1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/PPCGCodeGeneration.h"
16 #include "polly/CodeGen/IslAst.h"
17 #include "polly/CodeGen/IslNodeBuilder.h"
18 #include "polly/CodeGen/Utils.h"
19 #include "polly/DependenceInfo.h"
20 #include "polly/LinkAllPasses.h"
21 #include "polly/Options.h"
22 #include "polly/ScopDetection.h"
23 #include "polly/ScopInfo.h"
24 #include "polly/Support/SCEVValidator.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Verifier.h"
34 #include "llvm/Support/TargetRegistry.h"
35 #include "llvm/Support/TargetSelect.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 
40 #include "isl/union_map.h"
41 
42 extern "C" {
43 #include "ppcg/cuda.h"
44 #include "ppcg/gpu.h"
45 #include "ppcg/gpu_print.h"
46 #include "ppcg/ppcg.h"
47 #include "ppcg/schedule.h"
48 }
49 
50 #include "llvm/Support/Debug.h"
51 
52 using namespace polly;
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "polly-codegen-ppcg"
56 
57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
58                                   cl::desc("Dump the computed GPU Schedule"),
59                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
60                                   cl::cat(PollyCategory));
61 
62 static cl::opt<bool>
63     DumpCode("polly-acc-dump-code",
64              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
65              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
66 
67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
68                                   cl::desc("Dump the kernel LLVM-IR"),
69                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
70                                   cl::cat(PollyCategory));
71 
72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
73                                    cl::desc("Dump the kernel assembly code"),
74                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
75                                    cl::cat(PollyCategory));
76 
77 static cl::opt<bool> FastMath("polly-acc-fastmath",
78                               cl::desc("Allow unsafe math optimizations"),
79                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
80                               cl::cat(PollyCategory));
81 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
82                                   cl::desc("Use shared memory"), cl::Hidden,
83                                   cl::init(false), cl::ZeroOrMore,
84                                   cl::cat(PollyCategory));
85 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
86                                    cl::desc("Use private memory"), cl::Hidden,
87                                    cl::init(false), cl::ZeroOrMore,
88                                    cl::cat(PollyCategory));
89 
90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory",
91                                    cl::desc("Generate Host kernel code assuming"
92                                             " that all memory has been"
93                                             " declared as managed memory"),
94                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
95                                    cl::cat(PollyCategory));
96 
97 static cl::opt<bool>
98     FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
99                               cl::desc("Fail and generate a backtrace if"
100                                        " verifyModule fails on the GPU "
101                                        " kernel module."),
102                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
103                               cl::cat(PollyCategory));
104 
105 static cl::opt<std::string>
106     CudaVersion("polly-acc-cuda-version",
107                 cl::desc("The CUDA version to compile for"), cl::Hidden,
108                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
109 
110 static cl::opt<int>
111     MinCompute("polly-acc-mincompute",
112                cl::desc("Minimal number of compute statements to run on GPU."),
113                cl::Hidden, cl::init(10 * 512 * 512));
114 
115 /// Used to store information PPCG wants for kills. This information is
116 /// used by live range reordering.
117 ///
118 /// @see computeLiveRangeReordering
119 /// @see GPUNodeBuilder::createPPCGScop
120 /// @see GPUNodeBuilder::createPPCGProg
121 struct MustKillsInfo {
122   /// Collection of all kill statements that will be sequenced at the end of
123   /// PPCGScop->schedule.
124   ///
125   /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
126   /// which merges schedules in *arbitrary* order.
127   /// (we don't care about the order of the kills anyway).
128   isl::schedule KillsSchedule;
129   /// Map from kill statement instances to scalars that need to be
130   /// killed.
131   ///
132   /// We currently derive kill information for:
133   ///  1. phi nodes. PHI nodes are not alive outside the scop and can
134   ///     consequently all be killed.
135   ///  2. Scalar arrays that are not used outside the Scop. This is
136   ///     checked by `isScalarUsesContainedInScop`.
137   /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
138   isl::union_map TaggedMustKills;
139 
140   /// Tagged must kills stripped of the tags.
141   /// [params] -> { Stmt_phantom[]  -> scalar_to_kill[] }
142   isl::union_map MustKills;
143 
144   MustKillsInfo() : KillsSchedule(nullptr) {}
145 };
146 
147 /// Check if SAI's uses are entirely contained within Scop S.
148 /// If a scalar is used only with a Scop, we are free to kill it, as no data
149 /// can flow in/out of the value any more.
150 /// @see computeMustKillsInfo
151 static bool isScalarUsesContainedInScop(const Scop &S,
152                                         const ScopArrayInfo *SAI) {
153   assert(SAI->isValueKind() && "this function only deals with scalars."
154                                " Dealing with arrays required alias analysis");
155 
156   const Region &R = S.getRegion();
157   for (User *U : SAI->getBasePtr()->users()) {
158     Instruction *I = dyn_cast<Instruction>(U);
159     assert(I && "invalid user of scop array info");
160     if (!R.contains(I))
161       return false;
162   }
163   return true;
164 }
165 
166 /// Compute must-kills needed to enable live range reordering with PPCG.
167 ///
168 /// @params S The Scop to compute live range reordering information
169 /// @returns live range reordering information that can be used to setup
170 /// PPCG.
171 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
172   const isl::space ParamSpace(isl::manage(S.getParamSpace()));
173   MustKillsInfo Info;
174 
175   // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
176   //      1.1 phi nodes in scop.
177   //      1.2 scalars that are only used within the scop
178   SmallVector<isl::id, 4> KillMemIds;
179   for (ScopArrayInfo *SAI : S.arrays()) {
180     if (SAI->isPHIKind() ||
181         (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
182       KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
183   }
184 
185   Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace));
186   Info.MustKills = isl::union_map::empty(isl::space(ParamSpace));
187 
188   // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
189   // schedule:
190   //     - filter: "[control] -> { }"
191   // So, we choose to not create this to keep the output a little nicer,
192   // at the cost of some code complexity.
193   Info.KillsSchedule = nullptr;
194 
195   for (isl::id &ToKillId : KillMemIds) {
196     isl::id KillStmtId = isl::id::alloc(
197         S.getIslCtx(),
198         std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
199 
200     // NOTE: construction of tagged_must_kill:
201     // 2. We need to construct a map:
202     //     [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
203     // To construct this, we use `isl_map_domain_product` on 2 maps`:
204     // 2a. StmtToScalar:
205     //         [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
206     // 2b. PhantomRefToScalar:
207     //         [param] -> { ref_phantom[] -> scalar_to_kill[] }
208     //
209     // Combining these with `isl_map_domain_product` gives us
210     // TaggedMustKill:
211     //     [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
212 
213     // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
214     isl::map StmtToScalar = isl::map::universe(isl::space(ParamSpace));
215     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
216     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
217 
218     isl::id PhantomRefId = isl::id::alloc(
219         S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
220         nullptr);
221 
222     // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
223     isl::map PhantomRefToScalar = isl::map::universe(isl::space(ParamSpace));
224     PhantomRefToScalar =
225         PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
226     PhantomRefToScalar =
227         PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
228 
229     // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
230     isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
231     Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
232 
233     // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
234     Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
235 
236     // 3. Create the kill schedule of the form:
237     //     "[param] -> { Stmt_phantom[] }"
238     // Then add this to Info.KillsSchedule.
239     isl::space KillStmtSpace = ParamSpace;
240     KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
241     isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
242 
243     isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
244     if (Info.KillsSchedule)
245       Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule);
246     else
247       Info.KillsSchedule = KillSchedule;
248   }
249 
250   return Info;
251 }
252 
253 /// Create the ast expressions for a ScopStmt.
254 ///
255 /// This function is a callback for to generate the ast expressions for each
256 /// of the scheduled ScopStmts.
257 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
258     void *StmtT, isl_ast_build *Build,
259     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
260                                        isl_id *Id, void *User),
261     void *UserIndex,
262     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
263     void *UserExpr) {
264 
265   ScopStmt *Stmt = (ScopStmt *)StmtT;
266 
267   isl_ctx *Ctx;
268 
269   if (!Stmt || !Build)
270     return NULL;
271 
272   Ctx = isl_ast_build_get_ctx(Build);
273   isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0);
274 
275   for (MemoryAccess *Acc : *Stmt) {
276     isl_map *AddrFunc = Acc->getAddressFunction();
277     AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain());
278     isl_id *RefId = Acc->getId();
279     isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc);
280     isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA);
281     MPA = isl_multi_pw_aff_coalesce(MPA);
282     MPA = FunctionIndex(MPA, RefId, UserIndex);
283     isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA);
284     Access = FunctionExpr(Access, RefId, UserExpr);
285     RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access);
286   }
287 
288   return RefToExpr;
289 }
290 
291 /// Given a LLVM Type, compute its size in bytes,
292 static int computeSizeInBytes(const Type *T) {
293   int bytes = T->getPrimitiveSizeInBits() / 8;
294   if (bytes == 0)
295     bytes = T->getScalarSizeInBits() / 8;
296   return bytes;
297 }
298 
299 /// Generate code for a GPU specific isl AST.
300 ///
301 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
302 /// generates code for general-purpose AST nodes, with special functionality
303 /// for generating GPU specific user nodes.
304 ///
305 /// @see GPUNodeBuilder::createUser
306 class GPUNodeBuilder : public IslNodeBuilder {
307 public:
308   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
309                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
310                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
311                  gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
312       : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
313         Prog(Prog), Runtime(Runtime), Arch(Arch) {
314     getExprBuilder().setIDToSAI(&IDToSAI);
315   }
316 
317   /// Create after-run-time-check initialization code.
318   void initializeAfterRTH();
319 
320   /// Finalize the generated scop.
321   virtual void finalize();
322 
323   /// Track if the full build process was successful.
324   ///
325   /// This value is set to false, if throughout the build process an error
326   /// occurred which prevents us from generating valid GPU code.
327   bool BuildSuccessful = true;
328 
329   /// The maximal number of loops surrounding a sequential kernel.
330   unsigned DeepestSequential = 0;
331 
332   /// The maximal number of loops surrounding a parallel kernel.
333   unsigned DeepestParallel = 0;
334 
335   /// Return the name to set for the ptx_kernel.
336   std::string getKernelFuncName(int Kernel_id);
337 
338 private:
339   /// A vector of array base pointers for which a new ScopArrayInfo was created.
340   ///
341   /// This vector is used to delete the ScopArrayInfo when it is not needed any
342   /// more.
343   std::vector<Value *> LocalArrays;
344 
345   /// A map from ScopArrays to their corresponding device allocations.
346   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
347 
348   /// The current GPU context.
349   Value *GPUContext;
350 
351   /// The set of isl_ids allocated in the kernel
352   std::vector<isl_id *> KernelIds;
353 
354   /// A module containing GPU code.
355   ///
356   /// This pointer is only set in case we are currently generating GPU code.
357   std::unique_ptr<Module> GPUModule;
358 
359   /// The GPU program we generate code for.
360   gpu_prog *Prog;
361 
362   /// The GPU Runtime implementation to use (OpenCL or CUDA).
363   GPURuntime Runtime;
364 
365   /// The GPU Architecture to target.
366   GPUArch Arch;
367 
368   /// Class to free isl_ids.
369   class IslIdDeleter {
370   public:
371     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
372   };
373 
374   /// A set containing all isl_ids allocated in a GPU kernel.
375   ///
376   /// By releasing this set all isl_ids will be freed.
377   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
378 
379   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
380 
381   /// Create code for user-defined AST nodes.
382   ///
383   /// These AST nodes can be of type:
384   ///
385   ///   - ScopStmt:      A computational statement (TODO)
386   ///   - Kernel:        A GPU kernel call (TODO)
387   ///   - Data-Transfer: A GPU <-> CPU data-transfer
388   ///   - In-kernel synchronization
389   ///   - In-kernel memory copy statement
390   ///
391   /// @param UserStmt The ast node to generate code for.
392   virtual void createUser(__isl_take isl_ast_node *UserStmt);
393 
394   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
395 
396   /// Create code for a data transfer statement
397   ///
398   /// @param TransferStmt The data transfer statement.
399   /// @param Direction The direction in which to transfer data.
400   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
401                           enum DataDirection Direction);
402 
403   /// Find llvm::Values referenced in GPU kernel.
404   ///
405   /// @param Kernel The kernel to scan for llvm::Values
406   ///
407   /// @returns A pair, whose first element contains the set of values
408   ///          referenced by the kernel, and whose second element contains the
409   ///          set of functions referenced by the kernel. All functions in the
410   ///          second set satisfy isValidFunctionInKernel.
411   std::pair<SetVector<Value *>, SetVector<Function *>>
412   getReferencesInKernel(ppcg_kernel *Kernel);
413 
414   /// Compute the sizes of the execution grid for a given kernel.
415   ///
416   /// @param Kernel The kernel to compute grid sizes for.
417   ///
418   /// @returns A tuple with grid sizes for X and Y dimension
419   std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
420 
421   /// Creates a array that can be sent to the kernel on the device using a
422   /// host pointer. This is required for managed memory, when we directly send
423   /// host pointers to the device.
424   /// \note
425   /// This is to be used only with managed memory
426   Value *getOrCreateManagedDeviceArray(gpu_array_info *Array,
427                                        ScopArrayInfo *ArrayInfo);
428 
429   /// Compute the sizes of the thread blocks for a given kernel.
430   ///
431   /// @param Kernel The kernel to compute thread block sizes for.
432   ///
433   /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
434   std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
435 
436   /// Store a specific kernel launch parameter in the array of kernel launch
437   /// parameters.
