173     if (!R.contains(I))
174       return false;
175   }
176   return true;
177 }
178 
179 /// Compute must-kills needed to enable live range reordering with PPCG.
180 ///
181 /// @params S The Scop to compute live range reordering information
182 /// @returns live range reordering information that can be used to setup
183 /// PPCG.
184 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
185   const isl::space ParamSpace = S.getParamSpace();
186   MustKillsInfo Info;
187 
188   // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
189   //      1.1 phi nodes in scop.
190   //      1.2 scalars that are only used within the scop
191   SmallVector<isl::id, 4> KillMemIds;
192   for (ScopArrayInfo *SAI : S.arrays()) {
193     if (SAI->isPHIKind() ||
194         (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
195       KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
196   }
197 
198   Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
199   Info.MustKills = isl::union_map::empty(ParamSpace);
200 
201   // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
202   // schedule:
203   //     - filter: "[control] -> { }"
204   // So, we choose to not create this to keep the output a little nicer,
205   // at the cost of some code complexity.
206   Info.KillsSchedule = nullptr;
207 
208   for (isl::id &ToKillId : KillMemIds) {
209     isl::id KillStmtId = isl::id::alloc(
210         S.getIslCtx(),
211         std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
212 
213     // NOTE: construction of tagged_must_kill:
214     // 2. We need to construct a map:
215     //     [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
216     // To construct this, we use `isl_map_domain_product` on 2 maps`:
217     // 2a. StmtToScalar:
218     //         [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
219     // 2b. PhantomRefToScalar:
220     //         [param] -> { ref_phantom[] -> scalar_to_kill[] }
221     //
222     // Combining these with `isl_map_domain_product` gives us
223     // TaggedMustKill:
224     //     [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
225 
226     // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
227     isl::map StmtToScalar = isl::map::universe(ParamSpace);
228     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
229     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
230 
231     isl::id PhantomRefId = isl::id::alloc(
232         S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
233         nullptr);
234 
235     // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
236     isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
237     PhantomRefToScalar =
238         PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
239     PhantomRefToScalar =
240         PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
241 
242     // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
243     isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
244     Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
245 
246     // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
247     Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
248 
249     // 3. Create the kill schedule of the form:
250     //     "[param] -> { Stmt_phantom[] }"
251     // Then add this to Info.KillsSchedule.
252     isl::space KillStmtSpace = ParamSpace;
253     KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
254     isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
255 
256     isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
257     if (Info.KillsSchedule)
258       Info.KillsSchedule = isl::manage(
259           isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy()));
260     else
261       Info.KillsSchedule = KillSchedule;
262   }
263 
264   return Info;
265 }
266 
267 /// Create the ast expressions for a ScopStmt.
268 ///
269 /// This function is a callback for to generate the ast expressions for each
270 /// of the scheduled ScopStmts.
271 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
272     void *StmtT, __isl_take isl_ast_build *Build_C,
273     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
274                                        isl_id *Id, void *User),
275     void *UserIndex,
276     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
277     void *UserExpr) {
278 
279   ScopStmt *Stmt = (ScopStmt *)StmtT;
280 
281   if (!Stmt || !Build_C)
282     return NULL;
283 
284   isl::ast_build Build = isl::manage_copy(Build_C);
285   isl::ctx Ctx = Build.get_ctx();
286   isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
287 
288   Stmt->setAstBuild(Build);
289 
290   for (MemoryAccess *Acc : *Stmt) {
291     isl::map AddrFunc = Acc->getAddressFunction();
292     AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
293 
294     isl::id RefId = Acc->getId();
295     isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
296 
297     isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
298     MPA = MPA.coalesce();
299     MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
300 
301     isl::ast_expr Access = Build.access_from(MPA);
302     Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
303     RefToExpr = RefToExpr.set(RefId, Access);
304   }
305 
306   return RefToExpr.release();
307 }
308 
309 /// Given a LLVM Type, compute its size in bytes,
310 static int computeSizeInBytes(const Type *T) {
311   int bytes = T->getPrimitiveSizeInBits() / 8;
312   if (bytes == 0)
313     bytes = T->getScalarSizeInBits() / 8;
314   return bytes;
315 }
316 
317 /// Generate code for a GPU specific isl AST.
318 ///
319 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
320 /// generates code for general-purpose AST nodes, with special functionality
321 /// for generating GPU specific user nodes.
322 ///
323 /// @see GPUNodeBuilder::createUser
324 class GPUNodeBuilder : public IslNodeBuilder {
325 public:
326   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
327                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
328                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
329                  gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
330       : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
331         Prog(Prog), Runtime(Runtime), Arch(Arch) {
332     getExprBuilder().setIDToSAI(&IDToSAI);
333   }
334 
335   /// Create after-run-time-check initialization code.
336   void initializeAfterRTH();
337 
338   /// Finalize the generated scop.
339   virtual void finalize();
340 
341   /// Track if the full build process was successful.
342   ///
343   /// This value is set to false, if throughout the build process an error
344   /// occurred which prevents us from generating valid GPU code.
345   bool BuildSuccessful = true;
346 
347   /// The maximal number of loops surrounding a sequential kernel.
348   unsigned DeepestSequential = 0;
349 
350   /// The maximal number of loops surrounding a parallel kernel.
351   unsigned DeepestParallel = 0;
352 
353   /// Return the name to set for the ptx_kernel.
354   std::string getKernelFuncName(int Kernel_id);
355 
356 private:
357   /// A vector of array base pointers for which a new ScopArrayInfo was created.
358   ///
359   /// This vector is used to delete the ScopArrayInfo when it is not needed any
360   /// more.
361   std::vector<Value *> LocalArrays;
362 
363   /// A map from ScopArrays to their corresponding device allocations.
364   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
365 
366   /// The current GPU context.
367   Value *GPUContext;
368 
369   /// The set of isl_ids allocated in the kernel
370   std::vector<isl_id *> KernelIds;
371 
372   /// A module containing GPU code.
373   ///
374   /// This pointer is only set in case we are currently generating GPU code.
375   std::unique_ptr<Module> GPUModule;
376 
377   /// The GPU program we generate code for.
378   gpu_prog *Prog;
379 
380   /// The GPU Runtime implementation to use (OpenCL or CUDA).
381   GPURuntime Runtime;
382 
383   /// The GPU Architecture to target.
384   GPUArch Arch;
385 
386   /// Class to free isl_ids.
387   class IslIdDeleter {
388   public:
389     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
390   };
391 
392   /// A set containing all isl_ids allocated in a GPU kernel.
393   ///
394   /// By releasing this set all isl_ids will be freed.
395   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
396 
397   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
398 
399   /// Create code for user-defined AST nodes.
400   ///
401   /// These AST nodes can be of type:
402   ///
403   ///   - ScopStmt:      A computational statement (TODO)
404   ///   - Kernel:        A GPU kernel call (TODO)
405   ///   - Data-Transfer: A GPU <-> CPU data-transfer
406   ///   - In-kernel synchronization
407   ///   - In-kernel memory copy statement
408   ///
409   /// @param UserStmt The ast node to generate code for.
410   virtual void createUser(__isl_take isl_ast_node *UserStmt);
411 
412   virtual void createFor(__isl_take isl_ast_node *Node);
413 
414   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
415 
416   /// Create code for a data transfer statement
417   ///
418   /// @param TransferStmt The data transfer statement.
419   /// @param Direction The direction in which to transfer data.
420   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
421                           enum DataDirection Direction);
422 
423   /// Find llvm::Values referenced in GPU kernel.
424   ///
425   /// @param Kernel The kernel to scan for llvm::Values
426   ///
427   /// @returns A tuple, whose:
428   ///          - First element contains the set of values referenced by the
429   ///            kernel
430   ///          - Second element contains the set of functions referenced by the
431   ///             kernel. All functions in the set satisfy
432   ///             `isValidFunctionInKernel`.
433   ///          - Third element contains loops that have induction variables
434   ///            which are used in the kernel, *and* these loops are *neither*
435   ///            in the scop, nor do they immediately surroung the Scop.
436   ///            See [Code generation of induction variables of loops outside
437   ///            Scops]
438   std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
439              isl::space>
440   getReferencesInKernel(ppcg_kernel *Kernel);
441 
442   /// Compute the sizes of the execution grid for a given kernel.
443   ///
444   /// @param Kernel The kernel to compute grid sizes for.
445   ///
446   /// @returns A tuple with grid sizes for X and Y dimension
447   std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
448 
449   /// Get the managed array pointer for sending host pointers to the device.
450   /// \note
451   /// This is to be used only with managed memory
452   Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
453 
454   /// Compute the sizes of the thread blocks for a given kernel.
455   ///
456   /// @param Kernel The kernel to compute thread block sizes for.
457   ///
458   /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
459   std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
460 
461   /// Store a specific kernel launch parameter in the array of kernel launch
462   /// parameters.
463   ///
464   /// @param Parameters The list of parameters in which to store.
465   /// @param Param      The kernel launch parameter to store.
466   /// @param Index      The index in the parameter list, at which to store the
467   ///                   parameter.
468   void insertStoreParameter(Instruction *Parameters, Instruction *Param,
469                             int Index);
470 
471   /// Create kernel launch parameters.
472   ///
473   /// @param Kernel        The kernel to create parameters for.
474   /// @param F             The kernel function that has been created.
475   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
476   ///
477   /// @returns A stack allocated array with pointers to the parameter
478   ///          values that are passed to the kernel.
479   Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
480                                 SetVector<Value *> SubtreeValues);
481 
482   /// Create declarations for kernel variable.
483   ///
484   /// This includes shared memory declarations.
485   ///
486   /// @param Kernel        The kernel definition to create variables for.
487   /// @param FN            The function into which to generate the variables.
488   void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
489 
490   /// Add CUDA annotations to module.
491   ///
492   /// Add a set of CUDA annotations that declares the maximal block dimensions
493   /// that will be used to execute the CUDA kernel. This allows the NVIDIA
494   /// PTX compiler to bound the number of allocated registers to ensure the
495   /// resulting kernel is known to run with up to as many block dimensions
496   /// as specified here.
497   ///
498   /// @param M         The module to add the annotations to.
499   /// @param BlockDimX The size of block dimension X.
500   /// @param BlockDimY The size of block dimension Y.
501   /// @param BlockDimZ The size of block dimension Z.
502   void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
503                           Value *BlockDimZ);
504 
505   /// Create GPU kernel.
506   ///
507   /// Code generate the kernel described by @p KernelStmt.
508   ///
509   /// @param KernelStmt The ast node to generate kernel code for.
510   void createKernel(__isl_take isl_ast_node *KernelStmt);
511 
512   /// Generate code that computes the size of an array.
513   ///
514   /// @param Array The array for which to compute a size.
515   Value *getArraySize(gpu_array_info *Array);
516 
517   /// Generate code to compute the minimal offset at which an array is accessed.
518   ///
519   /// The offset of an array is the minimal array location accessed in a scop.
520   ///
521   /// Example:
522   ///
523   ///   for (long i = 0; i < 100; i++)
524   ///     A[i + 42] += ...
525   ///
526   ///   getArrayOffset(A) results in 42.
527   ///
528   /// @param Array The array for which to compute the offset.
529   /// @returns An llvm::Value that contains the offset of the array.
530   Value *getArrayOffset(gpu_array_info *Array);
531 
532   /// Prepare the kernel arguments for kernel code generation
533   ///
534   /// @param Kernel The kernel to generate code for.
535   /// @param FN     The function created for the kernel.
536   void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
537 
538   /// Create kernel function.
539   ///
540   /// Create a kernel function located in a newly created module that can serve
541   /// as target for device code generation. Set the Builder to point to the
542   /// start block of this newly created function.
543   ///
544   /// @param Kernel The kernel to generate code for.
545   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
546   /// @param SubtreeFunctions The set of llvm::Functions referenced by this
547   ///                         kernel.
548   void createKernelFunction(ppcg_kernel *Kernel,
549                             SetVector<Value *> &SubtreeValues,
550                             SetVector<Function *> &SubtreeFunctions);
551 
552   /// Create the declaration of a kernel function.
553   ///
554   /// The kernel function takes as arguments:
555   ///
556   ///   - One i8 pointer for each external array reference used in the kernel.
557   ///   - Host iterators
558   ///   - Parameters
559   ///   - Other LLVM Value references (TODO)
560   ///
561   /// @param Kernel The kernel to generate the function declaration for.
562   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
563   ///
564   /// @returns The newly declared function.
565   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
566                                      SetVector<Value *> &SubtreeValues);
567 
568   /// Insert intrinsic functions to obtain thread and block ids.
569   ///
570   /// @param The kernel to generate the intrinsic functions for.
571   void insertKernelIntrinsics(ppcg_kernel *Kernel);
572 
573   /// Insert function calls to retrieve the SPIR group/local ids.
574   ///
575   /// @param Kernel The kernel to generate the function calls for.
576   /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit.
577   void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit);
578 
579   /// Setup the creation of functions referenced by the GPU kernel.
580   ///
581   /// 1. Create new function declarations in GPUModule which are the same as
582   /// SubtreeFunctions.
583   ///
584   /// 2. Populate IslNodeBuilder::ValueMap with mappings from
585   /// old functions (that come from the original module) to new functions
586   /// (that are created within GPUModule). That way, we generate references
587   /// to the correct function (in GPUModule) in BlockGenerator.
588   ///
589   /// @see IslNodeBuilder::ValueMap
590   /// @see BlockGenerator::GlobalMap
591   /// @see BlockGenerator::getNewValue
592   /// @see GPUNodeBuilder::getReferencesInKernel.
593   ///
594   /// @param SubtreeFunctions The set of llvm::Functions referenced by
595   ///                         this kernel.
596   void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
597 
598   /// Create a global-to-shared or shared-to-global copy statement.
599   ///
600   /// @param CopyStmt The copy statement to generate code for
601   void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
602 
603   /// Create code for a ScopStmt called in @p Expr.
604   ///
605   /// @param Expr The expression containing the call.
606   /// @param KernelStmt The kernel statement referenced in the call.
607   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
608 
609   /// Create an in-kernel synchronization call.
