1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::Hidden, cl::init(false), cl::ZeroOrMore, 95 cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> 106 CudaVersion("polly-acc-cuda-version", 107 cl::desc("The CUDA version to compile for"), cl::Hidden, 108 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<int> 111 MinCompute("polly-acc-mincompute", 112 cl::desc("Minimal number of compute statements to run on GPU."), 113 cl::Hidden, cl::init(10 * 512 * 512)); 114 115 /// Used to store information PPCG wants for kills. This information is 116 /// used by live range reordering. 117 /// 118 /// @see computeLiveRangeReordering 119 /// @see GPUNodeBuilder::createPPCGScop 120 /// @see GPUNodeBuilder::createPPCGProg 121 struct MustKillsInfo { 122 /// Collection of all kill statements that will be sequenced at the end of 123 /// PPCGScop->schedule. 124 /// 125 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 126 /// which merges schedules in *arbitrary* order. 127 /// (we don't care about the order of the kills anyway). 128 isl::schedule KillsSchedule; 129 /// Map from kill statement instances to scalars that need to be 130 /// killed. 131 /// 132 /// We currently only derive kill information for phi nodes, as phi nodes 133 /// allow us to easily derive kill information. PHI nodes are not alive 134 /// outside the scop and can consequently all be "killed". [params] -> { 135 /// [Stmt_phantom[] -> ref_phantom[]] -> phi_ref[] } 136 isl::union_map TaggedMustKills; 137 138 MustKillsInfo() : KillsSchedule(nullptr), TaggedMustKills(nullptr){}; 139 }; 140 141 /// Compute must-kills needed to enable live range reordering with PPCG. 142 /// 143 /// @params S The Scop to compute live range reordering information 144 /// @returns live range reordering information that can be used to setup 145 /// PPCG. 146 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 147 const isl::space ParamSpace(isl::manage(S.getParamSpace())); 148 MustKillsInfo Info; 149 150 // 1. Collect phi nodes in scop. 151 SmallVector<isl::id, 4> KillMemIds; 152 for (ScopArrayInfo *SAI : S.arrays()) { 153 if (!SAI->isPHIKind()) 154 continue; 155 156 KillMemIds.push_back(isl::manage(SAI->getBasePtrId())); 157 } 158 159 Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace)); 160 161 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 162 // schedule: 163 // - filter: "[control] -> { }" 164 // So, we choose to not create this to keep the output a little nicer, 165 // at the cost of some code complexity. 166 Info.KillsSchedule = nullptr; 167 168 for (isl::id &phiId : KillMemIds) { 169 isl::id KillStmtId = isl::id::alloc( 170 S.getIslCtx(), std::string("SKill_phantom_").append(phiId.get_name()), 171 nullptr); 172 173 // NOTE: construction of tagged_must_kill: 174 // 2. We need to construct a map: 175 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> phi_ref } 176 // To construct this, we use `isl_map_domain_product` on 2 maps`: 177 // 2a. StmtToPhi: 178 // [param] -> { Stmt_phantom[] -> phi_ref[] } 179 // 2b. PhantomRefToPhi: 180 // [param] -> { ref_phantom[] -> phi_ref[] } 181 // 182 // Combining these with `isl_map_domain_product` gives us 183 // TaggedMustKill: 184 // [param] -> { [Stmt[] -> phantom_ref[]] -> memref[] } 185 186 // 2a. [param] -> { S_2[] -> phi_ref[] } 187 isl::map StmtToPhi = isl::map::universe(isl::space(ParamSpace)); 188 StmtToPhi = StmtToPhi.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 189 StmtToPhi = StmtToPhi.set_tuple_id(isl::dim::out, isl::id(phiId)); 190 191 isl::id PhantomRefId = isl::id::alloc( 192 S.getIslCtx(), std::string("ref_phantom") + phiId.get_name(), nullptr); 193 194 // 2b. [param] -> { phantom_ref[] -> memref[] } 195 isl::map PhantomRefToPhi = isl::map::universe(isl::space(ParamSpace)); 196 PhantomRefToPhi = PhantomRefToPhi.set_tuple_id(isl::dim::in, PhantomRefId); 197 PhantomRefToPhi = PhantomRefToPhi.set_tuple_id(isl::dim::out, phiId); 198 199 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> memref[] } 200 isl::map TaggedMustKill = StmtToPhi.domain_product(PhantomRefToPhi); 201 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 202 203 // 3. Create the kill schedule of the form: 204 // "[param] -> { Stmt_phantom[] }" 205 // Then add this to Info.KillsSchedule. 206 isl::space KillStmtSpace = ParamSpace; 207 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 208 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 209 210 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 211 if (Info.KillsSchedule) 212 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 213 else 214 Info.KillsSchedule = KillSchedule; 215 } 216 217 return Info; 218 } 219 220 /// Create the ast expressions for a ScopStmt. 221 /// 222 /// This function is a callback for to generate the ast expressions for each 223 /// of the scheduled ScopStmts. 224 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 225 void *StmtT, isl_ast_build *Build, 226 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 227 isl_id *Id, void *User), 228 void *UserIndex, 229 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 230 void *UserExpr) { 231 232 ScopStmt *Stmt = (ScopStmt *)StmtT; 233 234 isl_ctx *Ctx; 235 236 if (!Stmt || !Build) 237 return NULL; 238 239 Ctx = isl_ast_build_get_ctx(Build); 240 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 241 242 for (MemoryAccess *Acc : *Stmt) { 243 isl_map *AddrFunc = Acc->getAddressFunction(); 244 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 245 isl_id *RefId = Acc->getId(); 246 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 247 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 248 MPA = isl_multi_pw_aff_coalesce(MPA); 249 MPA = FunctionIndex(MPA, RefId, UserIndex); 250 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 251 Access = FunctionExpr(Access, RefId, UserExpr); 252 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 253 } 254 255 return RefToExpr; 256 } 257 258 /// Given a LLVM Type, compute its size in bytes, 259 static int computeSizeInBytes(const Type *T) { 260 int bytes = T->getPrimitiveSizeInBits() / 8; 261 if (bytes == 0) 262 bytes = T->getScalarSizeInBits() / 8; 263 return bytes; 264 } 265 266 /// Generate code for a GPU specific isl AST. 267 /// 268 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 269 /// generates code for general-purpose AST nodes, with special functionality 270 /// for generating GPU specific user nodes. 271 /// 272 /// @see GPUNodeBuilder::createUser 273 class GPUNodeBuilder : public IslNodeBuilder { 274 public: 275 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 276 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 277 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 278 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 279 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 280 Prog(Prog), Runtime(Runtime), Arch(Arch) { 281 getExprBuilder().setIDToSAI(&IDToSAI); 282 } 283 284 /// Create after-run-time-check initialization code. 285 void initializeAfterRTH(); 286 287 /// Finalize the generated scop. 288 virtual void finalize(); 289 290 /// Track if the full build process was successful. 291 /// 292 /// This value is set to false, if throughout the build process an error 293 /// occurred which prevents us from generating valid GPU code. 294 bool BuildSuccessful = true; 295 296 /// The maximal number of loops surrounding a sequential kernel. 297 unsigned DeepestSequential = 0; 298 299 /// The maximal number of loops surrounding a parallel kernel. 300 unsigned DeepestParallel = 0; 301 302 /// Return the name to set for the ptx_kernel. 303 std::string getKernelFuncName(int Kernel_id); 304 305 private: 306 /// A vector of array base pointers for which a new ScopArrayInfo was created. 307 /// 308 /// This vector is used to delete the ScopArrayInfo when it is not needed any 309 /// more. 310 std::vector<Value *> LocalArrays; 311 312 /// A map from ScopArrays to their corresponding device allocations. 313 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 314 315 /// The current GPU context. 316 Value *GPUContext; 317 318 /// The set of isl_ids allocated in the kernel 319 std::vector<isl_id *> KernelIds; 320 321 /// A module containing GPU code. 322 /// 323 /// This pointer is only set in case we are currently generating GPU code. 324 std::unique_ptr<Module> GPUModule; 325 326 /// The GPU program we generate code for. 327 gpu_prog *Prog; 328 329 /// The GPU Runtime implementation to use (OpenCL or CUDA). 330 GPURuntime Runtime; 331 332 /// The GPU Architecture to target. 333 GPUArch Arch; 334 335 /// Class to free isl_ids. 336 class IslIdDeleter { 337 public: 338 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 339 }; 340 341 /// A set containing all isl_ids allocated in a GPU kernel. 342 /// 343 /// By releasing this set all isl_ids will be freed. 344 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 345 346 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 347 348 /// Create code for user-defined AST nodes. 349 /// 350 /// These AST nodes can be of type: 351 /// 352 /// - ScopStmt: A computational statement (TODO) 353 /// - Kernel: A GPU kernel call (TODO) 354 /// - Data-Transfer: A GPU <-> CPU data-transfer 355 /// - In-kernel synchronization 356 /// - In-kernel memory copy statement 357 /// 358 /// @param UserStmt The ast node to generate code for. 359 virtual void createUser(__isl_take isl_ast_node *UserStmt); 360 361 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 362 363 /// Create code for a data transfer statement 364 /// 365 /// @param TransferStmt The data transfer statement. 366 /// @param Direction The direction in which to transfer data. 367 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 368 enum DataDirection Direction); 369 370 /// Find llvm::Values referenced in GPU kernel. 371 /// 372 /// @param Kernel The kernel to scan for llvm::Values 373 /// 374 /// @returns A pair, whose first element contains the set of values 375 /// referenced by the kernel, and whose second element contains the 376 /// set of functions referenced by the kernel. All functions in the 377 /// second set satisfy isValidFunctionInKernel. 378 std::pair<SetVector<Value *>, SetVector<Function *>> 379 getReferencesInKernel(ppcg_kernel *Kernel); 380 381 /// Compute the sizes of the execution grid for a given kernel. 382 /// 383 /// @param Kernel The kernel to compute grid sizes for. 384 /// 385 /// @returns A tuple with grid sizes for X and Y dimension 386 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 387 388 /// Creates a array that can be sent to the kernel on the device using a 389 /// host pointer. This is required for managed memory, when we directly send 390 /// host pointers to the device. 391 /// \note 392 /// This is to be used only with managed memory 393 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 394 ScopArrayInfo *ArrayInfo); 395 396 /// Compute the sizes of the thread blocks for a given kernel. 397 /// 398 /// @param Kernel The kernel to compute thread block sizes for. 399 /// 400 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 401 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 402 403 /// Store a specific kernel launch parameter in the array of kernel launch 404 /// parameters. 405 /// 406 /// @param Parameters The list of parameters in which to store. 407 /// @param Param The kernel launch parameter to store. 408 /// @param Index The index in the parameter list, at which to store the 409 /// parameter. 410 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 411 int Index); 412 413 /// Create kernel launch parameters. 414 /// 415 /// @param Kernel The kernel to create parameters for. 416 /// @param F The kernel function that has been created. 417 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 418 /// 419 /// @returns A stack allocated array with pointers to the parameter 420 /// values that are passed to the kernel. 421 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 422 SetVector<Value *> SubtreeValues); 423 424 /// Create declarations for kernel variable. 425 /// 426 /// This includes shared memory declarations. 427 /// 428 /// @param Kernel The kernel definition to create variables for. 429 /// @param FN The function into which to generate the variables. 430 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 431 432 /// Add CUDA annotations to module. 