1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/ISLTools.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/IntrinsicsNVPTX.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/IRReader/IRReader.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Linker/Linker.h" 35 #include "llvm/MC/TargetRegistry.h" 36 #include "llvm/Support/SourceMgr.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/union_map.h" 41 #include <algorithm> 42 43 extern "C" { 44 #include "ppcg/cuda.h" 45 #include "ppcg/gpu.h" 46 #include "ppcg/ppcg.h" 47 } 48 49 #include "llvm/Support/Debug.h" 50 51 using namespace polly; 52 using namespace llvm; 53 54 #define DEBUG_TYPE "polly-codegen-ppcg" 55 56 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 57 cl::desc("Dump the computed GPU Schedule"), 58 cl::Hidden, cl::init(false), cl::ZeroOrMore, 59 cl::cat(PollyCategory)); 60 61 static cl::opt<bool> 62 DumpCode("polly-acc-dump-code", 63 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 64 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 65 66 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 67 cl::desc("Dump the kernel LLVM-IR"), 68 cl::Hidden, cl::init(false), cl::ZeroOrMore, 69 cl::cat(PollyCategory)); 70 71 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 72 cl::desc("Dump the kernel assembly code"), 73 cl::Hidden, cl::init(false), cl::ZeroOrMore, 74 cl::cat(PollyCategory)); 75 76 static cl::opt<bool> FastMath("polly-acc-fastmath", 77 cl::desc("Allow unsafe math optimizations"), 78 cl::Hidden, cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 81 cl::desc("Use shared memory"), cl::Hidden, 82 cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 85 cl::desc("Use private memory"), cl::Hidden, 86 cl::init(false), cl::ZeroOrMore, 87 cl::cat(PollyCategory)); 88 89 bool polly::PollyManagedMemory; 90 static cl::opt<bool, true> 91 XManagedMemory("polly-acc-codegen-managed-memory", 92 cl::desc("Generate Host kernel code assuming" 93 " that all memory has been" 94 " declared as managed memory"), 95 cl::location(PollyManagedMemory), cl::Hidden, 96 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 97 98 static cl::opt<bool> 99 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 100 cl::desc("Fail and generate a backtrace if" 101 " verifyModule fails on the GPU " 102 " kernel module."), 103 cl::Hidden, cl::init(false), cl::ZeroOrMore, 104 cl::cat(PollyCategory)); 105 106 static cl::opt<std::string> CUDALibDevice( 107 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 108 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 109 cl::ZeroOrMore, cl::cat(PollyCategory)); 110 111 static cl::opt<std::string> 112 CudaVersion("polly-acc-cuda-version", 113 cl::desc("The CUDA version to compile for"), cl::Hidden, 114 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 115 116 static cl::opt<int> 117 MinCompute("polly-acc-mincompute", 118 cl::desc("Minimal number of compute statements to run on GPU."), 119 cl::Hidden, cl::init(10 * 512 * 512)); 120 121 GPURuntime polly::GPURuntimeChoice; 122 static cl::opt<GPURuntime, true> XGPURuntimeChoice( 123 "polly-gpu-runtime", cl::desc("The GPU Runtime API to target"), 124 cl::values(clEnumValN(GPURuntime::CUDA, "libcudart", 125 "use the CUDA Runtime API"), 126 clEnumValN(GPURuntime::OpenCL, "libopencl", 127 "use the OpenCL Runtime API")), 128 cl::location(polly::GPURuntimeChoice), cl::init(GPURuntime::CUDA), 129 cl::ZeroOrMore, cl::cat(PollyCategory)); 130 131 GPUArch polly::GPUArchChoice; 132 static cl::opt<GPUArch, true> 133 XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"), 134 cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64", 135 "target NVIDIA 64-bit architecture"), 136 clEnumValN(GPUArch::SPIR32, "spir32", 137 "target SPIR 32-bit architecture"), 138 clEnumValN(GPUArch::SPIR64, "spir64", 139 "target SPIR 64-bit architecture")), 140 cl::location(polly::GPUArchChoice), 141 cl::init(GPUArch::NVPTX64), cl::ZeroOrMore, 142 cl::cat(PollyCategory)); 143 144 extern bool polly::PerfMonitoring; 145 146 /// Return a unique name for a Scop, which is the scop region with the 147 /// function name. 148 std::string getUniqueScopName(const Scop *S) { 149 return "Scop Region: " + S->getNameStr() + 150 " | Function: " + std::string(S->getFunction().getName()); 151 } 152 153 /// Used to store information PPCG wants for kills. This information is 154 /// used by live range reordering. 155 /// 156 /// @see computeLiveRangeReordering 157 /// @see GPUNodeBuilder::createPPCGScop 158 /// @see GPUNodeBuilder::createPPCGProg 159 struct MustKillsInfo { 160 /// Collection of all kill statements that will be sequenced at the end of 161 /// PPCGScop->schedule. 162 /// 163 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 164 /// which merges schedules in *arbitrary* order. 165 /// (we don't care about the order of the kills anyway). 166 isl::schedule KillsSchedule; 167 /// Map from kill statement instances to scalars that need to be 168 /// killed. 169 /// 170 /// We currently derive kill information for: 171 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 172 /// consequently all be killed. 173 /// 2. Scalar arrays that are not used outside the Scop. This is 174 /// checked by `isScalarUsesContainedInScop`. 175 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 176 isl::union_map TaggedMustKills; 177 178 /// Tagged must kills stripped of the tags. 179 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 180 isl::union_map MustKills; 181 182 MustKillsInfo() : KillsSchedule() {} 183 }; 184 185 /// Check if SAI's uses are entirely contained within Scop S. 186 /// If a scalar is used only with a Scop, we are free to kill it, as no data 187 /// can flow in/out of the value any more. 188 /// @see computeMustKillsInfo 189 static bool isScalarUsesContainedInScop(const Scop &S, 190 const ScopArrayInfo *SAI) { 191 assert(SAI->isValueKind() && "this function only deals with scalars." 192 " Dealing with arrays required alias analysis"); 193 194 const Region &R = S.getRegion(); 195 for (User *U : SAI->getBasePtr()->users()) { 196 Instruction *I = dyn_cast<Instruction>(U); 197 assert(I && "invalid user of scop array info"); 198 if (!R.contains(I)) 199 return false; 200 } 201 return true; 202 } 203 204 /// Compute must-kills needed to enable live range reordering with PPCG. 205 /// 206 /// @params S The Scop to compute live range reordering information 207 /// @returns live range reordering information that can be used to setup 208 /// PPCG. 209 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 210 const isl::space ParamSpace = S.getParamSpace(); 211 MustKillsInfo Info; 212 213 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 214 // 1.1 phi nodes in scop. 215 // 1.2 scalars that are only used within the scop 216 SmallVector<isl::id, 4> KillMemIds; 217 for (ScopArrayInfo *SAI : S.arrays()) { 218 if (SAI->isPHIKind() || 219 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 220 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 221 } 222 223 Info.TaggedMustKills = isl::union_map::empty(ParamSpace.ctx()); 224 Info.MustKills = isl::union_map::empty(ParamSpace.ctx()); 225 226 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 227 // schedule: 228 // - filter: "[control] -> { }" 229 // So, we choose to not create this to keep the output a little nicer, 230 // at the cost of some code complexity. 231 Info.KillsSchedule = {}; 232 233 for (isl::id &ToKillId : KillMemIds) { 234 isl::id KillStmtId = isl::id::alloc( 235 S.getIslCtx(), 236 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 237 238 // NOTE: construction of tagged_must_kill: 239 // 2. We need to construct a map: 240 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 241 // To construct this, we use `isl_map_domain_product` on 2 maps`: 242 // 2a. StmtToScalar: 243 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 244 // 2b. PhantomRefToScalar: 245 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 246 // 247 // Combining these with `isl_map_domain_product` gives us 248 // TaggedMustKill: 249 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 250 251 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 252 isl::map StmtToScalar = isl::map::universe(ParamSpace); 253 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 254 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 255 256 isl::id PhantomRefId = isl::id::alloc( 257 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 258 nullptr); 259 260 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 261 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 262 PhantomRefToScalar = 263 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 264 PhantomRefToScalar = 265 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 266 267 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 268 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 269 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 270 271 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 272 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 273 274 // 3. Create the kill schedule of the form: 275 // "[param] -> { Stmt_phantom[] }" 276 // Then add this to Info.KillsSchedule. 277 isl::space KillStmtSpace = ParamSpace; 278 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 279 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 280 281 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 282 if (!Info.KillsSchedule.is_null()) 283 Info.KillsSchedule = isl::manage( 284 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 285 else 286 Info.KillsSchedule = KillSchedule; 287 } 288 289 return Info; 290 } 291 292 /// Create the ast expressions for a ScopStmt. 293 /// 294 /// This function is a callback for to generate the ast expressions for each 295 /// of the scheduled ScopStmts. 296 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 297 void *StmtT, __isl_take isl_ast_build *Build_C, 298 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 299 isl_id *Id, void *User), 300 void *UserIndex, 301 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 302 void *UserExpr) { 303 304 ScopStmt *Stmt = (ScopStmt *)StmtT; 305 306 if (!Stmt || !Build_C) 307 return NULL; 308 309 isl::ast_build Build = isl::manage_copy(Build_C); 310 isl::ctx Ctx = Build.ctx(); 311 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 312 313 Stmt->setAstBuild(Build); 314 315 for (MemoryAccess *Acc : *Stmt) { 316 isl::map AddrFunc = Acc->getAddressFunction(); 317 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 318 319 isl::id RefId = Acc->getId(); 320 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 321 322 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 323 MPA = MPA.coalesce(); 324 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 325 326 isl::ast_expr Access = Build.access_from(MPA); 327 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 328 RefToExpr = RefToExpr.set(RefId, Access); 329 } 330 331 return RefToExpr.release(); 332 } 333 334 /// Given a LLVM Type, compute its size in bytes, 335 static int computeSizeInBytes(const Type *T) { 336 int bytes = T->getPrimitiveSizeInBits() / 8; 337 if (bytes == 0) 338 bytes = T->getScalarSizeInBits() / 8; 339 return bytes; 340 } 341 342 /// Generate code for a GPU specific isl AST. 343 /// 344 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 345 /// generates code for general-purpose AST nodes, with special functionality 346 /// for generating GPU specific user nodes. 