610   void createKernelSync();
611 
612   /// Create a PTX assembly string for the current GPU kernel.
613   ///
614   /// @returns A string containing the corresponding PTX assembly code.
615   std::string createKernelASM();
616 
617   /// Remove references from the dominator tree to the kernel function @p F.
618   ///
619   /// @param F The function to remove references to.
620   void clearDominators(Function *F);
621 
622   /// Remove references from scalar evolution to the kernel function @p F.
623   ///
624   /// @param F The function to remove references to.
625   void clearScalarEvolution(Function *F);
626 
627   /// Remove references from loop info to the kernel function @p F.
628   ///
629   /// @param F The function to remove references to.
630   void clearLoops(Function *F);
631 
632   /// Check if the scop requires to be linked with CUDA's libdevice.
633   bool requiresCUDALibDevice();
634 
635   /// Link with the NVIDIA libdevice library (if needed and available).
636   void addCUDALibDevice();
637 
638   /// Finalize the generation of the kernel function.
639   ///
640   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
641   /// dump its IR to stderr.
642   ///
643   /// @returns The Assembly string of the kernel.
644   std::string finalizeKernelFunction();
645 
646   /// Finalize the generation of the kernel arguments.
647   ///
648   /// This function ensures that not-read-only scalars used in a kernel are
649   /// stored back to the global memory location they are backed with before
650   /// the kernel terminates.
651   ///
652   /// @params Kernel The kernel to finalize kernel arguments for.
653   void finalizeKernelArguments(ppcg_kernel *Kernel);
654 
655   /// Create code that allocates memory to store arrays on device.
656   void allocateDeviceArrays();
657 
658   /// Create code to prepare the managed device pointers.
659   void prepareManagedDeviceArrays();
660 
661   /// Free all allocated device arrays.
662   void freeDeviceArrays();
663 
664   /// Create a call to initialize the GPU context.
665   ///
666   /// @returns A pointer to the newly initialized context.
667   Value *createCallInitContext();
668 
669   /// Create a call to get the device pointer for a kernel allocation.
670   ///
671   /// @param Allocation The Polly GPU allocation
672   ///
673   /// @returns The device parameter corresponding to this allocation.
674   Value *createCallGetDevicePtr(Value *Allocation);
675 
676   /// Create a call to free the GPU context.
677   ///
678   /// @param Context A pointer to an initialized GPU context.
679   void createCallFreeContext(Value *Context);
680 
681   /// Create a call to allocate memory on the device.
682   ///
683   /// @param Size The size of memory to allocate
684   ///
685   /// @returns A pointer that identifies this allocation.
686   Value *createCallAllocateMemoryForDevice(Value *Size);
687 
688   /// Create a call to free a device array.
689   ///
690   /// @param Array The device array to free.
691   void createCallFreeDeviceMemory(Value *Array);
692 
693   /// Create a call to copy data from host to device.
694   ///
695   /// @param HostPtr A pointer to the host data that should be copied.
696   /// @param DevicePtr A device pointer specifying the location to copy to.
697   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
698                                       Value *Size);
699 
700   /// Create a call to copy data from device to host.
701   ///
702   /// @param DevicePtr A pointer to the device data that should be copied.
703   /// @param HostPtr A host pointer specifying the location to copy to.
704   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
705                                       Value *Size);
706 
707   /// Create a call to synchronize Host & Device.
708   /// \note
709   /// This is to be used only with managed memory.
710   void createCallSynchronizeDevice();
711 
712   /// Create a call to get a kernel from an assembly string.
713   ///
714   /// @param Buffer The string describing the kernel.
715   /// @param Entry  The name of the kernel function to call.
716   ///
717   /// @returns A pointer to a kernel object
718   Value *createCallGetKernel(Value *Buffer, Value *Entry);
719 
720   /// Create a call to free a GPU kernel.
721   ///
722   /// @param GPUKernel THe kernel to free.
723   void createCallFreeKernel(Value *GPUKernel);
724 
725   /// Create a call to launch a GPU kernel.
726   ///
727   /// @param GPUKernel  The kernel to launch.
728   /// @param GridDimX   The size of the first grid dimension.
729   /// @param GridDimY   The size of the second grid dimension.
730   /// @param GridBlockX The size of the first block dimension.
731   /// @param GridBlockY The size of the second block dimension.
732   /// @param GridBlockZ The size of the third block dimension.
733   /// @param Parameters A pointer to an array that contains itself pointers to
734   ///                   the parameter values passed for each kernel argument.
735   void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
736                               Value *GridDimY, Value *BlockDimX,
737                               Value *BlockDimY, Value *BlockDimZ,
738                               Value *Parameters);
739 };
740 
741 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
742   return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
743          std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
744 }
745 
746 void GPUNodeBuilder::initializeAfterRTH() {
747   BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
748                                  &*Builder.GetInsertPoint(), &DT, &LI);
749   NewBB->setName("polly.acc.initialize");
750   Builder.SetInsertPoint(&NewBB->front());
751 
752   GPUContext = createCallInitContext();
753 
754   if (!PollyManagedMemory)
755     allocateDeviceArrays();
756   else
757     prepareManagedDeviceArrays();
758 }
759 
760 void GPUNodeBuilder::finalize() {
761   if (!PollyManagedMemory)
762     freeDeviceArrays();
763 
764   createCallFreeContext(GPUContext);
765   IslNodeBuilder::finalize();
766 }
767 
768 void GPUNodeBuilder::allocateDeviceArrays() {
769   assert(!PollyManagedMemory &&
770          "Managed memory will directly send host pointers "
771          "to the kernel. There is no need for device arrays");
772   isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
773 
774   for (int i = 0; i < Prog->n_array; ++i) {
775     gpu_array_info *Array = &Prog->array[i];
776     auto *ScopArray = (ScopArrayInfo *)Array->user;
777     std::string DevArrayName("p_dev_array_");
778     DevArrayName.append(Array->name);
779 
780     Value *ArraySize = getArraySize(Array);
781     Value *Offset = getArrayOffset(Array);
782     if (Offset)
783       ArraySize = Builder.CreateSub(
784           ArraySize,
785           Builder.CreateMul(Offset,
786                             Builder.getInt64(ScopArray->getElemSizeInBytes())));
787     const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
788     // It makes no sense to have an array of size 0. The CUDA API will
789     // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
790     // choose to be defensive and catch this at the compile phase. It is
791     // most likely that we are doing something wrong with size computation.
792     if (SizeSCEV->isZero()) {
793       errs() << getUniqueScopName(&S)
794              << " has computed array size 0: " << *ArraySize
795              << " | for array: " << *(ScopArray->getBasePtr())
796              << ". This is illegal, exiting.\n";
797       report_fatal_error("array size was computed to be 0");
798     }
799 
800     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
801     DevArray->setName(DevArrayName);
802     DeviceAllocations[ScopArray] = DevArray;
803   }
804 
805   isl_ast_build_free(Build);
806 }
807 
808 void GPUNodeBuilder::prepareManagedDeviceArrays() {
809   assert(PollyManagedMemory &&
810          "Device array most only be prepared in managed-memory mode");
811   for (int i = 0; i < Prog->n_array; ++i) {
812     gpu_array_info *Array = &Prog->array[i];
813     ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
814     Value *HostPtr;
815 
816     if (gpu_array_is_scalar(Array))
817       HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
818     else
819       HostPtr = ScopArray->getBasePtr();
820     HostPtr = getLatestValue(HostPtr);
821 
822     Value *Offset = getArrayOffset(Array);
823     if (Offset) {
824       HostPtr = Builder.CreatePointerCast(
825           HostPtr, ScopArray->getElementType()->getPointerTo());
826       HostPtr = Builder.CreateGEP(HostPtr, Offset);
827     }
828 
829     HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
830     DeviceAllocations[ScopArray] = HostPtr;
831   }
832 }
833 
834 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
835                                         Value *BlockDimY, Value *BlockDimZ) {
836   auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
837 
838   for (auto &F : *M) {
839     if (F.getCallingConv() != CallingConv::PTX_Kernel)
840       continue;
841 
842     Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
843 
844     Metadata *Elements[] = {
845         ValueAsMetadata::get(&F),   MDString::get(M->getContext(), "maxntidx"),
846         ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
847         ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
848         ValueAsMetadata::get(V[2]),
849     };
850     MDNode *Node = MDNode::get(M->getContext(), Elements);
851     AnnotationNode->addOperand(Node);
852   }
853 }
854 
855 void GPUNodeBuilder::freeDeviceArrays() {
856   assert(!PollyManagedMemory && "Managed memory does not use device arrays");
857   for (auto &Array : DeviceAllocations)
858     createCallFreeDeviceMemory(Array.second);
859 }
860 
861 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
862   const char *Name = "polly_getKernel";
863   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
864   Function *F = M->getFunction(Name);
865 
866   // If F is not available, declare it.
867   if (!F) {
868     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
869     std::vector<Type *> Args;
870     Args.push_back(Builder.getInt8PtrTy());
871     Args.push_back(Builder.getInt8PtrTy());
872     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
873     F = Function::Create(Ty, Linkage, Name, M);
874   }
875 
876   return Builder.CreateCall(F, {Buffer, Entry});
877 }
878 
879 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
880   const char *Name = "polly_getDevicePtr";
881   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
882   Function *F = M->getFunction(Name);
883 
884   // If F is not available, declare it.
885   if (!F) {
886     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
887     std::vector<Type *> Args;
888     Args.push_back(Builder.getInt8PtrTy());
889     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
890     F = Function::Create(Ty, Linkage, Name, M);
891   }
892 
893   return Builder.CreateCall(F, {Allocation});
894 }
895 
896 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
897                                             Value *GridDimY, Value *BlockDimX,
898                                             Value *BlockDimY, Value *BlockDimZ,
899                                             Value *Parameters) {
900   const char *Name = "polly_launchKernel";
901   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
902   Function *F = M->getFunction(Name);
903 
904   // If F is not available, declare it.
905   if (!F) {
906     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
907     std::vector<Type *> Args;
908     Args.push_back(Builder.getInt8PtrTy());
909     Args.push_back(Builder.getInt32Ty());
910     Args.push_back(Builder.getInt32Ty());
911     Args.push_back(Builder.getInt32Ty());
912     Args.push_back(Builder.getInt32Ty());
913     Args.push_back(Builder.getInt32Ty());
914     Args.push_back(Builder.getInt8PtrTy());
915     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
916     F = Function::Create(Ty, Linkage, Name, M);
917   }
918 
919   Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
920                          BlockDimZ, Parameters});
921 }
922 
923 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
924   const char *Name = "polly_freeKernel";
925   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
926   Function *F = M->getFunction(Name);
927 
928   // If F is not available, declare it.
929   if (!F) {
930     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
931     std::vector<Type *> Args;
932     Args.push_back(Builder.getInt8PtrTy());
933     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
934     F = Function::Create(Ty, Linkage, Name, M);
935   }
936 
937   Builder.CreateCall(F, {GPUKernel});
938 }
939 
940 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
941   assert(!PollyManagedMemory &&
942          "Managed memory does not allocate or free memory "
943          "for device");
944   const char *Name = "polly_freeDeviceMemory";
945   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
946   Function *F = M->getFunction(Name);
947 
948   // If F is not available, declare it.
949   if (!F) {
950     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
951     std::vector<Type *> Args;
952     Args.push_back(Builder.getInt8PtrTy());
953     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
954     F = Function::Create(Ty, Linkage, Name, M);
955   }
956 
957   Builder.CreateCall(F, {Array});
958 }
959 
960 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
961   assert(!PollyManagedMemory &&
962          "Managed memory does not allocate or free memory "
963          "for device");
964   const char *Name = "polly_allocateMemoryForDevice";
965   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
966   Function *F = M->getFunction(Name);
967 
968   // If F is not available, declare it.
969   if (!F) {
970     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
971     std::vector<Type *> Args;
972     Args.push_back(Builder.getInt64Ty());
973     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
974     F = Function::Create(Ty, Linkage, Name, M);
975   }
976 
977   return Builder.CreateCall(F, {Size});
978 }
979 
980 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
981                                                     Value *DeviceData,
982                                                     Value *Size) {
983   assert(!PollyManagedMemory &&
984          "Managed memory does not transfer memory between "
985          "device and host");
986   const char *Name = "polly_copyFromHostToDevice";
987   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
988   Function *F = M->getFunction(Name);
989 
990   // If F is not available, declare it.
991   if (!F) {
992     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
993     std::vector<Type *> Args;
994     Args.push_back(Builder.getInt8PtrTy());
995     Args.push_back(Builder.getInt8PtrTy());
996     Args.push_back(Builder.getInt64Ty());
997     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
998     F = Function::Create(Ty, Linkage, Name, M);
999   }
1000 
1001   Builder.CreateCall(F, {HostData, DeviceData, Size});
1002 }
1003 
1004 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1005                                                     Value *HostData,
1006                                                     Value *Size) {
1007   assert(!PollyManagedMemory &&
1008          "Managed memory does not transfer memory between "
1009          "device and host");
1010   const char *Name = "polly_copyFromDeviceToHost";
1011   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1012   Function *F = M->getFunction(Name);
1013 
1014   // If F is not available, declare it.
1015   if (!F) {
1016     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1017     std::vector<Type *> Args;
1018     Args.push_back(Builder.getInt8PtrTy());
1019     Args.push_back(Builder.getInt8PtrTy());
1020     Args.push_back(Builder.getInt64Ty());
1021     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1022     F = Function::Create(Ty, Linkage, Name, M);
1023   }
1024 
1025   Builder.CreateCall(F, {DeviceData, HostData, Size});
1026 }
1027 
1028 void GPUNodeBuilder::createCallSynchronizeDevice() {
1029   assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1030                                "managed memory");
1031   const char *Name = "polly_synchronizeDevice";
1032   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1033   Function *F = M->getFunction(Name);
1034 
1035   // If F is not available, declare it.