438   ///
439   /// @param Parameters The list of parameters in which to store.
440   /// @param Param      The kernel launch parameter to store.
441   /// @param Index      The index in the parameter list, at which to store the
442   ///                   parameter.
443   void insertStoreParameter(Instruction *Parameters, Instruction *Param,
444                             int Index);
445 
446   /// Create kernel launch parameters.
447   ///
448   /// @param Kernel        The kernel to create parameters for.
449   /// @param F             The kernel function that has been created.
450   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
451   ///
452   /// @returns A stack allocated array with pointers to the parameter
453   ///          values that are passed to the kernel.
454   Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
455                                 SetVector<Value *> SubtreeValues);
456 
457   /// Create declarations for kernel variable.
458   ///
459   /// This includes shared memory declarations.
460   ///
461   /// @param Kernel        The kernel definition to create variables for.
462   /// @param FN            The function into which to generate the variables.
463   void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
464 
465   /// Add CUDA annotations to module.
466   ///
467   /// Add a set of CUDA annotations that declares the maximal block dimensions
468   /// that will be used to execute the CUDA kernel. This allows the NVIDIA
469   /// PTX compiler to bound the number of allocated registers to ensure the
470   /// resulting kernel is known to run with up to as many block dimensions
471   /// as specified here.
472   ///
473   /// @param M         The module to add the annotations to.
474   /// @param BlockDimX The size of block dimension X.
475   /// @param BlockDimY The size of block dimension Y.
476   /// @param BlockDimZ The size of block dimension Z.
477   void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
478                           Value *BlockDimZ);
479 
480   /// Create GPU kernel.
481   ///
482   /// Code generate the kernel described by @p KernelStmt.
483   ///
484   /// @param KernelStmt The ast node to generate kernel code for.
485   void createKernel(__isl_take isl_ast_node *KernelStmt);
486 
487   /// Generate code that computes the size of an array.
488   ///
489   /// @param Array The array for which to compute a size.
490   Value *getArraySize(gpu_array_info *Array);
491 
492   /// Generate code to compute the minimal offset at which an array is accessed.
493   ///
494   /// The offset of an array is the minimal array location accessed in a scop.
495   ///
496   /// Example:
497   ///
498   ///   for (long i = 0; i < 100; i++)
499   ///     A[i + 42] += ...
500   ///
501   ///   getArrayOffset(A) results in 42.
502   ///
503   /// @param Array The array for which to compute the offset.
504   /// @returns An llvm::Value that contains the offset of the array.
505   Value *getArrayOffset(gpu_array_info *Array);
506 
507   /// Prepare the kernel arguments for kernel code generation
508   ///
509   /// @param Kernel The kernel to generate code for.
510   /// @param FN     The function created for the kernel.
511   void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
512 
513   /// Create kernel function.
514   ///
515   /// Create a kernel function located in a newly created module that can serve
516   /// as target for device code generation. Set the Builder to point to the
517   /// start block of this newly created function.
518   ///
519   /// @param Kernel The kernel to generate code for.
520   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
521   /// @param SubtreeFunctions The set of llvm::Functions referenced by this
522   ///                         kernel.
523   void createKernelFunction(ppcg_kernel *Kernel,
524                             SetVector<Value *> &SubtreeValues,
525                             SetVector<Function *> &SubtreeFunctions);
526 
527   /// Create the declaration of a kernel function.
528   ///
529   /// The kernel function takes as arguments:
530   ///
531   ///   - One i8 pointer for each external array reference used in the kernel.
532   ///   - Host iterators
533   ///   - Parameters
534   ///   - Other LLVM Value references (TODO)
535   ///
536   /// @param Kernel The kernel to generate the function declaration for.
537   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
538   ///
539   /// @returns The newly declared function.
540   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
541                                      SetVector<Value *> &SubtreeValues);
542 
543   /// Insert intrinsic functions to obtain thread and block ids.
544   ///
545   /// @param The kernel to generate the intrinsic functions for.
546   void insertKernelIntrinsics(ppcg_kernel *Kernel);
547 
548   /// Insert function calls to retrieve the SPIR group/local ids.
549   ///
550   /// @param The kernel to generate the function calls for.
551   void insertKernelCallsSPIR(ppcg_kernel *Kernel);
552 
553   /// Setup the creation of functions referenced by the GPU kernel.
554   ///
555   /// 1. Create new function declarations in GPUModule which are the same as
556   /// SubtreeFunctions.
557   ///
558   /// 2. Populate IslNodeBuilder::ValueMap with mappings from
559   /// old functions (that come from the original module) to new functions
560   /// (that are created within GPUModule). That way, we generate references
561   /// to the correct function (in GPUModule) in BlockGenerator.
562   ///
563   /// @see IslNodeBuilder::ValueMap
564   /// @see BlockGenerator::GlobalMap
565   /// @see BlockGenerator::getNewValue
566   /// @see GPUNodeBuilder::getReferencesInKernel.
567   ///
568   /// @param SubtreeFunctions The set of llvm::Functions referenced by
569   ///                         this kernel.
570   void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
571 
572   /// Create a global-to-shared or shared-to-global copy statement.
573   ///
574   /// @param CopyStmt The copy statement to generate code for
575   void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
576 
577   /// Create code for a ScopStmt called in @p Expr.
578   ///
579   /// @param Expr The expression containing the call.
580   /// @param KernelStmt The kernel statement referenced in the call.
581   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
582 
583   /// Create an in-kernel synchronization call.
584   void createKernelSync();
585 
586   /// Create a PTX assembly string for the current GPU kernel.
587   ///
588   /// @returns A string containing the corresponding PTX assembly code.
589   std::string createKernelASM();
590 
591   /// Remove references from the dominator tree to the kernel function @p F.
592   ///
593   /// @param F The function to remove references to.
594   void clearDominators(Function *F);
595 
596   /// Remove references from scalar evolution to the kernel function @p F.
597   ///
598   /// @param F The function to remove references to.
599   void clearScalarEvolution(Function *F);
600 
601   /// Remove references from loop info to the kernel function @p F.
602   ///
603   /// @param F The function to remove references to.
604   void clearLoops(Function *F);
605 
606   /// Finalize the generation of the kernel function.
607   ///
608   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
609   /// dump its IR to stderr.
610   ///
611   /// @returns The Assembly string of the kernel.
612   std::string finalizeKernelFunction();
613 
614   /// Finalize the generation of the kernel arguments.
615   ///
616   /// This function ensures that not-read-only scalars used in a kernel are
617   /// stored back to the global memory location they are backed with before
618   /// the kernel terminates.
619   ///
620   /// @params Kernel The kernel to finalize kernel arguments for.
621   void finalizeKernelArguments(ppcg_kernel *Kernel);
622 
623   /// Create code that allocates memory to store arrays on device.
624   void allocateDeviceArrays();
625 
626   /// Free all allocated device arrays.
627   void freeDeviceArrays();
628 
629   /// Create a call to initialize the GPU context.
630   ///
631   /// @returns A pointer to the newly initialized context.
632   Value *createCallInitContext();
633 
634   /// Create a call to get the device pointer for a kernel allocation.
635   ///
636   /// @param Allocation The Polly GPU allocation
637   ///
638   /// @returns The device parameter corresponding to this allocation.
639   Value *createCallGetDevicePtr(Value *Allocation);
640 
641   /// Create a call to free the GPU context.
642   ///
643   /// @param Context A pointer to an initialized GPU context.
644   void createCallFreeContext(Value *Context);
645 
646   /// Create a call to allocate memory on the device.
647   ///
648   /// @param Size The size of memory to allocate
649   ///
650   /// @returns A pointer that identifies this allocation.
651   Value *createCallAllocateMemoryForDevice(Value *Size);
652 
653   /// Create a call to free a device array.
654   ///
655   /// @param Array The device array to free.
656   void createCallFreeDeviceMemory(Value *Array);
657 
658   /// Create a call to copy data from host to device.
659   ///
660   /// @param HostPtr A pointer to the host data that should be copied.
661   /// @param DevicePtr A device pointer specifying the location to copy to.
662   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
663                                       Value *Size);
664 
665   /// Create a call to copy data from device to host.
666   ///
667   /// @param DevicePtr A pointer to the device data that should be copied.
668   /// @param HostPtr A host pointer specifying the location to copy to.
669   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
670                                       Value *Size);
671 
672   /// Create a call to synchronize Host & Device.
673   /// \note
674   /// This is to be used only with managed memory.
675   void createCallSynchronizeDevice();
676 
677   /// Create a call to get a kernel from an assembly string.
678   ///
679   /// @param Buffer The string describing the kernel.
680   /// @param Entry  The name of the kernel function to call.
681   ///
682   /// @returns A pointer to a kernel object
683   Value *createCallGetKernel(Value *Buffer, Value *Entry);
684 
685   /// Create a call to free a GPU kernel.
686   ///
687   /// @param GPUKernel THe kernel to free.
688   void createCallFreeKernel(Value *GPUKernel);
689 
690   /// Create a call to launch a GPU kernel.
691   ///
692   /// @param GPUKernel  The kernel to launch.
693   /// @param GridDimX   The size of the first grid dimension.
694   /// @param GridDimY   The size of the second grid dimension.
695   /// @param GridBlockX The size of the first block dimension.
696   /// @param GridBlockY The size of the second block dimension.
697   /// @param GridBlockZ The size of the third block dimension.
698   /// @param Parameters A pointer to an array that contains itself pointers to
699   ///                   the parameter values passed for each kernel argument.
700   void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
701                               Value *GridDimY, Value *BlockDimX,
702                               Value *BlockDimY, Value *BlockDimZ,
703                               Value *Parameters);
704 };
705 
706 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
707   return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
708          std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
709 }
710 
711 void GPUNodeBuilder::initializeAfterRTH() {
712   BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
713                                  &*Builder.GetInsertPoint(), &DT, &LI);
714   NewBB->setName("polly.acc.initialize");
715   Builder.SetInsertPoint(&NewBB->front());
716 
717   GPUContext = createCallInitContext();
718 
719   if (!ManagedMemory)
720     allocateDeviceArrays();
721 }
722 
723 void GPUNodeBuilder::finalize() {
724   if (!ManagedMemory)
725     freeDeviceArrays();
726 
727   createCallFreeContext(GPUContext);
728   IslNodeBuilder::finalize();
729 }
730 
731 void GPUNodeBuilder::allocateDeviceArrays() {
732   assert(!ManagedMemory && "Managed memory will directly send host pointers "
733                            "to the kernel. There is no need for device arrays");
734   isl_ast_build *Build = isl_ast_build_from_context(S.getContext());
735 
736   for (int i = 0; i < Prog->n_array; ++i) {
737     gpu_array_info *Array = &Prog->array[i];
738     auto *ScopArray = (ScopArrayInfo *)Array->user;
739     std::string DevArrayName("p_dev_array_");
740     DevArrayName.append(Array->name);
741 
742     Value *ArraySize = getArraySize(Array);
743     Value *Offset = getArrayOffset(Array);
744     if (Offset)
745       ArraySize = Builder.CreateSub(
746           ArraySize,
747           Builder.CreateMul(Offset,
748                             Builder.getInt64(ScopArray->getElemSizeInBytes())));
749     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
750     DevArray->setName(DevArrayName);
751     DeviceAllocations[ScopArray] = DevArray;
752   }
753 
754   isl_ast_build_free(Build);
755 }
756 
757 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
758                                         Value *BlockDimY, Value *BlockDimZ) {
759   auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
760 
761   for (auto &F : *M) {
762     if (F.getCallingConv() != CallingConv::PTX_Kernel)
763       continue;
764 
765     Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
766 
767     Metadata *Elements[] = {
768         ValueAsMetadata::get(&F),   MDString::get(M->getContext(), "maxntidx"),
769         ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
770         ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
771         ValueAsMetadata::get(V[2]),
772     };
773     MDNode *Node = MDNode::get(M->getContext(), Elements);
774     AnnotationNode->addOperand(Node);
775   }
776 }
777 
778 void GPUNodeBuilder::freeDeviceArrays() {
779   assert(!ManagedMemory && "Managed memory does not use device arrays");
780   for (auto &Array : DeviceAllocations)
781     createCallFreeDeviceMemory(Array.second);
782 }
783 
784 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
785   const char *Name = "polly_getKernel";
786   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
787   Function *F = M->getFunction(Name);
788 
789   // If F is not available, declare it.
790   if (!F) {
791     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
792     std::vector<Type *> Args;
793     Args.push_back(Builder.getInt8PtrTy());
794     Args.push_back(Builder.getInt8PtrTy());
795     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
796     F = Function::Create(Ty, Linkage, Name, M);
797   }
798 
799   return Builder.CreateCall(F, {Buffer, Entry});
800 }
801 
802 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
803   const char *Name = "polly_getDevicePtr";
804   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
805   Function *F = M->getFunction(Name);
806 
807   // If F is not available, declare it.
808   if (!F) {
809     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
810     std::vector<Type *> Args;
811     Args.push_back(Builder.getInt8PtrTy());
812     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
813     F = Function::Create(Ty, Linkage, Name, M);
814   }
815 
816   return Builder.CreateCall(F, {Allocation});
817 }
818 
819 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
820                                             Value *GridDimY, Value *BlockDimX,
821                                             Value *BlockDimY, Value *BlockDimZ,
822                                             Value *Parameters) {
823   const char *Name = "polly_launchKernel";
824   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
825   Function *F = M->getFunction(Name);
826 
827   // If F is not available, declare it.