433 /// 434 /// Add a set of CUDA annotations that declares the maximal block dimensions 435 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 436 /// PTX compiler to bound the number of allocated registers to ensure the 437 /// resulting kernel is known to run with up to as many block dimensions 438 /// as specified here. 439 /// 440 /// @param M The module to add the annotations to. 441 /// @param BlockDimX The size of block dimension X. 442 /// @param BlockDimY The size of block dimension Y. 443 /// @param BlockDimZ The size of block dimension Z. 444 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 445 Value *BlockDimZ); 446 447 /// Create GPU kernel. 448 /// 449 /// Code generate the kernel described by @p KernelStmt. 450 /// 451 /// @param KernelStmt The ast node to generate kernel code for. 452 void createKernel(__isl_take isl_ast_node *KernelStmt); 453 454 /// Generate code that computes the size of an array. 455 /// 456 /// @param Array The array for which to compute a size. 457 Value *getArraySize(gpu_array_info *Array); 458 459 /// Generate code to compute the minimal offset at which an array is accessed. 460 /// 461 /// The offset of an array is the minimal array location accessed in a scop. 462 /// 463 /// Example: 464 /// 465 /// for (long i = 0; i < 100; i++) 466 /// A[i + 42] += ... 467 /// 468 /// getArrayOffset(A) results in 42. 469 /// 470 /// @param Array The array for which to compute the offset. 471 /// @returns An llvm::Value that contains the offset of the array. 472 Value *getArrayOffset(gpu_array_info *Array); 473 474 /// Prepare the kernel arguments for kernel code generation 475 /// 476 /// @param Kernel The kernel to generate code for. 477 /// @param FN The function created for the kernel. 478 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 479 480 /// Create kernel function. 481 /// 482 /// Create a kernel function located in a newly created module that can serve 483 /// as target for device code generation. Set the Builder to point to the 484 /// start block of this newly created function. 485 /// 486 /// @param Kernel The kernel to generate code for. 487 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 488 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 489 /// kernel. 490 void createKernelFunction(ppcg_kernel *Kernel, 491 SetVector<Value *> &SubtreeValues, 492 SetVector<Function *> &SubtreeFunctions); 493 494 /// Create the declaration of a kernel function. 495 /// 496 /// The kernel function takes as arguments: 497 /// 498 /// - One i8 pointer for each external array reference used in the kernel. 499 /// - Host iterators 500 /// - Parameters 501 /// - Other LLVM Value references (TODO) 502 /// 503 /// @param Kernel The kernel to generate the function declaration for. 504 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 505 /// 506 /// @returns The newly declared function. 507 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 508 SetVector<Value *> &SubtreeValues); 509 510 /// Insert intrinsic functions to obtain thread and block ids. 511 /// 512 /// @param The kernel to generate the intrinsic functions for. 513 void insertKernelIntrinsics(ppcg_kernel *Kernel); 514 515 /// Setup the creation of functions referenced by the GPU kernel. 516 /// 517 /// 1. Create new function declarations in GPUModule which are the same as 518 /// SubtreeFunctions. 519 /// 520 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 521 /// old functions (that come from the original module) to new functions 522 /// (that are created within GPUModule). That way, we generate references 523 /// to the correct function (in GPUModule) in BlockGenerator. 524 /// 525 /// @see IslNodeBuilder::ValueMap 526 /// @see BlockGenerator::GlobalMap 527 /// @see BlockGenerator::getNewValue 528 /// @see GPUNodeBuilder::getReferencesInKernel. 529 /// 530 /// @param SubtreeFunctions The set of llvm::Functions referenced by 531 /// this kernel. 532 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 533 534 /// Create a global-to-shared or shared-to-global copy statement. 535 /// 536 /// @param CopyStmt The copy statement to generate code for 537 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 538 539 /// Create code for a ScopStmt called in @p Expr. 540 /// 541 /// @param Expr The expression containing the call. 542 /// @param KernelStmt The kernel statement referenced in the call. 543 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 544 545 /// Create an in-kernel synchronization call. 546 void createKernelSync(); 547 548 /// Create a PTX assembly string for the current GPU kernel. 549 /// 550 /// @returns A string containing the corresponding PTX assembly code. 551 std::string createKernelASM(); 552 553 /// Remove references from the dominator tree to the kernel function @p F. 554 /// 555 /// @param F The function to remove references to. 556 void clearDominators(Function *F); 557 558 /// Remove references from scalar evolution to the kernel function @p F. 559 /// 560 /// @param F The function to remove references to. 561 void clearScalarEvolution(Function *F); 562 563 /// Remove references from loop info to the kernel function @p F. 564 /// 565 /// @param F The function to remove references to. 566 void clearLoops(Function *F); 567 568 /// Finalize the generation of the kernel function. 569 /// 570 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 571 /// dump its IR to stderr. 572 /// 573 /// @returns The Assembly string of the kernel. 574 std::string finalizeKernelFunction(); 575 576 /// Finalize the generation of the kernel arguments. 577 /// 578 /// This function ensures that not-read-only scalars used in a kernel are 579 /// stored back to the global memory location they are backed with before 580 /// the kernel terminates. 581 /// 582 /// @params Kernel The kernel to finalize kernel arguments for. 583 void finalizeKernelArguments(ppcg_kernel *Kernel); 584 585 /// Create code that allocates memory to store arrays on device. 586 void allocateDeviceArrays(); 587 588 /// Free all allocated device arrays. 589 void freeDeviceArrays(); 590 591 /// Create a call to initialize the GPU context. 592 /// 593 /// @returns A pointer to the newly initialized context. 594 Value *createCallInitContext(); 595 596 /// Create a call to get the device pointer for a kernel allocation. 597 /// 598 /// @param Allocation The Polly GPU allocation 599 /// 600 /// @returns The device parameter corresponding to this allocation. 601 Value *createCallGetDevicePtr(Value *Allocation); 602 603 /// Create a call to free the GPU context. 604 /// 605 /// @param Context A pointer to an initialized GPU context. 606 void createCallFreeContext(Value *Context); 607 608 /// Create a call to allocate memory on the device. 609 /// 610 /// @param Size The size of memory to allocate 611 /// 612 /// @returns A pointer that identifies this allocation. 613 Value *createCallAllocateMemoryForDevice(Value *Size); 614 615 /// Create a call to free a device array. 616 /// 617 /// @param Array The device array to free. 618 void createCallFreeDeviceMemory(Value *Array); 619 620 /// Create a call to copy data from host to device. 621 /// 622 /// @param HostPtr A pointer to the host data that should be copied. 623 /// @param DevicePtr A device pointer specifying the location to copy to. 624 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 625 Value *Size); 626 627 /// Create a call to copy data from device to host. 628 /// 629 /// @param DevicePtr A pointer to the device data that should be copied. 630 /// @param HostPtr A host pointer specifying the location to copy to. 631 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 632 Value *Size); 633 634 /// Create a call to synchronize Host & Device. 635 /// \note 636 /// This is to be used only with managed memory. 637 void createCallSynchronizeDevice(); 638 639 /// Create a call to get a kernel from an assembly string. 640 /// 641 /// @param Buffer The string describing the kernel. 642 /// @param Entry The name of the kernel function to call. 643 /// 644 /// @returns A pointer to a kernel object 645 Value *createCallGetKernel(Value *Buffer, Value *Entry); 646 647 /// Create a call to free a GPU kernel. 648 /// 649 /// @param GPUKernel THe kernel to free. 650 void createCallFreeKernel(Value *GPUKernel); 651 652 /// Create a call to launch a GPU kernel. 653 /// 654 /// @param GPUKernel The kernel to launch. 655 /// @param GridDimX The size of the first grid dimension. 656 /// @param GridDimY The size of the second grid dimension. 657 /// @param GridBlockX The size of the first block dimension. 658 /// @param GridBlockY The size of the second block dimension. 659 /// @param GridBlockZ The size of the third block dimension. 660 /// @param Parameters A pointer to an array that contains itself pointers to 661 /// the parameter values passed for each kernel argument. 662 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 663 Value *GridDimY, Value *BlockDimX, 664 Value *BlockDimY, Value *BlockDimZ, 665 Value *Parameters); 666 }; 667 668 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 669 return "FUNC_" + S.getFunction().getName().str() + "_KERNEL_" + 670 std::to_string(Kernel_id); 671 } 672 673 void GPUNodeBuilder::initializeAfterRTH() { 674 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 675 &*Builder.GetInsertPoint(), &DT, &LI); 676 NewBB->setName("polly.acc.initialize"); 677 Builder.SetInsertPoint(&NewBB->front()); 678 679 GPUContext = createCallInitContext(); 680 681 if (!ManagedMemory) 682 allocateDeviceArrays(); 683 } 684 685 void GPUNodeBuilder::finalize() { 686 if (!ManagedMemory) 687 freeDeviceArrays(); 688 689 createCallFreeContext(GPUContext); 690 IslNodeBuilder::finalize(); 691 } 692 693 void GPUNodeBuilder::allocateDeviceArrays() { 694 assert(!ManagedMemory && "Managed memory will directly send host pointers " 695 "to the kernel. There is no need for device arrays"); 696 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 697 698 for (int i = 0; i < Prog->n_array; ++i) { 699 gpu_array_info *Array = &Prog->array[i]; 700 auto *ScopArray = (ScopArrayInfo *)Array->user; 701 std::string DevArrayName("p_dev_array_"); 702 DevArrayName.append(Array->name); 703 704 Value *ArraySize = getArraySize(Array); 705 Value *Offset = getArrayOffset(Array); 706 if (Offset) 707 ArraySize = Builder.CreateSub( 708 ArraySize, 709 Builder.CreateMul(Offset, 710 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 711 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 712 DevArray->setName(DevArrayName); 713 DeviceAllocations[ScopArray] = DevArray; 714 } 715 716 isl_ast_build_free(Build); 717 } 718 719 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 720 Value *BlockDimY, Value *BlockDimZ) { 721 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 722 723 for (auto &F : *M) { 724 if (F.getCallingConv() != CallingConv::PTX_Kernel) 725 continue; 726 727 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 728 729 Metadata *Elements[] = { 730 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 731 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 732 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 733 ValueAsMetadata::get(V[2]), 734 }; 735 MDNode *Node = MDNode::get(M->getContext(), Elements); 736 AnnotationNode->addOperand(Node); 737 } 738 } 739 740 void GPUNodeBuilder::freeDeviceArrays() { 741 assert(!ManagedMemory && "Managed memory does not use device arrays"); 742 for (auto &Array : DeviceAllocations) 743 createCallFreeDeviceMemory(Array.second); 744 } 745 746 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 747 const char *Name = "polly_getKernel"; 748 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 749 Function *F = M->getFunction(Name); 750 751 // If F is not available, declare it. 752 if (!F) { 753 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 754 std::vector<Type *> Args; 755 Args.push_back(Builder.getInt8PtrTy()); 756 Args.push_back(Builder.getInt8PtrTy()); 757 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 758 F = Function::Create(Ty, Linkage, Name, M); 759 } 760 761 return Builder.CreateCall(F, {Buffer, Entry}); 762 } 763 764 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 765 const char *Name = "polly_getDevicePtr"; 766 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 767 Function *F = M->getFunction(Name); 768 769 // If F is not available, declare it. 770 if (!F) { 771 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 772 std::vector<Type *> Args; 773 Args.push_back(Builder.getInt8PtrTy()); 774 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 775 F = Function::Create(Ty, Linkage, Name, M); 776 } 777 778 return Builder.CreateCall(F, {Allocation}); 779 } 780 781 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 782 Value *GridDimY, Value *BlockDimX, 783 Value *BlockDimY, Value *BlockDimZ, 784 Value *Parameters) { 785 const char *Name = "polly_launchKernel"; 786 