1036   if (!F) {
1037     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1038     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1039     F = Function::Create(Ty, Linkage, Name, M);
1040   }
1041 
1042   Builder.CreateCall(F);
1043 }
1044 
1045 Value *GPUNodeBuilder::createCallInitContext() {
1046   const char *Name;
1047 
1048   switch (Runtime) {
1049   case GPURuntime::CUDA:
1050     Name = "polly_initContextCUDA";
1051     break;
1052   case GPURuntime::OpenCL:
1053     Name = "polly_initContextCL";
1054     break;
1055   }
1056 
1057   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1058   Function *F = M->getFunction(Name);
1059 
1060   // If F is not available, declare it.
1061   if (!F) {
1062     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1063     std::vector<Type *> Args;
1064     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1065     F = Function::Create(Ty, Linkage, Name, M);
1066   }
1067 
1068   return Builder.CreateCall(F, {});
1069 }
1070 
1071 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1072   const char *Name = "polly_freeContext";
1073   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1074   Function *F = M->getFunction(Name);
1075 
1076   // If F is not available, declare it.
1077   if (!F) {
1078     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1079     std::vector<Type *> Args;
1080     Args.push_back(Builder.getInt8PtrTy());
1081     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1082     F = Function::Create(Ty, Linkage, Name, M);
1083   }
1084 
1085   Builder.CreateCall(F, {Context});
1086 }
1087 
1088 /// Check if one string is a prefix of another.
1089 ///
1090 /// @param String The string in which to look for the prefix.
1091 /// @param Prefix The prefix to look for.
1092 static bool isPrefix(std::string String, std::string Prefix) {
1093   return String.find(Prefix) == 0;
1094 }
1095 
1096 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1097   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1098   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1099 
1100   if (!gpu_array_is_scalar(Array)) {
1101     isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound);
1102 
1103     isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1104     isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1105 
1106     for (unsigned int i = 1; i < Array->n_index; i++) {
1107       isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1108       isl::ast_expr Expr = Build.expr_from(Bound_I);
1109       Res = Res.mul(Expr);
1110     }
1111 
1112     Value *NumElements = ExprBuilder.create(Res.release());
1113     if (NumElements->getType() != ArraySize->getType())
1114       NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1115     ArraySize = Builder.CreateMul(ArraySize, NumElements);
1116   }
1117   return ArraySize;
1118 }
1119 
1120 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1121   if (gpu_array_is_scalar(Array))
1122     return nullptr;
1123 
1124   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1125 
1126   isl::set Min = isl::manage_copy(Array->extent).lexmin();
1127 
1128   isl::set ZeroSet = isl::set::universe(Min.get_space());
1129 
1130   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++)
1131     ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1132 
1133   if (Min.is_subset(ZeroSet)) {
1134     return nullptr;
1135   }
1136 
1137   isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1138 
1139   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) {
1140     if (i > 0) {
1141       isl::pw_aff Bound_I =
1142           isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1143       isl::ast_expr BExpr = Build.expr_from(Bound_I);
1144       Result = Result.mul(BExpr);
1145     }
1146     isl::pw_aff DimMin = Min.dim_min(i);
1147     isl::ast_expr MExpr = Build.expr_from(DimMin);
1148     Result = Result.add(MExpr);
1149   }
1150 
1151   return ExprBuilder.create(Result.release());
1152 }
1153 
1154 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1155                                              ScopArrayInfo *ArrayInfo) {
1156   assert(PollyManagedMemory && "Only used when you wish to get a host "
1157                                "pointer for sending data to the kernel, "
1158                                "with managed memory");
1159   std::map<ScopArrayInfo *, Value *>::iterator it;
1160   it = DeviceAllocations.find(ArrayInfo);
1161   assert(it != DeviceAllocations.end() &&
1162          "Device array expected to be available");
1163   return it->second;
1164 }
1165 
1166 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1167                                         enum DataDirection Direction) {
1168   assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1169   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1170   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1171   isl_id *Id = isl_ast_expr_get_id(Arg);
1172   auto Array = (gpu_array_info *)isl_id_get_user(Id);
1173   auto ScopArray = (ScopArrayInfo *)(Array->user);
1174 
1175   Value *Size = getArraySize(Array);
1176   Value *Offset = getArrayOffset(Array);
1177   Value *DevPtr = DeviceAllocations[ScopArray];
1178 
1179   Value *HostPtr;
1180 
1181   if (gpu_array_is_scalar(Array))
1182     HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1183   else
1184     HostPtr = ScopArray->getBasePtr();
1185   HostPtr = getLatestValue(HostPtr);
1186 
1187   if (Offset) {
1188     HostPtr = Builder.CreatePointerCast(
1189         HostPtr, ScopArray->getElementType()->getPointerTo());
1190     HostPtr = Builder.CreateGEP(HostPtr, Offset);
1191   }
1192 
1193   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1194 
1195   if (Offset) {
1196     Size = Builder.CreateSub(
1197         Size, Builder.CreateMul(
1198                   Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1199   }
1200 
1201   if (Direction == HOST_TO_DEVICE)
1202     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1203   else
1204     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1205 
1206   isl_id_free(Id);
1207   isl_ast_expr_free(Arg);
1208   isl_ast_expr_free(Expr);
1209   isl_ast_node_free(TransferStmt);
1210 }
1211 
1212 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1213   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1214   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1215   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1216   isl_id_free(Id);
1217   isl_ast_expr_free(StmtExpr);
1218 
1219   const char *Str = isl_id_get_name(Id);
1220   if (!strcmp(Str, "kernel")) {
1221     createKernel(UserStmt);
1222     if (PollyManagedMemory)
1223       createCallSynchronizeDevice();
1224     isl_ast_expr_free(Expr);
1225     return;
1226   }
1227   if (!strcmp(Str, "init_device")) {
1228     initializeAfterRTH();
1229     isl_ast_node_free(UserStmt);
1230     isl_ast_expr_free(Expr);
1231     return;
1232   }
1233   if (!strcmp(Str, "clear_device")) {
1234     finalize();
1235     isl_ast_node_free(UserStmt);
1236     isl_ast_expr_free(Expr);
1237     return;
1238   }
1239   if (isPrefix(Str, "to_device")) {
1240     if (!PollyManagedMemory)
1241       createDataTransfer(UserStmt, HOST_TO_DEVICE);
1242     else
1243       isl_ast_node_free(UserStmt);
1244 
1245     isl_ast_expr_free(Expr);
1246     return;
1247   }
1248 
1249   if (isPrefix(Str, "from_device")) {
1250     if (!PollyManagedMemory) {
1251       createDataTransfer(UserStmt, DEVICE_TO_HOST);
1252     } else {
1253       isl_ast_node_free(UserStmt);
1254     }
1255     isl_ast_expr_free(Expr);
1256     return;
1257   }
1258 
1259   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1260   struct ppcg_kernel_stmt *KernelStmt =
1261       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1262   isl_id_free(Anno);
1263 
1264   switch (KernelStmt->type) {
1265   case ppcg_kernel_domain:
1266     createScopStmt(Expr, KernelStmt);
1267     isl_ast_node_free(UserStmt);
1268     return;
1269   case ppcg_kernel_copy:
1270     createKernelCopy(KernelStmt);
1271     isl_ast_expr_free(Expr);
1272     isl_ast_node_free(UserStmt);
1273     return;
1274   case ppcg_kernel_sync:
1275     createKernelSync();
1276     isl_ast_expr_free(Expr);
1277     isl_ast_node_free(UserStmt);
1278     return;
1279   }
1280 
1281   isl_ast_expr_free(Expr);
1282   isl_ast_node_free(UserStmt);
1283 }
1284 
1285 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) {
1286   createForSequential(isl::manage(Node), false);
1287 }
1288 
1289 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1290   isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1291   LocalIndex = isl_ast_expr_address_of(LocalIndex);
1292   Value *LocalAddr = ExprBuilder.create(LocalIndex);
1293   isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1294   Index = isl_ast_expr_address_of(Index);
1295   Value *GlobalAddr = ExprBuilder.create(Index);
1296 
1297   if (KernelStmt->u.c.read) {
1298     LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1299     Builder.CreateStore(Load, LocalAddr);
1300   } else {
1301     LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1302     Builder.CreateStore(Load, GlobalAddr);
1303   }
1304 }
1305 
1306 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1307                                     ppcg_kernel_stmt *KernelStmt) {
1308   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1309   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1310 
1311   LoopToScevMapT LTS;
1312   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1313 
1314   createSubstitutions(Expr, Stmt, LTS);
1315 
1316   if (Stmt->isBlockStmt())
1317     BlockGen.copyStmt(*Stmt, LTS, Indexes);
1318   else
1319     RegionGen.copyStmt(*Stmt, LTS, Indexes);
1320 }
1321 
1322 void GPUNodeBuilder::createKernelSync() {
1323   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1324   const char *SpirName = "__gen_ocl_barrier_global";
1325 
1326   Function *Sync;
1327 
1328   switch (Arch) {
1329   case GPUArch::SPIR64:
1330   case GPUArch::SPIR32:
1331     Sync = M->getFunction(SpirName);
1332 
1333     // If Sync is not available, declare it.
1334     if (!Sync) {
1335       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1336       std::vector<Type *> Args;
1337       FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1338       Sync = Function::Create(Ty, Linkage, SpirName, M);
1339       Sync->setCallingConv(CallingConv::SPIR_FUNC);
1340     }
1341     break;
1342   case GPUArch::NVPTX64:
1343     Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1344     break;
1345   }
1346 
1347   Builder.CreateCall(Sync, {});
1348 }
1349 
1350 /// Collect llvm::Values referenced from @p Node
1351 ///
1352 /// This function only applies to isl_ast_nodes that are user_nodes referring
1353 /// to a ScopStmt. All other node types are ignore.
1354 ///
1355 /// @param Node The node to collect references for.
1356 /// @param User A user pointer used as storage for the data that is collected.
1357 ///
1358 /// @returns isl_bool_true if data could be collected successfully.
1359 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1360   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1361     return isl_bool_true;
1362 
1363   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1364   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1365   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1366   const char *Str = isl_id_get_name(Id);
1367   isl_id_free(Id);
1368   isl_ast_expr_free(StmtExpr);
1369   isl_ast_expr_free(Expr);
1370 
1371   if (!isPrefix(Str, "Stmt"))
1372     return isl_bool_true;
1373 
1374   Id = isl_ast_node_get_annotation(Node);
1375   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1376   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1377   isl_id_free(Id);
1378 
1379   addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1380 
1381   return isl_bool_true;
1382 }
1383 
1384 /// A list of functions that are available in NVIDIA's libdevice.
1385 const std::set<std::string> CUDALibDeviceFunctions = {
1386     "exp",      "expf",      "expl",      "cos", "cosf", "sqrt", "sqrtf",
1387     "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
1388 
1389 // A map from intrinsics to their corresponding libdevice functions.
1390 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
1391     {"llvm.exp.f64", "exp"},
1392     {"llvm.exp.f32", "expf"},
1393     {"llvm.powi.f64", "powi"},
1394     {"llvm.powi.f32", "powif"}};
1395 
1396 /// Return the corresponding CUDA libdevice function name @p Name.
1397 /// Note that this function will try to convert instrinsics in the list
1398 /// IntrinsicToLibdeviceFunc into libdevice functions.
1399 /// This is because some intrinsics such as `exp`
1400 /// are not supported by the NVPTX backend.
1401 /// If this restriction of the backend is lifted, we should refactor our code
1402 /// so that we use intrinsics whenever possible.
1403 ///
1404 /// Return "" if we are not compiling for CUDA.
1405 std::string getCUDALibDeviceFuntion(StringRef Name) {
1406   auto It = IntrinsicToLibdeviceFunc.find(Name);
1407   if (It != IntrinsicToLibdeviceFunc.end())
1408     return getCUDALibDeviceFuntion(It->second);
1409 
1410   if (CUDALibDeviceFunctions.count(Name))
1411     return ("__nv_" + Name).str();
1412 
1413   return "";
1414 }
1415 
1416 /// Check if F is a function that we can code-generate in a GPU kernel.
1417 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1418   assert(F && "F is an invalid pointer");
1419   // We string compare against the name of the function to allow
1420   // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1421   // "llvm.copysign".
1422   const StringRef Name = F->getName();
1423 
1424   if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0)
1425     return true;
1426 
1427   return F->isIntrinsic() &&
1428          (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1429           Name.startswith("llvm.copysign"));
1430 }
1431 
1432 /// Do not take `Function` as a subtree value.
1433 ///
1434 /// We try to take the reference of all subtree values and pass them along
1435 /// to the kernel from the host. Taking an address of any function and
1436 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1437 /// `Function`s.
1438 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1439 
1440 /// Return `Function`s from `RawSubtreeValues`.
1441 static SetVector<Function *>
1442 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1443                                  bool AllowCUDALibDevice) {
1444   SetVector<Function *> SubtreeFunctions;
1445   for (Value *It : RawSubtreeValues) {
1446     Function *F = dyn_cast<Function>(It);
1447     if (F) {
1448       assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1449              "Code should have bailed out by "
1450              "this point if an invalid function "
1451              "were present in a kernel.");
1452       SubtreeFunctions.insert(F);
1453     }
1454   }
1455   return SubtreeFunctions;
1456 }
1457 
1458 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1459            isl::space>
1460 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1461   SetVector<Value *> SubtreeValues;
1462   SetVector<const SCEV *> SCEVs;
1463   SetVector<const Loop *> Loops;
1464   isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1465   SubtreeReferences References = {
1466       LI,         SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1467       &ParamSpace};
1468 
1469   for (const auto &I : IDToValue)
1470     SubtreeValues.insert(I.second);
1471 
1472   // NOTE: this is populated in IslNodeBuilder::addParameters
1473   // See [Code generation of induction variables of loops outside Scops].