347 /// 348 /// @see GPUNodeBuilder::createUser 349 class GPUNodeBuilder : public IslNodeBuilder { 350 public: 351 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 352 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 353 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 354 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 355 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 356 Prog(Prog), Runtime(Runtime), Arch(Arch) { 357 getExprBuilder().setIDToSAI(&IDToSAI); 358 } 359 360 /// Create after-run-time-check initialization code. 361 void initializeAfterRTH(); 362 363 /// Finalize the generated scop. 364 void finalize() override; 365 366 /// Track if the full build process was successful. 367 /// 368 /// This value is set to false, if throughout the build process an error 369 /// occurred which prevents us from generating valid GPU code. 370 bool BuildSuccessful = true; 371 372 /// The maximal number of loops surrounding a sequential kernel. 373 unsigned DeepestSequential = 0; 374 375 /// The maximal number of loops surrounding a parallel kernel. 376 unsigned DeepestParallel = 0; 377 378 /// Return the name to set for the ptx_kernel. 379 std::string getKernelFuncName(int Kernel_id); 380 381 private: 382 /// A vector of array base pointers for which a new ScopArrayInfo was created. 383 /// 384 /// This vector is used to delete the ScopArrayInfo when it is not needed any 385 /// more. 386 std::vector<Value *> LocalArrays; 387 388 /// A map from ScopArrays to their corresponding device allocations. 389 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 390 391 /// The current GPU context. 392 Value *GPUContext; 393 394 /// The set of isl_ids allocated in the kernel 395 std::vector<isl_id *> KernelIds; 396 397 /// A module containing GPU code. 398 /// 399 /// This pointer is only set in case we are currently generating GPU code. 400 std::unique_ptr<Module> GPUModule; 401 402 /// The GPU program we generate code for. 403 gpu_prog *Prog; 404 405 /// The GPU Runtime implementation to use (OpenCL or CUDA). 406 GPURuntime Runtime; 407 408 /// The GPU Architecture to target. 409 GPUArch Arch; 410 411 /// Class to free isl_ids. 412 class IslIdDeleter { 413 public: 414 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 415 }; 416 417 /// A set containing all isl_ids allocated in a GPU kernel. 418 /// 419 /// By releasing this set all isl_ids will be freed. 420 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 421 422 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 423 424 /// Create code for user-defined AST nodes. 425 /// 426 /// These AST nodes can be of type: 427 /// 428 /// - ScopStmt: A computational statement (TODO) 429 /// - Kernel: A GPU kernel call (TODO) 430 /// - Data-Transfer: A GPU <-> CPU data-transfer 431 /// - In-kernel synchronization 432 /// - In-kernel memory copy statement 433 /// 434 /// @param UserStmt The ast node to generate code for. 435 void createUser(__isl_take isl_ast_node *UserStmt) override; 436 437 void createFor(__isl_take isl_ast_node *Node) override; 438 439 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 440 441 /// Create code for a data transfer statement 442 /// 443 /// @param TransferStmt The data transfer statement. 444 /// @param Direction The direction in which to transfer data. 445 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 446 enum DataDirection Direction); 447 448 /// Find llvm::Values referenced in GPU kernel. 449 /// 450 /// @param Kernel The kernel to scan for llvm::Values 451 /// 452 /// @returns A tuple, whose: 453 /// - First element contains the set of values referenced by the 454 /// kernel 455 /// - Second element contains the set of functions referenced by the 456 /// kernel. All functions in the set satisfy 457 /// `isValidFunctionInKernel`. 458 /// - Third element contains loops that have induction variables 459 /// which are used in the kernel, *and* these loops are *neither* 460 /// in the scop, nor do they immediately surroung the Scop. 461 /// See [Code generation of induction variables of loops outside 462 /// Scops] 463 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 464 isl::space> 465 getReferencesInKernel(ppcg_kernel *Kernel); 466 467 /// Compute the sizes of the execution grid for a given kernel. 468 /// 469 /// @param Kernel The kernel to compute grid sizes for. 470 /// 471 /// @returns A tuple with grid sizes for X and Y dimension 472 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 473 474 /// Get the managed array pointer for sending host pointers to the device. 475 /// \note 476 /// This is to be used only with managed memory 477 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 478 479 /// Compute the sizes of the thread blocks for a given kernel. 480 /// 481 /// @param Kernel The kernel to compute thread block sizes for. 482 /// 483 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 484 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 485 486 /// Store a specific kernel launch parameter in the array of kernel launch 487 /// parameters. 488 /// 489 /// @param Parameters The list of parameters in which to store. 490 /// @param Param The kernel launch parameter to store. 491 /// @param Index The index in the parameter list, at which to store the 492 /// parameter. 493 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 494 int Index); 495 496 /// Create kernel launch parameters. 497 /// 498 /// @param Kernel The kernel to create parameters for. 499 /// @param F The kernel function that has been created. 500 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 501 /// 502 /// @returns A stack allocated array with pointers to the parameter 503 /// values that are passed to the kernel. 504 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 505 SetVector<Value *> SubtreeValues); 506 507 /// Create declarations for kernel variable. 508 /// 509 /// This includes shared memory declarations. 510 /// 511 /// @param Kernel The kernel definition to create variables for. 512 /// @param FN The function into which to generate the variables. 513 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 514 515 /// Add CUDA annotations to module. 516 /// 517 /// Add a set of CUDA annotations that declares the maximal block dimensions 518 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 519 /// PTX compiler to bound the number of allocated registers to ensure the 520 /// resulting kernel is known to run with up to as many block dimensions 521 /// as specified here. 522 /// 523 /// @param M The module to add the annotations to. 524 /// @param BlockDimX The size of block dimension X. 525 /// @param BlockDimY The size of block dimension Y. 526 /// @param BlockDimZ The size of block dimension Z. 527 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 528 Value *BlockDimZ); 529 530 /// Create GPU kernel. 531 /// 532 /// Code generate the kernel described by @p KernelStmt. 533 /// 534 /// @param KernelStmt The ast node to generate kernel code for. 535 void createKernel(__isl_take isl_ast_node *KernelStmt); 536 537 /// Generate code that computes the size of an array. 538 /// 539 /// @param Array The array for which to compute a size. 540 Value *getArraySize(gpu_array_info *Array); 541 542 /// Generate code to compute the minimal offset at which an array is accessed. 543 /// 544 /// The offset of an array is the minimal array location accessed in a scop. 545 /// 546 /// Example: 547 /// 548 /// for (long i = 0; i < 100; i++) 549 /// A[i + 42] += ... 550 /// 551 /// getArrayOffset(A) results in 42. 552 /// 553 /// @param Array The array for which to compute the offset. 554 /// @returns An llvm::Value that contains the offset of the array. 555 Value *getArrayOffset(gpu_array_info *Array); 556 557 /// Prepare the kernel arguments for kernel code generation 558 /// 559 /// @param Kernel The kernel to generate code for. 560 /// @param FN The function created for the kernel. 561 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 562 563 /// Create kernel function. 564 /// 565 /// Create a kernel function located in a newly created module that can serve 566 /// as target for device code generation. Set the Builder to point to the 567 /// start block of this newly created function. 568 /// 569 /// @param Kernel The kernel to generate code for. 570 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 571 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 572 /// kernel. 573 void createKernelFunction(ppcg_kernel *Kernel, 574 SetVector<Value *> &SubtreeValues, 575 SetVector<Function *> &SubtreeFunctions); 576 577 /// Create the declaration of a kernel function. 578 /// 579 /// The kernel function takes as arguments: 580 /// 581 /// - One i8 pointer for each external array reference used in the kernel. 582 /// - Host iterators 583 /// - Parameters 584 /// - Other LLVM Value references (TODO) 585 /// 586 /// @param Kernel The kernel to generate the function declaration for. 587 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 588 /// 589 /// @returns The newly declared function. 590 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 591 SetVector<Value *> &SubtreeValues); 592 593 /// Insert intrinsic functions to obtain thread and block ids. 594 /// 595 /// @param The kernel to generate the intrinsic functions for. 596 void insertKernelIntrinsics(ppcg_kernel *Kernel); 597 598 /// Insert function calls to retrieve the SPIR group/local ids. 599 /// 600 /// @param Kernel The kernel to generate the function calls for. 601 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 602 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 603 604 /// Setup the creation of functions referenced by the GPU kernel. 605 /// 606 /// 1. Create new function declarations in GPUModule which are the same as 607 /// SubtreeFunctions. 608 /// 609 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 610 /// old functions (that come from the original module) to new functions 611 /// (that are created within GPUModule). That way, we generate references 612 /// to the correct function (in GPUModule) in BlockGenerator. 613 /// 614 /// @see IslNodeBuilder::ValueMap 615 /// @see BlockGenerator::GlobalMap 616 /// @see BlockGenerator::getNewValue 617 /// @see GPUNodeBuilder::getReferencesInKernel. 618 /// 619 /// @param SubtreeFunctions The set of llvm::Functions referenced by 620 /// this kernel. 621 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 622 623 /// Create a global-to-shared or shared-to-global copy statement. 624 /// 625 /// @param CopyStmt The copy statement to generate code for 626 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 627 628 /// Create code for a ScopStmt called in @p Expr. 629 /// 630 /// @param Expr The expression containing the call. 631 /// @param KernelStmt The kernel statement referenced in the call. 632 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 633 634 /// Create an in-kernel synchronization call. 635 void createKernelSync(); 636 637 /// Create a PTX assembly string for the current GPU kernel. 638 /// 639 /// @returns A string containing the corresponding PTX assembly code. 640 std::string createKernelASM(); 641 642 /// Remove references from the dominator tree to the kernel function @p F. 643 /// 644 /// @param F The function to remove references to. 645 void clearDominators(Function *F); 646 647 /// Remove references from scalar evolution to the kernel function @p F. 648 /// 649 /// @param F The function to remove references to. 650 void clearScalarEvolution(Function *F); 651 652 /// Remove references from loop info to the kernel function @p F. 653 /// 654 /// @param F The function to remove references to. 655 void clearLoops(Function *F); 656 657 /// Check if the scop requires to be linked with CUDA's libdevice. 