828   if (!F) {
829     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
830     std::vector<Type *> Args;
831     Args.push_back(Builder.getInt8PtrTy());
832     Args.push_back(Builder.getInt32Ty());
833     Args.push_back(Builder.getInt32Ty());
834     Args.push_back(Builder.getInt32Ty());
835     Args.push_back(Builder.getInt32Ty());
836     Args.push_back(Builder.getInt32Ty());
837     Args.push_back(Builder.getInt8PtrTy());
838     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
839     F = Function::Create(Ty, Linkage, Name, M);
840   }
841 
842   Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
843                          BlockDimZ, Parameters});
844 }
845 
846 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
847   const char *Name = "polly_freeKernel";
848   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
849   Function *F = M->getFunction(Name);
850 
851   // If F is not available, declare it.
852   if (!F) {
853     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
854     std::vector<Type *> Args;
855     Args.push_back(Builder.getInt8PtrTy());
856     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
857     F = Function::Create(Ty, Linkage, Name, M);
858   }
859 
860   Builder.CreateCall(F, {GPUKernel});
861 }
862 
863 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
864   assert(!ManagedMemory && "Managed memory does not allocate or free memory "
865                            "for device");
866   const char *Name = "polly_freeDeviceMemory";
867   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
868   Function *F = M->getFunction(Name);
869 
870   // If F is not available, declare it.
871   if (!F) {
872     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
873     std::vector<Type *> Args;
874     Args.push_back(Builder.getInt8PtrTy());
875     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
876     F = Function::Create(Ty, Linkage, Name, M);
877   }
878 
879   Builder.CreateCall(F, {Array});
880 }
881 
882 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
883   assert(!ManagedMemory && "Managed memory does not allocate or free memory "
884                            "for device");
885   const char *Name = "polly_allocateMemoryForDevice";
886   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
887   Function *F = M->getFunction(Name);
888 
889   // If F is not available, declare it.
890   if (!F) {
891     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
892     std::vector<Type *> Args;
893     Args.push_back(Builder.getInt64Ty());
894     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
895     F = Function::Create(Ty, Linkage, Name, M);
896   }
897 
898   return Builder.CreateCall(F, {Size});
899 }
900 
901 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
902                                                     Value *DeviceData,
903                                                     Value *Size) {
904   assert(!ManagedMemory && "Managed memory does not transfer memory between "
905                            "device and host");
906   const char *Name = "polly_copyFromHostToDevice";
907   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
908   Function *F = M->getFunction(Name);
909 
910   // If F is not available, declare it.
911   if (!F) {
912     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
913     std::vector<Type *> Args;
914     Args.push_back(Builder.getInt8PtrTy());
915     Args.push_back(Builder.getInt8PtrTy());
916     Args.push_back(Builder.getInt64Ty());
917     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
918     F = Function::Create(Ty, Linkage, Name, M);
919   }
920 
921   Builder.CreateCall(F, {HostData, DeviceData, Size});
922 }
923 
924 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
925                                                     Value *HostData,
926                                                     Value *Size) {
927   assert(!ManagedMemory && "Managed memory does not transfer memory between "
928                            "device and host");
929   const char *Name = "polly_copyFromDeviceToHost";
930   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
931   Function *F = M->getFunction(Name);
932 
933   // If F is not available, declare it.
934   if (!F) {
935     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
936     std::vector<Type *> Args;
937     Args.push_back(Builder.getInt8PtrTy());
938     Args.push_back(Builder.getInt8PtrTy());
939     Args.push_back(Builder.getInt64Ty());
940     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
941     F = Function::Create(Ty, Linkage, Name, M);
942   }
943 
944   Builder.CreateCall(F, {DeviceData, HostData, Size});
945 }
946 
947 void GPUNodeBuilder::createCallSynchronizeDevice() {
948   assert(ManagedMemory && "explicit synchronization is only necessary for "
949                           "managed memory");
950   const char *Name = "polly_synchronizeDevice";
951   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
952   Function *F = M->getFunction(Name);
953 
954   // If F is not available, declare it.
955   if (!F) {
956     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
957     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
958     F = Function::Create(Ty, Linkage, Name, M);
959   }
960 
961   Builder.CreateCall(F);
962 }
963 
964 Value *GPUNodeBuilder::createCallInitContext() {
965   const char *Name;
966 
967   switch (Runtime) {
968   case GPURuntime::CUDA:
969     Name = "polly_initContextCUDA";
970     break;
971   case GPURuntime::OpenCL:
972     Name = "polly_initContextCL";
973     break;
974   }
975 
976   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
977   Function *F = M->getFunction(Name);
978 
979   // If F is not available, declare it.
980   if (!F) {
981     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
982     std::vector<Type *> Args;
983     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
984     F = Function::Create(Ty, Linkage, Name, M);
985   }
986 
987   return Builder.CreateCall(F, {});
988 }
989 
990 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
991   const char *Name = "polly_freeContext";
992   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
993   Function *F = M->getFunction(Name);
994 
995   // If F is not available, declare it.
996   if (!F) {
997     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
998     std::vector<Type *> Args;
999     Args.push_back(Builder.getInt8PtrTy());
1000     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1001     F = Function::Create(Ty, Linkage, Name, M);
1002   }
1003 
1004   Builder.CreateCall(F, {Context});
1005 }
1006 
1007 /// Check if one string is a prefix of another.
1008 ///
1009 /// @param String The string in which to look for the prefix.
1010 /// @param Prefix The prefix to look for.
1011 static bool isPrefix(std::string String, std::string Prefix) {
1012   return String.find(Prefix) == 0;
1013 }
1014 
1015 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1016   isl_ast_build *Build = isl_ast_build_from_context(S.getContext());
1017   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1018 
1019   if (!gpu_array_is_scalar(Array)) {
1020     auto OffsetDimZero = isl_multi_pw_aff_get_pw_aff(Array->bound, 0);
1021     isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero);
1022 
1023     for (unsigned int i = 1; i < Array->n_index; i++) {
1024       isl_pw_aff *Bound_I = isl_multi_pw_aff_get_pw_aff(Array->bound, i);
1025       isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I);
1026       Res = isl_ast_expr_mul(Res, Expr);
1027     }
1028 
1029     Value *NumElements = ExprBuilder.create(Res);
1030     if (NumElements->getType() != ArraySize->getType())
1031       NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1032     ArraySize = Builder.CreateMul(ArraySize, NumElements);
1033   }
1034   isl_ast_build_free(Build);
1035   return ArraySize;
1036 }
1037 
1038 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1039   if (gpu_array_is_scalar(Array))
1040     return nullptr;
1041 
1042   isl_ast_build *Build = isl_ast_build_from_context(S.getContext());
1043 
1044   isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent));
1045 
1046   isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min));
1047 
1048   for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++)
1049     ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0);
1050 
1051   if (isl_set_is_subset(Min, ZeroSet)) {
1052     isl_set_free(Min);
1053     isl_set_free(ZeroSet);
1054     isl_ast_build_free(Build);
1055     return nullptr;
1056   }
1057   isl_set_free(ZeroSet);
1058 
1059   isl_ast_expr *Result =
1060       isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0));
1061 
1062   for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) {
1063     if (i > 0) {
1064       isl_pw_aff *Bound_I = isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1);
1065       isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I);
1066       Result = isl_ast_expr_mul(Result, BExpr);
1067     }
1068     isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i);
1069     isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin);
1070     Result = isl_ast_expr_add(Result, MExpr);
1071   }
1072 
1073   Value *ResultValue = ExprBuilder.create(Result);
1074   isl_set_free(Min);
1075   isl_ast_build_free(Build);
1076 
1077   return ResultValue;
1078 }
1079 
1080 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array,
1081                                                      ScopArrayInfo *ArrayInfo) {
1082 
1083   assert(ManagedMemory && "Only used when you wish to get a host "
1084                           "pointer for sending data to the kernel, "
1085                           "with managed memory");
1086   std::map<ScopArrayInfo *, Value *>::iterator it;
1087   if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) {
1088     return it->second;
1089   } else {
1090     Value *HostPtr;
1091 
1092     if (gpu_array_is_scalar(Array))
1093       HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo);
1094     else
1095       HostPtr = ArrayInfo->getBasePtr();
1096 
1097     Value *Offset = getArrayOffset(Array);
1098     if (Offset) {
1099       HostPtr = Builder.CreatePointerCast(
1100           HostPtr, ArrayInfo->getElementType()->getPointerTo());
1101       HostPtr = Builder.CreateGEP(HostPtr, Offset);
1102     }
1103 
1104     HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1105     DeviceAllocations[ArrayInfo] = HostPtr;
1106     return HostPtr;
1107   }
1108 }
1109 
1110 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1111                                         enum DataDirection Direction) {
1112   assert(!ManagedMemory && "Managed memory needs no data transfers");
1113   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1114   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1115   isl_id *Id = isl_ast_expr_get_id(Arg);
1116   auto Array = (gpu_array_info *)isl_id_get_user(Id);
1117   auto ScopArray = (ScopArrayInfo *)(Array->user);
1118 
1119   Value *Size = getArraySize(Array);
1120   Value *Offset = getArrayOffset(Array);
1121   Value *DevPtr = DeviceAllocations[ScopArray];
1122 
1123   Value *HostPtr;
1124 
1125   if (gpu_array_is_scalar(Array))
1126     HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1127   else
1128     HostPtr = ScopArray->getBasePtr();
1129 
1130   if (Offset) {
1131     HostPtr = Builder.CreatePointerCast(
1132         HostPtr, ScopArray->getElementType()->getPointerTo());
1133     HostPtr = Builder.CreateGEP(HostPtr, Offset);
1134   }
1135 
1136   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1137 
1138   if (Offset) {
1139     Size = Builder.CreateSub(
1140         Size, Builder.CreateMul(
1141                   Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1142   }
1143 
1144   if (Direction == HOST_TO_DEVICE)
1145     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1146   else
1147     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1148 
1149   isl_id_free(Id);
1150   isl_ast_expr_free(Arg);
1151   isl_ast_expr_free(Expr);
1152   isl_ast_node_free(TransferStmt);
1153 }
1154 
1155 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1156   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1157   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1158   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1159   isl_id_free(Id);
1160   isl_ast_expr_free(StmtExpr);
1161 
1162   const char *Str = isl_id_get_name(Id);
1163   if (!strcmp(Str, "kernel")) {
1164     createKernel(UserStmt);
1165     isl_ast_expr_free(Expr);
1166     return;
1167   }
1168   if (!strcmp(Str, "init_device")) {
1169     initializeAfterRTH();
1170     isl_ast_node_free(UserStmt);
1171     isl_ast_expr_free(Expr);
1172     return;
1173   }
1174   if (!strcmp(Str, "clear_device")) {
1175     finalize();
1176     isl_ast_node_free(UserStmt);
1177     isl_ast_expr_free(Expr);
1178     return;
1179   }
1180   if (isPrefix(Str, "to_device")) {
1181     if (!ManagedMemory)
1182       createDataTransfer(UserStmt, HOST_TO_DEVICE);
1183     else
1184       isl_ast_node_free(UserStmt);
1185 
1186     isl_ast_expr_free(Expr);
1187     return;
1188   }
1189 
1190   if (isPrefix(Str, "from_device")) {
1191     if (!ManagedMemory) {
1192       createDataTransfer(UserStmt, DEVICE_TO_HOST);
1193     } else {
1194       createCallSynchronizeDevice();
1195       isl_ast_node_free(UserStmt);
1196     }
1197     isl_ast_expr_free(Expr);
1198     return;
1199   }
1200 
1201   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1202   struct ppcg_kernel_stmt *KernelStmt =
1203       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1204   isl_id_free(Anno);
1205 
1206   switch (KernelStmt->type) {
1207   case ppcg_kernel_domain:
1208     createScopStmt(Expr, KernelStmt);
1209     isl_ast_node_free(UserStmt);
1210     return;
1211   case ppcg_kernel_copy:
1212     createKernelCopy(KernelStmt);
1213     isl_ast_expr_free(Expr);
1214     isl_ast_node_free(UserStmt);
1215     return;
1216   case ppcg_kernel_sync:
1217     createKernelSync();
1218     isl_ast_expr_free(Expr);
1219     isl_ast_node_free(UserStmt);
1220     return;
1221   }
1222 
1223   isl_ast_expr_free(Expr);
1224   isl_ast_node_free(UserStmt);
1225   return;
1226 }
1227 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1228   isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1229   LocalIndex = isl_ast_expr_address_of(LocalIndex);
1230   Value *LocalAddr = ExprBuilder.create(LocalIndex);
1231   isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1232   Index = isl_ast_expr_address_of(Index);
1233   Value *GlobalAddr = ExprBuilder.create(Index);
1234 
1235   if (KernelStmt->u.c.read) {
1236     LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1237     Builder.CreateStore(Load, LocalAddr);
1238   } else {
1239     LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1240     Builder.CreateStore(Load, GlobalAddr);
1241   }
1242 }
1243 
1244 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1245                                     ppcg_kernel_stmt *KernelStmt) {
1246   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1247   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1248 
1249   LoopToScevMapT LTS;
1250   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1251 
1252   createSubstitutions(Expr, Stmt, LTS);
1253 
1254   if (Stmt->isBlockStmt())
1255     BlockGen.copyStmt(*Stmt, LTS, Indexes);
1256   else
1257     RegionGen.copyStmt(*Stmt, LTS, Indexes);
1258 }
1259 
1260 void GPUNodeBuilder::createKernelSync() {
1261   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1262   const char *SpirName = "__gen_ocl_barrier_global";
1263 
1264   Function *Sync;
1265 
1266   switch (Arch) {
1267   case GPUArch::SPIR64:
1268   case GPUArch::SPIR32:
1269     Sync = M->getFunction(SpirName);
1270 
1271     // If Sync is not available, declare it.