1474   for (const auto &I : OutsideLoopIterations)
1475     SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1476 
1477   isl_ast_node_foreach_descendant_top_down(
1478       Kernel->tree, collectReferencesInGPUStmt, &References);
1479 
1480   for (const SCEV *Expr : SCEVs) {
1481     findValues(Expr, SE, SubtreeValues);
1482     findLoops(Expr, Loops);
1483   }
1484 
1485   Loops.remove_if([this](const Loop *L) {
1486     return S.contains(L) || L->contains(S.getEntry());
1487   });
1488 
1489   for (auto &SAI : S.arrays())
1490     SubtreeValues.remove(SAI->getBasePtr());
1491 
1492   isl_space *Space = S.getParamSpace().release();
1493   for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
1494     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1495     assert(IDToValue.count(Id));
1496     Value *Val = IDToValue[Id];
1497     SubtreeValues.remove(Val);
1498     isl_id_free(Id);
1499   }
1500   isl_space_free(Space);
1501 
1502   for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
1503     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1504     assert(IDToValue.count(Id));
1505     Value *Val = IDToValue[Id];
1506     SubtreeValues.remove(Val);
1507     isl_id_free(Id);
1508   }
1509 
1510   // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1511   // SubtreeValues. This is important, because we should not lose any
1512   // SubtreeValues in the process of constructing the
1513   // "ValidSubtree{Values, Functions} sets. Nor should the set
1514   // ValidSubtree{Values, Functions} have any common element.
1515   auto ValidSubtreeValuesIt =
1516       make_filter_range(SubtreeValues, isValidSubtreeValue);
1517   SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1518                                         ValidSubtreeValuesIt.end());
1519 
1520   bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1521 
1522   SetVector<Function *> ValidSubtreeFunctions(
1523       getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1524 
1525   // @see IslNodeBuilder::getReferencesInSubtree
1526   SetVector<Value *> ReplacedValues;
1527   for (Value *V : ValidSubtreeValues) {
1528     auto It = ValueMap.find(V);
1529     if (It == ValueMap.end())
1530       ReplacedValues.insert(V);
1531     else
1532       ReplacedValues.insert(It->second);
1533   }
1534   return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1535                          ParamSpace);
1536 }
1537 
1538 void GPUNodeBuilder::clearDominators(Function *F) {
1539   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1540   std::vector<BasicBlock *> Nodes;
1541   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1542     Nodes.push_back(I->getBlock());
1543 
1544   for (BasicBlock *BB : Nodes)
1545     DT.eraseNode(BB);
1546 }
1547 
1548 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1549   for (BasicBlock &BB : *F) {
1550     Loop *L = LI.getLoopFor(&BB);
1551     if (L)
1552       SE.forgetLoop(L);
1553   }
1554 }
1555 
1556 void GPUNodeBuilder::clearLoops(Function *F) {
1557   SmallSet<Loop *, 1> WorkList;
1558   for (BasicBlock &BB : *F) {
1559     Loop *L = LI.getLoopFor(&BB);
1560     if (L)
1561       WorkList.insert(L);
1562   }
1563   for (auto *L : WorkList)
1564     LI.erase(L);
1565 }
1566 
1567 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1568   std::vector<Value *> Sizes;
1569   isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1570 
1571   isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size);
1572   for (long i = 0; i < Kernel->n_grid; i++) {
1573     isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1574     isl::ast_expr GridSize = Context.expr_from(Size);
1575     Value *Res = ExprBuilder.create(GridSize.release());
1576     Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1577     Sizes.push_back(Res);
1578   }
1579 
1580   for (long i = Kernel->n_grid; i < 3; i++)
1581     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1582 
1583   return std::make_tuple(Sizes[0], Sizes[1]);
1584 }
1585 
1586 std::tuple<Value *, Value *, Value *>
1587 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1588   std::vector<Value *> Sizes;
1589 
1590   for (long i = 0; i < Kernel->n_block; i++) {
1591     Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1592     Sizes.push_back(Res);
1593   }
1594 
1595   for (long i = Kernel->n_block; i < 3; i++)
1596     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1597 
1598   return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1599 }
1600 
1601 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1602                                           Instruction *Param, int Index) {
1603   Value *Slot = Builder.CreateGEP(
1604       Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1605   Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1606   Builder.CreateStore(ParamTyped, Slot);
1607 }
1608 
1609 Value *
1610 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1611                                        SetVector<Value *> SubtreeValues) {
1612   const int NumArgs = F->arg_size();
1613   std::vector<int> ArgSizes(NumArgs);
1614 
1615   // If we are using the OpenCL Runtime, we need to add the kernel argument
1616   // sizes to the end of the launch-parameter list, so OpenCL can determine
1617   // how big the respective kernel arguments are.
1618   // Here we need to reserve adequate space for that.
1619   Type *ArrayTy;
1620   if (Runtime == GPURuntime::OpenCL)
1621     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1622   else
1623     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1624 
1625   BasicBlock *EntryBlock =
1626       &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1627   auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1628   std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1629   Instruction *Parameters = new AllocaInst(
1630       ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1631 
1632   int Index = 0;
1633   for (long i = 0; i < Prog->n_array; i++) {
1634     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1635       continue;
1636 
1637     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1638     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1639 
1640     if (Runtime == GPURuntime::OpenCL)
1641       ArgSizes[Index] = SAI->getElemSizeInBytes();
1642 
1643     Value *DevArray = nullptr;
1644     if (PollyManagedMemory) {
1645       DevArray = getManagedDeviceArray(&Prog->array[i],
1646                                        const_cast<ScopArrayInfo *>(SAI));
1647     } else {
1648       DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1649       DevArray = createCallGetDevicePtr(DevArray);
1650     }
1651     assert(DevArray != nullptr && "Array to be offloaded to device not "
1652                                   "initialized");
1653     Value *Offset = getArrayOffset(&Prog->array[i]);
1654 
1655     if (Offset) {
1656       DevArray = Builder.CreatePointerCast(
1657           DevArray, SAI->getElementType()->getPointerTo());
1658       DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1659       DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1660     }
1661     Value *Slot = Builder.CreateGEP(
1662         Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1663 
1664     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1665       Value *ValPtr = nullptr;
1666       if (PollyManagedMemory)
1667         ValPtr = DevArray;
1668       else
1669         ValPtr = BlockGen.getOrCreateAlloca(SAI);
1670 
1671       assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1672                                   " to be stored into Parameters");
1673       Value *ValPtrCast =
1674           Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1675       Builder.CreateStore(ValPtrCast, Slot);
1676     } else {
1677       Instruction *Param =
1678           new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1679                          Launch + "_param_" + std::to_string(Index),
1680                          EntryBlock->getTerminator());
1681       Builder.CreateStore(DevArray, Param);
1682       Value *ParamTyped =
1683           Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1684       Builder.CreateStore(ParamTyped, Slot);
1685     }
1686     Index++;
1687   }
1688 
1689   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1690 
1691   for (long i = 0; i < NumHostIters; i++) {
1692     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1693     Value *Val = IDToValue[Id];
1694     isl_id_free(Id);
1695 
1696     if (Runtime == GPURuntime::OpenCL)
1697       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1698 
1699     Instruction *Param =
1700         new AllocaInst(Val->getType(), AddressSpace,
1701                        Launch + "_param_" + std::to_string(Index),
1702                        EntryBlock->getTerminator());
1703     Builder.CreateStore(Val, Param);
1704     insertStoreParameter(Parameters, Param, Index);
1705     Index++;
1706   }
1707 
1708   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1709 
1710   for (long i = 0; i < NumVars; i++) {
1711     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1712     Value *Val = IDToValue[Id];
1713     if (ValueMap.count(Val))
1714       Val = ValueMap[Val];
1715     isl_id_free(Id);
1716 
1717     if (Runtime == GPURuntime::OpenCL)
1718       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1719 
1720     Instruction *Param =
1721         new AllocaInst(Val->getType(), AddressSpace,
1722                        Launch + "_param_" + std::to_string(Index),
1723                        EntryBlock->getTerminator());
1724     Builder.CreateStore(Val, Param);
1725     insertStoreParameter(Parameters, Param, Index);
1726     Index++;
1727   }
1728 
1729   for (auto Val : SubtreeValues) {
1730     if (Runtime == GPURuntime::OpenCL)
1731       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1732 
1733     Instruction *Param =
1734         new AllocaInst(Val->getType(), AddressSpace,
1735                        Launch + "_param_" + std::to_string(Index),
1736                        EntryBlock->getTerminator());
1737     Builder.CreateStore(Val, Param);
1738     insertStoreParameter(Parameters, Param, Index);
1739     Index++;
1740   }
1741 
1742   if (Runtime == GPURuntime::OpenCL) {
1743     for (int i = 0; i < NumArgs; i++) {
1744       Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1745       Instruction *Param =
1746           new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1747                          Launch + "_param_size_" + std::to_string(i),
1748                          EntryBlock->getTerminator());
1749       Builder.CreateStore(Val, Param);
1750       insertStoreParameter(Parameters, Param, Index);
1751       Index++;
1752     }
1753   }
1754 
1755   auto Location = EntryBlock->getTerminator();
1756   return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1757                          Launch + "_params_i8ptr", Location);
1758 }
1759 
1760 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1761     SetVector<Function *> SubtreeFunctions) {
1762   for (auto Fn : SubtreeFunctions) {
1763     const std::string ClonedFnName = Fn->getName();
1764     Function *Clone = GPUModule->getFunction(ClonedFnName);
1765     if (!Clone)
1766       Clone =
1767           Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1768                            ClonedFnName, GPUModule.get());
1769     assert(Clone && "Expected cloned function to be initialized.");
1770     assert(ValueMap.find(Fn) == ValueMap.end() &&
1771            "Fn already present in ValueMap");
1772     ValueMap[Fn] = Clone;
1773   }
1774 }
1775 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1776   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1777   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1778   isl_id_free(Id);
1779   isl_ast_node_free(KernelStmt);
1780 
1781   if (Kernel->n_grid > 1)
1782     DeepestParallel =
1783         std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1784   else
1785     DeepestSequential =
1786         std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1787 
1788   Value *BlockDimX, *BlockDimY, *BlockDimZ;
1789   std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1790 
1791   SetVector<Value *> SubtreeValues;
1792   SetVector<Function *> SubtreeFunctions;
1793   SetVector<const Loop *> Loops;
1794   isl::space ParamSpace;
1795   std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1796       getReferencesInKernel(Kernel);
1797 
1798   // Add parameters that appear only in the access function to the kernel
1799   // space. This is important to make sure that all isl_ids are passed as
1800   // parameters to the kernel, even though we may not have all parameters
1801   // in the context to improve compile time.
1802   Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1803 
1804   assert(Kernel->tree && "Device AST of kernel node is empty");
1805 
1806   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1807   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1808   ValueMapT HostValueMap = ValueMap;
1809   BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1810   ScalarMap.clear();
1811   BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap;
1812   EscapeMap.clear();
1813 
1814   // Create for all loops we depend on values that contain the current loop
1815   // iteration. These values are necessary to generate code for SCEVs that
1816   // depend on such loops. As a result we need to pass them to the subfunction.
1817   for (const Loop *L : Loops) {
1818     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1819                                             SE.getUnknown(Builder.getInt64(1)),
1820                                             L, SCEV::FlagAnyWrap);
1821     Value *V = generateSCEV(OuterLIV);
1822     OutsideLoopIterations[L] = SE.getUnknown(V);
1823     SubtreeValues.insert(V);
1824   }
1825 
1826   createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1827   setupKernelSubtreeFunctions(SubtreeFunctions);
1828 
1829   create(isl_ast_node_copy(Kernel->tree));
1830 
1831   finalizeKernelArguments(Kernel);
1832   Function *F = Builder.GetInsertBlock()->getParent();
1833   if (Arch == GPUArch::NVPTX64)
1834     addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1835   clearDominators(F);
1836   clearScalarEvolution(F);
1837   clearLoops(F);
1838 
1839   IDToValue = HostIDs;
1840 
1841   ValueMap = std::move(HostValueMap);
1842   ScalarMap = std::move(HostScalarMap);
1843   EscapeMap = std::move(HostEscapeMap);
1844   IDToSAI.clear();
1845   Annotator.resetAlternativeAliasBases();
1846   for (auto &BasePtr : LocalArrays)
1847     S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1848   LocalArrays.clear();
1849 
1850   std::string ASMString = finalizeKernelFunction();
1851   Builder.SetInsertPoint(&HostInsertPoint);
1852   Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1853 
1854   std::string Name = getKernelFuncName(Kernel->id);
1855   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1856   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1857   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1858 
1859   Value *GridDimX, *GridDimY;
1860   std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1861 
1862   createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1863                          BlockDimZ, Parameters);
1864   createCallFreeKernel(GPUKernel);
1865 
1866   for (auto Id : KernelIds)
1867     isl_id_free(Id);
1868 
1869   KernelIds.clear();
1870 }
1871 
1872 /// Compute the DataLayout string for the NVPTX backend.
1873 ///
1874 /// @param is64Bit Are we looking for a 64 bit architecture?
1875 static std::string computeNVPTXDataLayout(bool is64Bit) {
1876   std::string Ret = "";
1877 
1878   if (!is64Bit) {
1879     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1880            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1881            "64-v128:128:128-n16:32:64";
1882   } else {
1883     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1884            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1885            "64-v128:128:128-n16:32:64";
1886   }
1887 
1888   return Ret;
1889 }
1890 
1891 /// Compute the DataLayout string for a SPIR kernel.
1892 ///
1893 /// @param is64Bit Are we looking for a 64 bit architecture?