658 bool requiresCUDALibDevice(); 659 660 /// Link with the NVIDIA libdevice library (if needed and available). 661 void addCUDALibDevice(); 662 663 /// Finalize the generation of the kernel function. 664 /// 665 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 666 /// dump its IR to stderr. 667 /// 668 /// @returns The Assembly string of the kernel. 669 std::string finalizeKernelFunction(); 670 671 /// Finalize the generation of the kernel arguments. 672 /// 673 /// This function ensures that not-read-only scalars used in a kernel are 674 /// stored back to the global memory location they are backed with before 675 /// the kernel terminates. 676 /// 677 /// @params Kernel The kernel to finalize kernel arguments for. 678 void finalizeKernelArguments(ppcg_kernel *Kernel); 679 680 /// Create code that allocates memory to store arrays on device. 681 void allocateDeviceArrays(); 682 683 /// Create code to prepare the managed device pointers. 684 void prepareManagedDeviceArrays(); 685 686 /// Free all allocated device arrays. 687 void freeDeviceArrays(); 688 689 /// Create a call to initialize the GPU context. 690 /// 691 /// @returns A pointer to the newly initialized context. 692 Value *createCallInitContext(); 693 694 /// Create a call to get the device pointer for a kernel allocation. 695 /// 696 /// @param Allocation The Polly GPU allocation 697 /// 698 /// @returns The device parameter corresponding to this allocation. 699 Value *createCallGetDevicePtr(Value *Allocation); 700 701 /// Create a call to free the GPU context. 702 /// 703 /// @param Context A pointer to an initialized GPU context. 704 void createCallFreeContext(Value *Context); 705 706 /// Create a call to allocate memory on the device. 707 /// 708 /// @param Size The size of memory to allocate 709 /// 710 /// @returns A pointer that identifies this allocation. 711 Value *createCallAllocateMemoryForDevice(Value *Size); 712 713 /// Create a call to free a device array. 714 /// 715 /// @param Array The device array to free. 716 void createCallFreeDeviceMemory(Value *Array); 717 718 /// Create a call to copy data from host to device. 719 /// 720 /// @param HostPtr A pointer to the host data that should be copied. 721 /// @param DevicePtr A device pointer specifying the location to copy to. 722 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 723 Value *Size); 724 725 /// Create a call to copy data from device to host. 726 /// 727 /// @param DevicePtr A pointer to the device data that should be copied. 728 /// @param HostPtr A host pointer specifying the location to copy to. 729 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 730 Value *Size); 731 732 /// Create a call to synchronize Host & Device. 733 /// \note 734 /// This is to be used only with managed memory. 735 void createCallSynchronizeDevice(); 736 737 /// Create a call to get a kernel from an assembly string. 738 /// 739 /// @param Buffer The string describing the kernel. 740 /// @param Entry The name of the kernel function to call. 741 /// 742 /// @returns A pointer to a kernel object 743 Value *createCallGetKernel(Value *Buffer, Value *Entry); 744 745 /// Create a call to free a GPU kernel. 746 /// 747 /// @param GPUKernel THe kernel to free. 748 void createCallFreeKernel(Value *GPUKernel); 749 750 /// Create a call to launch a GPU kernel. 751 /// 752 /// @param GPUKernel The kernel to launch. 753 /// @param GridDimX The size of the first grid dimension. 754 /// @param GridDimY The size of the second grid dimension. 755 /// @param GridBlockX The size of the first block dimension. 756 /// @param GridBlockY The size of the second block dimension. 757 /// @param GridBlockZ The size of the third block dimension. 758 /// @param Parameters A pointer to an array that contains itself pointers to 759 /// the parameter values passed for each kernel argument. 760 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 761 Value *GridDimY, Value *BlockDimX, 762 Value *BlockDimY, Value *BlockDimZ, 763 Value *Parameters); 764 }; 765 766 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 767 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 768 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 769 } 770 771 void GPUNodeBuilder::initializeAfterRTH() { 772 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 773 &*Builder.GetInsertPoint(), &DT, &LI); 774 NewBB->setName("polly.acc.initialize"); 775 Builder.SetInsertPoint(&NewBB->front()); 776 777 GPUContext = createCallInitContext(); 778 779 if (!PollyManagedMemory) 780 allocateDeviceArrays(); 781 else 782 prepareManagedDeviceArrays(); 783 } 784 785 void GPUNodeBuilder::finalize() { 786 if (!PollyManagedMemory) 787 freeDeviceArrays(); 788 789 createCallFreeContext(GPUContext); 790 IslNodeBuilder::finalize(); 791 } 792 793 void GPUNodeBuilder::allocateDeviceArrays() { 794 assert(!PollyManagedMemory && 795 "Managed memory will directly send host pointers " 796 "to the kernel. There is no need for device arrays"); 797 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 798 799 for (int i = 0; i < Prog->n_array; ++i) { 800 gpu_array_info *Array = &Prog->array[i]; 801 auto *ScopArray = (ScopArrayInfo *)Array->user; 802 std::string DevArrayName("p_dev_array_"); 803 DevArrayName.append(Array->name); 804 805 Value *ArraySize = getArraySize(Array); 806 Value *Offset = getArrayOffset(Array); 807 if (Offset) 808 ArraySize = Builder.CreateSub( 809 ArraySize, 810 Builder.CreateMul(Offset, 811 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 812 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 813 // It makes no sense to have an array of size 0. The CUDA API will 814 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 815 // choose to be defensive and catch this at the compile phase. It is 816 // most likely that we are doing something wrong with size computation. 817 if (SizeSCEV->isZero()) { 818 errs() << getUniqueScopName(&S) 819 << " has computed array size 0: " << *ArraySize 820 << " | for array: " << *(ScopArray->getBasePtr()) 821 << ". This is illegal, exiting.\n"; 822 report_fatal_error("array size was computed to be 0"); 823 } 824 825 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 826 DevArray->setName(DevArrayName); 827 DeviceAllocations[ScopArray] = DevArray; 828 } 829 830 isl_ast_build_free(Build); 831 } 832 833 void GPUNodeBuilder::prepareManagedDeviceArrays() { 834 assert(PollyManagedMemory && 835 "Device array most only be prepared in managed-memory mode"); 836 for (int i = 0; i < Prog->n_array; ++i) { 837 gpu_array_info *Array = &Prog->array[i]; 838 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 839 Value *HostPtr; 840 841 if (gpu_array_is_scalar(Array)) 842 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 843 else 844 HostPtr = ScopArray->getBasePtr(); 845 HostPtr = getLatestValue(HostPtr); 846 847 Value *Offset = getArrayOffset(Array); 848 if (Offset) { 849 HostPtr = Builder.CreatePointerCast( 850 HostPtr, ScopArray->getElementType()->getPointerTo()); 851 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset); 852 } 853 854 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 855 DeviceAllocations[ScopArray] = HostPtr; 856 } 857 } 858 859 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 860 Value *BlockDimY, Value *BlockDimZ) { 861 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 862 863 for (auto &F : *M) { 864 if (F.getCallingConv() != CallingConv::PTX_Kernel) 865 continue; 866 867 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 868 869 Metadata *Elements[] = { 870 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 871 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 872 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 873 ValueAsMetadata::get(V[2]), 874 }; 875 MDNode *Node = MDNode::get(M->getContext(), Elements); 876 AnnotationNode->addOperand(Node); 877 } 878 } 879 880 void GPUNodeBuilder::freeDeviceArrays() { 881 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 882 for (auto &Array : DeviceAllocations) 883 createCallFreeDeviceMemory(Array.second); 884 } 885 886 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 887 const char *Name = "polly_getKernel"; 888 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 889 Function *F = M->getFunction(Name); 890 891 // If F is not available, declare it. 892 if (!F) { 893 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 894 std::vector<Type *> Args; 895 Args.push_back(Builder.getInt8PtrTy()); 896 Args.push_back(Builder.getInt8PtrTy()); 897 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 898 F = Function::Create(Ty, Linkage, Name, M); 899 } 900 901 return Builder.CreateCall(F, {Buffer, Entry}); 902 } 903 904 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 905 const char *Name = "polly_getDevicePtr"; 906 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 907 Function *F = M->getFunction(Name); 908 909 // If F is not available, declare it. 910 if (!F) { 911 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 912 std::vector<Type *> Args; 913 Args.push_back(Builder.getInt8PtrTy()); 914 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 915 F = Function::Create(Ty, Linkage, Name, M); 916 } 917 918 return Builder.CreateCall(F, {Allocation}); 919 } 920 921 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 922 Value *GridDimY, Value *BlockDimX, 923 Value *BlockDimY, Value *BlockDimZ, 924 Value *Parameters) { 925 const char *Name = "polly_launchKernel"; 926 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 927 Function *F = M->getFunction(Name); 928 929 // If F is not available, declare it. 930 if (!F) { 931 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 932 std::vector<Type *> Args; 933 Args.push_back(Builder.getInt8PtrTy()); 934 Args.push_back(Builder.getInt32Ty()); 935 Args.push_back(Builder.getInt32Ty()); 936 Args.push_back(Builder.getInt32Ty()); 937 Args.push_back(Builder.getInt32Ty()); 938 Args.push_back(Builder.getInt32Ty()); 939 Args.push_back(Builder.getInt8PtrTy()); 940 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 941 F = Function::Create(Ty, Linkage, Name, M); 942 } 943 944 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 945 BlockDimZ, Parameters}); 946 } 947 948 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 949 const char *Name = "polly_freeKernel"; 950 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 951 Function *F = M->getFunction(Name); 952 953 // If F is not available, declare it. 954 if (!F) { 955 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 956 std::vector<Type *> Args; 957 Args.push_back(Builder.getInt8PtrTy()); 958 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 959 F = Function::Create(Ty, Linkage, Name, M); 960 } 961 962 Builder.CreateCall(F, {GPUKernel}); 963 } 964 965 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 966 assert(!PollyManagedMemory && 967 "Managed memory does not allocate or free memory " 968 "for device"); 969 const char *Name = "polly_freeDeviceMemory"; 970 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 971 Function *F = M->getFunction(Name); 972 973 // If F is not available, declare it. 974 if (!F) { 975 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 976 std::vector<Type *> Args; 977 Args.push_back(Builder.getInt8PtrTy()); 978 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 979 F = Function::Create(Ty, Linkage, Name, M); 980 } 981 982 Builder.CreateCall(F, {Array}); 983 } 984 985 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 986 assert(!PollyManagedMemory && 987 "Managed memory