1272     if (!Sync) {
1273       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1274       std::vector<Type *> Args;
1275       FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1276       Sync = Function::Create(Ty, Linkage, SpirName, M);
1277       Sync->setCallingConv(CallingConv::SPIR_FUNC);
1278     }
1279     break;
1280   case GPUArch::NVPTX64:
1281     Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1282     break;
1283   }
1284 
1285   Builder.CreateCall(Sync, {});
1286 }
1287 
1288 /// Collect llvm::Values referenced from @p Node
1289 ///
1290 /// This function only applies to isl_ast_nodes that are user_nodes referring
1291 /// to a ScopStmt. All other node types are ignore.
1292 ///
1293 /// @param Node The node to collect references for.
1294 /// @param User A user pointer used as storage for the data that is collected.
1295 ///
1296 /// @returns isl_bool_true if data could be collected successfully.
1297 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1298   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1299     return isl_bool_true;
1300 
1301   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1302   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1303   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1304   const char *Str = isl_id_get_name(Id);
1305   isl_id_free(Id);
1306   isl_ast_expr_free(StmtExpr);
1307   isl_ast_expr_free(Expr);
1308 
1309   if (!isPrefix(Str, "Stmt"))
1310     return isl_bool_true;
1311 
1312   Id = isl_ast_node_get_annotation(Node);
1313   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1314   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1315   isl_id_free(Id);
1316 
1317   addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1318 
1319   return isl_bool_true;
1320 }
1321 
1322 /// Check if F is a function that we can code-generate in a GPU kernel.
1323 static bool isValidFunctionInKernel(llvm::Function *F) {
1324   assert(F && "F is an invalid pointer");
1325   // We string compare against the name of the function to allow
1326   // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1327   // "llvm.copysign".
1328   const StringRef Name = F->getName();
1329   return F->isIntrinsic() &&
1330          (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1331           Name.startswith("llvm.copysign"));
1332 }
1333 
1334 /// Do not take `Function` as a subtree value.
1335 ///
1336 /// We try to take the reference of all subtree values and pass them along
1337 /// to the kernel from the host. Taking an address of any function and
1338 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1339 /// `Function`s.
1340 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1341 
1342 /// Return `Function`s from `RawSubtreeValues`.
1343 static SetVector<Function *>
1344 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues) {
1345   SetVector<Function *> SubtreeFunctions;
1346   for (Value *It : RawSubtreeValues) {
1347     Function *F = dyn_cast<Function>(It);
1348     if (F) {
1349       assert(isValidFunctionInKernel(F) && "Code should have bailed out by "
1350                                            "this point if an invalid function "
1351                                            "were present in a kernel.");
1352       SubtreeFunctions.insert(F);
1353     }
1354   }
1355   return SubtreeFunctions;
1356 }
1357 
1358 std::pair<SetVector<Value *>, SetVector<Function *>>
1359 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1360   SetVector<Value *> SubtreeValues;
1361   SetVector<const SCEV *> SCEVs;
1362   SetVector<const Loop *> Loops;
1363   SubtreeReferences References = {
1364       LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()};
1365 
1366   for (const auto &I : IDToValue)
1367     SubtreeValues.insert(I.second);
1368 
1369   isl_ast_node_foreach_descendant_top_down(
1370       Kernel->tree, collectReferencesInGPUStmt, &References);
1371 
1372   for (const SCEV *Expr : SCEVs)
1373     findValues(Expr, SE, SubtreeValues);
1374 
1375   for (auto &SAI : S.arrays())
1376     SubtreeValues.remove(SAI->getBasePtr());
1377 
1378   isl_space *Space = S.getParamSpace();
1379   for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
1380     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1381     assert(IDToValue.count(Id));
1382     Value *Val = IDToValue[Id];
1383     SubtreeValues.remove(Val);
1384     isl_id_free(Id);
1385   }
1386   isl_space_free(Space);
1387 
1388   for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) {
1389     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1390     assert(IDToValue.count(Id));
1391     Value *Val = IDToValue[Id];
1392     SubtreeValues.remove(Val);
1393     isl_id_free(Id);
1394   }
1395 
1396   // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1397   // SubtreeValues. This is important, because we should not lose any
1398   // SubtreeValues in the process of constructing the
1399   // "ValidSubtree{Values, Functions} sets. Nor should the set
1400   // ValidSubtree{Values, Functions} have any common element.
1401   auto ValidSubtreeValuesIt =
1402       make_filter_range(SubtreeValues, isValidSubtreeValue);
1403   SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1404                                         ValidSubtreeValuesIt.end());
1405   SetVector<Function *> ValidSubtreeFunctions(
1406       getFunctionsFromRawSubtreeValues(SubtreeValues));
1407 
1408   // @see IslNodeBuilder::getReferencesInSubtree
1409   SetVector<Value *> ReplacedValues;
1410   for (Value *V : ValidSubtreeValues) {
1411     auto It = ValueMap.find(V);
1412     if (It == ValueMap.end())
1413       ReplacedValues.insert(V);
1414     else
1415       ReplacedValues.insert(It->second);
1416   }
1417   return std::make_pair(ReplacedValues, ValidSubtreeFunctions);
1418 }
1419 
1420 void GPUNodeBuilder::clearDominators(Function *F) {
1421   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1422   std::vector<BasicBlock *> Nodes;
1423   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1424     Nodes.push_back(I->getBlock());
1425 
1426   for (BasicBlock *BB : Nodes)
1427     DT.eraseNode(BB);
1428 }
1429 
1430 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1431   for (BasicBlock &BB : *F) {
1432     Loop *L = LI.getLoopFor(&BB);
1433     if (L)
1434       SE.forgetLoop(L);
1435   }
1436 }
1437 
1438 void GPUNodeBuilder::clearLoops(Function *F) {
1439   for (BasicBlock &BB : *F) {
1440     Loop *L = LI.getLoopFor(&BB);
1441     if (L)
1442       SE.forgetLoop(L);
1443     LI.removeBlock(&BB);
1444   }
1445 }
1446 
1447 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1448   std::vector<Value *> Sizes;
1449   isl_ast_build *Context = isl_ast_build_from_context(S.getContext());
1450 
1451   for (long i = 0; i < Kernel->n_grid; i++) {
1452     isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i);
1453     isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size);
1454     Value *Res = ExprBuilder.create(GridSize);
1455     Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1456     Sizes.push_back(Res);
1457   }
1458   isl_ast_build_free(Context);
1459 
1460   for (long i = Kernel->n_grid; i < 3; i++)
1461     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1462 
1463   return std::make_tuple(Sizes[0], Sizes[1]);
1464 }
1465 
1466 std::tuple<Value *, Value *, Value *>
1467 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1468   std::vector<Value *> Sizes;
1469 
1470   for (long i = 0; i < Kernel->n_block; i++) {
1471     Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1472     Sizes.push_back(Res);
1473   }
1474 
1475   for (long i = Kernel->n_block; i < 3; i++)
1476     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1477 
1478   return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1479 }
1480 
1481 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1482                                           Instruction *Param, int Index) {
1483   Value *Slot = Builder.CreateGEP(
1484       Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1485   Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1486   Builder.CreateStore(ParamTyped, Slot);
1487 }
1488 
1489 Value *
1490 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1491                                        SetVector<Value *> SubtreeValues) {
1492   const int NumArgs = F->arg_size();
1493   std::vector<int> ArgSizes(NumArgs);
1494 
1495   Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1496 
1497   BasicBlock *EntryBlock =
1498       &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1499   auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1500   std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1501   Instruction *Parameters = new AllocaInst(
1502       ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1503 
1504   int Index = 0;
1505   for (long i = 0; i < Prog->n_array; i++) {
1506     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1507       continue;
1508 
1509     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1510     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id);
1511 
1512     ArgSizes[Index] = SAI->getElemSizeInBytes();
1513 
1514     Value *DevArray = nullptr;
1515     if (ManagedMemory) {
1516       DevArray = getOrCreateManagedDeviceArray(
1517           &Prog->array[i], const_cast<ScopArrayInfo *>(SAI));
1518     } else {
1519       DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1520       DevArray = createCallGetDevicePtr(DevArray);
1521     }
1522     assert(DevArray != nullptr && "Array to be offloaded to device not "
1523                                   "initialized");
1524     Value *Offset = getArrayOffset(&Prog->array[i]);
1525 
1526     if (Offset) {
1527       DevArray = Builder.CreatePointerCast(
1528           DevArray, SAI->getElementType()->getPointerTo());
1529       DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1530       DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1531     }
1532     Value *Slot = Builder.CreateGEP(
1533         Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1534 
1535     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1536       Value *ValPtr = nullptr;
1537       if (ManagedMemory)
1538         ValPtr = DevArray;
1539       else
1540         ValPtr = BlockGen.getOrCreateAlloca(SAI);
1541 
1542       assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1543                                   " to be stored into Parameters");
1544       Value *ValPtrCast =
1545           Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1546       Builder.CreateStore(ValPtrCast, Slot);
1547     } else {
1548       Instruction *Param =
1549           new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1550                          Launch + "_param_" + std::to_string(Index),
1551                          EntryBlock->getTerminator());
1552       Builder.CreateStore(DevArray, Param);
1553       Value *ParamTyped =
1554           Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1555       Builder.CreateStore(ParamTyped, Slot);
1556     }
1557     Index++;
1558   }
1559 
1560   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1561 
1562   for (long i = 0; i < NumHostIters; i++) {
1563     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1564     Value *Val = IDToValue[Id];
1565     isl_id_free(Id);
1566 
1567     ArgSizes[Index] = computeSizeInBytes(Val->getType());
1568 
1569     Instruction *Param =
1570         new AllocaInst(Val->getType(), AddressSpace,
1571                        Launch + "_param_" + std::to_string(Index),
1572                        EntryBlock->getTerminator());
1573     Builder.CreateStore(Val, Param);
1574     insertStoreParameter(Parameters, Param, Index);
1575     Index++;
1576   }
1577 
1578   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1579 
1580   for (long i = 0; i < NumVars; i++) {
1581     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1582     Value *Val = IDToValue[Id];
1583     if (ValueMap.count(Val))
1584       Val = ValueMap[Val];
1585     isl_id_free(Id);
1586 
1587     ArgSizes[Index] = computeSizeInBytes(Val->getType());
1588 
1589     Instruction *Param =
1590         new AllocaInst(Val->getType(), AddressSpace,
1591                        Launch + "_param_" + std::to_string(Index),
1592                        EntryBlock->getTerminator());
1593     Builder.CreateStore(Val, Param);
1594     insertStoreParameter(Parameters, Param, Index);
1595     Index++;
1596   }
1597 
1598   for (auto Val : SubtreeValues) {
1599     ArgSizes[Index] = computeSizeInBytes(Val->getType());
1600 
1601     Instruction *Param =
1602         new AllocaInst(Val->getType(), AddressSpace,
1603                        Launch + "_param_" + std::to_string(Index),
1604                        EntryBlock->getTerminator());
1605     Builder.CreateStore(Val, Param);
1606     insertStoreParameter(Parameters, Param, Index);
1607     Index++;
1608   }
1609 
1610   for (int i = 0; i < NumArgs; i++) {
1611     Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1612     Instruction *Param =
1613         new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1614                        Launch + "_param_size_" + std::to_string(i),
1615                        EntryBlock->getTerminator());
1616     Builder.CreateStore(Val, Param);
1617     insertStoreParameter(Parameters, Param, Index);
1618     Index++;
1619   }
1620 
1621   auto Location = EntryBlock->getTerminator();
1622   return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1623                          Launch + "_params_i8ptr", Location);
1624 }
1625 
1626 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1627     SetVector<Function *> SubtreeFunctions) {
1628   for (auto Fn : SubtreeFunctions) {
1629     const std::string ClonedFnName = Fn->getName();
1630     Function *Clone = GPUModule->getFunction(ClonedFnName);
1631     if (!Clone)
1632       Clone =
1633           Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1634                            ClonedFnName, GPUModule.get());
1635     assert(Clone && "Expected cloned function to be initialized.");
1636     assert(ValueMap.find(Fn) == ValueMap.end() &&
1637            "Fn already present in ValueMap");
1638     ValueMap[Fn] = Clone;
1639   }
1640 }
1641 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1642   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1643   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1644   isl_id_free(Id);
1645   isl_ast_node_free(KernelStmt);
1646 
1647   if (Kernel->n_grid > 1)
1648     DeepestParallel =
1649         std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1650   else
1651     DeepestSequential =
1652         std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1653 
1654   Value *BlockDimX, *BlockDimY, *BlockDimZ;
1655   std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1656 
1657   SetVector<Value *> SubtreeValues;
1658   SetVector<Function *> SubtreeFunctions;
1659   std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel);
1660 
1661   assert(Kernel->tree && "Device AST of kernel node is empty");
1662 
1663   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1664   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1665   ValueMapT HostValueMap = ValueMap;
1666   BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1667   ScalarMap.clear();
1668 
1669   SetVector<const Loop *> Loops;
1670 
1671   // Create for all loops we depend on values that contain the current loop
1672   // iteration. These values are necessary to generate code for SCEVs that
1673   // depend on such loops. As a result we need to pass them to the subfunction.