1894 static std::string computeSPIRDataLayout(bool is64Bit) {
1895   std::string Ret = "";
1896 
1897   if (!is64Bit) {
1898     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1899            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1900            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1901            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1902   } else {
1903     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1904            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1905            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1906            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1907   }
1908 
1909   return Ret;
1910 }
1911 
1912 Function *
1913 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1914                                          SetVector<Value *> &SubtreeValues) {
1915   std::vector<Type *> Args;
1916   std::string Identifier = getKernelFuncName(Kernel->id);
1917 
1918   std::vector<Metadata *> MemoryType;
1919 
1920   for (long i = 0; i < Prog->n_array; i++) {
1921     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1922       continue;
1923 
1924     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1925       isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1926       const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1927       Args.push_back(SAI->getElementType());
1928       MemoryType.push_back(
1929           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1930     } else {
1931       static const int UseGlobalMemory = 1;
1932       Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1933       MemoryType.push_back(
1934           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1935     }
1936   }
1937 
1938   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1939 
1940   for (long i = 0; i < NumHostIters; i++) {
1941     Args.push_back(Builder.getInt64Ty());
1942     MemoryType.push_back(
1943         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1944   }
1945 
1946   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1947 
1948   for (long i = 0; i < NumVars; i++) {
1949     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1950     Value *Val = IDToValue[Id];
1951     isl_id_free(Id);
1952     Args.push_back(Val->getType());
1953     MemoryType.push_back(
1954         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1955   }
1956 
1957   for (auto *V : SubtreeValues) {
1958     Args.push_back(V->getType());
1959     MemoryType.push_back(
1960         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1961   }
1962 
1963   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1964   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1965                               GPUModule.get());
1966 
1967   std::vector<Metadata *> EmptyStrings;
1968 
1969   for (unsigned int i = 0; i < MemoryType.size(); i++) {
1970     EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1971   }
1972 
1973   if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1974     FN->setMetadata("kernel_arg_addr_space",
1975                     MDNode::get(FN->getContext(), MemoryType));
1976     FN->setMetadata("kernel_arg_name",
1977                     MDNode::get(FN->getContext(), EmptyStrings));
1978     FN->setMetadata("kernel_arg_access_qual",
1979                     MDNode::get(FN->getContext(), EmptyStrings));
1980     FN->setMetadata("kernel_arg_type",
1981                     MDNode::get(FN->getContext(), EmptyStrings));
1982     FN->setMetadata("kernel_arg_type_qual",
1983                     MDNode::get(FN->getContext(), EmptyStrings));
1984     FN->setMetadata("kernel_arg_base_type",
1985                     MDNode::get(FN->getContext(), EmptyStrings));
1986   }
1987 
1988   switch (Arch) {
1989   case GPUArch::NVPTX64:
1990     FN->setCallingConv(CallingConv::PTX_Kernel);
1991     break;
1992   case GPUArch::SPIR32:
1993   case GPUArch::SPIR64:
1994     FN->setCallingConv(CallingConv::SPIR_KERNEL);
1995     break;
1996   }
1997 
1998   auto Arg = FN->arg_begin();
1999   for (long i = 0; i < Kernel->n_array; i++) {
2000     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2001       continue;
2002 
2003     Arg->setName(Kernel->array[i].array->name);
2004 
2005     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2006     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2007     Type *EleTy = SAI->getElementType();
2008     Value *Val = &*Arg;
2009     SmallVector<const SCEV *, 4> Sizes;
2010     isl_ast_build *Build =
2011         isl_ast_build_from_context(isl_set_copy(Prog->context));
2012     Sizes.push_back(nullptr);
2013     for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
2014       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
2015           Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
2016       auto V = ExprBuilder.create(DimSize);
2017       Sizes.push_back(SE.getSCEV(V));
2018     }
2019     const ScopArrayInfo *SAIRep =
2020         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
2021     LocalArrays.push_back(Val);
2022 
2023     isl_ast_build_free(Build);
2024     KernelIds.push_back(Id);
2025     IDToSAI[Id] = SAIRep;
2026     Arg++;
2027   }
2028 
2029   for (long i = 0; i < NumHostIters; i++) {
2030     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2031     Arg->setName(isl_id_get_name(Id));
2032     IDToValue[Id] = &*Arg;
2033     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2034     Arg++;
2035   }
2036 
2037   for (long i = 0; i < NumVars; i++) {
2038     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2039     Arg->setName(isl_id_get_name(Id));
2040     Value *Val = IDToValue[Id];
2041     ValueMap[Val] = &*Arg;
2042     IDToValue[Id] = &*Arg;
2043     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2044     Arg++;
2045   }
2046 
2047   for (auto *V : SubtreeValues) {
2048     Arg->setName(V->getName());
2049     ValueMap[V] = &*Arg;
2050     Arg++;
2051   }
2052 
2053   return FN;
2054 }
2055 
2056 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2057   Intrinsic::ID IntrinsicsBID[2];
2058   Intrinsic::ID IntrinsicsTID[3];
2059 
2060   switch (Arch) {
2061   case GPUArch::SPIR64:
2062   case GPUArch::SPIR32:
2063     llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2064   case GPUArch::NVPTX64:
2065     IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2066     IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2067 
2068     IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2069     IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2070     IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2071     break;
2072   }
2073 
2074   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2075     std::string Name = isl_id_get_name(Id);
2076     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2077     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2078     Value *Val = Builder.CreateCall(IntrinsicFn, {});
2079     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2080     IDToValue[Id] = Val;
2081     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2082   };
2083 
2084   for (int i = 0; i < Kernel->n_grid; ++i) {
2085     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2086     addId(Id, IntrinsicsBID[i]);
2087   }
2088 
2089   for (int i = 0; i < Kernel->n_block; ++i) {
2090     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2091     addId(Id, IntrinsicsTID[i]);
2092   }
2093 }
2094 
2095 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel,
2096                                            bool SizeTypeIs64bit) {
2097   const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2098                               "__gen_ocl_get_group_id1",
2099                               "__gen_ocl_get_group_id2"};
2100 
2101   const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2102                               "__gen_ocl_get_local_id1",
2103                               "__gen_ocl_get_local_id2"};
2104   IntegerType *SizeT =
2105       SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty();
2106 
2107   auto createFunc = [this](const char *Name, __isl_take isl_id *Id,
2108                            IntegerType *SizeT) mutable {
2109     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2110     Function *FN = M->getFunction(Name);
2111 
2112     // If FN is not available, declare it.
2113     if (!FN) {
2114       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2115       std::vector<Type *> Args;
2116       FunctionType *Ty = FunctionType::get(SizeT, Args, false);
2117       FN = Function::Create(Ty, Linkage, Name, M);
2118       FN->setCallingConv(CallingConv::SPIR_FUNC);
2119     }
2120 
2121     Value *Val = Builder.CreateCall(FN, {});
2122     if (SizeT == Builder.getInt32Ty())
2123       Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2124     IDToValue[Id] = Val;
2125     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2126   };
2127 
2128   for (int i = 0; i < Kernel->n_grid; ++i)
2129     createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT);
2130 
2131   for (int i = 0; i < Kernel->n_block; ++i)
2132     createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT);
2133 }
2134 
2135 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2136   auto Arg = FN->arg_begin();
2137   for (long i = 0; i < Kernel->n_array; i++) {
2138     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2139       continue;
2140 
2141     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2142     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2143     isl_id_free(Id);
2144 
2145     if (SAI->getNumberOfDimensions() > 0) {
2146       Arg++;
2147       continue;
2148     }
2149 
2150     Value *Val = &*Arg;
2151 
2152     if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2153       Type *TypePtr = SAI->getElementType()->getPointerTo();
2154       Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2155       Val = Builder.CreateLoad(TypedArgPtr);
2156     }
2157 
2158     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2159     Builder.CreateStore(Val, Alloca);
2160 
2161     Arg++;
2162   }
2163 }
2164 
2165 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2166   auto *FN = Builder.GetInsertBlock()->getParent();
2167   auto Arg = FN->arg_begin();
2168 
2169   bool StoredScalar = false;
2170   for (long i = 0; i < Kernel->n_array; i++) {
2171     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2172       continue;
2173 
2174     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2175     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
2176     isl_id_free(Id);
2177 
2178     if (SAI->getNumberOfDimensions() > 0) {
2179       Arg++;
2180       continue;
2181     }
2182 
2183     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2184       Arg++;
2185       continue;
2186     }
2187 
2188     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2189     Value *ArgPtr = &*Arg;
2190     Type *TypePtr = SAI->getElementType()->getPointerTo();
2191     Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2192     Value *Val = Builder.CreateLoad(Alloca);
2193     Builder.CreateStore(Val, TypedArgPtr);
2194     StoredScalar = true;
2195 
2196     Arg++;
2197   }
2198 
2199   if (StoredScalar) {
2200     /// In case more than one thread contains scalar stores, the generated
2201     /// code might be incorrect, if we only store at the end of the kernel.
2202     /// To support this case we need to store these scalars back at each
2203     /// memory store or at least before each kernel barrier.
2204     if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2205       BuildSuccessful = 0;
2206       LLVM_DEBUG(
2207           dbgs() << getUniqueScopName(&S)
2208                  << " has a store to a scalar value that"
2209                     " would be undefined to run in parallel. Bailing out.\n";);
2210     }
2211   }
2212 }
2213 
2214 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2215   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2216 
2217   for (int i = 0; i < Kernel->n_var; ++i) {
2218     struct ppcg_kernel_var &Var = Kernel->var[i];
2219     isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2220     Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2221 
2222     Type *ArrayTy = EleTy;
2223     SmallVector<const SCEV *, 4> Sizes;
2224 
2225     Sizes.push_back(nullptr);
2226     for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2227       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2228       long Bound = isl_val_get_num_si(Val);
2229       isl_val_free(Val);
2230       Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2231     }
2232 
2233     for (int j = Var.array->n_index - 1; j >= 0; --j) {
2234       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2235       long Bound = isl_val_get_num_si(Val);
2236       isl_val_free(Val);
2237       ArrayTy = ArrayType::get(ArrayTy, Bound);
2238     }
2239 
2240     const ScopArrayInfo *SAI;
2241     Value *Allocation;
2242     if (Var.type == ppcg_access_shared) {
2243       auto GlobalVar = new GlobalVariable(
2244           *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2245           nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2246       GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8));
2247       GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2248 
2249       Allocation = GlobalVar;
2250     } else if (Var.type == ppcg_access_private) {
2251       Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2252     } else {
2253       llvm_unreachable("unknown variable type");
2254     }
2255     SAI =
2256         S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2257     Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr);
2258     IDToValue[Id] = Allocation;
2259     LocalArrays.push_back(Allocation);
2260     KernelIds.push_back(Id);
2261     IDToSAI[Id] = SAI;
2262   }
2263 }
2264 
2265 void GPUNodeBuilder::createKernelFunction(
2266     ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2267     SetVector<Function *> &SubtreeFunctions) {
2268   std::string Identifier = getKernelFuncName(Kernel->id);
2269   GPUModule.reset(new Module(Identifier, Builder.getContext()));
2270 
2271   switch (Arch) {
2272   case GPUArch::NVPTX64:
2273     if (Runtime == GPURuntime::CUDA)
2274       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2275     else if (Runtime == GPURuntime::OpenCL)
2276       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2277     GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2278     break;
2279   case GPUArch::SPIR32:
2280     GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2281     GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2282     break;
2283   case GPUArch::SPIR64:
2284     GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2285     GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2286     break;
2287   }
2288 
2289   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2290 
2291   BasicBlock *PrevBlock = Builder.GetInsertBlock();
2292   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2293 
2294   DT.addNewBlock(EntryBlock, PrevBlock);
2295 
2296   Builder.SetInsertPoint(EntryBlock);
2297   Builder.CreateRetVoid();
2298   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2299 
2300   ScopDetection::markFunctionAsInvalid(FN);
2301 
2302   prepareKernelArguments(Kernel, FN);
2303   createKernelVariables(Kernel, FN);
2304 
2305   switch (Arch) {
2306   case GPUArch::NVPTX64:
2307     insertKernelIntrinsics(Kernel);
2308     break;
2309   case GPUArch::SPIR32:
2310     insertKernelCallsSPIR(Kernel, false);
2311     break;
2312   case GPUArch::SPIR64:
2313     insertKernelCallsSPIR(Kernel, true);
2314     break;
2315   }
2316 }
2317 
2318 std::string GPUNodeBuilder::createKernelASM() {
2319   llvm::Triple GPUTriple;
2320 
2321   switch (Arch) {
2322   case GPUArch::NVPTX64:
2323     switch (Runtime) {
2324     case GPURuntime::CUDA:
2325       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2326       break;
2327     case GPURuntime::OpenCL:
2328       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2329       break;
2330     }
2331     break;
2332   case GPUArch::SPIR64:
2333   case GPUArch::SPIR32:
2334     std::string SPIRAssembly;
2335     raw_string_ostream IROstream(SPIRAssembly);
2336     IROstream << *GPUModule;
2337     IROstream.flush();
2338     return SPIRAssembly;
2339   }
2340 
2341   std::string ErrMsg;
2342   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2343 
2344   if (!GPUTarget) {
2345     errs() << ErrMsg << "\n";
2346     return "";
2347   }
2348 
2349   TargetOptions Options;
2350   Options.UnsafeFPMath = FastMath;
2351 
2352   std::string subtarget;
2353 
2354   switch (Arch) {
2355   case GPUArch::NVPTX64:
2356     subtarget = CudaVersion;
2357     break;
2358   case GPUArch::SPIR32:
2359   case GPUArch::SPIR64:
2360     llvm_unreachable("No subtarget for SPIR architecture");
2361   }
2362 
2363   std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2364       GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2365 
2366   SmallString<0> ASMString;
2367   raw_svector_ostream ASMStream(ASMString);
2368   llvm::legacy::PassManager PM;
2369 
2370   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2371 
2372   if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile,
2373                                    true /* verify */)) {
2374     errs() << "The target does not support generation of this file type!\n";
2375     return "";
2376   }
2377 
2378   PM.run(*GPUModule);
2379 
2380   return ASMStream.str();
2381 }
2382 
2383 bool GPUNodeBuilder::requiresCUDALibDevice() {
2384   bool RequiresLibDevice = false;
2385   for (Function &F : GPUModule->functions()) {
2386     if (!F.isDeclaration())
2387       continue;
2388 
2389     const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName());
2390     if (CUDALibDeviceFunc.length() != 0) {
2391       // We need to handle the case where a module looks like this:
2392       // @expf(..)
2393       // @llvm.exp.f64(..)
2394       // Both of these functions would be renamed to `__nv_expf`.
2395       //
2396       // So, we must first check for the existence of the libdevice function.
2397       // If this exists, we replace our current function with it.
2398       //
2399       // If it does not exist, we rename the current function to the
2400       // libdevice functiono name.