does not allocate or free memory " 988 "for device"); 989 const char *Name = "polly_allocateMemoryForDevice"; 990 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 991 Function *F = M->getFunction(Name); 992 993 // If F is not available, declare it. 994 if (!F) { 995 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 996 std::vector<Type *> Args; 997 Args.push_back(Builder.getInt64Ty()); 998 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 999 F = Function::Create(Ty, Linkage, Name, M); 1000 } 1001 1002 return Builder.CreateCall(F, {Size}); 1003 } 1004 1005 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 1006 Value *DeviceData, 1007 Value *Size) { 1008 assert(!PollyManagedMemory && 1009 "Managed memory does not transfer memory between " 1010 "device and host"); 1011 const char *Name = "polly_copyFromHostToDevice"; 1012 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1013 Function *F = M->getFunction(Name); 1014 1015 // If F is not available, declare it. 1016 if (!F) { 1017 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1018 std::vector<Type *> Args; 1019 Args.push_back(Builder.getInt8PtrTy()); 1020 Args.push_back(Builder.getInt8PtrTy()); 1021 Args.push_back(Builder.getInt64Ty()); 1022 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1023 F = Function::Create(Ty, Linkage, Name, M); 1024 } 1025 1026 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1027 } 1028 1029 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1030 Value *HostData, 1031 Value *Size) { 1032 assert(!PollyManagedMemory && 1033 "Managed memory does not transfer memory between " 1034 "device and host"); 1035 const char *Name = "polly_copyFromDeviceToHost"; 1036 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1037 Function *F = M->getFunction(Name); 1038 1039 // If F is not available, declare it. 1040 if (!F) { 1041 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1042 std::vector<Type *> Args; 1043 Args.push_back(Builder.getInt8PtrTy()); 1044 Args.push_back(Builder.getInt8PtrTy()); 1045 Args.push_back(Builder.getInt64Ty()); 1046 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1047 F = Function::Create(Ty, Linkage, Name, M); 1048 } 1049 1050 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1051 } 1052 1053 void GPUNodeBuilder::createCallSynchronizeDevice() { 1054 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1055 "managed memory"); 1056 const char *Name = "polly_synchronizeDevice"; 1057 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1058 Function *F = M->getFunction(Name); 1059 1060 // If F is not available, declare it. 1061 if (!F) { 1062 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1063 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1064 F = Function::Create(Ty, Linkage, Name, M); 1065 } 1066 1067 Builder.CreateCall(F); 1068 } 1069 1070 Value *GPUNodeBuilder::createCallInitContext() { 1071 const char *Name; 1072 1073 switch (Runtime) { 1074 case GPURuntime::CUDA: 1075 Name = "polly_initContextCUDA"; 1076 break; 1077 case GPURuntime::OpenCL: 1078 Name = "polly_initContextCL"; 1079 break; 1080 } 1081 1082 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1083 Function *F = M->getFunction(Name); 1084 1085 // If F is not available, declare it. 1086 if (!F) { 1087 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1088 std::vector<Type *> Args; 1089 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1090 F = Function::Create(Ty, Linkage, Name, M); 1091 } 1092 1093 return Builder.CreateCall(F, {}); 1094 } 1095 1096 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1097 const char *Name = "polly_freeContext"; 1098 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1099 Function *F = M->getFunction(Name); 1100 1101 // If F is not available, declare it. 1102 if (!F) { 1103 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1104 std::vector<Type *> Args; 1105 Args.push_back(Builder.getInt8PtrTy()); 1106 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1107 F = Function::Create(Ty, Linkage, Name, M); 1108 } 1109 1110 Builder.CreateCall(F, {Context}); 1111 } 1112 1113 /// Check if one string is a prefix of another. 1114 /// 1115 /// @param String The string in which to look for the prefix. 1116 /// @param Prefix The prefix to look for. 1117 static bool isPrefix(std::string String, std::string Prefix) { 1118 return String.find(Prefix) == 0; 1119 } 1120 1121 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1122 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1123 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1124 1125 if (!gpu_array_is_scalar(Array)) { 1126 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1127 1128 isl::pw_aff OffsetDimZero = ArrayBound.at(0); 1129 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1130 1131 for (unsigned int i = 1; i < Array->n_index; i++) { 1132 isl::pw_aff Bound_I = ArrayBound.at(i); 1133 isl::ast_expr Expr = Build.expr_from(Bound_I); 1134 Res = Res.mul(Expr); 1135 } 1136 1137 Value *NumElements = ExprBuilder.create(Res.release()); 1138 if (NumElements->getType() != ArraySize->getType()) 1139 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1140 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1141 } 1142 return ArraySize; 1143 } 1144 1145 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1146 if (gpu_array_is_scalar(Array)) 1147 return nullptr; 1148 1149 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1150 1151 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1152 1153 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1154 1155 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) 1156 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1157 1158 if (Min.is_subset(ZeroSet)) { 1159 return nullptr; 1160 } 1161 1162 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.ctx(), 0)); 1163 1164 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) { 1165 if (i > 0) { 1166 isl::pw_aff Bound_I = 1167 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1168 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1169 Result = Result.mul(BExpr); 1170 } 1171 isl::pw_aff DimMin = Min.dim_min(i); 1172 isl::ast_expr MExpr = Build.expr_from(DimMin); 1173 Result = Result.add(MExpr); 1174 } 1175 1176 return ExprBuilder.create(Result.release()); 1177 } 1178 1179 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1180 ScopArrayInfo *ArrayInfo) { 1181 assert(PollyManagedMemory && "Only used when you wish to get a host " 1182 "pointer for sending data to the kernel, " 1183 "with managed memory"); 1184 std::map<ScopArrayInfo *, Value *>::iterator it; 1185 it = DeviceAllocations.find(ArrayInfo); 1186 assert(it != DeviceAllocations.end() && 1187 "Device array expected to be available"); 1188 return it->second; 1189 } 1190 1191 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1192 enum DataDirection Direction) { 1193 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1194 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1195 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1196 isl_id *Id = isl_ast_expr_get_id(Arg); 1197 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1198 auto ScopArray = (ScopArrayInfo *)(Array->user); 1199 1200 Value *Size = getArraySize(Array); 1201 Value *Offset = getArrayOffset(Array); 1202 Value *DevPtr = DeviceAllocations[ScopArray]; 1203 1204 Value *HostPtr; 1205 1206 if (gpu_array_is_scalar(Array)) 1207 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1208 else 1209 HostPtr = ScopArray->getBasePtr(); 1210 HostPtr = getLatestValue(HostPtr); 1211 1212 if (Offset) { 1213 HostPtr = Builder.CreatePointerCast( 1214 HostPtr, ScopArray->getElementType()->getPointerTo()); 1215 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset); 1216 } 1217 1218 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1219 1220 if (Offset) { 1221 Size = Builder.CreateSub( 1222 Size, Builder.CreateMul( 1223 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1224 } 1225 1226 if (Direction == HOST_TO_DEVICE) 1227 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1228 else 1229 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1230 1231 isl_id_free(Id); 1232 isl_ast_expr_free(Arg); 1233 isl_ast_expr_free(Expr); 1234 isl_ast_node_free(TransferStmt); 1235 } 1236 1237 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1238 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1239 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1240 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1241 isl_id_free(Id); 1242 isl_ast_expr_free(StmtExpr); 1243 1244 const char *Str = isl_id_get_name(Id); 1245 if (!strcmp(Str, "kernel")) { 1246 createKernel(UserStmt); 1247 if (PollyManagedMemory) 1248 createCallSynchronizeDevice(); 1249 isl_ast_expr_free(Expr); 1250 return; 1251 } 1252 if (!strcmp(Str, "init_device")) { 1253 initializeAfterRTH(); 1254 isl_ast_node_free(UserStmt); 1255 isl_ast_expr_free(Expr); 1256 return; 1257 } 1258 if (!strcmp(Str, "clear_device")) { 1259 finalize(); 1260 isl_ast_node_free(UserStmt); 1261 isl_ast_expr_free(Expr); 1262 return; 1263 } 1264 if (isPrefix(Str, "to_device")) { 1265 if (!PollyManagedMemory) 1266 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1267 else 1268 isl_ast_node_free(UserStmt); 1269 1270 isl_ast_expr_free(Expr); 1271 return; 1272 } 1273 1274 if (isPrefix(Str, "from_device")) { 1275 if (!PollyManagedMemory) { 1276 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1277 } else { 1278 isl_ast_node_free(UserStmt); 1279 } 1280 isl_ast_expr_free(Expr); 1281 return; 1282 } 1283 1284 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1285 struct ppcg_kernel_stmt *KernelStmt = 1286 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1287 isl_id_free(Anno); 1288 1289 switch (KernelStmt->type) { 1290 case ppcg_kernel_domain: 1291 createScopStmt(Expr, KernelStmt); 1292 isl_ast_node_free(UserStmt); 1293 return; 1294 case ppcg_kernel_copy: 1295 createKernelCopy(KernelStmt); 1296 isl_ast_expr_free(Expr); 1297 isl_ast_node_free(UserStmt); 1298 return; 1299 case ppcg_kernel_sync: 1300 createKernelSync(); 1301 isl_ast_expr_free(Expr); 1302 isl_ast_node_free(UserStmt); 1303 return; 1304 } 1305 1306 isl_ast_expr_free(Expr); 1307 isl_ast_node_free(UserStmt); 1308 } 1309 1310 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1311 createForSequential(isl::manage(Node).as<isl::ast_node_for>(), false); 1312 } 1313 1314 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1315 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1316 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1317 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1318 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1319 Index = isl_ast_expr_address_of(Index); 1320 Value *GlobalAddr = ExprBuilder.create(Index); 1321 Type *IndexTy = GlobalAddr->getType()->getPointerElementType(); 1322 1323 if (KernelStmt->u.c.read) { 1324 LoadInst *Load = Builder.CreateLoad(IndexTy, GlobalAddr, "shared.read"); 1325 Builder.CreateStore(Load, LocalAddr); 1326 } else { 1327 LoadInst *Load = Builder.CreateLoad(IndexTy, LocalAddr, "shared.write"); 1328 Builder.CreateStore(Load, GlobalAddr); 1329 } 1330 } 1331 1332 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1333 ppcg_kernel_stmt *KernelStmt) { 1334 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1335 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1336 1337 LoopToScevMapT LTS; 1338 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1339 1340 createSubstitutions(Expr, Stmt, LTS); 1341 1342 if (Stmt->isBlockStmt()) 1343 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1344 else 1345 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1346 } 1347 1348 void GPUNodeBuilder::createKernelSync() { 1349 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1350 const char *SpirName = "__gen_ocl_barrier_global"; 1351 1352 Function *Sync; 1353 1354 switch (Arch) { 1355 case GPUArch::SPIR64: 1356 case GPUArch::SPIR32: 1357 Sync = M->getFunction(SpirName); 1358 1359 // If Sync is not available, declare it. 1360 if (!Sync) { 1361 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1362 std::vector<Type *> Args; 1363 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1364 Sync = Function::Create(Ty, Linkage, SpirName, M); 1365 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1366 } 1367 break; 1368 case GPUArch::NVPTX64: 1369 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1370 break; 1371 } 1372 1373 Builder.CreateCall(Sync, {}); 1374 } 1375 1376 /// Collect llvm::Values referenced from @p Node 1377 /// 1378 /// This function only applies to isl_ast_nodes that are user_nodes referring 1379 /// to a ScopStmt. All other node types are ignore. 