1674   for (const Loop *L : Loops) {
1675     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1676                                             SE.getUnknown(Builder.getInt64(1)),
1677                                             L, SCEV::FlagAnyWrap);
1678     Value *V = generateSCEV(OuterLIV);
1679     OutsideLoopIterations[L] = SE.getUnknown(V);
1680     SubtreeValues.insert(V);
1681   }
1682 
1683   createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1684   setupKernelSubtreeFunctions(SubtreeFunctions);
1685 
1686   create(isl_ast_node_copy(Kernel->tree));
1687 
1688   finalizeKernelArguments(Kernel);
1689   Function *F = Builder.GetInsertBlock()->getParent();
1690   if (Arch == GPUArch::NVPTX64)
1691     addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1692   clearDominators(F);
1693   clearScalarEvolution(F);
1694   clearLoops(F);
1695 
1696   IDToValue = HostIDs;
1697 
1698   ValueMap = std::move(HostValueMap);
1699   ScalarMap = std::move(HostScalarMap);
1700   EscapeMap.clear();
1701   IDToSAI.clear();
1702   Annotator.resetAlternativeAliasBases();
1703   for (auto &BasePtr : LocalArrays)
1704     S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1705   LocalArrays.clear();
1706 
1707   std::string ASMString = finalizeKernelFunction();
1708   Builder.SetInsertPoint(&HostInsertPoint);
1709   Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1710 
1711   std::string Name = getKernelFuncName(Kernel->id);
1712   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1713   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1714   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1715 
1716   Value *GridDimX, *GridDimY;
1717   std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1718 
1719   createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1720                          BlockDimZ, Parameters);
1721   createCallFreeKernel(GPUKernel);
1722 
1723   for (auto Id : KernelIds)
1724     isl_id_free(Id);
1725 
1726   KernelIds.clear();
1727 }
1728 
1729 /// Compute the DataLayout string for the NVPTX backend.
1730 ///
1731 /// @param is64Bit Are we looking for a 64 bit architecture?
1732 static std::string computeNVPTXDataLayout(bool is64Bit) {
1733   std::string Ret = "";
1734 
1735   if (!is64Bit) {
1736     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1737            "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1738            "64-v128:128:128-n16:32:64";
1739   } else {
1740     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1741            "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1742            "64-v128:128:128-n16:32:64";
1743   }
1744 
1745   return Ret;
1746 }
1747 
1748 /// Compute the DataLayout string for a SPIR kernel.
1749 ///
1750 /// @param is64Bit Are we looking for a 64 bit architecture?
1751 static std::string computeSPIRDataLayout(bool is64Bit) {
1752   std::string Ret = "";
1753 
1754   if (!is64Bit) {
1755     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1756            "64-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1757            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1758            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1759   } else {
1760     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1761            "64-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1762            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1763            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1764   }
1765 
1766   return Ret;
1767 }
1768 
1769 Function *
1770 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1771                                          SetVector<Value *> &SubtreeValues) {
1772   std::vector<Type *> Args;
1773   std::string Identifier = getKernelFuncName(Kernel->id);
1774 
1775   std::vector<Metadata *> MemoryType;
1776 
1777   for (long i = 0; i < Prog->n_array; i++) {
1778     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1779       continue;
1780 
1781     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1782       isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1783       const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id);
1784       Args.push_back(SAI->getElementType());
1785       MemoryType.push_back(
1786           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1787     } else {
1788       static const int UseGlobalMemory = 1;
1789       Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1790       MemoryType.push_back(
1791           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1792     }
1793   }
1794 
1795   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1796 
1797   for (long i = 0; i < NumHostIters; i++) {
1798     Args.push_back(Builder.getInt64Ty());
1799     MemoryType.push_back(
1800         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1801   }
1802 
1803   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1804 
1805   for (long i = 0; i < NumVars; i++) {
1806     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1807     Value *Val = IDToValue[Id];
1808     isl_id_free(Id);
1809     Args.push_back(Val->getType());
1810     MemoryType.push_back(
1811         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1812   }
1813 
1814   for (auto *V : SubtreeValues) {
1815     Args.push_back(V->getType());
1816     MemoryType.push_back(
1817         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1818   }
1819 
1820   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1821   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1822                               GPUModule.get());
1823 
1824   std::vector<Metadata *> EmptyStrings;
1825 
1826   for (unsigned int i = 0; i < MemoryType.size(); i++) {
1827     EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1828   }
1829 
1830   if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1831     FN->setMetadata("kernel_arg_addr_space",
1832                     MDNode::get(FN->getContext(), MemoryType));
1833     FN->setMetadata("kernel_arg_name",
1834                     MDNode::get(FN->getContext(), EmptyStrings));
1835     FN->setMetadata("kernel_arg_access_qual",
1836                     MDNode::get(FN->getContext(), EmptyStrings));
1837     FN->setMetadata("kernel_arg_type",
1838                     MDNode::get(FN->getContext(), EmptyStrings));
1839     FN->setMetadata("kernel_arg_type_qual",
1840                     MDNode::get(FN->getContext(), EmptyStrings));
1841     FN->setMetadata("kernel_arg_base_type",
1842                     MDNode::get(FN->getContext(), EmptyStrings));
1843   }
1844 
1845   switch (Arch) {
1846   case GPUArch::NVPTX64:
1847     FN->setCallingConv(CallingConv::PTX_Kernel);
1848     break;
1849   case GPUArch::SPIR32:
1850   case GPUArch::SPIR64:
1851     FN->setCallingConv(CallingConv::SPIR_KERNEL);
1852     break;
1853   }
1854 
1855   auto Arg = FN->arg_begin();
1856   for (long i = 0; i < Kernel->n_array; i++) {
1857     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1858       continue;
1859 
1860     Arg->setName(Kernel->array[i].array->name);
1861 
1862     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1863     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id));
1864     Type *EleTy = SAI->getElementType();
1865     Value *Val = &*Arg;
1866     SmallVector<const SCEV *, 4> Sizes;
1867     isl_ast_build *Build =
1868         isl_ast_build_from_context(isl_set_copy(Prog->context));
1869     Sizes.push_back(nullptr);
1870     for (long j = 1; j < Kernel->array[i].array->n_index; j++) {
1871       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
1872           Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
1873       auto V = ExprBuilder.create(DimSize);
1874       Sizes.push_back(SE.getSCEV(V));
1875     }
1876     const ScopArrayInfo *SAIRep =
1877         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
1878     LocalArrays.push_back(Val);
1879 
1880     isl_ast_build_free(Build);
1881     KernelIds.push_back(Id);
1882     IDToSAI[Id] = SAIRep;
1883     Arg++;
1884   }
1885 
1886   for (long i = 0; i < NumHostIters; i++) {
1887     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1888     Arg->setName(isl_id_get_name(Id));
1889     IDToValue[Id] = &*Arg;
1890     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
1891     Arg++;
1892   }
1893 
1894   for (long i = 0; i < NumVars; i++) {
1895     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1896     Arg->setName(isl_id_get_name(Id));
1897     Value *Val = IDToValue[Id];
1898     ValueMap[Val] = &*Arg;
1899     IDToValue[Id] = &*Arg;
1900     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
1901     Arg++;
1902   }
1903 
1904   for (auto *V : SubtreeValues) {
1905     Arg->setName(V->getName());
1906     ValueMap[V] = &*Arg;
1907     Arg++;
1908   }
1909 
1910   return FN;
1911 }
1912 
1913 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
1914   Intrinsic::ID IntrinsicsBID[2];
1915   Intrinsic::ID IntrinsicsTID[3];
1916 
1917   switch (Arch) {
1918   case GPUArch::SPIR64:
1919   case GPUArch::SPIR32:
1920     llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
1921   case GPUArch::NVPTX64:
1922     IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
1923     IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
1924 
1925     IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
1926     IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
1927     IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
1928     break;
1929   }
1930 
1931   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
1932     std::string Name = isl_id_get_name(Id);
1933     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1934     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
1935     Value *Val = Builder.CreateCall(IntrinsicFn, {});
1936     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
1937     IDToValue[Id] = Val;
1938     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
1939   };
1940 
1941   for (int i = 0; i < Kernel->n_grid; ++i) {
1942     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
1943     addId(Id, IntrinsicsBID[i]);
1944   }
1945 
1946   for (int i = 0; i < Kernel->n_block; ++i) {
1947     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
1948     addId(Id, IntrinsicsTID[i]);
1949   }
1950 }
1951 
1952 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) {
1953   const char *GroupName[3] = {"__gen_ocl_get_group_id0",
1954                               "__gen_ocl_get_group_id1",
1955                               "__gen_ocl_get_group_id2"};
1956 
1957   const char *LocalName[3] = {"__gen_ocl_get_local_id0",
1958                               "__gen_ocl_get_local_id1",
1959                               "__gen_ocl_get_local_id2"};
1960 
1961   auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable {
1962     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1963     Function *FN = M->getFunction(Name);
1964 
1965     // If FN is not available, declare it.
1966     if (!FN) {
1967       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1968       std::vector<Type *> Args;
1969       FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false);
1970       FN = Function::Create(Ty, Linkage, Name, M);
1971       FN->setCallingConv(CallingConv::SPIR_FUNC);
1972     }
1973 
1974     Value *Val = Builder.CreateCall(FN, {});
1975     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
1976     IDToValue[Id] = Val;
1977     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
1978   };
1979 
1980   for (int i = 0; i < Kernel->n_grid; ++i)
1981     createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i));
1982 
1983   for (int i = 0; i < Kernel->n_block; ++i)
1984     createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i));
1985 }
1986 
1987 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
1988   auto Arg = FN->arg_begin();
1989   for (long i = 0; i < Kernel->n_array; i++) {
1990     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1991       continue;
1992 
1993     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1994     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id));
1995     isl_id_free(Id);
1996 
1997     if (SAI->getNumberOfDimensions() > 0) {
1998       Arg++;
1999       continue;
2000     }
2001 
2002     Value *Val = &*Arg;
2003 
2004     if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2005       Type *TypePtr = SAI->getElementType()->getPointerTo();
2006       Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2007       Val = Builder.CreateLoad(TypedArgPtr);
2008     }
2009 
2010     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2011     Builder.CreateStore(Val, Alloca);
2012 
2013     Arg++;
2014   }
2015 }
2016 
2017 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2018   auto *FN = Builder.GetInsertBlock()->getParent();
2019   auto Arg = FN->arg_begin();
2020 
2021   bool StoredScalar = false;
2022   for (long i = 0; i < Kernel->n_array; i++) {
2023     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2024       continue;
2025 
2026     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2027     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id));
2028     isl_id_free(Id);
2029 
2030     if (SAI->getNumberOfDimensions() > 0) {
2031       Arg++;
2032       continue;
2033     }
2034 
2035     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2036       Arg++;
2037       continue;
2038     }
2039 
2040     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2041     Value *ArgPtr = &*Arg;
2042     Type *TypePtr = SAI->getElementType()->getPointerTo();
2043     Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2044     Value *Val = Builder.CreateLoad(Alloca);
2045     Builder.CreateStore(Val, TypedArgPtr);
2046     StoredScalar = true;
2047 
2048     Arg++;
2049   }
2050 
2051   if (StoredScalar)
2052     /// In case more than one thread contains scalar stores, the generated
2053     /// code might be incorrect, if we only store at the end of the kernel.
2054     /// To support this case we need to store these scalars back at each
2055     /// memory store or at least before each kernel barrier.