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 787 Function *F = M->getFunction(Name); 788 789 // If F is not available, declare it. 790 if (!F) { 791 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 792 std::vector<Type *> Args; 793 Args.push_back(Builder.getInt8PtrTy()); 794 Args.push_back(Builder.getInt32Ty()); 795 Args.push_back(Builder.getInt32Ty()); 796 Args.push_back(Builder.getInt32Ty()); 797 Args.push_back(Builder.getInt32Ty()); 798 Args.push_back(Builder.getInt32Ty()); 799 Args.push_back(Builder.getInt8PtrTy()); 800 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 801 F = Function::Create(Ty, Linkage, Name, M); 802 } 803 804 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 805 BlockDimZ, Parameters}); 806 } 807 808 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 809 const char *Name = "polly_freeKernel"; 810 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 811 Function *F = M->getFunction(Name); 812 813 // If F is not available, declare it. 814 if (!F) { 815 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 816 std::vector<Type *> Args; 817 Args.push_back(Builder.getInt8PtrTy()); 818 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 819 F = Function::Create(Ty, Linkage, Name, M); 820 } 821 822 Builder.CreateCall(F, {GPUKernel}); 823 } 824 825 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 826 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 827 "for device"); 828 const char *Name = "polly_freeDeviceMemory"; 829 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 830 Function *F = M->getFunction(Name); 831 832 // If F is not available, declare it. 833 if (!F) { 834 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 835 std::vector<Type *> Args; 836 Args.push_back(Builder.getInt8PtrTy()); 837 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 838 F = Function::Create(Ty, Linkage, Name, M); 839 } 840 841 Builder.CreateCall(F, {Array}); 842 } 843 844 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 845 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 846 "for device"); 847 const char *Name = "polly_allocateMemoryForDevice"; 848 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 849 Function *F = M->getFunction(Name); 850 851 // If F is not available, declare it. 852 if (!F) { 853 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 854 std::vector<Type *> Args; 855 Args.push_back(Builder.getInt64Ty()); 856 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 857 F = Function::Create(Ty, Linkage, Name, M); 858 } 859 860 return Builder.CreateCall(F, {Size}); 861 } 862 863 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 864 Value *DeviceData, 865 Value *Size) { 866 assert(!ManagedMemory && "Managed memory does not transfer memory between " 867 "device and host"); 868 const char *Name = "polly_copyFromHostToDevice"; 869 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 870 Function *F = M->getFunction(Name); 871 872 // If F is not available, declare it. 873 if (!F) { 874 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 875 std::vector<Type *> Args; 876 Args.push_back(Builder.getInt8PtrTy()); 877 Args.push_back(Builder.getInt8PtrTy()); 878 Args.push_back(Builder.getInt64Ty()); 879 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 880 F = Function::Create(Ty, Linkage, Name, M); 881 } 882 883 Builder.CreateCall(F, {HostData, DeviceData, Size}); 884 } 885 886 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 887 Value *HostData, 888 Value *Size) { 889 assert(!ManagedMemory && "Managed memory does not transfer memory between " 890 "device and host"); 891 const char *Name = "polly_copyFromDeviceToHost"; 892 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 893 Function *F = M->getFunction(Name); 894 895 // If F is not available, declare it. 896 if (!F) { 897 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 898 std::vector<Type *> Args; 899 Args.push_back(Builder.getInt8PtrTy()); 900 Args.push_back(Builder.getInt8PtrTy()); 901 Args.push_back(Builder.getInt64Ty()); 902 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 903 F = Function::Create(Ty, Linkage, Name, M); 904 } 905 906 Builder.CreateCall(F, {DeviceData, HostData, Size}); 907 } 908 909 void GPUNodeBuilder::createCallSynchronizeDevice() { 910 assert(ManagedMemory && "explicit synchronization is only necessary for " 911 "managed memory"); 912 const char *Name = "polly_synchronizeDevice"; 913 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 914 Function *F = M->getFunction(Name); 915 916 // If F is not available, declare it. 917 if (!F) { 918 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 919 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 920 F = Function::Create(Ty, Linkage, Name, M); 921 } 922 923 Builder.CreateCall(F); 924 } 925 926 Value *GPUNodeBuilder::createCallInitContext() { 927 const char *Name; 928 929 switch (Runtime) { 930 case GPURuntime::CUDA: 931 Name = "polly_initContextCUDA"; 932 break; 933 case GPURuntime::OpenCL: 934 Name = "polly_initContextCL"; 935 break; 936 } 937 938 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 939 Function *F = M->getFunction(Name); 940 941 // If F is not available, declare it. 942 if (!F) { 943 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 944 std::vector<Type *> Args; 945 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 946 F = Function::Create(Ty, Linkage, Name, M); 947 } 948 949 return Builder.CreateCall(F, {}); 950 } 951 952 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 953 const char *Name = "polly_freeContext"; 954 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 955 Function *F = M->getFunction(Name); 956 957 // If F is not available, declare it. 958 if (!F) { 959 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 960 std::vector<Type *> Args; 961 Args.push_back(Builder.getInt8PtrTy()); 962 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 963 F = Function::Create(Ty, Linkage, Name, M); 964 } 965 966 Builder.CreateCall(F, {Context}); 967 } 968 969 /// Check if one string is a prefix of another. 970 /// 971 /// @param String The string in which to look for the prefix. 972 /// @param Prefix The prefix to look for. 973 static bool isPrefix(std::string String, std::string Prefix) { 974 return String.find(Prefix) == 0; 975 } 976 977 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 978 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 979 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 980 981 if (!gpu_array_is_scalar(Array)) { 982 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 983 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 984 985 for (unsigned int i = 1; i < Array->n_index; i++) { 986 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 987 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 988 Res = isl_ast_expr_mul(Res, Expr); 989 } 990 991 Value *NumElements = ExprBuilder.create(Res); 992 if (NumElements->getType() != ArraySize->getType()) 993 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 994 ArraySize = Builder.CreateMul(ArraySize, NumElements); 995 } 996 isl_ast_build_free(Build); 997 return ArraySize; 998 } 999 1000 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1001 if (gpu_array_is_scalar(Array)) 1002 return nullptr; 1003 1004 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 1005 1006 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 1007 1008 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 1009 1010 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 1011 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 1012 1013 if (isl_set_is_subset(Min, ZeroSet)) { 1014 isl_set_free(Min); 1015 isl_set_free(ZeroSet); 1016 isl_ast_build_free(Build); 1017 return nullptr; 1018 } 1019 isl_set_free(ZeroSet); 1020 1021 isl_ast_expr *Result = 1022 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 1023 1024 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 1025 if (i > 0) { 1026 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i - 1]); 1027 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1028 Result = isl_ast_expr_mul(Result, BExpr); 1029 } 1030 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 1031 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 1032 Result = isl_ast_expr_add(Result, MExpr); 1033 } 1034 1035 Value *ResultValue = ExprBuilder.create(Result); 1036 isl_set_free(Min); 1037 isl_ast_build_free(Build); 1038 1039 return ResultValue; 1040 } 1041 1042 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 1043 ScopArrayInfo *ArrayInfo) { 1044 1045 assert(ManagedMemory && "Only used when you wish to get a host " 1046 "pointer for sending data to the kernel, " 1047 "with managed memory"); 1048 std::map<ScopArrayInfo *, Value *>::iterator it; 1049 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 1050 return it->second; 1051 } else { 1052 Value *HostPtr; 1053 1054 if (gpu_array_is_scalar(Array)) 1055 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 1056 else 1057 HostPtr = ArrayInfo->getBasePtr(); 1058 1059 Value *Offset = getArrayOffset(Array); 1060 if (Offset) { 1061 HostPtr = Builder.CreatePointerCast( 1062 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 1063 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1064 } 1065 1066 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1067 DeviceAllocations[ArrayInfo] = HostPtr; 1068 return HostPtr; 1069 } 1070 } 1071 1072 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1073 enum DataDirection Direction) { 1074 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1075 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1076 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1077 isl_id *Id = isl_ast_expr_get_id(Arg); 1078 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1079 auto ScopArray = (ScopArrayInfo *)(Array->user); 1080 1081 Value *Size = getArraySize(Array); 1082 Value *Offset = getArrayOffset(Array); 1083 Value *DevPtr = DeviceAllocations[ScopArray]; 1084 1085 Value *HostPtr; 1086 1087 if (gpu_array_is_scalar(Array)) 1088 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1089 else 1090 HostPtr = ScopArray->getBasePtr(); 1091 1092 if (Offset) { 1093 HostPtr = Builder.CreatePointerCast( 1094 HostPtr, ScopArray->getElementType()->getPointerTo()); 1095 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1096 } 1097 1098 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1099 1100 if (Offset) { 1101 Size = Builder.CreateSub( 1102 Size, Builder.CreateMul( 1103 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1104 } 1105 1106 if (Direction == HOST_TO_DEVICE) 1107 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1108 else 1109 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1110 1111 isl_id_free(Id); 1112 isl_ast_expr_free(Arg); 1113 isl_ast_expr_free(Expr); 1114 isl_ast_node_free(TransferStmt); 1115 } 1116 1117 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1118 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1119 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1120 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1121 isl_id_free(Id); 1122 isl_ast_expr_free(StmtExpr); 1123 1124 const char *Str = isl_id_get_name(Id); 1125 if (!strcmp(Str, "kernel")) { 1126 createKernel(UserStmt); 1127 isl_ast_expr_free(Expr); 1128 return; 1129 } 1130 1131 if (isPrefix(Str, "to_device")) { 1132 if (!ManagedMemory) 1133 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1134 else 1135 isl_ast_node_free(UserStmt); 1136 1137 isl_ast_expr_free(Expr); 1138 return; 1139 } 1140 1141 if (isPrefix(Str, "from_device")) { 1142 if (!ManagedMemory) { 1143 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1144 } else { 1145 createCallSynchronizeDevice(); 1146 isl_ast_node_free(UserStmt); 1147 } 1148 isl_ast_expr_free(Expr); 1149 return; 1150 } 1151 1152 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1153 struct ppcg_kernel_stmt *KernelStmt = 1154 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1155 isl_id_free(Anno); 1156 1157 switch (KernelStmt->type) { 1158 case ppcg_kernel_domain: 1159 createScopStmt(Expr, KernelStmt); 1160 isl_ast_node_free(UserStmt); 1161 return; 1162 case ppcg_kernel_copy: 1163 createKernelCopy(KernelStmt); 1164 isl_ast_expr_free(Expr); 1165 isl_ast_node_free(UserStmt); 1166 return; 1167 case ppcg_kernel_sync: 1168 createKernelSync(); 1169 isl_ast_expr_free(Expr); 1170 isl_ast_node_free(UserStmt); 1171 return; 1172 } 1173 1174 isl_ast_expr_free(Expr); 1175 isl_ast_node_free(UserStmt); 1176 return; 1177 } 1178 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1179 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1180 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1181 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1182 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1183 Index = isl_ast_expr_address_of(Index); 1184 Value *GlobalAddr = ExprBuilder.create(Index); 1185 1186 if (KernelStmt->u.c.read) { 1187 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1188 Builder.CreateStore(Load, LocalAddr); 1189 } else { 1190 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1191 Builder.CreateStore(Load, GlobalAddr); 1192 } 1193 } 1194 1195 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1196 ppcg_kernel_stmt *KernelStmt) { 1197 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1198 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1199 1200 LoopToScevMapT LTS; 1201 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1202 1203 createSubstitutions(Expr, Stmt, LTS); 1204 1205 if (Stmt->isBlockStmt()) 1206 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1207 else 1208 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1209 } 1210 1211 void GPUNodeBuilder::createKernelSync() { 1212 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1213 1214 Function *Sync; 1215 1216 switch (Arch) { 1217 case GPUArch::NVPTX64: 1218 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1219 break; 1220 } 1221 1222 Builder.CreateCall(Sync, {}); 1223 } 1224 1225 /// Collect llvm::Values referenced from @p Node 1226 /// 1227 /// This function only applies to isl_ast_nodes that are user_nodes referring 1228 /// to a ScopStmt. All other node types are ignore. 