1380 /// 1381 /// @param Node The node to collect references for. 1382 /// @param User A user pointer used as storage for the data that is collected. 1383 /// 1384 /// @returns isl_bool_true if data could be collected successfully. 1385 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1386 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1387 return isl_bool_true; 1388 1389 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1390 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1391 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1392 const char *Str = isl_id_get_name(Id); 1393 isl_id_free(Id); 1394 isl_ast_expr_free(StmtExpr); 1395 isl_ast_expr_free(Expr); 1396 1397 if (!isPrefix(Str, "Stmt")) 1398 return isl_bool_true; 1399 1400 Id = isl_ast_node_get_annotation(Node); 1401 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1402 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1403 isl_id_free(Id); 1404 1405 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1406 1407 return isl_bool_true; 1408 } 1409 1410 /// A list of functions that are available in NVIDIA's libdevice. 1411 const std::set<std::string> CUDALibDeviceFunctions = { 1412 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1413 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1414 1415 // A map from intrinsics to their corresponding libdevice functions. 1416 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1417 {"llvm.exp.f64", "exp"}, 1418 {"llvm.exp.f32", "expf"}, 1419 {"llvm.powi.f64.i32", "powi"}, 1420 {"llvm.powi.f32.i32", "powif"}}; 1421 1422 /// Return the corresponding CUDA libdevice function name @p Name. 1423 /// Note that this function will try to convert instrinsics in the list 1424 /// IntrinsicToLibdeviceFunc into libdevice functions. 1425 /// This is because some intrinsics such as `exp` 1426 /// are not supported by the NVPTX backend. 1427 /// If this restriction of the backend is lifted, we should refactor our code 1428 /// so that we use intrinsics whenever possible. 1429 /// 1430 /// Return "" if we are not compiling for CUDA. 1431 std::string getCUDALibDeviceFuntion(StringRef NameRef) { 1432 std::string Name = NameRef.str(); 1433 auto It = IntrinsicToLibdeviceFunc.find(Name); 1434 if (It != IntrinsicToLibdeviceFunc.end()) 1435 return getCUDALibDeviceFuntion(It->second); 1436 1437 if (CUDALibDeviceFunctions.count(Name)) 1438 return ("__nv_" + Name); 1439 1440 return ""; 1441 } 1442 1443 /// Check if F is a function that we can code-generate in a GPU kernel. 1444 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1445 assert(F && "F is an invalid pointer"); 1446 // We string compare against the name of the function to allow 1447 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1448 // "llvm.copysign". 1449 const StringRef Name = F->getName(); 1450 1451 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1452 return true; 1453 1454 return F->isIntrinsic() && 1455 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1456 Name.startswith("llvm.copysign")); 1457 } 1458 1459 /// Do not take `Function` as a subtree value. 1460 /// 1461 /// We try to take the reference of all subtree values and pass them along 1462 /// to the kernel from the host. Taking an address of any function and 1463 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1464 /// `Function`s. 1465 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1466 1467 /// Return `Function`s from `RawSubtreeValues`. 1468 static SetVector<Function *> 1469 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1470 bool AllowCUDALibDevice) { 1471 SetVector<Function *> SubtreeFunctions; 1472 for (Value *It : RawSubtreeValues) { 1473 Function *F = dyn_cast<Function>(It); 1474 if (F) { 1475 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1476 "Code should have bailed out by " 1477 "this point if an invalid function " 1478 "were present in a kernel."); 1479 SubtreeFunctions.insert(F); 1480 } 1481 } 1482 return SubtreeFunctions; 1483 } 1484 1485 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1486 isl::space> 1487 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1488 SetVector<Value *> SubtreeValues; 1489 SetVector<const SCEV *> SCEVs; 1490 SetVector<const Loop *> Loops; 1491 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1492 SubtreeReferences References = { 1493 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1494 &ParamSpace}; 1495 1496 for (const auto &I : IDToValue) 1497 SubtreeValues.insert(I.second); 1498 1499 // NOTE: this is populated in IslNodeBuilder::addParameters 1500 // See [Code generation of induction variables of loops outside Scops]. 1501 for (const auto &I : OutsideLoopIterations) 1502 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1503 1504 isl_ast_node_foreach_descendant_top_down( 1505 Kernel->tree, collectReferencesInGPUStmt, &References); 1506 1507 for (const SCEV *Expr : SCEVs) { 1508 findValues(Expr, SE, SubtreeValues); 1509 findLoops(Expr, Loops); 1510 } 1511 1512 Loops.remove_if([this](const Loop *L) { 1513 return S.contains(L) || L->contains(S.getEntry()); 1514 }); 1515 1516 for (auto &SAI : S.arrays()) 1517 SubtreeValues.remove(SAI->getBasePtr()); 1518 1519 isl_space *Space = S.getParamSpace().release(); 1520 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1521 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1522 assert(IDToValue.count(Id)); 1523 Value *Val = IDToValue[Id]; 1524 SubtreeValues.remove(Val); 1525 isl_id_free(Id); 1526 } 1527 isl_space_free(Space); 1528 1529 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1530 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1531 assert(IDToValue.count(Id)); 1532 Value *Val = IDToValue[Id]; 1533 SubtreeValues.remove(Val); 1534 isl_id_free(Id); 1535 } 1536 1537 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1538 // SubtreeValues. This is important, because we should not lose any 1539 // SubtreeValues in the process of constructing the 1540 // "ValidSubtree{Values, Functions} sets. Nor should the set 1541 // ValidSubtree{Values, Functions} have any common element. 1542 auto ValidSubtreeValuesIt = 1543 make_filter_range(SubtreeValues, isValidSubtreeValue); 1544 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1545 ValidSubtreeValuesIt.end()); 1546 1547 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1548 1549 SetVector<Function *> ValidSubtreeFunctions( 1550 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1551 1552 // @see IslNodeBuilder::getReferencesInSubtree 1553 SetVector<Value *> ReplacedValues; 1554 for (Value *V : ValidSubtreeValues) { 1555 auto It = ValueMap.find(V); 1556 if (It == ValueMap.end()) 1557 ReplacedValues.insert(V); 1558 else 1559 ReplacedValues.insert(It->second); 1560 } 1561 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1562 ParamSpace); 1563 } 1564 1565 void GPUNodeBuilder::clearDominators(Function *F) { 1566 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1567 std::vector<BasicBlock *> Nodes; 1568 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1569 Nodes.push_back(I->getBlock()); 1570 1571 for (BasicBlock *BB : Nodes) 1572 DT.eraseNode(BB); 1573 } 1574 1575 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1576 for (BasicBlock &BB : *F) { 1577 Loop *L = LI.getLoopFor(&BB); 1578 if (L) 1579 SE.forgetLoop(L); 1580 } 1581 } 1582 1583 void GPUNodeBuilder::clearLoops(Function *F) { 1584 SmallSet<Loop *, 1> WorkList; 1585 for (BasicBlock &BB : *F) { 1586 Loop *L = LI.getLoopFor(&BB); 1587 if (L) 1588 WorkList.insert(L); 1589 } 1590 for (auto *L : WorkList) 1591 LI.erase(L); 1592 } 1593 1594 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1595 std::vector<Value *> Sizes; 1596 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1597 1598 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1599 for (long i = 0; i < Kernel->n_grid; i++) { 1600 isl::pw_aff Size = GridSizePwAffs.at(i); 1601 isl::ast_expr GridSize = Context.expr_from(Size); 1602 Value *Res = ExprBuilder.create(GridSize.release()); 1603 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1604 Sizes.push_back(Res); 1605 } 1606 1607 for (long i = Kernel->n_grid; i < 3; i++) 1608 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1609 1610 return std::make_tuple(Sizes[0], Sizes[1]); 1611 } 1612 1613 std::tuple<Value *, Value *, Value *> 1614 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1615 std::vector<Value *> Sizes; 1616 1617 for (long i = 0; i < Kernel->n_block; i++) { 1618 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1619 Sizes.push_back(Res); 1620 } 1621 1622 for (long i = Kernel->n_block; i < 3; i++) 1623 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1624 1625 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1626 } 1627 1628 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1629 Instruction *Param, int Index) { 1630 Value *Slot = Builder.CreateGEP( 1631 Parameters->getType()->getPointerElementType(), Parameters, 1632 {Builder.getInt64(0), Builder.getInt64(Index)}); 1633 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1634 Builder.CreateStore(ParamTyped, Slot); 1635 } 1636 1637 Value * 1638 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1639 SetVector<Value *> SubtreeValues) { 1640 const int NumArgs = F->arg_size(); 1641 std::vector<int> ArgSizes(NumArgs); 1642 1643 // If we are using the OpenCL Runtime, we need to add the kernel argument 1644 // sizes to the end of the launch-parameter list, so OpenCL can determine 1645 // how big the respective kernel arguments are. 1646 // Here we need to reserve adequate space for that. 1647 Type *ArrayTy; 1648 if (Runtime == GPURuntime::OpenCL) 1649 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1650 else 1651 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1652 1653 BasicBlock *EntryBlock = 1654 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1655 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1656 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1657 Instruction *Parameters = new AllocaInst( 1658 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1659 1660 int Index = 0; 1661 for (long i = 0; i < Prog->n_array; i++) { 1662 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1663 continue; 1664 1665 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1666 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1667 1668 if (Runtime == GPURuntime::OpenCL) 1669 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1670 1671 Value *DevArray = nullptr; 1672 if (PollyManagedMemory) { 1673 DevArray = getManagedDeviceArray(&Prog->array[i], 1674 const_cast<ScopArrayInfo *>(SAI)); 1675 } else { 1676 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1677 DevArray = createCallGetDevicePtr(DevArray); 1678 } 1679 assert(DevArray != nullptr && "Array to be offloaded to device not " 1680 "initialized"); 1681 Value *Offset = getArrayOffset(&Prog->array[i]); 1682 1683 if (Offset) { 1684 DevArray = Builder.CreatePointerCast( 1685 DevArray, SAI->getElementType()->getPointerTo()); 1686 DevArray = Builder.CreateGEP(SAI->getElementType(), DevArray, 1687 Builder.CreateNeg(Offset)); 1688 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1689 } 1690 Value *Slot = Builder.CreateGEP( 1691 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1692 1693 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1694 Value *ValPtr = nullptr; 1695 if (PollyManagedMemory) 1696 ValPtr = DevArray; 1697 else 1698 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1699 1700 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1701 " to be stored into Parameters"); 1702 Value *ValPtrCast = 1703 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1704 Builder.CreateStore(ValPtrCast, Slot); 1705 } else { 1706 Instruction *Param = 1707 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1708 Launch + "_param_" + std::to_string(Index), 1709 EntryBlock->getTerminator()); 1710 Builder.CreateStore(DevArray, Param); 1711 Value *ParamTyped = 1712 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1713 Builder.CreateStore(ParamTyped, Slot); 1714 } 1715 Index++; 1716 } 1717 1718 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1719 1720 for (long i = 0; i < NumHostIters; i++) { 1721 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1722 Value *Val = IDToValue[Id]; 1723 isl_id_free(Id); 1724 1725 if (Runtime == GPURuntime::OpenCL) 1726 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1727 1728 Instruction *Param = 1729 new AllocaInst(Val->getType(), AddressSpace, 1730 Launch + "_param_" + std::to_string(Index), 1731 EntryBlock->getTerminator()); 1732 Builder.CreateStore(Val, Param); 1733 insertStoreParameter(Parameters, Param, Index); 1734 Index++; 1735 } 1736 1737 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1738 1739 for (long i = 0; i < NumVars; i++) { 1740 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1741 Value *Val = IDToValue[Id]; 1742 if (ValueMap.count(Val)) 1743 Val = ValueMap[Val]; 1744 isl_id_free(Id); 1745 1746 if (Runtime == GPURuntime::OpenCL) 1747 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1748 1749 Instruction *Param = 1750 new AllocaInst(Val->getType(), AddressSpace, 1751 Launch + "_param_" + std::to_string(Index), 1752 EntryBlock->getTerminator()); 1753 Builder.CreateStore(Val, Param); 1754 insertStoreParameter(Parameters, Param, Index); 1755 Index++; 1756 } 1757 1758 for (auto Val : SubtreeValues) { 1759 if (Runtime == GPURuntime::OpenCL) 1760 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1761 1762 Instruction *Param = 1763 new AllocaInst(Val->getType(), AddressSpace, 1764 Launch + "_param_" + std::to_string(Index), 1765 EntryBlock->getTerminator()); 1766 Builder.CreateStore(Val, Param); 1767 insertStoreParameter(Parameters, Param, Index); 1768 Index++; 1769 } 1770 1771 if (Runtime == GPURuntime::OpenCL) { 1772 for (int i = 0; i < NumArgs; i++) { 1773 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1774 Instruction *Param = 1775 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1776 Launch + "_param_size_" + std::to_string(i), 1777 EntryBlock->getTerminator()); 1778 Builder.CreateStore(Val, Param); 1779 insertStoreParameter(Parameters, Param, Index); 1780 Index++; 1781 } 1782 } 1783 1784 auto Location = EntryBlock->getTerminator(); 1785 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1786 Launch + "_params_i8ptr", Location); 1787 } 1788 1789 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1790 SetVector<Function *> SubtreeFunctions) { 1791 for (auto Fn : SubtreeFunctions) { 1792 const std::string ClonedFnName = Fn->getName().str(); 1793 Function *Clone = GPUModule->getFunction(ClonedFnName); 1794 if (!Clone) 1795 Clone = 1796 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1797 ClonedFnName, GPUModule.get()); 1798 assert(Clone && "Expected cloned function to be initialized."); 1799 assert(ValueMap.find(Fn) == ValueMap.end() && 1800 "Fn already present in ValueMap"); 1801 ValueMap[Fn] = Clone; 1802 } 1803 } 1804 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1805 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1806 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1807 isl_id_free(Id); 1808 isl_ast_node_free(KernelStmt); 1809 1810 if (Kernel->n_grid > 1) 1811 DeepestParallel = std::max( 1812 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1813 else 1814 DeepestSequential = std::max( 1815 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1816 1817 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1818 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1819 1820 SetVector<Value *> SubtreeValues; 1821 SetVector<Function *> SubtreeFunctions; 1822 SetVector<const Loop *> Loops; 1823 isl::space ParamSpace; 1824 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1825 getReferencesInKernel(Kernel); 1826 1827 // Add parameters that appear only in the access function to the kernel 1828 // space. This is important to make sure that all isl_ids are passed as 1829 // parameters to the kernel, even though we may not have all parameters 1830 // in the context to improve compile time. 1831 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1832 1833 assert(Kernel->tree && "Device AST of kernel node is empty"); 1834 1835 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1836 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1837 ValueMapT HostValueMap = ValueMap; 1838 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1839 ScalarMap.clear(); 1840 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1841 EscapeMap.clear(); 1842 1843 // Create for all loops we depend on values that contain the current loop 1844 // iteration. These values are necessary to generate code for SCEVs that 1845 // depend on such loops. As a result we need to pass them to the subfunction. 1846 for (const Loop *L : Loops) { 1847 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1848 SE.getUnknown(Builder.getInt64(1)), 1849 L, SCEV::FlagAnyWrap); 1850 Value *V = generateSCEV(OuterLIV); 1851 OutsideLoopIterations[L] = SE.getUnknown(V); 1852 SubtreeValues.insert(V); 1853 } 1854 1855 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1856 setupKernelSubtreeFunctions(SubtreeFunctions); 1857 1858 create(isl_ast_node_copy(Kernel->tree)); 1859 1860 finalizeKernelArguments(Kernel); 1861 Function *F = Builder.GetInsertBlock()->getParent(); 1862 if (Arch == GPUArch::NVPTX64) 1863 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1864 clearDominators(F); 1865 clearScalarEvolution(F); 1866 clearLoops(F); 1867 1868 IDToValue = HostIDs; 1869 1870 ValueMap = std::move(HostValueMap); 1871 ScalarMap = std::move(HostScalarMap); 1872 EscapeMap = std::move(HostEscapeMap); 1873 IDToSAI.clear(); 1874 Annotator.resetAlternativeAliasBases(); 1875 for (auto &BasePtr : LocalArrays) 1876 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1877 LocalArrays.clear(); 1878 1879 std::string ASMString = finalizeKernelFunction(); 1880 Builder.SetInsertPoint(&HostInsertPoint); 1881 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1882 1883 std::string Name = getKernelFuncName(Kernel->id); 1884 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1885 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1886 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1887 1888 Value *GridDimX, *GridDimY; 1889 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1890 1891 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1892 BlockDimZ, Parameters); 1893 createCallFreeKernel(GPUKernel); 1894 1895 for (auto Id : KernelIds) 1896 isl_id_free(Id); 1897 1898 KernelIds.clear(); 1899 } 1900 1901 /// Compute the DataLayout string for the NVPTX backend. 1902 /// 1903 /// @param is64Bit Are we looking for a 64 bit architecture? 1904 static std::string computeNVPTXDataLayout(bool is64Bit) { 1905 std::string Ret = ""; 1906 1907 if (!is64Bit) { 1908 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1909 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1910 "64-v128:128:128-n16:32:64"; 1911 } else { 1912 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1913 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1914 "64-v128:128:128-n16:32:64"; 1915 } 1916 1917 return Ret; 1918 } 1919 1920 /// Compute the DataLayout string for a SPIR kernel. 1921 /// 1922 /// @param is64Bit Are we looking for a 64 bit architecture? 1923 static std::string computeSPIRDataLayout(bool is64Bit) { 1924 std::string Ret = ""; 1925 1926 if (!is64Bit) { 1927 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1928 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1929 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1930 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1931 } else { 1932 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1933 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1934 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1935 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1936 } 1937 1938 return Ret; 1939 } 1940 1941 Function * 1942 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1943 SetVector<Value *> &SubtreeValues) { 1944 std::vector<Type *> Args; 1945 std::string Identifier = getKernelFuncName(Kernel->id); 1946 1947 std::vector<Metadata *> MemoryType; 1948 1949 for (long i = 0; i < Prog->n_array; i++) { 1950 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1951 continue; 1952 1953 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1954 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1955 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1956 Args.push_back(SAI->getElementType()); 1957 MemoryType.push_back( 1958 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1959 } else { 1960 static const int UseGlobalMemory = 1; 1961 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1962 MemoryType.push_back( 1963 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1964 } 1965 } 1966 1967 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1968 1969 for (long i = 0; i < NumHostIters; i++) { 1970 Args.push_back(Builder.getInt64Ty()); 1971 MemoryType.push_back( 1972 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1973 } 1974 1975 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1976 1977 for (long i = 0; i < NumVars; i++) { 1978 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1979 Value *Val = IDToValue[Id]; 1980 isl_id_free(Id); 1981 Args.push_back(Val->getType()); 1982 MemoryType.push_back( 1983 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1984 } 1985 1986 for (auto *V : SubtreeValues) { 1987 Args.push_back(V->getType()); 1988 MemoryType.push_back( 1989 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1990 } 1991 1992 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1993 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1994 GPUModule.get()); 1995 1996 std::vector<Metadata *> EmptyStrings; 1997 1998 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1999 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 2000 } 2001 2002 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 2003 FN->setMetadata("kernel_arg_addr_space", 2004 MDNode::get(FN->getContext(), MemoryType)); 2005 