2056     if (Kernel->n_block != 0 || Kernel->n_grid != 0)
2057       BuildSuccessful = 0;
2058 }
2059 
2060 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2061   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2062 
2063   for (int i = 0; i < Kernel->n_var; ++i) {
2064     struct ppcg_kernel_var &Var = Kernel->var[i];
2065     isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2066     Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType();
2067 
2068     Type *ArrayTy = EleTy;
2069     SmallVector<const SCEV *, 4> Sizes;
2070 
2071     Sizes.push_back(nullptr);
2072     for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2073       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2074       long Bound = isl_val_get_num_si(Val);
2075       isl_val_free(Val);
2076       Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2077     }
2078 
2079     for (int j = Var.array->n_index - 1; j >= 0; --j) {
2080       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2081       long Bound = isl_val_get_num_si(Val);
2082       isl_val_free(Val);
2083       ArrayTy = ArrayType::get(ArrayTy, Bound);
2084     }
2085 
2086     const ScopArrayInfo *SAI;
2087     Value *Allocation;
2088     if (Var.type == ppcg_access_shared) {
2089       auto GlobalVar = new GlobalVariable(
2090           *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2091           nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2092       GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8);
2093       GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2094 
2095       Allocation = GlobalVar;
2096     } else if (Var.type == ppcg_access_private) {
2097       Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2098     } else {
2099       llvm_unreachable("unknown variable type");
2100     }
2101     SAI =
2102         S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2103     Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr);
2104     IDToValue[Id] = Allocation;
2105     LocalArrays.push_back(Allocation);
2106     KernelIds.push_back(Id);
2107     IDToSAI[Id] = SAI;
2108   }
2109 }
2110 
2111 void GPUNodeBuilder::createKernelFunction(
2112     ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2113     SetVector<Function *> &SubtreeFunctions) {
2114   std::string Identifier = getKernelFuncName(Kernel->id);
2115   GPUModule.reset(new Module(Identifier, Builder.getContext()));
2116 
2117   switch (Arch) {
2118   case GPUArch::NVPTX64:
2119     if (Runtime == GPURuntime::CUDA)
2120       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2121     else if (Runtime == GPURuntime::OpenCL)
2122       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2123     GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2124     break;
2125   case GPUArch::SPIR32:
2126     GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2127     GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2128     break;
2129   case GPUArch::SPIR64:
2130     GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2131     GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2132     break;
2133   }
2134 
2135   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2136 
2137   BasicBlock *PrevBlock = Builder.GetInsertBlock();
2138   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2139 
2140   DT.addNewBlock(EntryBlock, PrevBlock);
2141 
2142   Builder.SetInsertPoint(EntryBlock);
2143   Builder.CreateRetVoid();
2144   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2145 
2146   ScopDetection::markFunctionAsInvalid(FN);
2147 
2148   prepareKernelArguments(Kernel, FN);
2149   createKernelVariables(Kernel, FN);
2150 
2151   switch (Arch) {
2152   case GPUArch::NVPTX64:
2153     insertKernelIntrinsics(Kernel);
2154     break;
2155   case GPUArch::SPIR32:
2156   case GPUArch::SPIR64:
2157     insertKernelCallsSPIR(Kernel);
2158     break;
2159   }
2160 }
2161 
2162 std::string GPUNodeBuilder::createKernelASM() {
2163   llvm::Triple GPUTriple;
2164 
2165   switch (Arch) {
2166   case GPUArch::NVPTX64:
2167     switch (Runtime) {
2168     case GPURuntime::CUDA:
2169       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2170       break;
2171     case GPURuntime::OpenCL:
2172       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2173       break;
2174     }
2175     break;
2176   case GPUArch::SPIR64:
2177   case GPUArch::SPIR32:
2178     std::string SPIRAssembly;
2179     raw_string_ostream IROstream(SPIRAssembly);
2180     IROstream << *GPUModule;
2181     IROstream.flush();
2182     return SPIRAssembly;
2183   }
2184 
2185   std::string ErrMsg;
2186   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2187 
2188   if (!GPUTarget) {
2189     errs() << ErrMsg << "\n";
2190     return "";
2191   }
2192 
2193   TargetOptions Options;
2194   Options.UnsafeFPMath = FastMath;
2195 
2196   std::string subtarget;
2197 
2198   switch (Arch) {
2199   case GPUArch::NVPTX64:
2200     subtarget = CudaVersion;
2201     break;
2202   case GPUArch::SPIR32:
2203   case GPUArch::SPIR64:
2204     llvm_unreachable("No subtarget for SPIR architecture");
2205   }
2206 
2207   std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2208       GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2209 
2210   SmallString<0> ASMString;
2211   raw_svector_ostream ASMStream(ASMString);
2212   llvm::legacy::PassManager PM;
2213 
2214   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2215 
2216   if (TargetM->addPassesToEmitFile(
2217           PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) {
2218     errs() << "The target does not support generation of this file type!\n";
2219     return "";
2220   }
2221 
2222   PM.run(*GPUModule);
2223 
2224   return ASMStream.str();
2225 }
2226 
2227 std::string GPUNodeBuilder::finalizeKernelFunction() {
2228 
2229   if (verifyModule(*GPUModule)) {
2230     DEBUG(dbgs() << "verifyModule failed on module:\n";
2231           GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2232     DEBUG(dbgs() << "verifyModule Error:\n";
2233           verifyModule(*GPUModule, &dbgs()););
2234 
2235     if (FailOnVerifyModuleFailure)
2236       llvm_unreachable("VerifyModule failed.");
2237 
2238     BuildSuccessful = false;
2239     return "";
2240   }
2241 
2242   if (DumpKernelIR)
2243     outs() << *GPUModule << "\n";
2244 
2245   if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2246     // Optimize module.
2247     llvm::legacy::PassManager OptPasses;
2248     PassManagerBuilder PassBuilder;
2249     PassBuilder.OptLevel = 3;
2250     PassBuilder.SizeLevel = 0;
2251     PassBuilder.populateModulePassManager(OptPasses);
2252     OptPasses.run(*GPUModule);
2253   }
2254 
2255   std::string Assembly = createKernelASM();
2256 
2257   if (DumpKernelASM)
2258     outs() << Assembly << "\n";
2259 
2260   GPUModule.release();
2261   KernelIDs.clear();
2262 
2263   return Assembly;
2264 }
2265 
2266 namespace {
2267 class PPCGCodeGeneration : public ScopPass {
2268 public:
2269   static char ID;
2270 
2271   GPURuntime Runtime = GPURuntime::CUDA;
2272 
2273   GPUArch Architecture = GPUArch::NVPTX64;
2274 
2275   /// The scop that is currently processed.
2276   Scop *S;
2277 
2278   LoopInfo *LI;
2279   DominatorTree *DT;
2280   ScalarEvolution *SE;
2281   const DataLayout *DL;
2282   RegionInfo *RI;
2283 
2284   PPCGCodeGeneration() : ScopPass(ID) {}
2285 
2286   /// Construct compilation options for PPCG.
2287   ///
2288   /// @returns The compilation options.
2289   ppcg_options *createPPCGOptions() {
2290     auto DebugOptions =
2291         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2292     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2293 
2294     DebugOptions->dump_schedule_constraints = false;
2295     DebugOptions->dump_schedule = false;
2296     DebugOptions->dump_final_schedule = false;
2297     DebugOptions->dump_sizes = false;
2298     DebugOptions->verbose = false;
2299 
2300     Options->debug = DebugOptions;
2301 
2302     Options->group_chains = false;
2303     Options->reschedule = true;
2304     Options->scale_tile_loops = false;
2305     Options->wrap = false;
2306 
2307     Options->non_negative_parameters = false;
2308     Options->ctx = nullptr;
2309     Options->sizes = nullptr;
2310 
2311     Options->tile = true;
2312     Options->tile_size = 32;
2313 
2314     Options->isolate_full_tiles = false;
2315 
2316     Options->use_private_memory = PrivateMemory;
2317     Options->use_shared_memory = SharedMemory;
2318     Options->max_shared_memory = 48 * 1024;
2319 
2320     Options->target = PPCG_TARGET_CUDA;
2321     Options->openmp = false;
2322     Options->linearize_device_arrays = true;
2323     Options->allow_gnu_extensions = false;
2324 
2325     Options->unroll_copy_shared = false;
2326     Options->unroll_gpu_tile = false;
2327     Options->live_range_reordering = true;
2328 
2329     Options->live_range_reordering = true;
2330     Options->hybrid = false;
2331     Options->opencl_compiler_options = nullptr;
2332     Options->opencl_use_gpu = false;
2333     Options->opencl_n_include_file = 0;
2334     Options->opencl_include_files = nullptr;
2335     Options->opencl_print_kernel_types = false;
2336     Options->opencl_embed_kernel_code = false;
2337 
2338     Options->save_schedule_file = nullptr;
2339     Options->load_schedule_file = nullptr;
2340 
2341     return Options;
2342   }
2343 
2344   /// Get a tagged access relation containing all accesses of type @p AccessTy.
2345   ///
2346   /// Instead of a normal access of the form:
2347   ///
2348   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2349   ///
2350   /// a tagged access has the form
2351   ///
2352   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2353   ///
2354   /// where 'id' is an additional space that references the memory access that
2355   /// triggered the access.
2356   ///
2357   /// @param AccessTy The type of the memory accesses to collect.
2358   ///
2359   /// @return The relation describing all tagged memory accesses.
2360   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2361     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace());
2362 
2363     for (auto &Stmt : *S)
2364       for (auto &Acc : Stmt)
2365         if (Acc->getType() == AccessTy) {
2366           isl_map *Relation = Acc->getAccessRelation();
2367           Relation = isl_map_intersect_domain(Relation, Stmt.getDomain());
2368 
2369           isl_space *Space = isl_map_get_space(Relation);
2370           Space = isl_space_range(Space);
2371           Space = isl_space_from_range(Space);
2372           Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
2373           isl_map *Universe = isl_map_universe(Space);
2374           Relation = isl_map_domain_product(Relation, Universe);
2375           Accesses = isl_union_map_add_map(Accesses, Relation);
2376         }
2377 
2378     return Accesses;
2379   }
2380 
2381   /// Get the set of all read accesses, tagged with the access id.
2382   ///
2383   /// @see getTaggedAccesses
2384   isl_union_map *getTaggedReads() {
2385     return getTaggedAccesses(MemoryAccess::READ);
2386   }
2387 
2388   /// Get the set of all may (and must) accesses, tagged with the access id.
2389   ///
2390   /// @see getTaggedAccesses
2391   isl_union_map *getTaggedMayWrites() {
2392     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2393                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
2394   }
2395 
2396   /// Get the set of all must accesses, tagged with the access id.
2397   ///
2398   /// @see getTaggedAccesses
2399   isl_union_map *getTaggedMustWrites() {
2400     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2401   }
2402 
2403   /// Collect parameter and array names as isl_ids.
2404   ///
2405   /// To reason about the different parameters and arrays used, ppcg requires
2406   /// a list of all isl_ids in use. As PPCG traditionally performs
2407   /// source-to-source compilation each of these isl_ids is mapped to the
2408   /// expression that represents it. As we do not have a corresponding
2409   /// expression in Polly, we just map each id to a 'zero' expression to match
2410   /// the data format that ppcg expects.
2411   ///
2412   /// @returns Retun a map from collected ids to 'zero' ast expressions.
2413   __isl_give isl_id_to_ast_expr *getNames() {
2414     auto *Names = isl_id_to_ast_expr_alloc(
2415         S->getIslCtx(),
2416         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2417     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
2418     auto *Space = S->getParamSpace();
2419 
2420     for (int I = 0, E = S->getNumParams(); I < E; ++I) {
2421       isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I);
2422       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2423     }
2424 
2425     for (auto &Array : S->arrays()) {
2426       auto Id = Array->getBasePtrId().release();
2427       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2428     }
2429 
2430     isl_space_free(Space);
2431     isl_ast_expr_free(Zero);
2432 
2433     return Names;
2434   }
2435 
2436   /// Create a new PPCG scop from the current scop.
2437   ///
2438   /// The PPCG scop is initialized with data from the current polly::Scop. From
2439   /// this initial data, the data-dependences in the PPCG scop are initialized.
2440   /// We do not use Polly's dependence analysis for now, to ensure we match
2441   /// the PPCG default behaviour more closely.
2442   ///
2443   /// @returns A new ppcg scop.
2444   ppcg_scop *createPPCGScop() {
2445     MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2446 
2447     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2448 
2449     PPCGScop->options = createPPCGOptions();
2450     // enable live range reordering
2451     PPCGScop->options->live_range_reordering = 1;
2452 
2453     PPCGScop->start = 0;
2454     PPCGScop->end = 0;
2455 
2456     PPCGScop->context = S->getContext();
2457     PPCGScop->domain = S->getDomains();
2458     // TODO: investigate this further. PPCG calls collect_call_domains.
2459     PPCGScop->call = isl_union_set_from_set(S->getContext());
2460     PPCGScop->tagged_reads = getTaggedReads();
2461     PPCGScop->reads = S->getReads();
2462     PPCGScop->live_in = nullptr;
2463     PPCGScop->tagged_may_writes = getTaggedMayWrites();
2464     PPCGScop->may_writes = S->getWrites();
2465     PPCGScop->tagged_must_writes = getTaggedMustWrites();
2466     PPCGScop->must_writes = S->getMustWrites();
2467     PPCGScop->live_out = nullptr;
2468     PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take();
2469     PPCGScop->must_kills = KillsInfo.MustKills.take();
2470 
2471     PPCGScop->tagger = nullptr;
2472     PPCGScop->independence =
2473         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2474     PPCGScop->dep_flow = nullptr;
2475     PPCGScop->tagged_dep_flow = nullptr;
2476     PPCGScop->dep_false = nullptr;
2477     PPCGScop->dep_forced = nullptr;
2478     PPCGScop->dep_order = nullptr;
2479     PPCGScop->tagged_dep_order = nullptr;
2480 
2481     PPCGScop->schedule = S->getScheduleTree();
2482     // If we have something non-trivial to kill, add it to the schedule
2483     if (KillsInfo.KillsSchedule.get())
2484       PPCGScop->schedule = isl_schedule_sequence(
2485           PPCGScop->schedule, KillsInfo.KillsSchedule.take());
2486 
2487     PPCGScop->names = getNames();
2488     PPCGScop->pet = nullptr;
2489 
2490     compute_tagger(PPCGScop);
2491     compute_dependences(PPCGScop);
2492     eliminate_dead_code(PPCGScop);
2493 
2494     return PPCGScop;
2495   }
2496 
2497   /// Collect the array accesses in a statement.
2498   ///
2499   /// @param Stmt The statement for which to collect the accesses.
2500   ///
2501   /// @returns A list of array accesses.
2502   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2503     gpu_stmt_access *Accesses = nullptr;
2504 
2505     for (MemoryAccess *Acc : Stmt) {
2506       auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
2507       Access->read = Acc->isRead();
2508       Access->write = Acc->isWrite();
2509       Access->access = Acc->getAccessRelation();
2510       isl_space *Space = isl_map_get_space(Access->access);
2511       Space = isl_space_range(Space);
2512       Space = isl_space_from_range(Space);
2513       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
2514       isl_map *Universe = isl_map_universe(Space);
2515       Access->tagged_access =
2516           isl_map_domain_product(Acc->getAccessRelation(), Universe);
2517       Access->exact_write = !Acc->isMayWrite();
2518       Access->ref_id = Acc->getId();
2519       Access->next = Accesses;
2520       Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2521       Accesses = Access;
2522     }
2523 
2524     return Accesses;
2525   }
2526 
2527   /// Collect the list of GPU statements.