2401       if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
2402         F.replaceAllUsesWith(Replacement);
2403       else
2404         F.setName(CUDALibDeviceFunc);
2405       RequiresLibDevice = true;
2406     }
2407   }
2408 
2409   return RequiresLibDevice;
2410 }
2411 
2412 void GPUNodeBuilder::addCUDALibDevice() {
2413   if (Arch != GPUArch::NVPTX64)
2414     return;
2415 
2416   if (requiresCUDALibDevice()) {
2417     SMDiagnostic Error;
2418 
2419     errs() << CUDALibDevice << "\n";
2420     auto LibDeviceModule =
2421         parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2422 
2423     if (!LibDeviceModule) {
2424       BuildSuccessful = false;
2425       report_fatal_error("Could not find or load libdevice. Skipping GPU "
2426                          "kernel generation. Please set -polly-acc-libdevice "
2427                          "accordingly.\n");
2428       return;
2429     }
2430 
2431     Linker L(*GPUModule);
2432 
2433     // Set an nvptx64 target triple to avoid linker warnings. The original
2434     // triple of the libdevice files are nvptx-unknown-unknown.
2435     LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2436     L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2437   }
2438 }
2439 
2440 std::string GPUNodeBuilder::finalizeKernelFunction() {
2441 
2442   if (verifyModule(*GPUModule)) {
2443     LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n";
2444                GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2445     LLVM_DEBUG(dbgs() << "verifyModule Error:\n";
2446                verifyModule(*GPUModule, &dbgs()););
2447 
2448     if (FailOnVerifyModuleFailure)
2449       llvm_unreachable("VerifyModule failed.");
2450 
2451     BuildSuccessful = false;
2452     return "";
2453   }
2454 
2455   addCUDALibDevice();
2456 
2457   if (DumpKernelIR)
2458     outs() << *GPUModule << "\n";
2459 
2460   if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2461     // Optimize module.
2462     llvm::legacy::PassManager OptPasses;
2463     PassManagerBuilder PassBuilder;
2464     PassBuilder.OptLevel = 3;
2465     PassBuilder.SizeLevel = 0;
2466     PassBuilder.populateModulePassManager(OptPasses);
2467     OptPasses.run(*GPUModule);
2468   }
2469 
2470   std::string Assembly = createKernelASM();
2471 
2472   if (DumpKernelASM)
2473     outs() << Assembly << "\n";
2474 
2475   GPUModule.release();
2476   KernelIDs.clear();
2477 
2478   return Assembly;
2479 }
2480 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2481 /// @param PwAffs The list of piecewise affine functions to create an
2482 ///               `isl_pw_aff_list` from. We expect an rvalue ref because
2483 ///               all the isl_pw_aff are used up by this function.
2484 ///
2485 /// @returns  The `isl_pw_aff_list`.
2486 __isl_give isl_pw_aff_list *
2487 createPwAffList(isl_ctx *Context,
2488                 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2489   isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2490 
2491   for (unsigned i = 0; i < PwAffs.size(); i++) {
2492     List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2493   }
2494   return List;
2495 }
2496 
2497 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2498 ///
2499 /// We loop over all `pw_aff` and align all of their spaces together to
2500 /// create a common space for all the `pw_aff`. This common space is the
2501 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2502 /// with the given `SeedSpace`.
2503 /// @param PwAffs    The list of piecewise affine functions we want to align.
2504 ///                  This is an rvalue reference because the entire vector is
2505 ///                  used up by the end of the operation.
2506 /// @param SeedSpace The space to start the alignment process with.
2507 /// @returns         A std::pair, whose first element is the aligned space,
2508 ///                  whose second element is the vector of aligned piecewise
2509 ///                  affines.
2510 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
2511 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2512             __isl_take isl_space *SeedSpace) {
2513   assert(SeedSpace && "Invalid seed space given.");
2514 
2515   isl_space *AlignSpace = SeedSpace;
2516   for (isl_pw_aff *PwAff : PwAffs) {
2517     isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2518     AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2519   }
2520   std::vector<isl_pw_aff *> AdjustedPwAffs;
2521 
2522   for (unsigned i = 0; i < PwAffs.size(); i++) {
2523     isl_pw_aff *Adjusted = PwAffs[i];
2524     assert(Adjusted && "Invalid pw_aff given.");
2525     Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2526     AdjustedPwAffs.push_back(Adjusted);
2527   }
2528   return std::make_pair(AlignSpace, AdjustedPwAffs);
2529 }
2530 
2531 namespace {
2532 class PPCGCodeGeneration : public ScopPass {
2533 public:
2534   static char ID;
2535 
2536   GPURuntime Runtime = GPURuntime::CUDA;
2537 
2538   GPUArch Architecture = GPUArch::NVPTX64;
2539 
2540   /// The scop that is currently processed.
2541   Scop *S;
2542 
2543   LoopInfo *LI;
2544   DominatorTree *DT;
2545   ScalarEvolution *SE;
2546   const DataLayout *DL;
2547   RegionInfo *RI;
2548 
2549   PPCGCodeGeneration() : ScopPass(ID) {}
2550 
2551   /// Construct compilation options for PPCG.
2552   ///
2553   /// @returns The compilation options.
2554   ppcg_options *createPPCGOptions() {
2555     auto DebugOptions =
2556         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2557     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2558 
2559     DebugOptions->dump_schedule_constraints = false;
2560     DebugOptions->dump_schedule = false;
2561     DebugOptions->dump_final_schedule = false;
2562     DebugOptions->dump_sizes = false;
2563     DebugOptions->verbose = false;
2564 
2565     Options->debug = DebugOptions;
2566 
2567     Options->group_chains = false;
2568     Options->reschedule = true;
2569     Options->scale_tile_loops = false;
2570     Options->wrap = false;
2571 
2572     Options->non_negative_parameters = false;
2573     Options->ctx = nullptr;
2574     Options->sizes = nullptr;
2575 
2576     Options->tile = true;
2577     Options->tile_size = 32;
2578 
2579     Options->isolate_full_tiles = false;
2580 
2581     Options->use_private_memory = PrivateMemory;
2582     Options->use_shared_memory = SharedMemory;
2583     Options->max_shared_memory = 48 * 1024;
2584 
2585     Options->target = PPCG_TARGET_CUDA;
2586     Options->openmp = false;
2587     Options->linearize_device_arrays = true;
2588     Options->allow_gnu_extensions = false;
2589 
2590     Options->unroll_copy_shared = false;
2591     Options->unroll_gpu_tile = false;
2592     Options->live_range_reordering = true;
2593 
2594     Options->live_range_reordering = true;
2595     Options->hybrid = false;
2596     Options->opencl_compiler_options = nullptr;
2597     Options->opencl_use_gpu = false;
2598     Options->opencl_n_include_file = 0;
2599     Options->opencl_include_files = nullptr;
2600     Options->opencl_print_kernel_types = false;
2601     Options->opencl_embed_kernel_code = false;
2602 
2603     Options->save_schedule_file = nullptr;
2604     Options->load_schedule_file = nullptr;
2605 
2606     return Options;
2607   }
2608 
2609   /// Get a tagged access relation containing all accesses of type @p AccessTy.
2610   ///
2611   /// Instead of a normal access of the form:
2612   ///
2613   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2614   ///
2615   /// a tagged access has the form
2616   ///
2617   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2618   ///
2619   /// where 'id' is an additional space that references the memory access that
2620   /// triggered the access.
2621   ///
2622   /// @param AccessTy The type of the memory accesses to collect.
2623   ///
2624   /// @return The relation describing all tagged memory accesses.
2625   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2626     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2627 
2628     for (auto &Stmt : *S)
2629       for (auto &Acc : Stmt)
2630         if (Acc->getType() == AccessTy) {
2631           isl_map *Relation = Acc->getAccessRelation().release();
2632           Relation =
2633               isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2634 
2635           isl_space *Space = isl_map_get_space(Relation);
2636           Space = isl_space_range(Space);
2637           Space = isl_space_from_range(Space);
2638           Space =
2639               isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2640           isl_map *Universe = isl_map_universe(Space);
2641           Relation = isl_map_domain_product(Relation, Universe);
2642           Accesses = isl_union_map_add_map(Accesses, Relation);
2643         }
2644 
2645     return Accesses;
2646   }
2647 
2648   /// Get the set of all read accesses, tagged with the access id.
2649   ///
2650   /// @see getTaggedAccesses
2651   isl_union_map *getTaggedReads() {
2652     return getTaggedAccesses(MemoryAccess::READ);
2653   }
2654 
2655   /// Get the set of all may (and must) accesses, tagged with the access id.
2656   ///
2657   /// @see getTaggedAccesses
2658   isl_union_map *getTaggedMayWrites() {
2659     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2660                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
2661   }
2662 
2663   /// Get the set of all must accesses, tagged with the access id.
2664   ///
2665   /// @see getTaggedAccesses
2666   isl_union_map *getTaggedMustWrites() {
2667     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2668   }
2669 
2670   /// Collect parameter and array names as isl_ids.
2671   ///
2672   /// To reason about the different parameters and arrays used, ppcg requires
2673   /// a list of all isl_ids in use. As PPCG traditionally performs
2674   /// source-to-source compilation each of these isl_ids is mapped to the
2675   /// expression that represents it. As we do not have a corresponding
2676   /// expression in Polly, we just map each id to a 'zero' expression to match
2677   /// the data format that ppcg expects.
2678   ///
2679   /// @returns Retun a map from collected ids to 'zero' ast expressions.
2680   __isl_give isl_id_to_ast_expr *getNames() {
2681     auto *Names = isl_id_to_ast_expr_alloc(
2682         S->getIslCtx().get(),
2683         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2684     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get()));
2685 
2686     for (const SCEV *P : S->parameters()) {
2687       isl_id *Id = S->getIdForParam(P).release();
2688       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2689     }
2690 
2691     for (auto &Array : S->arrays()) {
2692       auto Id = Array->getBasePtrId().release();
2693       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2694     }
2695 
2696     isl_ast_expr_free(Zero);
2697 
2698     return Names;
2699   }
2700 
2701   /// Create a new PPCG scop from the current scop.
2702   ///
2703   /// The PPCG scop is initialized with data from the current polly::Scop. From
2704   /// this initial data, the data-dependences in the PPCG scop are initialized.
2705   /// We do not use Polly's dependence analysis for now, to ensure we match
2706   /// the PPCG default behaviour more closely.
2707   ///
2708   /// @returns A new ppcg scop.
2709   ppcg_scop *createPPCGScop() {
2710     MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2711 
2712     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2713 
2714     PPCGScop->options = createPPCGOptions();
2715     // enable live range reordering
2716     PPCGScop->options->live_range_reordering = 1;
2717 
2718     PPCGScop->start = 0;
2719     PPCGScop->end = 0;
2720 
2721     PPCGScop->context = S->getContext().release();
2722     PPCGScop->domain = S->getDomains().release();
2723     // TODO: investigate this further. PPCG calls collect_call_domains.
2724     PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2725     PPCGScop->tagged_reads = getTaggedReads();
2726     PPCGScop->reads = S->getReads().release();
2727     PPCGScop->live_in = nullptr;
2728     PPCGScop->tagged_may_writes = getTaggedMayWrites();
2729     PPCGScop->may_writes = S->getWrites().release();
2730     PPCGScop->tagged_must_writes = getTaggedMustWrites();
2731     PPCGScop->must_writes = S->getMustWrites().release();
2732     PPCGScop->live_out = nullptr;
2733     PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release();
2734     PPCGScop->must_kills = KillsInfo.MustKills.release();
2735 
2736     PPCGScop->tagger = nullptr;
2737     PPCGScop->independence =
2738         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2739     PPCGScop->dep_flow = nullptr;
2740     PPCGScop->tagged_dep_flow = nullptr;
2741     PPCGScop->dep_false = nullptr;
2742     PPCGScop->dep_forced = nullptr;
2743     PPCGScop->dep_order = nullptr;
2744     PPCGScop->tagged_dep_order = nullptr;
2745 
2746     PPCGScop->schedule = S->getScheduleTree().release();
2747     // If we have something non-trivial to kill, add it to the schedule
2748     if (KillsInfo.KillsSchedule.get())
2749       PPCGScop->schedule = isl_schedule_sequence(
2750           PPCGScop->schedule, KillsInfo.KillsSchedule.release());
2751 
2752     PPCGScop->names = getNames();
2753     PPCGScop->pet = nullptr;
2754 
2755     compute_tagger(PPCGScop);
2756     compute_dependences(PPCGScop);
2757     eliminate_dead_code(PPCGScop);
2758 
2759     return PPCGScop;
2760   }
2761 
2762   /// Collect the array accesses in a statement.
2763   ///
2764   /// @param Stmt The statement for which to collect the accesses.
2765   ///
2766   /// @returns A list of array accesses.
2767   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2768     gpu_stmt_access *Accesses = nullptr;
2769 
2770     for (MemoryAccess *Acc : Stmt) {
2771       auto Access =
2772           isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access);
2773       Access->read = Acc->isRead();
2774       Access->write = Acc->isWrite();
2775       Access->access = Acc->getAccessRelation().release();
2776       isl_space *Space = isl_map_get_space(Access->access);
2777       Space = isl_space_range(Space);
2778       Space = isl_space_from_range(Space);
2779       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2780       isl_map *Universe = isl_map_universe(Space);
2781       Access->tagged_access =
2782           isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2783       Access->exact_write = !Acc->isMayWrite();
2784       Access->ref_id = Acc->getId().release();
2785       Access->next = Accesses;
2786       Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2787       // TODO: Also mark one-element accesses to arrays as fixed-element.
2788       Access->fixed_element =
2789           Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2790       Accesses = Access;
2791     }
2792 
2793     return Accesses;
2794   }
2795 
2796   /// Collect the list of GPU statements.
2797   ///
2798   /// Each statement has an id, a pointer to the underlying data structure,
2799   /// as well as a list with all memory accesses.
2800   ///
2801   /// TODO: Initialize the list of memory accesses.
2802   ///
2803   /// @returns A linked-list of statements.