FN->setMetadata("kernel_arg_name", 2006 MDNode::get(FN->getContext(), EmptyStrings)); 2007 FN->setMetadata("kernel_arg_access_qual", 2008 MDNode::get(FN->getContext(), EmptyStrings)); 2009 FN->setMetadata("kernel_arg_type", 2010 MDNode::get(FN->getContext(), EmptyStrings)); 2011 FN->setMetadata("kernel_arg_type_qual", 2012 MDNode::get(FN->getContext(), EmptyStrings)); 2013 FN->setMetadata("kernel_arg_base_type", 2014 MDNode::get(FN->getContext(), EmptyStrings)); 2015 } 2016 2017 switch (Arch) { 2018 case GPUArch::NVPTX64: 2019 FN->setCallingConv(CallingConv::PTX_Kernel); 2020 break; 2021 case GPUArch::SPIR32: 2022 case GPUArch::SPIR64: 2023 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2024 break; 2025 } 2026 2027 auto Arg = FN->arg_begin(); 2028 for (long i = 0; i < Kernel->n_array; i++) { 2029 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2030 continue; 2031 2032 Arg->setName(Kernel->array[i].array->name); 2033 2034 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2035 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2036 Type *EleTy = SAI->getElementType(); 2037 Value *Val = &*Arg; 2038 SmallVector<const SCEV *, 4> Sizes; 2039 isl_ast_build *Build = 2040 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2041 Sizes.push_back(nullptr); 2042 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2043 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2044 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2045 auto V = ExprBuilder.create(DimSize); 2046 Sizes.push_back(SE.getSCEV(V)); 2047 } 2048 const ScopArrayInfo *SAIRep = 2049 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2050 LocalArrays.push_back(Val); 2051 2052 isl_ast_build_free(Build); 2053 KernelIds.push_back(Id); 2054 IDToSAI[Id] = SAIRep; 2055 Arg++; 2056 } 2057 2058 for (long i = 0; i < NumHostIters; i++) { 2059 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2060 Arg->setName(isl_id_get_name(Id)); 2061 IDToValue[Id] = &*Arg; 2062 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2063 Arg++; 2064 } 2065 2066 for (long i = 0; i < NumVars; i++) { 2067 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2068 Arg->setName(isl_id_get_name(Id)); 2069 Value *Val = IDToValue[Id]; 2070 ValueMap[Val] = &*Arg; 2071 IDToValue[Id] = &*Arg; 2072 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2073 Arg++; 2074 } 2075 2076 for (auto *V : SubtreeValues) { 2077 Arg->setName(V->getName()); 2078 ValueMap[V] = &*Arg; 2079 Arg++; 2080 } 2081 2082 return FN; 2083 } 2084 2085 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2086 Intrinsic::ID IntrinsicsBID[2]; 2087 Intrinsic::ID IntrinsicsTID[3]; 2088 2089 switch (Arch) { 2090 case GPUArch::SPIR64: 2091 case GPUArch::SPIR32: 2092 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2093 case GPUArch::NVPTX64: 2094 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2095 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2096 2097 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2098 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2099 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2100 break; 2101 } 2102 2103 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2104 std::string Name = isl_id_get_name(Id); 2105 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2106 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2107 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2108 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2109 IDToValue[Id] = Val; 2110 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2111 }; 2112 2113 for (int i = 0; i < Kernel->n_grid; ++i) { 2114 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2115 addId(Id, IntrinsicsBID[i]); 2116 } 2117 2118 for (int i = 0; i < Kernel->n_block; ++i) { 2119 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2120 addId(Id, IntrinsicsTID[i]); 2121 } 2122 } 2123 2124 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2125 bool SizeTypeIs64bit) { 2126 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2127 "__gen_ocl_get_group_id1", 2128 "__gen_ocl_get_group_id2"}; 2129 2130 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2131 "__gen_ocl_get_local_id1", 2132 "__gen_ocl_get_local_id2"}; 2133 IntegerType *SizeT = 2134 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2135 2136 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2137 IntegerType *SizeT) mutable { 2138 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2139 Function *FN = M->getFunction(Name); 2140 2141 // If FN is not available, declare it. 2142 if (!FN) { 2143 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2144 std::vector<Type *> Args; 2145 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2146 FN = Function::Create(Ty, Linkage, Name, M); 2147 FN->setCallingConv(CallingConv::SPIR_FUNC); 2148 } 2149 2150 Value *Val = Builder.CreateCall(FN, {}); 2151 if (SizeT == Builder.getInt32Ty()) 2152 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2153 IDToValue[Id] = Val; 2154 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2155 }; 2156 2157 for (int i = 0; i < Kernel->n_grid; ++i) 2158 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2159 2160 for (int i = 0; i < Kernel->n_block; ++i) 2161 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2162 } 2163 2164 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2165 auto Arg = FN->arg_begin(); 2166 for (long i = 0; i < Kernel->n_array; i++) { 2167 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2168 continue; 2169 2170 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2171 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2172 isl_id_free(Id); 2173 2174 if (SAI->getNumberOfDimensions() > 0) { 2175 Arg++; 2176 continue; 2177 } 2178 2179 Value *Val = &*Arg; 2180 2181 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2182 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2183 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2184 Val = Builder.CreateLoad(SAI->getElementType(), TypedArgPtr); 2185 } 2186 2187 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2188 Builder.CreateStore(Val, Alloca); 2189 2190 Arg++; 2191 } 2192 } 2193 2194 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2195 auto *FN = Builder.GetInsertBlock()->getParent(); 2196 auto Arg = FN->arg_begin(); 2197 2198 bool StoredScalar = false; 2199 for (long i = 0; i < Kernel->n_array; i++) { 2200 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2201 continue; 2202 2203 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2204 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2205 isl_id_free(Id); 2206 2207 if (SAI->getNumberOfDimensions() > 0) { 2208 Arg++; 2209 continue; 2210 } 2211 2212 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2213 Arg++; 2214 continue; 2215 } 2216 2217 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2218 Value *ArgPtr = &*Arg; 2219 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2220 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2221 Value *Val = Builder.CreateLoad(SAI->getElementType(), Alloca); 2222 Builder.CreateStore(Val, TypedArgPtr); 2223 StoredScalar = true; 2224 2225 Arg++; 2226 } 2227 2228 if (StoredScalar) { 2229 /// In case more than one thread contains scalar stores, the generated 2230 /// code might be incorrect, if we only store at the end of the kernel. 2231 /// To support this case we need to store these scalars back at each 2232 /// memory store or at least before each kernel barrier. 2233 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2234 BuildSuccessful = 0; 2235 LLVM_DEBUG( 2236 dbgs() << getUniqueScopName(&S) 2237 << " has a store to a scalar value that" 2238 " would be undefined to run in parallel. Bailing out.\n";); 2239 } 2240 } 2241 } 2242 2243 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2244 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2245 2246 for (int i = 0; i < Kernel->n_var; ++i) { 2247 struct ppcg_kernel_var &Var = Kernel->var[i]; 2248 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2249 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2250 2251 Type *ArrayTy = EleTy; 2252 SmallVector<const SCEV *, 4> Sizes; 2253 2254 Sizes.push_back(nullptr); 2255 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2256 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2257 long Bound = isl_val_get_num_si(Val); 2258 isl_val_free(Val); 2259 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2260 } 2261 2262 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2263 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2264 long Bound = isl_val_get_num_si(Val); 2265 isl_val_free(Val); 2266 ArrayTy = ArrayType::get(ArrayTy, Bound); 2267 } 2268 2269 const ScopArrayInfo *SAI; 2270 Value *Allocation; 2271 if (Var.type == ppcg_access_shared) { 2272 auto GlobalVar = new GlobalVariable( 2273 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2274 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2275 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); 2276 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2277 2278 Allocation = GlobalVar; 2279 } else if (Var.type == ppcg_access_private) { 2280 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2281 } else { 2282 llvm_unreachable("unknown variable type"); 2283 } 2284 SAI = 2285 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2286 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2287 IDToValue[Id] = Allocation; 2288 LocalArrays.push_back(Allocation); 2289 KernelIds.push_back(Id); 2290 IDToSAI[Id] = SAI; 2291 } 2292 } 2293 2294 void GPUNodeBuilder::createKernelFunction( 2295 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2296 SetVector<Function *> &SubtreeFunctions) { 2297 std::string Identifier = getKernelFuncName(Kernel->id); 2298 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2299 2300 switch (Arch) { 2301 case GPUArch::NVPTX64: 2302 if (Runtime == GPURuntime::CUDA) 2303 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2304 else if (Runtime == GPURuntime::OpenCL) 2305 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2306 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2307 break; 2308 case GPUArch::SPIR32: 2309 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2310 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2311 break; 2312 case GPUArch::SPIR64: 2313 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2314 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2315 break; 2316 } 2317 2318 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2319 2320 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2321 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2322 2323 DT.addNewBlock(EntryBlock, PrevBlock); 2324 2325 Builder.SetInsertPoint(EntryBlock); 2326 Builder.CreateRetVoid(); 2327 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2328 2329 ScopDetection::markFunctionAsInvalid(FN); 2330 2331 prepareKernelArguments(Kernel, FN); 2332 createKernelVariables(Kernel, FN); 2333 2334 switch (Arch) { 2335 case GPUArch::NVPTX64: 2336 insertKernelIntrinsics(Kernel); 2337 break; 2338 case GPUArch::SPIR32: 2339 insertKernelCallsSPIR(Kernel, false); 2340 break; 2341 case GPUArch::SPIR64: 2342 insertKernelCallsSPIR(Kernel, true); 2343 break; 2344 } 2345 } 2346 2347 std::string GPUNodeBuilder::createKernelASM() { 2348 llvm::Triple GPUTriple; 2349 2350 switch (Arch) { 2351 case GPUArch::NVPTX64: 2352 switch (Runtime) { 2353 case GPURuntime::CUDA: 2354 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2355 break; 2356 case GPURuntime::OpenCL: 2357 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2358 break; 2359 } 2360 break; 2361 case GPUArch::SPIR64: 2362 case GPUArch::SPIR32: 2363 std::string SPIRAssembly; 2364 raw_string_ostream IROstream(SPIRAssembly); 2365 IROstream << *GPUModule; 2366 IROstream.flush(); 2367 return SPIRAssembly; 2368 } 2369 2370 std::string ErrMsg; 2371 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2372 2373 if (!GPUTarget) { 2374 errs() << ErrMsg << "\n"; 2375 return ""; 2376 } 2377 2378 TargetOptions Options; 2379 Options.UnsafeFPMath = FastMath; 2380 2381 std::string subtarget; 2382 2383 switch (Arch) { 2384 case GPUArch::NVPTX64: 2385 subtarget = CudaVersion; 2386 break; 2387 case GPUArch::SPIR32: 2388 case GPUArch::SPIR64: 2389 llvm_unreachable("No subtarget for SPIR architecture"); 2390 } 2391 2392 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2393 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2394 2395 SmallString<0> ASMString; 2396 raw_svector_ostream ASMStream(ASMString); 2397 llvm::legacy::PassManager PM; 2398 2399 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2400 2401 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, 2402 true /* verify */)) { 2403 errs() << "The target does not support generation of this file type!