2528   ///
2529   /// Each statement has an id, a pointer to the underlying data structure,
2530   /// as well as a list with all memory accesses.
2531   ///
2532   /// TODO: Initialize the list of memory accesses.
2533   ///
2534   /// @returns A linked-list of statements.
2535   gpu_stmt *getStatements() {
2536     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
2537                                        std::distance(S->begin(), S->end()));
2538 
2539     int i = 0;
2540     for (auto &Stmt : *S) {
2541       gpu_stmt *GPUStmt = &Stmts[i];
2542 
2543       GPUStmt->id = Stmt.getDomainId();
2544 
2545       // We use the pet stmt pointer to keep track of the Polly statements.
2546       GPUStmt->stmt = (pet_stmt *)&Stmt;
2547       GPUStmt->accesses = getStmtAccesses(Stmt);
2548       i++;
2549     }
2550 
2551     return Stmts;
2552   }
2553 
2554   /// Derive the extent of an array.
2555   ///
2556   /// The extent of an array is the set of elements that are within the
2557   /// accessed array. For the inner dimensions, the extent constraints are
2558   /// 0 and the size of the corresponding array dimension. For the first
2559   /// (outermost) dimension, the extent constraints are the minimal and maximal
2560   /// subscript value for the first dimension.
2561   ///
2562   /// @param Array The array to derive the extent for.
2563   ///
2564   /// @returns An isl_set describing the extent of the array.
2565   __isl_give isl_set *getExtent(ScopArrayInfo *Array) {
2566     unsigned NumDims = Array->getNumberOfDimensions();
2567     isl_union_map *Accesses = S->getAccesses();
2568     Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains());
2569     Accesses = isl_union_map_detect_equalities(Accesses);
2570     isl_union_set *AccessUSet = isl_union_map_range(Accesses);
2571     AccessUSet = isl_union_set_coalesce(AccessUSet);
2572     AccessUSet = isl_union_set_detect_equalities(AccessUSet);
2573     AccessUSet = isl_union_set_coalesce(AccessUSet);
2574 
2575     if (isl_union_set_is_empty(AccessUSet)) {
2576       isl_union_set_free(AccessUSet);
2577       return isl_set_empty(Array->getSpace().release());
2578     }
2579 
2580     if (Array->getNumberOfDimensions() == 0) {
2581       isl_union_set_free(AccessUSet);
2582       return isl_set_universe(Array->getSpace().release());
2583     }
2584 
2585     isl_set *AccessSet =
2586         isl_union_set_extract_set(AccessUSet, Array->getSpace().release());
2587 
2588     isl_union_set_free(AccessUSet);
2589     isl_local_space *LS =
2590         isl_local_space_from_space(Array->getSpace().release());
2591 
2592     isl_pw_aff *Val =
2593         isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0));
2594 
2595     isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0);
2596     isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0);
2597     OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in,
2598                                    isl_pw_aff_dim(Val, isl_dim_in));
2599     OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in,
2600                                    isl_pw_aff_dim(Val, isl_dim_in));
2601     OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in,
2602                                        Array->getBasePtrId().release());
2603     OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in,
2604                                        Array->getBasePtrId().release());
2605 
2606     isl_set *Extent = isl_set_universe(Array->getSpace().release());
2607 
2608     Extent = isl_set_intersect(
2609         Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val)));
2610     Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val));
2611 
2612     for (unsigned i = 1; i < NumDims; ++i)
2613       Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0);
2614 
2615     for (unsigned i = 0; i < NumDims; ++i) {
2616       isl_pw_aff *PwAff =
2617           const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release());
2618 
2619       // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2620       // Fortran array will we have a legitimate dimension.
2621       if (!PwAff) {
2622         assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2623         continue;
2624       }
2625 
2626       isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain(
2627           isl_local_space_from_space(Array->getSpace().release()), isl_dim_set,
2628           i));
2629       PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in,
2630                                   isl_pw_aff_dim(Val, isl_dim_in));
2631       PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in,
2632                                       isl_pw_aff_get_tuple_id(Val, isl_dim_in));
2633       auto *Set = isl_pw_aff_gt_set(PwAff, Val);
2634       Extent = isl_set_intersect(Set, Extent);
2635     }
2636 
2637     return Extent;
2638   }
2639 
2640   /// Derive the bounds of an array.
2641   ///
2642   /// For the first dimension we derive the bound of the array from the extent
2643   /// of this dimension. For inner dimensions we obtain their size directly from
2644   /// ScopArrayInfo.
2645   ///
2646   /// @param PPCGArray The array to compute bounds for.
2647   /// @param Array The polly array from which to take the information.
2648   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2649     isl_pw_aff_list *BoundsList =
2650         isl_pw_aff_list_alloc(S->getIslCtx(), PPCGArray.n_index);
2651     std::vector<isl::pw_aff> PwAffs;
2652 
2653     isl_space *AlignSpace = S->getParamSpace();
2654     AlignSpace = isl_space_add_dims(AlignSpace, isl_dim_set, 1);
2655 
2656     if (PPCGArray.n_index > 0) {
2657       if (isl_set_is_empty(PPCGArray.extent)) {
2658         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2659         isl_local_space *LS = isl_local_space_from_space(
2660             isl_space_params(isl_set_get_space(Dom)));
2661         isl_set_free(Dom);
2662         isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2663         Zero = isl_pw_aff_align_params(Zero, isl_space_copy(AlignSpace));
2664         PwAffs.push_back(isl::manage(isl_pw_aff_copy(Zero)));
2665         BoundsList = isl_pw_aff_list_insert(BoundsList, 0, Zero);
2666       } else {
2667         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2668         Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2669         isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2670         isl_set_free(Dom);
2671         Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2672         isl_local_space *LS =
2673             isl_local_space_from_space(isl_set_get_space(Dom));
2674         isl_aff *One = isl_aff_zero_on_domain(LS);
2675         One = isl_aff_add_constant_si(One, 1);
2676         Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2677         Bound = isl_pw_aff_gist(Bound, S->getContext());
2678         Bound = isl_pw_aff_align_params(Bound, isl_space_copy(AlignSpace));
2679         PwAffs.push_back(isl::manage(isl_pw_aff_copy(Bound)));
2680         BoundsList = isl_pw_aff_list_insert(BoundsList, 0, Bound);
2681       }
2682     }
2683 
2684     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2685       isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2686       auto LS = isl_pw_aff_get_domain_space(Bound);
2687       auto Aff = isl_multi_aff_zero(LS);
2688       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2689       Bound = isl_pw_aff_align_params(Bound, isl_space_copy(AlignSpace));
2690       PwAffs.push_back(isl::manage(isl_pw_aff_copy(Bound)));
2691       BoundsList = isl_pw_aff_list_insert(BoundsList, i, Bound);
2692     }
2693 
2694     isl_space_free(AlignSpace);
2695     isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2696 
2697     assert(BoundsSpace && "Unable to access space of array.");
2698     assert(BoundsList && "Unable to access list of bounds.");
2699 
2700     PPCGArray.bound =
2701         isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2702     assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2703   }
2704 
2705   /// Create the arrays for @p PPCGProg.
2706   ///
2707   /// @param PPCGProg The program to compute the arrays for.
2708   void createArrays(gpu_prog *PPCGProg) {
2709     int i = 0;
2710     for (auto &Array : S->arrays()) {
2711       std::string TypeName;
2712       raw_string_ostream OS(TypeName);
2713 
2714       OS << *Array->getElementType();
2715       TypeName = OS.str();
2716 
2717       gpu_array_info &PPCGArray = PPCGProg->array[i];
2718 
2719       PPCGArray.space = Array->getSpace().release();
2720       PPCGArray.type = strdup(TypeName.c_str());
2721       PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8;
2722       PPCGArray.name = strdup(Array->getName().c_str());
2723       PPCGArray.extent = nullptr;
2724       PPCGArray.n_index = Array->getNumberOfDimensions();
2725       PPCGArray.extent = getExtent(Array);
2726       PPCGArray.n_ref = 0;
2727       PPCGArray.refs = nullptr;
2728       PPCGArray.accessed = true;
2729       PPCGArray.read_only_scalar =
2730           Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
2731       PPCGArray.has_compound_element = false;
2732       PPCGArray.local = false;
2733       PPCGArray.declare_local = false;
2734       PPCGArray.global = false;
2735       PPCGArray.linearize = false;
2736       PPCGArray.dep_order = nullptr;
2737       PPCGArray.user = Array;
2738 
2739       PPCGArray.bound = nullptr;
2740       setArrayBounds(PPCGArray, Array);
2741       i++;
2742 
2743       collect_references(PPCGProg, &PPCGArray);
2744     }
2745   }
2746 
2747   /// Create an identity map between the arrays in the scop.
2748   ///
2749   /// @returns An identity map between the arrays in the scop.
2750   isl_union_map *getArrayIdentity() {
2751     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace());
2752 
2753     for (auto &Array : S->arrays()) {
2754       isl_space *Space = Array->getSpace().release();
2755       Space = isl_space_map_from_set(Space);
2756       isl_map *Identity = isl_map_identity(Space);
2757       Maps = isl_union_map_add_map(Maps, Identity);
2758     }
2759 
2760     return Maps;
2761   }
2762 
2763   /// Create a default-initialized PPCG GPU program.
2764   ///
2765   /// @returns A new gpu program description.
2766   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
2767 
2768     if (!PPCGScop)
2769       return nullptr;
2770 
2771     auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
2772 
2773     PPCGProg->ctx = S->getIslCtx();
2774     PPCGProg->scop = PPCGScop;
2775     PPCGProg->context = isl_set_copy(PPCGScop->context);
2776     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
2777     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
2778     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
2779     PPCGProg->tagged_must_kill =
2780         isl_union_map_copy(PPCGScop->tagged_must_kills);
2781     PPCGProg->to_inner = getArrayIdentity();
2782     PPCGProg->to_outer = getArrayIdentity();
2783     // TODO: verify that this assignment is correct.
2784     PPCGProg->any_to_outer = nullptr;
2785 
2786     // this needs to be set when live range reordering is enabled.
2787     // NOTE: I believe that is conservatively correct. I'm not sure
2788     //       what the semantics of this is.
2789     // Quoting PPCG/gpu.h: "Order dependences on non-scalars."
2790     PPCGProg->array_order =
2791         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2792     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
2793     PPCGProg->stmts = getStatements();
2794     PPCGProg->n_array = std::distance(S->array_begin(), S->array_end());
2795     PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
2796                                        PPCGProg->n_array);
2797 
2798     createArrays(PPCGProg);
2799 
2800     PPCGProg->may_persist = compute_may_persist(PPCGProg);
2801     return PPCGProg;
2802   }
2803 
2804   struct PrintGPUUserData {
2805     struct cuda_info *CudaInfo;
2806     struct gpu_prog *PPCGProg;
2807     std::vector<ppcg_kernel *> Kernels;
2808   };
2809 
2810   /// Print a user statement node in the host code.
2811   ///
2812   /// We use ppcg's printing facilities to print the actual statement and
2813   /// additionally build up a list of all kernels that are encountered in the
2814   /// host ast.
2815   ///
2816   /// @param P The printer to print to
2817   /// @param Options The printing options to use
2818   /// @param Node The node to print
2819   /// @param User A user pointer to carry additional data. This pointer is
2820   ///             expected to be of type PrintGPUUserData.
2821   ///
2822   /// @returns A printer to which the output has been printed.
2823   static __isl_give isl_printer *
2824   printHostUser(__isl_take isl_printer *P,
2825                 __isl_take isl_ast_print_options *Options,
2826                 __isl_take isl_ast_node *Node, void *User) {
2827     auto Data = (struct PrintGPUUserData *)User;
2828     auto Id = isl_ast_node_get_annotation(Node);
2829 
2830     if (Id) {
2831       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
2832 
2833       // If this is a user statement, format it ourselves as ppcg would
2834       // otherwise try to call pet functionality that is not available in
2835       // Polly.
2836       if (IsUser) {
2837         P = isl_printer_start_line(P);
2838         P = isl_printer_print_ast_node(P, Node);
2839         P = isl_printer_end_line(P);
2840         isl_id_free(Id);
2841         isl_ast_print_options_free(Options);
2842         return P;
2843       }
2844 
2845       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
2846       isl_id_free(Id);
2847       Data->Kernels.push_back(Kernel);
2848     }
2849 
2850     return print_host_user(P, Options, Node, User);
2851   }
2852 
2853   /// Print C code corresponding to the control flow in @p Kernel.
2854   ///
2855   /// @param Kernel The kernel to print
2856   void printKernel(ppcg_kernel *Kernel) {
2857     auto *P = isl_printer_to_str(S->getIslCtx());
2858     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
2859     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
2860     P = isl_ast_node_print(Kernel->tree, P, Options);
2861     char *String = isl_printer_get_str(P);
2862     printf("%s\n", String);
2863     free(String);
2864     isl_printer_free(P);
2865   }
2866 
2867   /// Print C code corresponding to the GPU code described by @p Tree.
2868   ///
2869   /// @param Tree An AST describing GPU code
2870   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
2871   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
2872     auto *P = isl_printer_to_str(S->getIslCtx());
2873     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
2874 
2875     PrintGPUUserData Data;
2876     Data.PPCGProg = PPCGProg;
2877 
2878     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
2879     Options =
2880         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
2881     P = isl_ast_node_print(Tree, P, Options);
2882     char *String = isl_printer_get_str(P);
2883     printf("# host\n");
2884     printf("%s\n", String);
2885     free(String);
2886     isl_printer_free(P);
2887 
2888     for (auto Kernel : Data.Kernels) {
2889       printf("# kernel%d\n", Kernel->id);
2890       printKernel(Kernel);
2891     }
2892   }
2893 
2894   // Generate a GPU program using PPCG.