1229 /// 1230 /// @param Node The node to collect references for. 1231 /// @param User A user pointer used as storage for the data that is collected. 1232 /// 1233 /// @returns isl_bool_true if data could be collected successfully. 1234 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1235 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1236 return isl_bool_true; 1237 1238 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1239 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1240 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1241 const char *Str = isl_id_get_name(Id); 1242 isl_id_free(Id); 1243 isl_ast_expr_free(StmtExpr); 1244 isl_ast_expr_free(Expr); 1245 1246 if (!isPrefix(Str, "Stmt")) 1247 return isl_bool_true; 1248 1249 Id = isl_ast_node_get_annotation(Node); 1250 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1251 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1252 isl_id_free(Id); 1253 1254 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1255 1256 return isl_bool_true; 1257 } 1258 1259 /// Check if F is a function that we can code-generate in a GPU kernel. 1260 static bool isValidFunctionInKernel(llvm::Function *F) { 1261 assert(F && "F is an invalid pointer"); 1262 // We string compare against the name of the function to allow 1263 // all variants of the intrinsic "llvm.sqrt.*" 1264 return F->isIntrinsic() && F->getName().startswith("llvm.sqrt"); 1265 } 1266 1267 /// Do not take `Function` as a subtree value. 1268 /// 1269 /// We try to take the reference of all subtree values and pass them along 1270 /// to the kernel from the host. Taking an address of any function and 1271 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1272 /// `Function`s. 1273 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1274 1275 /// Return `Function`s from `RawSubtreeValues`. 1276 static SetVector<Function *> 1277 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues) { 1278 SetVector<Function *> SubtreeFunctions; 1279 for (Value *It : RawSubtreeValues) { 1280 Function *F = dyn_cast<Function>(It); 1281 if (F) { 1282 assert(isValidFunctionInKernel(F) && "Code should have bailed out by " 1283 "this point if an invalid function " 1284 "were present in a kernel."); 1285 SubtreeFunctions.insert(F); 1286 } 1287 } 1288 return SubtreeFunctions; 1289 } 1290 1291 std::pair<SetVector<Value *>, SetVector<Function *>> 1292 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1293 SetVector<Value *> SubtreeValues; 1294 SetVector<const SCEV *> SCEVs; 1295 SetVector<const Loop *> Loops; 1296 SubtreeReferences References = { 1297 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1298 1299 for (const auto &I : IDToValue) 1300 SubtreeValues.insert(I.second); 1301 1302 isl_ast_node_foreach_descendant_top_down( 1303 Kernel->tree, collectReferencesInGPUStmt, &References); 1304 1305 for (const SCEV *Expr : SCEVs) 1306 findValues(Expr, SE, SubtreeValues); 1307 1308 for (auto &SAI : S.arrays()) 1309 SubtreeValues.remove(SAI->getBasePtr()); 1310 1311 isl_space *Space = S.getParamSpace(); 1312 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1313 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1314 assert(IDToValue.count(Id)); 1315 Value *Val = IDToValue[Id]; 1316 SubtreeValues.remove(Val); 1317 isl_id_free(Id); 1318 } 1319 isl_space_free(Space); 1320 1321 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1322 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1323 assert(IDToValue.count(Id)); 1324 Value *Val = IDToValue[Id]; 1325 SubtreeValues.remove(Val); 1326 isl_id_free(Id); 1327 } 1328 1329 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1330 // SubtreeValues. This is important, because we should not lose any 1331 // SubtreeValues in the process of constructing the 1332 // "ValidSubtree{Values, Functions} sets. Nor should the set 1333 // ValidSubtree{Values, Functions} have any common element. 1334 auto ValidSubtreeValuesIt = 1335 make_filter_range(SubtreeValues, isValidSubtreeValue); 1336 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1337 ValidSubtreeValuesIt.end()); 1338 SetVector<Function *> ValidSubtreeFunctions( 1339 getFunctionsFromRawSubtreeValues(SubtreeValues)); 1340 1341 return std::make_pair(ValidSubtreeValues, ValidSubtreeFunctions); 1342 } 1343 1344 void GPUNodeBuilder::clearDominators(Function *F) { 1345 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1346 std::vector<BasicBlock *> Nodes; 1347 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1348 Nodes.push_back(I->getBlock()); 1349 1350 for (BasicBlock *BB : Nodes) 1351 DT.eraseNode(BB); 1352 } 1353 1354 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1355 for (BasicBlock &BB : *F) { 1356 Loop *L = LI.getLoopFor(&BB); 1357 if (L) 1358 SE.forgetLoop(L); 1359 } 1360 } 1361 1362 void GPUNodeBuilder::clearLoops(Function *F) { 1363 for (BasicBlock &BB : *F) { 1364 Loop *L = LI.getLoopFor(&BB); 1365 if (L) 1366 SE.forgetLoop(L); 1367 LI.removeBlock(&BB); 1368 } 1369 } 1370 1371 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1372 std::vector<Value *> Sizes; 1373 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1374 1375 for (long i = 0; i < Kernel->n_grid; i++) { 1376 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1377 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1378 Value *Res = ExprBuilder.create(GridSize); 1379 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1380 Sizes.push_back(Res); 1381 } 1382 isl_ast_build_free(Context); 1383 1384 for (long i = Kernel->n_grid; i < 3; i++) 1385 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1386 1387 return std::make_tuple(Sizes[0], Sizes[1]); 1388 } 1389 1390 std::tuple<Value *, Value *, Value *> 1391 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1392 std::vector<Value *> Sizes; 1393 1394 for (long i = 0; i < Kernel->n_block; i++) { 1395 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1396 Sizes.push_back(Res); 1397 } 1398 1399 for (long i = Kernel->n_block; i < 3; i++) 1400 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1401 1402 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1403 } 1404 1405 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1406 Instruction *Param, int Index) { 1407 Value *Slot = Builder.CreateGEP( 1408 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1409 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1410 Builder.CreateStore(ParamTyped, Slot); 1411 } 1412 1413 Value * 1414 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1415 SetVector<Value *> SubtreeValues) { 1416 const int NumArgs = F->arg_size(); 1417 std::vector<int> ArgSizes(NumArgs); 1418 1419 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1420 1421 BasicBlock *EntryBlock = 1422 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1423 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1424 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1425 Instruction *Parameters = new AllocaInst( 1426 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1427 1428 int Index = 0; 1429 for (long i = 0; i < Prog->n_array; i++) { 1430 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1431 continue; 1432 1433 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1434 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1435 1436 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1437 1438 Value *DevArray = nullptr; 1439 if (ManagedMemory) { 1440 DevArray = getOrCreateManagedDeviceArray( 1441 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1442 } else { 1443 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1444 DevArray = createCallGetDevicePtr(DevArray); 1445 } 1446 assert(DevArray != nullptr && "Array to be offloaded to device not " 1447 "initialized"); 1448 Value *Offset = getArrayOffset(&Prog->array[i]); 1449 1450 if (Offset) { 1451 DevArray = Builder.CreatePointerCast( 1452 DevArray, SAI->getElementType()->getPointerTo()); 1453 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1454 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1455 } 1456 Value *Slot = Builder.CreateGEP( 1457 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1458 1459 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1460 Value *ValPtr = nullptr; 1461 if (ManagedMemory) 1462 ValPtr = DevArray; 1463 else 1464 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1465 1466 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1467 " to be stored into Parameters"); 1468 Value *ValPtrCast = 1469 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1470 Builder.CreateStore(ValPtrCast, Slot); 1471 } else { 1472 Instruction *Param = 1473 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1474 Launch + "_param_" + std::to_string(Index), 1475 EntryBlock->getTerminator()); 1476 Builder.CreateStore(DevArray, Param); 1477 Value *ParamTyped = 1478 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1479 Builder.CreateStore(ParamTyped, Slot); 1480 } 1481 Index++; 1482 } 1483 1484 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1485 1486 for (long i = 0; i < NumHostIters; i++) { 1487 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1488 Value *Val = IDToValue[Id]; 1489 isl_id_free(Id); 1490 1491 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1492 1493 Instruction *Param = 1494 new AllocaInst(Val->getType(), AddressSpace, 1495 Launch + "_param_" + std::to_string(Index), 1496 EntryBlock->getTerminator()); 1497 Builder.CreateStore(Val, Param); 1498 insertStoreParameter(Parameters, Param, Index); 1499 Index++; 1500 } 1501 1502 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1503 1504 for (long i = 0; i < NumVars; i++) { 1505 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1506 Value *Val = IDToValue[Id]; 1507 isl_id_free(Id); 1508 1509 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1510 1511 Instruction *Param = 1512 new AllocaInst(Val->getType(), AddressSpace, 1513 Launch + "_param_" + std::to_string(Index), 1514 EntryBlock->getTerminator()); 1515 Builder.CreateStore(Val, Param); 1516 insertStoreParameter(Parameters, Param, Index); 1517 Index++; 1518 } 1519 1520 for (auto Val : SubtreeValues) { 1521 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1522 1523 Instruction *Param = 1524 new AllocaInst(Val->getType(), AddressSpace, 1525 Launch + "_param_" + std::to_string(Index), 1526 EntryBlock->getTerminator()); 1527 Builder.CreateStore(Val, Param); 1528 insertStoreParameter(Parameters, Param, Index); 1529 Index++; 1530 } 1531 1532 for (int i = 0; i < NumArgs; i++) { 1533 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1534 Instruction *Param = 1535 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1536 Launch + "_param_size_" + std::to_string(i), 1537 EntryBlock->getTerminator()); 1538 Builder.CreateStore(Val, Param); 1539 insertStoreParameter(Parameters, Param, Index); 1540 Index++; 1541 } 1542 1543 auto Location = EntryBlock->getTerminator(); 1544 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1545 Launch + "_params_i8ptr", Location); 1546 } 1547 1548 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1549 SetVector<Function *> SubtreeFunctions) { 1550 for (auto Fn : SubtreeFunctions) { 1551 const std::string ClonedFnName = Fn->getName(); 1552 Function *Clone = GPUModule->getFunction(ClonedFnName); 1553 if (!Clone) 1554 Clone = 1555 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1556 ClonedFnName, GPUModule.get()); 1557 assert(Clone && "Expected cloned function to be initialized."); 1558 assert(ValueMap.find(Fn) == ValueMap.end() && 1559 "Fn already present in ValueMap"); 1560 ValueMap[Fn] = Clone; 1561 } 1562 } 1563 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1564 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1565 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1566 isl_id_free(Id); 1567 isl_ast_node_free(KernelStmt); 1568 1569 if (Kernel->n_grid > 1) 1570 DeepestParallel = 1571 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1572 else 1573 DeepestSequential = 1574 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1575 1576 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1577 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1578 1579 SetVector<Value *> SubtreeValues; 1580 SetVector<Function *> SubtreeFunctions; 1581 std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel); 1582 1583 assert(Kernel->tree && "Device AST of kernel node is empty"); 1584 1585 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1586 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1587 ValueMapT HostValueMap = ValueMap; 1588 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1589 ScalarMap.clear(); 1590 1591 SetVector<const Loop *> Loops; 1592 1593 // Create for all loops we depend on values that contain the current loop 1594 // iteration. These values are necessary to generate code for SCEVs that 1595 // depend on such loops. As a result we need to pass them to the subfunction. 