2804   gpu_stmt *getStatements() {
2805     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt,
2806                                        std::distance(S->begin(), S->end()));
2807 
2808     int i = 0;
2809     for (auto &Stmt : *S) {
2810       gpu_stmt *GPUStmt = &Stmts[i];
2811 
2812       GPUStmt->id = Stmt.getDomainId().release();
2813 
2814       // We use the pet stmt pointer to keep track of the Polly statements.
2815       GPUStmt->stmt = (pet_stmt *)&Stmt;
2816       GPUStmt->accesses = getStmtAccesses(Stmt);
2817       i++;
2818     }
2819 
2820     return Stmts;
2821   }
2822 
2823   /// Derive the extent of an array.
2824   ///
2825   /// The extent of an array is the set of elements that are within the
2826   /// accessed array. For the inner dimensions, the extent constraints are
2827   /// 0 and the size of the corresponding array dimension. For the first
2828   /// (outermost) dimension, the extent constraints are the minimal and maximal
2829   /// subscript value for the first dimension.
2830   ///
2831   /// @param Array The array to derive the extent for.
2832   ///
2833   /// @returns An isl_set describing the extent of the array.
2834   isl::set getExtent(ScopArrayInfo *Array) {
2835     unsigned NumDims = Array->getNumberOfDimensions();
2836 
2837     if (Array->getNumberOfDimensions() == 0)
2838       return isl::set::universe(Array->getSpace());
2839 
2840     isl::union_map Accesses = S->getAccesses(Array);
2841     isl::union_set AccessUSet = Accesses.range();
2842     AccessUSet = AccessUSet.coalesce();
2843     AccessUSet = AccessUSet.detect_equalities();
2844     AccessUSet = AccessUSet.coalesce();
2845 
2846     if (AccessUSet.is_empty())
2847       return isl::set::empty(Array->getSpace());
2848 
2849     isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2850 
2851     isl::local_space LS = isl::local_space(Array->getSpace());
2852 
2853     isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2854     isl::pw_aff OuterMin = AccessSet.dim_min(0);
2855     isl::pw_aff OuterMax = AccessSet.dim_max(0);
2856     OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2857     OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2858     OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2859     OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2860 
2861     isl::set Extent = isl::set::universe(Array->getSpace());
2862 
2863     Extent = Extent.intersect(OuterMin.le_set(Val));
2864     Extent = Extent.intersect(OuterMax.ge_set(Val));
2865 
2866     for (unsigned i = 1; i < NumDims; ++i)
2867       Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2868 
2869     for (unsigned i = 0; i < NumDims; ++i) {
2870       isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2871 
2872       // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2873       // Fortran array will we have a legitimate dimension.
2874       if (PwAff.is_null()) {
2875         assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2876         continue;
2877       }
2878 
2879       isl::pw_aff Val = isl::aff::var_on_domain(
2880           isl::local_space(Array->getSpace()), isl::dim::set, i);
2881       PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2882       PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2883       isl::set Set = PwAff.gt_set(Val);
2884       Extent = Set.intersect(Extent);
2885     }
2886 
2887     return Extent;
2888   }
2889 
2890   /// Derive the bounds of an array.
2891   ///
2892   /// For the first dimension we derive the bound of the array from the extent
2893   /// of this dimension. For inner dimensions we obtain their size directly from
2894   /// ScopArrayInfo.
2895   ///
2896   /// @param PPCGArray The array to compute bounds for.
2897   /// @param Array The polly array from which to take the information.
2898   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2899     std::vector<isl_pw_aff *> Bounds;
2900 
2901     if (PPCGArray.n_index > 0) {
2902       if (isl_set_is_empty(PPCGArray.extent)) {
2903         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2904         isl_local_space *LS = isl_local_space_from_space(
2905             isl_space_params(isl_set_get_space(Dom)));
2906         isl_set_free(Dom);
2907         isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2908         Bounds.push_back(Zero);
2909       } else {
2910         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2911         Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2912         isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2913         isl_set_free(Dom);
2914         Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2915         isl_local_space *LS =
2916             isl_local_space_from_space(isl_set_get_space(Dom));
2917         isl_aff *One = isl_aff_zero_on_domain(LS);
2918         One = isl_aff_add_constant_si(One, 1);
2919         Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2920         Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2921         Bounds.push_back(Bound);
2922       }
2923     }
2924 
2925     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2926       isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2927       auto LS = isl_pw_aff_get_domain_space(Bound);
2928       auto Aff = isl_multi_aff_zero(LS);
2929 
2930       // We need types to work out, which is why we perform this weird dance
2931       // with `Aff` and `Bound`. Consider this example:
2932 
2933       // LS: [p] -> { [] }
2934       // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }.
2935       // This `~` is used to denote a "null space" (which is different from
2936       // a *zero dimensional* space), which is something that ISL does not
2937       // show you when pretty printing.
2938 
2939       // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional*
2940       // space, not a "null space" which does not exist at all.
2941 
2942       // When we pullback (precompose) `Bound` with `Zero`, we get:
2943       // Bound . Zero =
2944       //     ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) =
2945       //     [p] -> { ~ -> [(10p)] } =
2946       //     [p] -> [(10p)] (as ISL pretty prints it)
2947       // Bound Pullback: [p] -> { [(10p)] }
2948 
2949       // We want this kind of an expression for Bound, without a
2950       // zero dimensional input, but with a "null space" input for the types
2951       // to work out later on, as far as I (Siddharth Bhat) understand.
2952       // I was unable to find a reference to this in the ISL manual.
2953       // References: Tobias Grosser.
2954 
2955       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2956       Bounds.push_back(Bound);
2957     }
2958 
2959     /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2960     /// to have the same parameter dimensions. So, we need to align them to an
2961     /// appropriate space.
2962     /// Scop::Context is _not_ an appropriate space, because when we have
2963     /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2964     /// contain all parameter dimensions.
2965     /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2966     isl_space *SeedAlignSpace = S->getParamSpace().release();
2967     SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2968 
2969     isl_space *AlignSpace = nullptr;
2970     std::vector<isl_pw_aff *> AlignedBounds;
2971     std::tie(AlignSpace, AlignedBounds) =
2972         alignPwAffs(std::move(Bounds), SeedAlignSpace);
2973 
2974     assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2975 
2976     isl_pw_aff_list *BoundsList =
2977         createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds));
2978 
2979     isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2980     BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2981 
2982     assert(BoundsSpace && "Unable to access space of array.");
2983     assert(BoundsList && "Unable to access list of bounds.");
2984 
2985     PPCGArray.bound =
2986         isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2987     assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2988   }
2989 
2990   /// Create the arrays for @p PPCGProg.
2991   ///
2992   /// @param PPCGProg The program to compute the arrays for.
2993   void createArrays(gpu_prog *PPCGProg,
2994                     const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
2995     int i = 0;
2996     for (auto &Array : ValidSAIs) {
2997       std::string TypeName;
2998       raw_string_ostream OS(TypeName);
2999 
3000       OS << *Array->getElementType();
3001       TypeName = OS.str();
3002 
3003       gpu_array_info &PPCGArray = PPCGProg->array[i];
3004 
3005       PPCGArray.space = Array->getSpace().release();
3006       PPCGArray.type = strdup(TypeName.c_str());
3007       PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
3008       PPCGArray.name = strdup(Array->getName().c_str());
3009       PPCGArray.extent = nullptr;
3010       PPCGArray.n_index = Array->getNumberOfDimensions();
3011       PPCGArray.extent = getExtent(Array).release();
3012       PPCGArray.n_ref = 0;
3013       PPCGArray.refs = nullptr;
3014       PPCGArray.accessed = true;
3015       PPCGArray.read_only_scalar =
3016           Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
3017       PPCGArray.has_compound_element = false;
3018       PPCGArray.local = false;
3019       PPCGArray.declare_local = false;
3020       PPCGArray.global = false;
3021       PPCGArray.linearize = false;
3022       PPCGArray.dep_order = nullptr;
3023       PPCGArray.user = Array;
3024 
3025       PPCGArray.bound = nullptr;
3026       setArrayBounds(PPCGArray, Array);
3027       i++;
3028 
3029       collect_references(PPCGProg, &PPCGArray);
3030       PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
3031     }
3032   }
3033 
3034   /// Create an identity map between the arrays in the scop.
3035   ///
3036   /// @returns An identity map between the arrays in the scop.
3037   isl_union_map *getArrayIdentity() {
3038     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
3039 
3040     for (auto &Array : S->arrays()) {
3041       isl_space *Space = Array->getSpace().release();
3042       Space = isl_space_map_from_set(Space);
3043       isl_map *Identity = isl_map_identity(Space);
3044       Maps = isl_union_map_add_map(Maps, Identity);
3045     }
3046 
3047     return Maps;
3048   }
3049 
3050   /// Create a default-initialized PPCG GPU program.
3051   ///
3052   /// @returns A new gpu program description.
3053   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
3054 
3055     if (!PPCGScop)
3056       return nullptr;
3057 
3058     auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog);
3059 
3060     PPCGProg->ctx = S->getIslCtx().get();
3061     PPCGProg->scop = PPCGScop;
3062     PPCGProg->context = isl_set_copy(PPCGScop->context);
3063     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
3064     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
3065     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
3066     PPCGProg->tagged_must_kill =
3067         isl_union_map_copy(PPCGScop->tagged_must_kills);
3068     PPCGProg->to_inner = getArrayIdentity();
3069     PPCGProg->to_outer = getArrayIdentity();
3070     // TODO: verify that this assignment is correct.
3071     PPCGProg->any_to_outer = nullptr;
3072     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3073     PPCGProg->stmts = getStatements();
3074 
3075     // Only consider arrays that have a non-empty extent.
3076     // Otherwise, this will cause us to consider the following kinds of
3077     // empty arrays:
3078     //     1. Invariant loads that are represented by SAI objects.
3079     //     2. Arrays with statically known zero size.
3080     auto ValidSAIsRange =
3081         make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3082           return !getExtent(SAI).is_empty();
3083         });
3084     SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3085                                               ValidSAIsRange.end());
3086 
3087     PPCGProg->n_array =
3088         ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3089     PPCGProg->array = isl_calloc_array(
3090         S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array);
3091 
3092     createArrays(PPCGProg, ValidSAIs);
3093 
3094     PPCGProg->array_order = nullptr;
3095     collect_order_dependences(PPCGProg);
3096 
3097     PPCGProg->may_persist = compute_may_persist(PPCGProg);
3098     return PPCGProg;
3099   }
3100 
3101   struct PrintGPUUserData {
3102     struct cuda_info *CudaInfo;
3103     struct gpu_prog *PPCGProg;
3104     std::vector<ppcg_kernel *> Kernels;
3105   };
3106 
3107   /// Print a user statement node in the host code.
3108   ///
3109   /// We use ppcg's printing facilities to print the actual statement and
3110   /// additionally build up a list of all kernels that are encountered in the
3111   /// host ast.
3112   ///
3113   /// @param P The printer to print to
3114   /// @param Options The printing options to use
3115   /// @param Node The node to print
3116   /// @param User A user pointer to carry additional data. This pointer is
3117   ///             expected to be of type PrintGPUUserData.
3118   ///
3119   /// @returns A printer to which the output has been printed.
3120   static __isl_give isl_printer *
3121   printHostUser(__isl_take isl_printer *P,
3122                 __isl_take isl_ast_print_options *Options,
3123                 __isl_take isl_ast_node *Node, void *User) {
3124     auto Data = (struct PrintGPUUserData *)User;
3125     auto Id = isl_ast_node_get_annotation(Node);
3126 
3127     if (Id) {
3128       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3129 
3130       // If this is a user statement, format it ourselves as ppcg would
3131       // otherwise try to call pet functionality that is not available in
3132       // Polly.
3133       if (IsUser) {
3134         P = isl_printer_start_line(P);
3135         P = isl_printer_print_ast_node(P, Node);
3136         P = isl_printer_end_line(P);
3137         isl_id_free(Id);
3138         isl_ast_print_options_free(Options);
3139         return P;
3140       }
3141 
3142       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3143       isl_id_free(Id);
3144       Data->Kernels.push_back(Kernel);
3145     }
3146 
3147     return print_host_user(P, Options, Node, User);
3148   }
3149 
3150   /// Print C code corresponding to the control flow in @p Kernel.
3151   ///
3152   /// @param Kernel The kernel to print
3153   void printKernel(ppcg_kernel *Kernel) {
3154     auto *P = isl_printer_to_str(S->getIslCtx().get());
3155     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3156     auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3157     P = isl_ast_node_print(Kernel->tree, P, Options);
3158     char *String = isl_printer_get_str(P);
3159     outs() << String << "\n";
3160     free(String);
3161     isl_printer_free(P);
3162   }
3163 
3164   /// Print C code corresponding to the GPU code described by @p Tree.
3165   ///
3166   /// @param Tree An AST describing GPU code
3167   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
3168   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3169     auto *P = isl_printer_to_str(S->getIslCtx().get());
3170     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3171 
3172     PrintGPUUserData Data;
3173     Data.PPCGProg = PPCGProg;
3174 
3175     auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
3176     Options =
3177         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3178     P = isl_ast_node_print(Tree, P, Options);
3179     char *String = isl_printer_get_str(P);
3180     outs() << "# host\n";
3181     outs() << String << "\n";
3182     free(String);
3183     isl_printer_free(P);
3184 
3185     for (auto Kernel : Data.Kernels) {
3186       outs() << "# kernel" << Kernel->id << "\n";
3187       printKernel(Kernel);
3188     }
3189   }
3190 
3191   // Generate a GPU program using PPCG.
3192   //
3193   // GPU mapping consists of multiple steps:
3194   //
3195   //  1) Compute new schedule for the program.
3196   //  2) Map schedule to GPU (TODO)
3197   //  3) Generate code for new schedule (TODO)
3198   //
3199   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3200   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3201   // strategy directly from this pass.
3202   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3203 
3204     auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen);
3205 
3206     PPCGGen->ctx = S->getIslCtx().get();
3207     PPCGGen->options = PPCGScop->options;
3208     PPCGGen->print = nullptr;
3209     PPCGGen->print_user = nullptr;
3210     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3211     PPCGGen->prog = PPCGProg;
3212     PPCGGen->tree = nullptr;
3213     PPCGGen->types.n = 0;
3214     PPCGGen->types.name = nullptr;
3215     PPCGGen->sizes = nullptr;
3216     PPCGGen->used_sizes = nullptr;
3217     PPCGGen->kernel_id = 0;
3218 
3219     // Set scheduling strategy to same strategy PPCG is using.