2895   //
2896   // GPU mapping consists of multiple steps:
2897   //
2898   //  1) Compute new schedule for the program.
2899   //  2) Map schedule to GPU (TODO)
2900   //  3) Generate code for new schedule (TODO)
2901   //
2902   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
2903   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
2904   // strategy directly from this pass.
2905   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
2906 
2907     auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
2908 
2909     PPCGGen->ctx = S->getIslCtx();
2910     PPCGGen->options = PPCGScop->options;
2911     PPCGGen->print = nullptr;
2912     PPCGGen->print_user = nullptr;
2913     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
2914     PPCGGen->prog = PPCGProg;
2915     PPCGGen->tree = nullptr;
2916     PPCGGen->types.n = 0;
2917     PPCGGen->types.name = nullptr;
2918     PPCGGen->sizes = nullptr;
2919     PPCGGen->used_sizes = nullptr;
2920     PPCGGen->kernel_id = 0;
2921 
2922     // Set scheduling strategy to same strategy PPCG is using.
2923     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
2924     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
2925     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
2926 
2927     isl_schedule *Schedule = get_schedule(PPCGGen);
2928 
2929     int has_permutable = has_any_permutable_node(Schedule);
2930 
2931     if (!has_permutable || has_permutable < 0) {
2932       Schedule = isl_schedule_free(Schedule);
2933     } else {
2934       Schedule = map_to_device(PPCGGen, Schedule);
2935       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
2936     }
2937 
2938     if (DumpSchedule) {
2939       isl_printer *P = isl_printer_to_str(S->getIslCtx());
2940       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
2941       P = isl_printer_print_str(P, "Schedule\n");
2942       P = isl_printer_print_str(P, "========\n");
2943       if (Schedule)
2944         P = isl_printer_print_schedule(P, Schedule);
2945       else
2946         P = isl_printer_print_str(P, "No schedule found\n");
2947 
2948       printf("%s\n", isl_printer_get_str(P));
2949       isl_printer_free(P);
2950     }
2951 
2952     if (DumpCode) {
2953       printf("Code\n");
2954       printf("====\n");
2955       if (PPCGGen->tree)
2956         printGPUTree(PPCGGen->tree, PPCGProg);
2957       else
2958         printf("No code generated\n");
2959     }
2960 
2961     isl_schedule_free(Schedule);
2962 
2963     return PPCGGen;
2964   }
2965 
2966   /// Free gpu_gen structure.
2967   ///
2968   /// @param PPCGGen The ppcg_gen object to free.
2969   void freePPCGGen(gpu_gen *PPCGGen) {
2970     isl_ast_node_free(PPCGGen->tree);
2971     isl_union_map_free(PPCGGen->sizes);
2972     isl_union_map_free(PPCGGen->used_sizes);
2973     free(PPCGGen);
2974   }
2975 
2976   /// Free the options in the ppcg scop structure.
2977   ///
2978   /// ppcg is not freeing these options for us. To avoid leaks we do this
2979   /// ourselves.
2980   ///
2981   /// @param PPCGScop The scop referencing the options to free.
2982   void freeOptions(ppcg_scop *PPCGScop) {
2983     free(PPCGScop->options->debug);
2984     PPCGScop->options->debug = nullptr;
2985     free(PPCGScop->options);
2986     PPCGScop->options = nullptr;
2987   }
2988 
2989   /// Approximate the number of points in the set.
2990   ///
2991   /// This function returns an ast expression that overapproximates the number
2992   /// of points in an isl set through the rectangular hull surrounding this set.
2993   ///
2994   /// @param Set   The set to count.
2995   /// @param Build The isl ast build object to use for creating the ast
2996   ///              expression.
2997   ///
2998   /// @returns An approximation of the number of points in the set.
2999   __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3000                                              __isl_keep isl_ast_build *Build) {
3001 
3002     isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3003     auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3004 
3005     isl_space *Space = isl_set_get_space(Set);
3006     Space = isl_space_params(Space);
3007     auto *Univ = isl_set_universe(Space);
3008     isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3009 
3010     for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) {
3011       isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3012       isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3013       isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3014       DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3015       auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3016       Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3017     }
3018 
3019     isl_set_free(Set);
3020     isl_pw_aff_free(OneAff);
3021 
3022     return Expr;
3023   }
3024 
3025   /// Approximate a number of dynamic instructions executed by a given
3026   /// statement.
3027   ///
3028   /// @param Stmt  The statement for which to compute the number of dynamic
3029   ///              instructions.
3030   /// @param Build The isl ast build object to use for creating the ast
3031   ///              expression.
3032   /// @returns An approximation of the number of dynamic instructions executed
3033   ///          by @p Stmt.
3034   __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3035                                              __isl_keep isl_ast_build *Build) {
3036     auto Iterations = approxPointsInSet(Stmt.getDomain(), Build);
3037 
3038     long InstCount = 0;
3039 
3040     if (Stmt.isBlockStmt()) {
3041       auto *BB = Stmt.getBasicBlock();
3042       InstCount = std::distance(BB->begin(), BB->end());
3043     } else {
3044       auto *R = Stmt.getRegion();
3045 
3046       for (auto *BB : R->blocks()) {
3047         InstCount += std::distance(BB->begin(), BB->end());
3048       }
3049     }
3050 
3051     isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount);
3052     auto *InstExpr = isl_ast_expr_from_val(InstVal);
3053     return isl_ast_expr_mul(InstExpr, Iterations);
3054   }
3055 
3056   /// Approximate dynamic instructions executed in scop.
3057   ///
3058   /// @param S     The scop for which to approximate dynamic instructions.
3059   /// @param Build The isl ast build object to use for creating the ast
3060   ///              expression.
3061   /// @returns An approximation of the number of dynamic instructions executed
3062   ///          in @p S.
3063   __isl_give isl_ast_expr *
3064   getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3065     isl_ast_expr *Instructions;
3066 
3067     isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0);
3068     Instructions = isl_ast_expr_from_val(Zero);
3069 
3070     for (ScopStmt &Stmt : S) {
3071       isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3072       Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3073     }
3074     return Instructions;
3075   }
3076 
3077   /// Create a check that ensures sufficient compute in scop.
3078   ///
3079   /// @param S     The scop for which to ensure sufficient compute.
3080   /// @param Build The isl ast build object to use for creating the ast
3081   ///              expression.
3082   /// @returns An expression that evaluates to TRUE in case of sufficient
3083   ///          compute and to FALSE, otherwise.
3084   __isl_give isl_ast_expr *
3085   createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3086     auto Iterations = getNumberOfIterations(S, Build);
3087     auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute);
3088     auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3089     return isl_ast_expr_ge(Iterations, MinComputeExpr);
3090   }
3091 
3092   /// Check if the basic block contains a function we cannot codegen for GPU
3093   /// kernels.
3094   ///
3095   /// If this basic block does something with a `Function` other than calling
3096   /// a function that we support in a kernel, return true.
3097   bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB) {
3098     for (const Instruction &Inst : *BB) {
3099       const CallInst *Call = dyn_cast<CallInst>(&Inst);
3100       if (Call && isValidFunctionInKernel(Call->getCalledFunction())) {
3101         continue;
3102       }
3103 
3104       for (Value *SrcVal : Inst.operands()) {
3105         PointerType *p = dyn_cast<PointerType>(SrcVal->getType());
3106         if (!p)
3107           continue;
3108         if (isa<FunctionType>(p->getElementType()))
3109           return true;
3110       }
3111     }
3112     return false;
3113   }
3114 
3115   /// Return whether the Scop S uses functions in a way that we do not support.
3116   bool containsInvalidKernelFunction(const Scop &S) {
3117     for (auto &Stmt : S) {
3118       if (Stmt.isBlockStmt()) {
3119         if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock()))
3120           return true;
3121       } else {
3122         assert(Stmt.isRegionStmt() &&
3123                "Stmt was neither block nor region statement");
3124         for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3125           if (containsInvalidKernelFunctionInBlock(BB))
3126             return true;
3127       }
3128     }
3129     return false;
3130   }
3131 
3132   /// Generate code for a given GPU AST described by @p Root.
3133   ///
3134   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3135   /// @param Prog The GPU Program to generate code for.
3136   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3137     ScopAnnotator Annotator;
3138     Annotator.buildAliasScopes(*S);
3139 
3140     Region *R = &S->getRegion();
3141 
3142     simplifyRegion(R, DT, LI, RI);
3143 
3144     BasicBlock *EnteringBB = R->getEnteringBlock();
3145 
3146     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3147 
3148     // Only build the run-time condition and parameters _after_ having
3149     // introduced the conditional branch. This is important as the conditional
3150     // branch will guard the original scop from new induction variables that
3151     // the SCEVExpander may introduce while code generating the parameters and
3152     // which may introduce scalar dependences that prevent us from correctly
3153     // code generating this scop.
3154     BBPair StartExitBlocks;
3155     BranchInst *CondBr = nullptr;
3156     std::tie(StartExitBlocks, CondBr) =
3157         executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3158     BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3159 
3160     assert(CondBr && "CondBr not initialized by executeScopConditionally");
3161 
3162     GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3163                                StartBlock, Prog, Runtime, Architecture);
3164 
3165     // TODO: Handle LICM
3166     auto SplitBlock = StartBlock->getSinglePredecessor();
3167     Builder.SetInsertPoint(SplitBlock->getTerminator());
3168     NodeBuilder.addParameters(S->getContext());
3169 
3170     isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx());
3171     isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3172     isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3173     Condition = isl_ast_expr_and(Condition, SufficientCompute);
3174     isl_ast_build_free(Build);
3175 
3176     // preload invariant loads. Note: This should happen before the RTC
3177     // because the RTC may depend on values that are invariant load hoisted.
3178     NodeBuilder.preloadInvariantLoads();
3179 
3180     Value *RTC = NodeBuilder.createRTC(Condition);
3181     Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3182 
3183     Builder.SetInsertPoint(&*StartBlock->begin());
3184 
3185     NodeBuilder.create(Root);
3186 
3187     /// In case a sequential kernel has more surrounding loops as any parallel
3188     /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3189     /// point in running it on a GPU.
3190     if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3191       CondBr->setOperand(0, Builder.getFalse());
3192 
3193     if (!NodeBuilder.BuildSuccessful)
3194       CondBr->setOperand(0, Builder.getFalse());
3195   }
3196 
3197   bool runOnScop(Scop &CurrentScop) override {
3198     S = &CurrentScop;
3199     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3200     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3201     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3202     DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3203     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3204 
3205     // We currently do not support functions other than intrinsics inside
3206     // kernels, as code generation will need to offload function calls to the
3207     // kernel. This may lead to a kernel trying to call a function on the host.
3208     // This also allows us to prevent codegen from trying to take the
3209     // address of an intrinsic function to send to the kernel.
3210     if (containsInvalidKernelFunction(CurrentScop)) {
3211       DEBUG(
3212           dbgs()
3213               << "Scop contains function which cannot be materialised in a GPU "
3214                  "kernel. Bailing out.\n";);
3215       return false;
3216     }
3217 
3218     auto PPCGScop = createPPCGScop();
3219     auto PPCGProg = createPPCGProg(PPCGScop);
3220     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3221 
3222     if (PPCGGen->tree) {
3223       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3224       CurrentScop.markAsToBeSkipped();
3225     }
3226 
3227     freeOptions(PPCGScop);
3228     freePPCGGen(PPCGGen);
3229     gpu_prog_free(PPCGProg);
3230     ppcg_scop_free(PPCGScop);
3231 
3232     return true;
3233   }
3234 
3235   void printScop(raw_ostream &, Scop &) const override {}
3236 
3237   void getAnalysisUsage(AnalysisUsage &AU) const override {
3238     AU.addRequired<DominatorTreeWrapperPass>();
3239     AU.addRequired<RegionInfoPass>();
3240     AU.addRequired<ScalarEvolutionWrapperPass>();
3241     AU.addRequired<ScopDetectionWrapperPass>();
3242     AU.addRequired<ScopInfoRegionPass>();
3243     AU.addRequired<LoopInfoWrapperPass>();
3244 
3245     AU.addPreserved<AAResultsWrapperPass>();
3246     AU.addPreserved<BasicAAWrapperPass>();
3247     AU.addPreserved<LoopInfoWrapperPass>();
3248     AU.addPreserved<DominatorTreeWrapperPass>();
3249     AU.addPreserved<GlobalsAAWrapperPass>();
3250     AU.addPreserved<ScopDetectionWrapperPass>();
3251     AU.addPreserved<ScalarEvolutionWrapperPass>();
3252     AU.addPreserved<SCEVAAWrapperPass>();
3253 
3254     // FIXME: We do not yet add regions for the newly generated code to the
3255     //        region tree.
3256     AU.addPreserved<RegionInfoPass>();
3257     AU.addPreserved<ScopInfoRegionPass>();
3258   }
3259 };
3260 } // namespace
3261 
3262 char PPCGCodeGeneration::ID = 1;
3263 
3264 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3265   PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3266   generator->Runtime = Runtime;
3267   generator->Architecture = Arch;
3268   return generator;
3269 }
3270 
3271 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3272                       "Polly - Apply PPCG translation to SCOP", false, false)
3273 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3274 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3275 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3276 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3277 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3278 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3279 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3280                     "Polly - Apply PPCG translation to SCOP", false, false)
3281