1596 for (const Loop *L : Loops) { 1597 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1598 SE.getUnknown(Builder.getInt64(1)), 1599 L, SCEV::FlagAnyWrap); 1600 Value *V = generateSCEV(OuterLIV); 1601 OutsideLoopIterations[L] = SE.getUnknown(V); 1602 SubtreeValues.insert(V); 1603 } 1604 1605 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1606 setupKernelSubtreeFunctions(SubtreeFunctions); 1607 1608 create(isl_ast_node_copy(Kernel->tree)); 1609 1610 finalizeKernelArguments(Kernel); 1611 Function *F = Builder.GetInsertBlock()->getParent(); 1612 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1613 clearDominators(F); 1614 clearScalarEvolution(F); 1615 clearLoops(F); 1616 1617 IDToValue = HostIDs; 1618 1619 ValueMap = std::move(HostValueMap); 1620 ScalarMap = std::move(HostScalarMap); 1621 EscapeMap.clear(); 1622 IDToSAI.clear(); 1623 Annotator.resetAlternativeAliasBases(); 1624 for (auto &BasePtr : LocalArrays) 1625 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1626 LocalArrays.clear(); 1627 1628 std::string ASMString = finalizeKernelFunction(); 1629 Builder.SetInsertPoint(&HostInsertPoint); 1630 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1631 1632 std::string Name = getKernelFuncName(Kernel->id); 1633 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1634 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1635 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1636 1637 Value *GridDimX, *GridDimY; 1638 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1639 1640 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1641 BlockDimZ, Parameters); 1642 createCallFreeKernel(GPUKernel); 1643 1644 for (auto Id : KernelIds) 1645 isl_id_free(Id); 1646 1647 KernelIds.clear(); 1648 } 1649 1650 /// Compute the DataLayout string for the NVPTX backend. 1651 /// 1652 /// @param is64Bit Are we looking for a 64 bit architecture? 1653 static std::string computeNVPTXDataLayout(bool is64Bit) { 1654 std::string Ret = ""; 1655 1656 if (!is64Bit) { 1657 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1658 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1659 "64-v128:128:128-n16:32:64"; 1660 } else { 1661 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1662 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1663 "64-v128:128:128-n16:32:64"; 1664 } 1665 1666 return Ret; 1667 } 1668 1669 Function * 1670 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1671 SetVector<Value *> &SubtreeValues) { 1672 std::vector<Type *> Args; 1673 std::string Identifier = getKernelFuncName(Kernel->id); 1674 1675 for (long i = 0; i < Prog->n_array; i++) { 1676 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1677 continue; 1678 1679 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1680 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1681 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1682 Args.push_back(SAI->getElementType()); 1683 } else { 1684 static const int UseGlobalMemory = 1; 1685 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1686 } 1687 } 1688 1689 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1690 1691 for (long i = 0; i < NumHostIters; i++) 1692 Args.push_back(Builder.getInt64Ty()); 1693 1694 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1695 1696 for (long i = 0; i < NumVars; i++) { 1697 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1698 Value *Val = IDToValue[Id]; 1699 isl_id_free(Id); 1700 Args.push_back(Val->getType()); 1701 } 1702 1703 for (auto *V : SubtreeValues) 1704 Args.push_back(V->getType()); 1705 1706 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1707 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1708 GPUModule.get()); 1709 1710 switch (Arch) { 1711 case GPUArch::NVPTX64: 1712 FN->setCallingConv(CallingConv::PTX_Kernel); 1713 break; 1714 } 1715 1716 auto Arg = FN->arg_begin(); 1717 for (long i = 0; i < Kernel->n_array; i++) { 1718 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1719 continue; 1720 1721 Arg->setName(Kernel->array[i].array->name); 1722 1723 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1724 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1725 Type *EleTy = SAI->getElementType(); 1726 Value *Val = &*Arg; 1727 SmallVector<const SCEV *, 4> Sizes; 1728 isl_ast_build *Build = 1729 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1730 Sizes.push_back(nullptr); 1731 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1732 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1733 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1734 auto V = ExprBuilder.create(DimSize); 1735 Sizes.push_back(SE.getSCEV(V)); 1736 } 1737 const ScopArrayInfo *SAIRep = 1738 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1739 LocalArrays.push_back(Val); 1740 1741 isl_ast_build_free(Build); 1742 KernelIds.push_back(Id); 1743 IDToSAI[Id] = SAIRep; 1744 Arg++; 1745 } 1746 1747 for (long i = 0; i < NumHostIters; i++) { 1748 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1749 Arg->setName(isl_id_get_name(Id)); 1750 IDToValue[Id] = &*Arg; 1751 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1752 Arg++; 1753 } 1754 1755 for (long i = 0; i < NumVars; i++) { 1756 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1757 Arg->setName(isl_id_get_name(Id)); 1758 Value *Val = IDToValue[Id]; 1759 ValueMap[Val] = &*Arg; 1760 IDToValue[Id] = &*Arg; 1761 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1762 Arg++; 1763 } 1764 1765 for (auto *V : SubtreeValues) { 1766 Arg->setName(V->getName()); 1767 ValueMap[V] = &*Arg; 1768 Arg++; 1769 } 1770 1771 return FN; 1772 } 1773 1774 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1775 Intrinsic::ID IntrinsicsBID[2]; 1776 Intrinsic::ID IntrinsicsTID[3]; 1777 1778 switch (Arch) { 1779 case GPUArch::NVPTX64: 1780 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1781 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1782 1783 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1784 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1785 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1786 break; 1787 } 1788 1789 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1790 std::string Name = isl_id_get_name(Id); 1791 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1792 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1793 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1794 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1795 IDToValue[Id] = Val; 1796 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1797 }; 1798 1799 for (int i = 0; i < Kernel->n_grid; ++i) { 1800 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1801 addId(Id, IntrinsicsBID[i]); 1802 } 1803 1804 for (int i = 0; i < Kernel->n_block; ++i) { 1805 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1806 addId(Id, IntrinsicsTID[i]); 1807 } 1808 } 1809 1810 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1811 auto Arg = FN->arg_begin(); 1812 for (long i = 0; i < Kernel->n_array; i++) { 1813 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1814 continue; 1815 1816 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1817 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1818 isl_id_free(Id); 1819 1820 if (SAI->getNumberOfDimensions() > 0) { 1821 Arg++; 1822 continue; 1823 } 1824 1825 Value *Val = &*Arg; 1826 1827 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1828 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1829 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1830 Val = Builder.CreateLoad(TypedArgPtr); 1831 } 1832 1833 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1834 Builder.CreateStore(Val, Alloca); 1835 1836 Arg++; 1837 } 1838 } 1839 1840 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1841 auto *FN = Builder.GetInsertBlock()->getParent(); 1842 auto Arg = FN->arg_begin(); 1843 1844 bool StoredScalar = false; 1845 for (long i = 0; i < Kernel->n_array; i++) { 1846 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1847 continue; 1848 1849 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1850 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1851 isl_id_free(Id); 1852 1853 if (SAI->getNumberOfDimensions() > 0) { 1854 Arg++; 1855 continue; 1856 } 1857 1858 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1859 Arg++; 1860 continue; 1861 } 1862 1863 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1864 Value *ArgPtr = &*Arg; 1865 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1866 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1867 Value *Val = Builder.CreateLoad(Alloca); 1868 Builder.CreateStore(Val, TypedArgPtr); 1869 StoredScalar = true; 1870 1871 Arg++; 1872 } 1873 1874 if (StoredScalar) 1875 /// In case more than one thread contains scalar stores, the generated 1876 /// code might be incorrect, if we only store at the end of the kernel. 1877 /// To support this case we need to store these scalars back at each 1878 /// memory store or at least before each kernel barrier. 