3220     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3221     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3222     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3223 
3224     isl_schedule *Schedule = get_schedule(PPCGGen);
3225 
3226     int has_permutable = has_any_permutable_node(Schedule);
3227 
3228     Schedule =
3229         isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3230 
3231     if (!has_permutable || has_permutable < 0) {
3232       Schedule = isl_schedule_free(Schedule);
3233       LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3234                         << " does not have permutable bands. Bailing out\n";);
3235     } else {
3236       const bool CreateTransferToFromDevice = !PollyManagedMemory;
3237       Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3238       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3239     }
3240 
3241     if (DumpSchedule) {
3242       isl_printer *P = isl_printer_to_str(S->getIslCtx().get());
3243       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3244       P = isl_printer_print_str(P, "Schedule\n");
3245       P = isl_printer_print_str(P, "========\n");
3246       if (Schedule)
3247         P = isl_printer_print_schedule(P, Schedule);
3248       else
3249         P = isl_printer_print_str(P, "No schedule found\n");
3250 
3251       outs() << isl_printer_get_str(P) << "\n";
3252       isl_printer_free(P);
3253     }
3254 
3255     if (DumpCode) {
3256       outs() << "Code\n";
3257       outs() << "====\n";
3258       if (PPCGGen->tree)
3259         printGPUTree(PPCGGen->tree, PPCGProg);
3260       else
3261         outs() << "No code generated\n";
3262     }
3263 
3264     isl_schedule_free(Schedule);
3265 
3266     return PPCGGen;
3267   }
3268 
3269   /// Free gpu_gen structure.
3270   ///
3271   /// @param PPCGGen The ppcg_gen object to free.
3272   void freePPCGGen(gpu_gen *PPCGGen) {
3273     isl_ast_node_free(PPCGGen->tree);
3274     isl_union_map_free(PPCGGen->sizes);
3275     isl_union_map_free(PPCGGen->used_sizes);
3276     free(PPCGGen);
3277   }
3278 
3279   /// Free the options in the ppcg scop structure.
3280   ///
3281   /// ppcg is not freeing these options for us. To avoid leaks we do this
3282   /// ourselves.
3283   ///
3284   /// @param PPCGScop The scop referencing the options to free.
3285   void freeOptions(ppcg_scop *PPCGScop) {
3286     free(PPCGScop->options->debug);
3287     PPCGScop->options->debug = nullptr;
3288     free(PPCGScop->options);
3289     PPCGScop->options = nullptr;
3290   }
3291 
3292   /// Approximate the number of points in the set.
3293   ///
3294   /// This function returns an ast expression that overapproximates the number
3295   /// of points in an isl set through the rectangular hull surrounding this set.
3296   ///
3297   /// @param Set   The set to count.
3298   /// @param Build The isl ast build object to use for creating the ast
3299   ///              expression.
3300   ///
3301   /// @returns An approximation of the number of points in the set.
3302   __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3303                                              __isl_keep isl_ast_build *Build) {
3304 
3305     isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3306     auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3307 
3308     isl_space *Space = isl_set_get_space(Set);
3309     Space = isl_space_params(Space);
3310     auto *Univ = isl_set_universe(Space);
3311     isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3312 
3313     for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
3314       isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3315       isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3316       isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3317       DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3318       auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3319       Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3320     }
3321 
3322     isl_set_free(Set);
3323     isl_pw_aff_free(OneAff);
3324 
3325     return Expr;
3326   }
3327 
3328   /// Approximate a number of dynamic instructions executed by a given
3329   /// statement.
3330   ///
3331   /// @param Stmt  The statement for which to compute the number of dynamic
3332   ///              instructions.
3333   /// @param Build The isl ast build object to use for creating the ast
3334   ///              expression.
3335   /// @returns An approximation of the number of dynamic instructions executed
3336   ///          by @p Stmt.
3337   __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3338                                              __isl_keep isl_ast_build *Build) {
3339     auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3340 
3341     long InstCount = 0;
3342 
3343     if (Stmt.isBlockStmt()) {
3344       auto *BB = Stmt.getBasicBlock();
3345       InstCount = std::distance(BB->begin(), BB->end());
3346     } else {
3347       auto *R = Stmt.getRegion();
3348 
3349       for (auto *BB : R->blocks()) {
3350         InstCount += std::distance(BB->begin(), BB->end());
3351       }
3352     }
3353 
3354     isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount);
3355     auto *InstExpr = isl_ast_expr_from_val(InstVal);
3356     return isl_ast_expr_mul(InstExpr, Iterations);
3357   }
3358 
3359   /// Approximate dynamic instructions executed in scop.
3360   ///
3361   /// @param S     The scop for which to approximate dynamic instructions.
3362   /// @param Build The isl ast build object to use for creating the ast
3363   ///              expression.
3364   /// @returns An approximation of the number of dynamic instructions executed
3365   ///          in @p S.
3366   __isl_give isl_ast_expr *
3367   getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3368     isl_ast_expr *Instructions;
3369 
3370     isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0);
3371     Instructions = isl_ast_expr_from_val(Zero);
3372 
3373     for (ScopStmt &Stmt : S) {
3374       isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3375       Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3376     }
3377     return Instructions;
3378   }
3379 
3380   /// Create a check that ensures sufficient compute in scop.
3381   ///
3382   /// @param S     The scop for which to ensure sufficient compute.
3383   /// @param Build The isl ast build object to use for creating the ast
3384   ///              expression.
3385   /// @returns An expression that evaluates to TRUE in case of sufficient
3386   ///          compute and to FALSE, otherwise.
3387   __isl_give isl_ast_expr *
3388   createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3389     auto Iterations = getNumberOfIterations(S, Build);
3390     auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute);
3391     auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3392     return isl_ast_expr_ge(Iterations, MinComputeExpr);
3393   }
3394 
3395   /// Check if the basic block contains a function we cannot codegen for GPU
3396   /// kernels.
3397   ///
3398   /// If this basic block does something with a `Function` other than calling
3399   /// a function that we support in a kernel, return true.
3400   bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3401                                             bool AllowCUDALibDevice) {
3402     for (const Instruction &Inst : *BB) {
3403       const CallInst *Call = dyn_cast<CallInst>(&Inst);
3404       if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3405                                           AllowCUDALibDevice))
3406         continue;
3407 
3408       for (Value *Op : Inst.operands())
3409         // Look for (<func-type>*) among operands of Inst
3410         if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) {
3411           if (isa<FunctionType>(PtrTy->getElementType())) {
3412             LLVM_DEBUG(dbgs()
3413                        << Inst << " has illegal use of function in kernel.\n");
3414             return true;
3415           }
3416         }
3417     }
3418     return false;
3419   }
3420 
3421   /// Return whether the Scop S uses functions in a way that we do not support.
3422   bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3423     for (auto &Stmt : S) {
3424       if (Stmt.isBlockStmt()) {
3425         if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3426                                                  AllowCUDALibDevice))
3427           return true;
3428       } else {
3429         assert(Stmt.isRegionStmt() &&
3430                "Stmt was neither block nor region statement");
3431         for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3432           if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3433             return true;
3434       }
3435     }
3436     return false;
3437   }
3438 
3439   /// Generate code for a given GPU AST described by @p Root.
3440   ///
3441   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3442   /// @param Prog The GPU Program to generate code for.
3443   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3444     ScopAnnotator Annotator;
3445     Annotator.buildAliasScopes(*S);
3446 
3447     Region *R = &S->getRegion();
3448 
3449     simplifyRegion(R, DT, LI, RI);
3450 
3451     BasicBlock *EnteringBB = R->getEnteringBlock();
3452 
3453     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3454 
3455     // Only build the run-time condition and parameters _after_ having
3456     // introduced the conditional branch. This is important as the conditional
3457     // branch will guard the original scop from new induction variables that
3458     // the SCEVExpander may introduce while code generating the parameters and
3459     // which may introduce scalar dependences that prevent us from correctly
3460     // code generating this scop.
3461     BBPair StartExitBlocks;
3462     BranchInst *CondBr = nullptr;
3463     std::tie(StartExitBlocks, CondBr) =
3464         executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3465     BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3466 
3467     assert(CondBr && "CondBr not initialized by executeScopConditionally");
3468 
3469     GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3470                                StartBlock, Prog, Runtime, Architecture);
3471 
3472     // TODO: Handle LICM
3473     auto SplitBlock = StartBlock->getSinglePredecessor();
3474     Builder.SetInsertPoint(SplitBlock->getTerminator());
3475 
3476     isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get());
3477     isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3478     isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3479     Condition = isl_ast_expr_and(Condition, SufficientCompute);
3480     isl_ast_build_free(Build);
3481 
3482     // preload invariant loads. Note: This should happen before the RTC
3483     // because the RTC may depend on values that are invariant load hoisted.
3484     if (!NodeBuilder.preloadInvariantLoads()) {
3485       // Patch the introduced branch condition to ensure that we always execute
3486       // the original SCoP.
3487       auto *FalseI1 = Builder.getFalse();
3488       auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
3489       SplitBBTerm->setOperand(0, FalseI1);
3490 
3491       LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3492                                S->getFunction().getName() +
3493                                " | Scop Region: " + S->getNameStr());
3494       // adjust the dominator tree accordingly.
3495       auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3496       assert(ExitingBlock);
3497       auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3498       assert(MergeBlock);
3499       polly::markBlockUnreachable(*StartBlock, Builder);
3500       polly::markBlockUnreachable(*ExitingBlock, Builder);
3501       auto *ExitingBB = S->getExitingBlock();
3502       assert(ExitingBB);
3503 
3504       DT->changeImmediateDominator(MergeBlock, ExitingBB);
3505       DT->eraseNode(ExitingBlock);
3506       isl_ast_expr_free(Condition);
3507       isl_ast_node_free(Root);
3508     } else {
3509 
3510       if (polly::PerfMonitoring) {
3511         PerfMonitor P(*S, EnteringBB->getParent()->getParent());
3512         P.initialize();
3513         P.insertRegionStart(SplitBlock->getTerminator());
3514 
3515         // TODO: actually think if this is the correct exiting block to place
3516         // the `end` performance marker. Invariant load hoisting changes
3517         // the CFG in a way that I do not precisely understand, so I
3518         // (Siddharth<[email protected]>) should come back to this and
3519         // think about which exiting block to use.
3520         auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3521         assert(ExitingBlock);
3522         BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
3523         P.insertRegionEnd(MergeBlock->getTerminator());
3524       }
3525 
3526       NodeBuilder.addParameters(S->getContext().release());
3527       Value *RTC = NodeBuilder.createRTC(Condition);
3528       Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3529 
3530       Builder.SetInsertPoint(&*StartBlock->begin());
3531 
3532       NodeBuilder.create(Root);
3533     }
3534 
3535     /// In case a sequential kernel has more surrounding loops as any parallel
3536     /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3537     /// point in running it on a GPU.
3538     if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3539       CondBr->setOperand(0, Builder.getFalse());
3540 
3541     if (!NodeBuilder.BuildSuccessful)
3542       CondBr->setOperand(0, Builder.getFalse());
3543   }
3544 
3545   bool runOnScop(Scop &CurrentScop) override {
3546     S = &CurrentScop;
3547     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3548     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3549     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3550     DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3551     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3552 
3553     LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3554                       << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3555 
3556     // We currently do not support functions other than intrinsics inside
3557     // kernels, as code generation will need to offload function calls to the
3558     // kernel. This may lead to a kernel trying to call a function on the host.
3559     // This also allows us to prevent codegen from trying to take the
3560     // address of an intrinsic function to send to the kernel.
3561     if (containsInvalidKernelFunction(CurrentScop,
3562                                       Architecture == GPUArch::NVPTX64)) {
3563       LLVM_DEBUG(
3564           dbgs() << getUniqueScopName(S)
3565                  << " contains function which cannot be materialised in a GPU "
3566                     "kernel. Bailing out.\n";);
3567       return false;
3568     }
3569 
3570     auto PPCGScop = createPPCGScop();
3571     auto PPCGProg = createPPCGProg(PPCGScop);
3572     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3573 
3574     if (PPCGGen->tree) {
3575       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3576       CurrentScop.markAsToBeSkipped();
3577     } else {
3578       LLVM_DEBUG(dbgs() << getUniqueScopName(S)
3579                         << " has empty PPCGGen->tree. Bailing out.\n");
3580     }
3581 
3582     freeOptions(PPCGScop);
3583     freePPCGGen(PPCGGen);
3584     gpu_prog_free(PPCGProg);
3585     ppcg_scop_free(PPCGScop);
3586 
3587     return true;
3588   }
3589 
3590   void printScop(raw_ostream &, Scop &) const override {}
3591 
3592   void getAnalysisUsage(AnalysisUsage &AU) const override {
3593     ScopPass::getAnalysisUsage(AU);
3594 
3595     AU.addRequired<DominatorTreeWrapperPass>();
3596     AU.addRequired<RegionInfoPass>();
3597     AU.addRequired<ScalarEvolutionWrapperPass>();
3598     AU.addRequired<ScopDetectionWrapperPass>();
3599     AU.addRequired<ScopInfoRegionPass>();
3600     AU.addRequired<LoopInfoWrapperPass>();
3601 
3602     // FIXME: We do not yet add regions for the newly generated code to the
3603     //        region tree.
3604   }
3605 };
3606 } // namespace
3607 
3608 char PPCGCodeGeneration::ID = 1;
3609 
3610 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3611   PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3612   generator->Runtime = Runtime;
3613   generator->Architecture = Arch;
3614   return generator;
3615 }
3616 
3617 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3618                       "Polly - Apply PPCG translation to SCOP", false, false)
3619 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3620 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3621 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3622 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3623 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3624 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3625 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3626                     "Polly - Apply PPCG translation to SCOP", false, false)
3627