1879 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1880 BuildSuccessful = 0; 1881 } 1882 1883 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1884 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1885 1886 for (int i = 0; i < Kernel->n_var; ++i) { 1887 struct ppcg_kernel_var &Var = Kernel->var[i]; 1888 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1889 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1890 1891 Type *ArrayTy = EleTy; 1892 SmallVector<const SCEV *, 4> Sizes; 1893 1894 Sizes.push_back(nullptr); 1895 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1896 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1897 long Bound = isl_val_get_num_si(Val); 1898 isl_val_free(Val); 1899 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1900 } 1901 1902 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1903 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1904 long Bound = isl_val_get_num_si(Val); 1905 isl_val_free(Val); 1906 ArrayTy = ArrayType::get(ArrayTy, Bound); 1907 } 1908 1909 const ScopArrayInfo *SAI; 1910 Value *Allocation; 1911 if (Var.type == ppcg_access_shared) { 1912 auto GlobalVar = new GlobalVariable( 1913 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1914 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1915 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1916 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1917 1918 Allocation = GlobalVar; 1919 } else if (Var.type == ppcg_access_private) { 1920 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1921 } else { 1922 llvm_unreachable("unknown variable type"); 1923 } 1924 SAI = 1925 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1926 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1927 IDToValue[Id] = Allocation; 1928 LocalArrays.push_back(Allocation); 1929 KernelIds.push_back(Id); 1930 IDToSAI[Id] = SAI; 1931 } 1932 } 1933 1934 void GPUNodeBuilder::createKernelFunction( 1935 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 1936 SetVector<Function *> &SubtreeFunctions) { 1937 std::string Identifier = getKernelFuncName(Kernel->id); 1938 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1939 1940 switch (Arch) { 1941 case GPUArch::NVPTX64: 1942 if (Runtime == GPURuntime::CUDA) 1943 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1944 else if (Runtime == GPURuntime::OpenCL) 1945 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 1946 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1947 break; 1948 } 1949 1950 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1951 1952 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1953 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1954 1955 DT.addNewBlock(EntryBlock, PrevBlock); 1956 1957 Builder.SetInsertPoint(EntryBlock); 1958 Builder.CreateRetVoid(); 1959 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1960 1961 ScopDetection::markFunctionAsInvalid(FN); 1962 1963 prepareKernelArguments(Kernel, FN); 1964 createKernelVariables(Kernel, FN); 1965 insertKernelIntrinsics(Kernel); 1966 } 1967 1968 std::string GPUNodeBuilder::createKernelASM() { 1969 llvm::Triple GPUTriple; 1970 1971 switch (Arch) { 1972 case GPUArch::NVPTX64: 1973 switch (Runtime) { 1974 case GPURuntime::CUDA: 1975 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 1976 break; 1977 case GPURuntime::OpenCL: 1978 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 1979 break; 1980 } 1981 break; 1982 } 1983 1984 std::string ErrMsg; 1985 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1986 1987 if (!GPUTarget) { 1988 errs() << ErrMsg << "\n"; 1989 return ""; 1990 } 1991 1992 TargetOptions Options; 1993 Options.UnsafeFPMath = FastMath; 1994 1995 std::string subtarget; 1996 1997 switch (Arch) { 1998 case GPUArch::NVPTX64: 1999 subtarget = CudaVersion; 2000 break; 2001 } 2002 2003 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2004 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2005 2006 SmallString<0> ASMString; 2007 raw_svector_ostream ASMStream(ASMString); 2008 llvm::legacy::PassManager PM; 2009 2010 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2011 2012 if (TargetM->addPassesToEmitFile( 2013 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2014 errs() << "The target does not support generation of this file type!\n"; 2015 return ""; 2016 } 2017 2018 PM.run(*GPUModule); 2019 2020 return ASMStream.str(); 2021 } 2022 2023 std::string GPUNodeBuilder::finalizeKernelFunction() { 2024 2025 if (verifyModule(*GPUModule)) { 2026 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2027 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2028 2029 if (FailOnVerifyModuleFailure) 2030 llvm_unreachable("VerifyModule failed."); 2031 2032 BuildSuccessful = false; 2033 return ""; 2034 } 2035 2036 if (DumpKernelIR) 2037 outs() << *GPUModule << "\n"; 2038 2039 // Optimize module. 2040 llvm::legacy::PassManager OptPasses; 2041 PassManagerBuilder PassBuilder; 2042 PassBuilder.OptLevel = 3; 2043 PassBuilder.SizeLevel = 0; 2044 PassBuilder.populateModulePassManager(OptPasses); 2045 OptPasses.run(*GPUModule); 2046 2047 std::string Assembly = createKernelASM(); 2048 2049 if (DumpKernelASM) 2050 outs() << Assembly << "\n"; 2051 2052 GPUModule.release(); 2053 KernelIDs.clear(); 2054 2055 return Assembly; 2056 } 2057 2058 namespace { 2059 class PPCGCodeGeneration : public ScopPass { 2060 public: 2061 static char ID; 2062 2063 GPURuntime Runtime = GPURuntime::CUDA; 2064 2065 GPUArch Architecture = GPUArch::NVPTX64; 2066 2067 /// The scop that is currently processed. 2068 Scop *S; 2069 2070 LoopInfo *LI; 2071 DominatorTree *DT; 2072 ScalarEvolution *SE; 2073 const DataLayout *DL; 2074 RegionInfo *RI; 2075 2076 PPCGCodeGeneration() : ScopPass(ID) {} 2077 2078 /// Construct compilation options for PPCG. 2079 /// 2080 /// @returns The compilation options. 2081 ppcg_options *createPPCGOptions() { 2082 auto DebugOptions = 2083 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2084 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2085 2086 DebugOptions->dump_schedule_constraints = false; 2087 DebugOptions->dump_schedule = false; 2088 DebugOptions->dump_final_schedule = false; 2089 DebugOptions->dump_sizes = false; 2090 DebugOptions->verbose = false; 2091 2092 Options->debug = DebugOptions; 2093 2094 Options->reschedule = true; 2095 Options->scale_tile_loops = false; 2096 Options->wrap = false; 2097 2098 Options->non_negative_parameters = false; 2099 Options->ctx = nullptr; 2100 Options->sizes = nullptr; 2101 2102 Options->tile_size = 32; 2103 2104 Options->use_private_memory = PrivateMemory; 2105 Options->use_shared_memory = SharedMemory; 2106 Options->max_shared_memory = 48 * 1024; 2107 2108 Options->target = PPCG_TARGET_CUDA; 2109 Options->openmp = false; 2110 Options->linearize_device_arrays = true; 2111 Options->live_range_reordering = false; 2112 2113 Options->opencl_compiler_options = nullptr; 2114 Options->opencl_use_gpu = false; 2115 Options->opencl_n_include_file = 0; 2116 Options->opencl_include_files = nullptr; 2117 Options->opencl_print_kernel_types = false; 2118 Options->opencl_embed_kernel_code = false; 2119 2120 Options->save_schedule_file = nullptr; 2121 Options->load_schedule_file = nullptr; 2122 2123 return Options; 2124 } 2125 2126 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2127 /// 2128 /// Instead of a normal access of the form: 2129 /// 2130 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2131 /// 2132 /// a tagged access has the form 2133 /// 2134 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2135 /// 2136 /// where 'id' is an additional space that references the memory access that 2137 /// triggered the access. 2138 /// 2139 /// @param AccessTy The type of the memory accesses to collect. 2140 /// 2141 /// @return The relation describing all tagged memory accesses. 2142 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2143 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2144 2145 for (auto &Stmt : *S) 2146 for (auto &Acc : Stmt) 2147 if (Acc->getType() == AccessTy) { 2148 isl_map *Relation = Acc->getAccessRelation(); 2149 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2150 2151 isl_space *Space = isl_map_get_space(Relation); 2152 Space = isl_space_range(Space); 2153 Space = isl_space_from_range(Space); 2154 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2155 isl_map *Universe = isl_map_universe(Space); 2156 Relation = isl_map_domain_product(Relation, Universe); 2157 Accesses = isl_union_map_add_map(Accesses, Relation); 2158 } 2159 2160 return Accesses; 2161 } 2162 2163 /// Get the set of all read accesses, tagged with the access id. 2164 /// 2165 /// @see getTaggedAccesses 2166 isl_union_map *getTaggedReads() { 2167 return getTaggedAccesses(MemoryAccess::READ); 2168 } 2169 2170 /// Get the set of all may (and must) accesses, tagged with the access id. 2171 /// 2172 /// @see getTaggedAccesses 2173 isl_union_map *getTaggedMayWrites() { 2174 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2175 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2176 } 2177 2178 /// Get the set of all must accesses, tagged with the access id. 2179 /// 2180 /// @see getTaggedAccesses 2181 isl_union_map *getTaggedMustWrites() { 2182 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2183 } 2184 2185 /// Collect parameter and array names as isl_ids. 2186 /// 2187 /// To reason about the different parameters and arrays used, ppcg requires 2188 /// a list of all isl_ids in use. As PPCG traditionally performs 2189 /// source-to-source compilation each of these isl_ids is mapped to the 2190 /// expression that represents it. As we do not have a corresponding 2191 /// expression in Polly, we just map each id to a 'zero' expression to match 2192 /// the data format that ppcg expects. 2193 /// 2194 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2195 __isl_give isl_id_to_ast_expr *getNames() { 2196 auto *Names = isl_id_to_ast_expr_alloc( 2197 S->getIslCtx(), 2198 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2199 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2200 auto *Space = S->getParamSpace(); 2201 2202 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 2203 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 2204 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2205 } 2206 2207 for (auto &Array : S->arrays()) { 2208 auto Id = Array->getBasePtrId(); 2209 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2210 } 2211 2212 isl_space_free(Space); 2213 isl_ast_expr_free(Zero); 2214 2215 return Names; 2216 } 2217 2218 /// Create a new PPCG scop from the current scop. 2219 /// 2220 /// The PPCG scop is initialized with data from the current polly::Scop. From 2221 /// this initial data, the data-dependences in the PPCG scop are initialized. 2222 /// We do not use Polly's dependence analysis for now, to ensure we match 2223 /// the PPCG default behaviour more closely. 2224 /// 2225 /// @returns A new ppcg scop. 2226 ppcg_scop *createPPCGScop() { 2227 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2228 2229 PPCGScop->options = createPPCGOptions(); 2230 // enable live range reordering 2231 PPCGScop->options->live_range_reordering = 1; 2232 2233 PPCGScop->start = 0; 2234 PPCGScop->end = 0; 2235 2236 PPCGScop->context = S->getContext(); 2237 PPCGScop->domain = S->getDomains(); 2238 PPCGScop->call = nullptr; 2239 PPCGScop->tagged_reads = getTaggedReads(); 2240 PPCGScop->reads = S->getReads(); 2241 PPCGScop->live_in = nullptr; 2242 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2243 PPCGScop->may_writes = S->getWrites(); 2244 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2245 PPCGScop->must_writes = S->getMustWrites(); 2246 PPCGScop->live_out = nullptr; 2247 PPCGScop->tagger = nullptr; 2248 PPCGScop->independence = 2249 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2250 PPCGScop->dep_flow = nullptr; 2251 PPCGScop->tagged_dep_flow = nullptr; 2252 PPCGScop->dep_false = nullptr; 2253 PPCGScop->dep_forced = nullptr; 2254 PPCGScop->dep_order = nullptr; 2255 PPCGScop->tagged_dep_order = nullptr; 2256 2257 PPCGScop->schedule = S->getScheduleTree(); 2258 2259 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2260 // If we have something non-trivial to kill, add it to the schedule 2261 if (KillsInfo.KillsSchedule.get()) 2262 PPCGScop->schedule = isl_schedule_sequence( 2263 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2264 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2265 2266 PPCGScop->names = getNames(); 2267 PPCGScop->pet = nullptr; 2268 2269 compute_tagger(PPCGScop); 2270 compute_dependences(PPCGScop); 2271 2272 return PPCGScop; 2273 } 2274 2275 /// Collect the array accesses in a statement. 2276 /// 2277 /// @param Stmt The statement for which to collect the accesses. 2278 /// 2279 /// @returns A list of array accesses. 2280 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2281 gpu_stmt_access *Accesses = nullptr; 2282 2283 for (MemoryAccess *Acc : Stmt) { 2284 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2285 Access->read = Acc->isRead(); 2286 Access->write = Acc->isWrite(); 2287 Access->access = Acc->getAccessRelation(); 2288 isl_space *Space = isl_map_get_space(Access->access); 2289 Space = isl_space_range(Space); 2290 Space = isl_space_from_range(Space); 2291 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2292 isl_map *Universe = isl_map_universe(Space); 2293 Access->tagged_access = 2294 isl_map_domain_product(Acc->getAccessRelation(), Universe); 2295 Access->exact_write = !Acc->isMayWrite(); 2296 Access->ref_id = Acc->getId(); 2297 Access->next = Accesses; 2298 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2299 Accesses = Access; 2300 } 2301 2302 return Accesses; 2303 } 2304 2305 /// Collect the list of GPU statements. 2306 /// 2307 /// Each statement has an id, a pointer to the underlying data structure, 2308 /// as well as a list with all memory accesses. 2309 /// 2310 /// TODO: Initialize the list of memory accesses. 2311 /// 2312 /// @returns A linked-list of statements. 2313 gpu_stmt *getStatements() { 2314 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2315 std::distance(S->begin(), S->end())); 2316 2317 int i = 0; 2318 for (auto &Stmt : *S) { 2319 gpu_stmt *GPUStmt = &Stmts[i]; 2320 2321 GPUStmt->id = Stmt.getDomainId(); 2322 2323 // We use the pet stmt pointer to keep track of the Polly statements. 2324 GPUStmt->stmt = (pet_stmt *)&Stmt; 2325 GPUStmt->accesses = getStmtAccesses(Stmt); 2326 i++; 2327 } 2328 2329 return Stmts; 2330 } 2331 2332 /// Derive the extent of an array. 2333 /// 2334 /// The extent of an array is the set of elements that are within the 2335 /// accessed array. For the inner dimensions, the extent constraints are 2336 /// 0 and the size of the corresponding array dimension. For the first 2337 /// (outermost) dimension, the extent constraints are the minimal and maximal 2338 /// subscript value for the first dimension. 2339 /// 2340 /// @param Array The array to derive the extent for. 2341 /// 2342 /// @returns An isl_set describing the extent of the array. 2343 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2344 unsigned NumDims = Array->getNumberOfDimensions(); 2345 isl_union_map *Accesses = S->getAccesses(); 2346 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2347 Accesses = isl_union_map_detect_equalities(Accesses); 2348 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2349 AccessUSet = isl_union_set_coalesce(AccessUSet); 2350 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2351 AccessUSet = isl_union_set_coalesce(AccessUSet); 2352 2353 if (isl_union_set_is_empty(AccessUSet)) { 2354 isl_union_set_free(AccessUSet); 2355 return isl_set_empty(Array->getSpace()); 2356 } 2357 2358 if (Array->getNumberOfDimensions() == 0) { 2359 isl_union_set_free(AccessUSet); 2360 return isl_set_universe(Array->getSpace()); 2361 } 2362 2363 isl_set *AccessSet = 2364 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 2365 2366 isl_union_set_free(AccessUSet); 2367 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 2368 2369 isl_pw_aff *Val = 2370 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2371 2372 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2373 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2374 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2375 isl_pw_aff_dim(Val, isl_dim_in)); 2376 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2377 isl_pw_aff_dim(Val, isl_dim_in)); 2378 OuterMin = 2379 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 2380 OuterMax = 2381 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 2382 2383 isl_set *Extent = isl_set_universe(Array->getSpace()); 2384 2385 Extent = isl_set_intersect( 2386 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2387 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2388 2389 for (unsigned i = 1; i < NumDims; ++i) 2390 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2391 2392 for (unsigned i = 0; i < NumDims; ++i) { 2393 isl_pw_aff *PwAff = 2394 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 2395 2396 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2397 // Fortran array will we have a legitimate dimension. 2398 if (!PwAff) { 2399 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2400 continue; 2401 } 2402 2403 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2404 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 2405 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2406 isl_pw_aff_dim(Val, isl_dim_in)); 2407 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2408 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2409 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2410 Extent = isl_set_intersect(Set, Extent); 2411 } 2412 2413 return Extent; 2414 } 2415 2416 /// Derive the bounds of an array. 2417 /// 2418 /// For the first dimension we derive the bound of the array from the extent 2419 /// of this dimension. For inner dimensions we obtain their size directly from 2420 /// ScopArrayInfo. 2421 /// 2422 /// @param PPCGArray The array to compute bounds for. 2423 /// @param Array The polly array from which to take the information. 2424 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2425 if (PPCGArray.n_index > 0) { 2426 if (isl_set_is_empty(PPCGArray.extent)) { 2427 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2428 isl_local_space *LS = isl_local_space_from_space( 2429 isl_space_params(isl_set_get_space(Dom))); 2430 isl_set_free(Dom); 2431 isl_aff *Zero = isl_aff_zero_on_domain(LS); 2432 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 2433 } else { 2434 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2435 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2436 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2437 isl_set_free(Dom); 2438 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2439 isl_local_space *LS = 2440 isl_local_space_from_space(isl_set_get_space(Dom)); 2441 isl_aff *One = isl_aff_zero_on_domain(LS); 2442 One = isl_aff_add_constant_si(One, 1); 2443 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2444 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2445 PPCGArray.bound[0] = Bound; 2446 } 2447 } 2448 2449 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2450 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2451 auto LS = isl_pw_aff_get_domain_space(Bound); 2452 auto Aff = isl_multi_aff_zero(LS); 2453 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2454 PPCGArray.bound[i] = Bound; 2455 } 2456 } 2457 2458 /// Create the arrays for @p PPCGProg. 2459 /// 2460 /// @param PPCGProg The program to compute the arrays for. 2461 void createArrays(gpu_prog *PPCGProg) { 2462 int i = 0; 2463 for (auto &Array : S->arrays()) { 2464 std::string TypeName; 2465 raw_string_ostream OS(TypeName); 2466 2467 OS << *Array->getElementType(); 2468 TypeName = OS.str(); 2469 2470 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2471 2472 PPCGArray.space = Array->getSpace(); 2473 PPCGArray.type = strdup(TypeName.c_str()); 2474 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2475 PPCGArray.name = strdup(Array->getName().c_str()); 2476 PPCGArray.extent = nullptr; 2477 PPCGArray.n_index = Array->getNumberOfDimensions(); 2478 PPCGArray.bound = 2479 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 2480 PPCGArray.extent = getExtent(Array); 2481 PPCGArray.n_ref = 0; 2482 PPCGArray.refs = nullptr; 2483 PPCGArray.accessed = true; 2484 PPCGArray.read_only_scalar = 2485 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2486 PPCGArray.has_compound_element = false; 2487 PPCGArray.local = false; 2488 PPCGArray.declare_local = false; 2489 PPCGArray.global = false; 2490 PPCGArray.linearize = false; 2491 PPCGArray.dep_order = nullptr; 2492 PPCGArray.user = Array; 2493 2494 setArrayBounds(PPCGArray, Array); 2495 i++; 2496 2497 collect_references(PPCGProg, &PPCGArray); 2498 } 2499 } 2500 2501 /// Create an identity map between the arrays in the scop. 2502 /// 2503 /// @returns An identity map between the arrays in the scop. 2504 isl_union_map *getArrayIdentity() { 2505 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2506 2507 for (auto &Array : S->arrays()) { 2508 isl_space *Space = Array->getSpace(); 2509 Space = isl_space_map_from_set(Space); 2510 isl_map *Identity = isl_map_identity(Space); 2511 Maps = isl_union_map_add_map(Maps, Identity); 2512 } 2513 2514 return Maps; 2515 } 2516 2517 /// Create a default-initialized PPCG GPU program. 2518 /// 2519 /// @returns A new gpu program description. 2520 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2521 2522 if (!PPCGScop) 2523 return nullptr; 2524 2525 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2526 2527 PPCGProg->ctx = S->getIslCtx(); 2528 PPCGProg->scop = PPCGScop; 2529 PPCGProg->context = isl_set_copy(PPCGScop->context); 2530 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2531 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2532 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2533 PPCGProg->tagged_must_kill = 2534 isl_union_map_copy(PPCGScop->tagged_must_kills); 2535 PPCGProg->to_inner = getArrayIdentity(); 2536 PPCGProg->to_outer = getArrayIdentity(); 2537 PPCGProg->any_to_outer = nullptr; 2538 2539 // this needs to be set when live range reordering is enabled. 2540 // NOTE: I believe that is conservatively correct. I'm not sure 2541 // what the semantics of this is. 2542 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2543 PPCGProg->array_order = 2544 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2545 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2546 PPCGProg->stmts = getStatements(); 2547 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2548 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2549 PPCGProg->n_array); 2550 2551 createArrays(PPCGProg); 2552 2553 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2554 return PPCGProg; 2555 } 2556 2557 struct PrintGPUUserData { 2558 struct cuda_info *CudaInfo; 2559 struct gpu_prog *PPCGProg; 2560 std::vector<ppcg_kernel *> Kernels; 2561 }; 2562 2563 /// Print a user statement node in the host code. 2564 /// 2565 /// We use ppcg's printing facilities to print the actual statement and 2566 /// additionally build up a list of all kernels that are encountered in the 2567 /// host ast. 2568 /// 2569 /// @param P The printer to print to 2570 /// @param Options The printing options to use 2571 /// @param Node The node to print 2572 /// @param User A user pointer to carry additional data. This pointer is 2573 /// expected to be of type PrintGPUUserData. 2574 /// 2575 /// @returns A printer to which the output has been printed. 2576 static __isl_give isl_printer * 2577 printHostUser(__isl_take isl_printer *P, 2578 __isl_take isl_ast_print_options *Options, 2579 __isl_take isl_ast_node *Node, void *User) { 2580 auto Data = (struct PrintGPUUserData *)User; 2581 auto Id = isl_ast_node_get_annotation(Node); 2582 2583 if (Id) { 2584 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2585 2586 // If this is a user statement, format it ourselves as ppcg would 2587 // otherwise try to call pet functionality that is not available in 2588 // Polly. 2589 if (IsUser) { 2590 P = isl_printer_start_line(P); 2591 P = isl_printer_print_ast_node(P, Node); 2592 P = isl_printer_end_line(P); 2593 isl_id_free(Id); 2594 isl_ast_print_options_free(Options); 2595 return P; 2596 } 2597 2598 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2599 isl_id_free(Id); 2600 Data->Kernels.push_back(Kernel); 2601 } 2602 2603 return print_host_user(P, Options, Node, User); 2604 } 2605 2606 /// Print C code corresponding to the control flow in @p Kernel. 2607 /// 2608 /// @param Kernel The kernel to print 2609 void printKernel(ppcg_kernel *Kernel) { 2610 auto *P = isl_printer_to_str(S->getIslCtx()); 2611 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2612 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2613 P = isl_ast_node_print(Kernel->tree, P, Options); 2614 char *String = isl_printer_get_str(P); 2615 printf("%s\n", String); 2616 free(String); 2617 isl_printer_free(P); 2618 } 2619 2620 /// Print C code corresponding to the GPU code described by @p Tree. 2621 /// 2622 /// @param Tree An AST describing GPU code 2623 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2624 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2625 auto *P = isl_printer_to_str(S->getIslCtx()); 2626 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2627 2628 PrintGPUUserData Data; 2629 Data.PPCGProg = PPCGProg; 2630 2631 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2632 Options = 2633 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2634 P = isl_ast_node_print(Tree, P, Options); 2635 char *String = isl_printer_get_str(P); 2636 printf("# host\n"); 2637 printf("%s\n", String); 2638 free(String); 2639 isl_printer_free(P); 2640 2641 for (auto Kernel : Data.Kernels) { 2642 printf("# kernel%d\n", Kernel->id); 2643 printKernel(Kernel); 2644 } 2645 } 2646 2647 // Generate a GPU program using PPCG. 2648 // 2649 // GPU mapping consists of multiple steps: 2650 // 2651 // 1) Compute new schedule for the program. 2652 // 2) Map schedule to GPU (TODO) 2653 // 3) Generate code for new schedule (TODO) 2654 // 2655 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2656 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2657 // strategy directly from this pass. 2658 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2659 2660 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2661 2662 PPCGGen->ctx = S->getIslCtx(); 2663 PPCGGen->options = PPCGScop->options; 2664 PPCGGen->print = nullptr; 2665 PPCGGen->print_user = nullptr; 2666 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2667 PPCGGen->prog = PPCGProg; 2668 PPCGGen->tree = nullptr; 2669 PPCGGen->types.n = 0; 2670 PPCGGen->types.name = nullptr; 2671 PPCGGen->sizes = nullptr; 2672 PPCGGen->used_sizes = nullptr; 2673 PPCGGen->kernel_id = 0; 2674 2675 // Set scheduling strategy to same strategy PPCG is using. 2676 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2677 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2678 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2679 2680 isl_schedule *Schedule = get_schedule(PPCGGen); 2681 2682 int has_permutable = has_any_permutable_node(Schedule); 2683 2684 if (!has_permutable || has_permutable < 0) { 2685 Schedule = isl_schedule_free(Schedule); 2686 } else { 2687 Schedule = map_to_device(PPCGGen, Schedule); 2688 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2689 } 2690 2691 if (DumpSchedule) { 2692 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2693 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2694 P = isl_printer_print_str(P, "Schedule\n"); 2695 P = isl_printer_print_str(P, "========\n"); 2696 if (Schedule) 2697 P = isl_printer_print_schedule(P, Schedule); 2698 else 2699 P = isl_printer_print_str(P, "No schedule found\n"); 2700 2701 printf("%s\n", isl_printer_get_str(P)); 2702 isl_printer_free(P); 2703 } 2704 2705 if (DumpCode) { 2706 printf("Code\n"); 2707 printf("====\n"); 2708 if (PPCGGen->tree) 2709 printGPUTree(PPCGGen->tree, PPCGProg); 2710 else 2711 printf("No code generated\n"); 2712 } 2713 2714 isl_schedule_free(Schedule); 2715 2716 return PPCGGen; 2717 } 2718 2719 /// Free gpu_gen structure. 2720 /// 2721 /// @param PPCGGen The ppcg_gen object to free. 2722 void freePPCGGen(gpu_gen *PPCGGen) { 2723 isl_ast_node_free(PPCGGen->tree); 2724 isl_union_map_free(PPCGGen->sizes); 2725 isl_union_map_free(PPCGGen->used_sizes); 2726 free(PPCGGen); 2727 } 2728 2729 /// Free the options in the ppcg scop structure. 2730 /// 2731 /// ppcg is not freeing these options for us. To avoid leaks we do this 2732 /// ourselves. 2733 /// 2734 /// @param PPCGScop The scop referencing the options to free. 2735 void freeOptions(ppcg_scop *PPCGScop) { 2736 free(PPCGScop->options->debug); 2737 PPCGScop->options->debug = nullptr; 2738 free(PPCGScop->options); 2739 PPCGScop->options = nullptr; 2740 } 2741 2742 /// Approximate the number of points in the set. 2743 /// 2744 /// This function returns an ast expression that overapproximates the number 2745 /// of points in an isl set through the rectangular hull surrounding this set. 2746 /// 2747 /// @param Set The set to count. 2748 /// @param Build The isl ast build object to use for creating the ast 2749 /// expression. 2750 /// 2751 /// @returns An approximation of the number of points in the set. 2752 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2753 __isl_keep isl_ast_build *Build) { 2754 2755 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2756 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2757 2758 isl_space *Space = isl_set_get_space(Set); 2759 Space = isl_space_params(Space); 2760 auto *Univ = isl_set_universe(Space); 2761 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2762 2763 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2764 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2765 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2766 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2767 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2768 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2769 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2770 } 2771 2772 isl_set_free(Set); 2773 isl_pw_aff_free(OneAff); 2774 2775 return Expr; 2776 } 2777 2778 /// Approximate a number of dynamic instructions executed by a given 2779 /// statement. 2780 /// 2781 /// @param Stmt The statement for which to compute the number of dynamic 2782 /// instructions. 2783 /// @param Build The isl ast build object to use for creating the ast 2784 /// expression. 2785 /// @returns An approximation of the number of dynamic instructions executed 2786 /// by @p Stmt. 2787 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2788 __isl_keep isl_ast_build *Build) { 2789 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2790 2791 long InstCount = 0; 2792 2793 if (Stmt.isBlockStmt()) { 2794 auto *BB = Stmt.getBasicBlock(); 2795 InstCount = std::distance(BB->begin(), BB->end()); 2796 } else { 2797 auto *R = Stmt.getRegion(); 2798 2799 for (auto *BB : R->blocks()) { 2800 InstCount += std::distance(BB->begin(), BB->end()); 2801 } 2802 } 2803 2804 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2805 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2806 return isl_ast_expr_mul(InstExpr, Iterations); 2807 } 2808 2809 /// Approximate dynamic instructions executed in scop. 2810 /// 2811 /// @param S The scop for which to approximate dynamic instructions. 2812 /// @param Build The isl ast build object to use for creating the ast 2813 /// expression. 2814 /// @returns An approximation of the number of dynamic instructions executed 2815 /// in @p S. 2816 __isl_give isl_ast_expr * 2817 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2818 isl_ast_expr *Instructions; 2819 2820 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2821 Instructions = isl_ast_expr_from_val(Zero); 2822 2823 for (ScopStmt &Stmt : S) { 2824 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2825 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2826 } 2827 return Instructions; 2828 } 2829 2830 /// Create a check that ensures sufficient compute in scop. 2831 /// 2832 /// @param S The scop for which to ensure sufficient compute. 2833 /// @param Build The isl ast build object to use for creating the ast 2834 /// expression. 2835 /// @returns An expression that evaluates to TRUE in case of sufficient 2836 /// compute and to FALSE, otherwise. 2837 __isl_give isl_ast_expr * 2838 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2839 auto Iterations = getNumberOfIterations(S, Build); 2840 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2841 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2842 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2843 } 2844 2845 /// Check if the basic block contains a function we cannot codegen for GPU 2846 /// kernels. 2847 /// 2848 /// If this basic block does something with a `Function` other than calling 2849 /// a function that we support in a kernel, return true. 2850 bool containsInvalidKernelFunctionInBllock(const BasicBlock *BB) { 2851 for (const Instruction &Inst : *BB) { 2852 const CallInst *Call = dyn_cast<CallInst>(&Inst); 2853 if (Call && isValidFunctionInKernel(Call->getCalledFunction())) { 2854 continue; 2855 } 2856 2857 for (Value *SrcVal : Inst.operands()) { 2858 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 2859 if (!p) 2860 continue; 2861 if (isa<FunctionType>(p->getElementType())) 2862 return true; 2863 } 2864 } 2865 return false; 2866 } 2867 2868 /// Return whether the Scop S uses functions in a way that we do not support. 2869 bool containsInvalidKernelFunction(const Scop &S) { 2870 for (auto &Stmt : S) { 2871 if (Stmt.isBlockStmt()) { 2872 if (containsInvalidKernelFunctionInBllock(Stmt.getBasicBlock())) 2873 return true; 2874 } else { 2875 assert(Stmt.isRegionStmt() && 2876 "Stmt was neither block nor region statement"); 2877 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 2878 if (containsInvalidKernelFunctionInBllock(BB)) 2879 return true; 2880 } 2881 } 2882 return false; 2883 } 2884 2885 /// Generate code for a given GPU AST described by @p Root. 2886 /// 2887 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2888 /// @param Prog The GPU Program to generate code for. 2889 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2890 ScopAnnotator Annotator; 2891 Annotator.buildAliasScopes(*S); 2892 2893 Region *R = &S->getRegion(); 2894 2895 simplifyRegion(R, DT, LI, RI); 2896 2897 BasicBlock *EnteringBB = R->getEnteringBlock(); 2898 2899 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2900 2901 // Only build the run-time condition and parameters _after_ having 2902 // introduced the conditional branch. This is important as the conditional 2903 // branch will guard the original scop from new induction variables that 2904 // the SCEVExpander may introduce while code generating the parameters and 2905 // which may introduce scalar dependences that prevent us from correctly 2906 // code generating this scop. 2907 BBPair StartExitBlocks = 2908 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 2909 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 2910 2911 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 2912 StartBlock, Prog, Runtime, Architecture); 2913 2914 // TODO: Handle LICM 2915 auto SplitBlock = StartBlock->getSinglePredecessor(); 2916 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2917 NodeBuilder.addParameters(S->getContext()); 2918 2919 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2920 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 2921 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 2922 Condition = isl_ast_expr_and(Condition, SufficientCompute); 2923 isl_ast_build_free(Build); 2924 2925 Value *RTC = NodeBuilder.createRTC(Condition); 2926 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2927 2928 Builder.SetInsertPoint(&*StartBlock->begin()); 2929 2930 NodeBuilder.initializeAfterRTH(); 2931 NodeBuilder.create(Root); 2932 NodeBuilder.finalize(); 2933 2934 /// In case a sequential kernel has more surrounding loops as any parallel 2935 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 2936 /// point in running it on a GPU. 2937 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 2938 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2939 2940 if (!NodeBuilder.BuildSuccessful) 2941 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2942 } 2943 2944 bool runOnScop(Scop &CurrentScop) override { 2945 S = &CurrentScop; 2946 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2947 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2948 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2949 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 2950 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2951 2952 // We currently do not support functions other than intrinsics inside 2953 // kernels, as code generation will need to offload function calls to the 2954 // kernel. This may lead to a kernel trying to call a function on the host. 2955 // This also allows us to prevent codegen from trying to take the 2956 // address of an intrinsic function to send to the kernel. 2957 if (containsInvalidKernelFunction(CurrentScop)) { 2958 DEBUG( 2959 dbgs() 2960 << "Scop contains function which cannot be materialised in a GPU " 2961 "kernel. Bailing out.\n";); 2962 return false; 2963 } 2964 2965 auto PPCGScop = createPPCGScop(); 2966 auto PPCGProg = createPPCGProg(PPCGScop); 2967 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2968 2969 if (PPCGGen->tree) { 2970 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2971 CurrentScop.markAsToBeSkipped(); 2972 } 2973 2974 freeOptions(PPCGScop); 2975 freePPCGGen(PPCGGen); 2976 gpu_prog_free(PPCGProg); 2977 ppcg_scop_free(PPCGScop); 2978 2979 return true; 2980 } 2981 2982 void printScop(raw_ostream &, Scop &) const override {} 2983 2984 void getAnalysisUsage(AnalysisUsage &AU) const override { 2985 AU.addRequired<DominatorTreeWrapperPass>(); 2986 AU.addRequired<RegionInfoPass>(); 2987 AU.addRequired<ScalarEvolutionWrapperPass>(); 2988 AU.addRequired<ScopDetectionWrapperPass>(); 2989 AU.addRequired<ScopInfoRegionPass>(); 2990 AU.addRequired<LoopInfoWrapperPass>(); 2991 2992 AU.addPreserved<AAResultsWrapperPass>(); 2993 AU.addPreserved<BasicAAWrapperPass>(); 2994 AU.addPreserved<LoopInfoWrapperPass>(); 2995 AU.addPreserved<DominatorTreeWrapperPass>(); 2996 AU.addPreserved<GlobalsAAWrapperPass>(); 2997 AU.addPreserved<ScopDetectionWrapperPass>(); 2998 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2999 AU.addPreserved<SCEVAAWrapperPass>(); 3000 3001 // FIXME: We do not yet add regions for the newly generated code to the 3002 // region tree. 3003 AU.addPreserved<RegionInfoPass>(); 3004 AU.addPreserved<ScopInfoRegionPass>(); 3005 } 3006 }; 3007 } // namespace 3008 3009 char PPCGCodeGeneration::ID = 1; 3010 3011 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3012 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3013 generator->Runtime = Runtime; 3014 generator->Architecture = Arch; 3015 return generator; 3016 } 3017 3018 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3019 "Polly - Apply PPCG translation to SCOP", false, false) 3020 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3021 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3022 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3023 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3024 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3025 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3026 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3027 "Polly - Apply PPCG translation to SCOP", false, false) 3028