\n"; 2404 return ""; 2405 } 2406 2407 PM.run(*GPUModule); 2408 2409 return ASMStream.str().str(); 2410 } 2411 2412 bool GPUNodeBuilder::requiresCUDALibDevice() { 2413 bool RequiresLibDevice = false; 2414 for (Function &F : GPUModule->functions()) { 2415 if (!F.isDeclaration()) 2416 continue; 2417 2418 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2419 if (CUDALibDeviceFunc.length() != 0) { 2420 // We need to handle the case where a module looks like this: 2421 // @expf(..) 2422 // @llvm.exp.f64(..) 2423 // Both of these functions would be renamed to `__nv_expf`. 2424 // 2425 // So, we must first check for the existence of the libdevice function. 2426 // If this exists, we replace our current function with it. 2427 // 2428 // If it does not exist, we rename the current function to the 2429 // libdevice functiono name. 2430 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2431 F.replaceAllUsesWith(Replacement); 2432 else 2433 F.setName(CUDALibDeviceFunc); 2434 RequiresLibDevice = true; 2435 } 2436 } 2437 2438 return RequiresLibDevice; 2439 } 2440 2441 void GPUNodeBuilder::addCUDALibDevice() { 2442 if (Arch != GPUArch::NVPTX64) 2443 return; 2444 2445 if (requiresCUDALibDevice()) { 2446 SMDiagnostic Error; 2447 2448 errs() << CUDALibDevice << "\n"; 2449 auto LibDeviceModule = 2450 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2451 2452 if (!LibDeviceModule) { 2453 BuildSuccessful = false; 2454 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2455 "kernel generation. Please set -polly-acc-libdevice " 2456 "accordingly.\n"); 2457 return; 2458 } 2459 2460 Linker L(*GPUModule); 2461 2462 // Set an nvptx64 target triple to avoid linker warnings. The original 2463 // triple of the libdevice files are nvptx-unknown-unknown. 2464 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2465 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2466 } 2467 } 2468 2469 std::string GPUNodeBuilder::finalizeKernelFunction() { 2470 2471 if (verifyModule(*GPUModule)) { 2472 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2473 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2474 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2475 verifyModule(*GPUModule, &dbgs());); 2476 2477 if (FailOnVerifyModuleFailure) 2478 llvm_unreachable("VerifyModule failed."); 2479 2480 BuildSuccessful = false; 2481 return ""; 2482 } 2483 2484 addCUDALibDevice(); 2485 2486 if (DumpKernelIR) 2487 outs() << *GPUModule << "\n"; 2488 2489 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2490 // Optimize module. 2491 llvm::legacy::PassManager OptPasses; 2492 PassManagerBuilder PassBuilder; 2493 PassBuilder.OptLevel = 3; 2494 PassBuilder.SizeLevel = 0; 2495 PassBuilder.populateModulePassManager(OptPasses); 2496 OptPasses.run(*GPUModule); 2497 } 2498 2499 std::string Assembly = createKernelASM(); 2500 2501 if (DumpKernelASM) 2502 outs() << Assembly << "\n"; 2503 2504 GPUModule.release(); 2505 KernelIDs.clear(); 2506 2507 return Assembly; 2508 } 2509 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2510 /// @param PwAffs The list of piecewise affine functions to create an 2511 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2512 /// all the isl_pw_aff are used up by this function. 2513 /// 2514 /// @returns The `isl_pw_aff_list`. 2515 __isl_give isl_pw_aff_list * 2516 createPwAffList(isl_ctx *Context, 2517 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2518 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2519 2520 for (unsigned i = 0; i < PwAffs.size(); i++) { 2521 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2522 } 2523 return List; 2524 } 2525 2526 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2527 /// 2528 /// We loop over all `pw_aff` and align all of their spaces together to 2529 /// create a common space for all the `pw_aff`. This common space is the 2530 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2531 /// with the given `SeedSpace`. 2532 /// @param PwAffs The list of piecewise affine functions we want to align. 2533 /// This is an rvalue reference because the entire vector is 2534 /// used up by the end of the operation. 2535 /// @param SeedSpace The space to start the alignment process with. 2536 /// @returns A std::pair, whose first element is the aligned space, 2537 /// whose second element is the vector of aligned piecewise 2538 /// affines. 2539 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2540 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2541 __isl_take isl_space *SeedSpace) { 2542 assert(SeedSpace && "Invalid seed space given."); 2543 2544 isl_space *AlignSpace = SeedSpace; 2545 for (isl_pw_aff *PwAff : PwAffs) { 2546 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2547 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2548 } 2549 std::vector<isl_pw_aff *> AdjustedPwAffs; 2550 2551 for (unsigned i = 0; i < PwAffs.size(); i++) { 2552 isl_pw_aff *Adjusted = PwAffs[i]; 2553 assert(Adjusted && "Invalid pw_aff given."); 2554 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2555 AdjustedPwAffs.push_back(Adjusted); 2556 } 2557 return std::make_pair(AlignSpace, AdjustedPwAffs); 2558 } 2559 2560 namespace { 2561 class PPCGCodeGeneration : public ScopPass { 2562 public: 2563 static char ID; 2564 2565 GPURuntime Runtime = GPURuntime::CUDA; 2566 2567 GPUArch Architecture = GPUArch::NVPTX64; 2568 2569 /// The scop that is currently processed. 2570 Scop *S; 2571 2572 LoopInfo *LI; 2573 DominatorTree *DT; 2574 ScalarEvolution *SE; 2575 const DataLayout *DL; 2576 RegionInfo *RI; 2577 2578 PPCGCodeGeneration() : ScopPass(ID) { 2579 // Apply defaults. 2580 Runtime = GPURuntimeChoice; 2581 Architecture = GPUArchChoice; 2582 } 2583 2584 /// Construct compilation options for PPCG. 2585 /// 2586 /// @returns The compilation options. 2587 ppcg_options *createPPCGOptions() { 2588 auto DebugOptions = 2589 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2590 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2591 2592 DebugOptions->dump_schedule_constraints = false; 2593 DebugOptions->dump_schedule = false; 2594 DebugOptions->dump_final_schedule = false; 2595 DebugOptions->dump_sizes = false; 2596 DebugOptions->verbose = false; 2597 2598 Options->debug = DebugOptions; 2599 2600 Options->group_chains = false; 2601 Options->reschedule = true; 2602 Options->scale_tile_loops = false; 2603 Options->wrap = false; 2604 2605 Options->non_negative_parameters = false; 2606 Options->ctx = nullptr; 2607 Options->sizes = nullptr; 2608 2609 Options->tile = true; 2610 Options->tile_size = 32; 2611 2612 Options->isolate_full_tiles = false; 2613 2614 Options->use_private_memory = PrivateMemory; 2615 Options->use_shared_memory = SharedMemory; 2616 Options->max_shared_memory = 48 * 1024; 2617 2618 Options->target = PPCG_TARGET_CUDA; 2619 Options->openmp = false; 2620 Options->linearize_device_arrays = true; 2621 Options->allow_gnu_extensions = false; 2622 2623 Options->unroll_copy_shared = false; 2624 Options->unroll_gpu_tile = false; 2625 Options->live_range_reordering = true; 2626 2627 Options->live_range_reordering = true; 2628 Options->hybrid = false; 2629 Options->opencl_compiler_options = nullptr; 2630 Options->opencl_use_gpu = false; 2631 Options->opencl_n_include_file = 0; 2632 Options->opencl_include_files = nullptr; 2633 Options->opencl_print_kernel_types = false; 2634 Options->opencl_embed_kernel_code = false; 2635 2636 Options->save_schedule_file = nullptr; 2637 Options->load_schedule_file = nullptr; 2638 2639 return Options; 2640 } 2641 2642 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2643 /// 2644 /// Instead of a normal access of the form: 2645 /// 2646 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2647 /// 2648 /// a tagged access has the form 2649 /// 2650 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2651 /// 2652 /// where 'id' is an additional space that references the memory access that 2653 /// triggered the access. 2654 /// 2655 /// @param AccessTy The type of the memory accesses to collect. 2656 /// 2657 /// @return The relation describing all tagged memory accesses. 2658 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2659 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2660 2661 for (auto &Stmt : *S) 2662 for (auto &Acc : Stmt) 2663 if (Acc->getType() == AccessTy) { 2664 isl_map *Relation = Acc->getAccessRelation().release(); 2665 Relation = 2666 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2667 2668 isl_space *Space = isl_map_get_space(Relation); 2669 Space = isl_space_range(Space); 2670 Space = isl_space_from_range(Space); 2671 Space = 2672 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2673 isl_map *Universe = isl_map_universe(Space); 2674 Relation = isl_map_domain_product(Relation, Universe); 2675 Accesses = isl_union_map_add_map(Accesses, Relation); 2676 } 2677 2678 return Accesses; 2679 } 2680 2681 /// Get the set of all read accesses, tagged with the access id. 2682 /// 2683 /// @see getTaggedAccesses 2684 isl_union_map *getTaggedReads() { 2685 return getTaggedAccesses(MemoryAccess::READ); 2686 } 2687 2688 /// Get the set of all may (and must) accesses, tagged with the access id. 2689 /// 2690 /// @see getTaggedAccesses 2691 isl_union_map *getTaggedMayWrites() { 2692 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2693 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2694 } 2695 2696 /// Get the set of all must accesses, tagged with the access id. 2697 /// 2698 /// @see getTaggedAccesses 2699 isl_union_map *getTaggedMustWrites() { 2700 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2701 } 2702 2703 /// Collect parameter and array names as isl_ids. 2704 /// 2705 /// To reason about the different parameters and arrays used, ppcg requires 2706 /// a list of all isl_ids in use. As PPCG traditionally performs 2707 /// source-to-source compilation each of these isl_ids is mapped to the 2708 /// expression that represents it. As we do not have a corresponding 2709 /// expression in Polly, we just map each id to a 'zero' expression to match 2710 /// the data format that ppcg expects. 2711 /// 2712 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2713 __isl_give isl_id_to_ast_expr *getNames() { 2714 auto *Names = isl_id_to_ast_expr_alloc( 2715 S->getIslCtx().get(), 2716 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2717 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2718 2719 for (const SCEV *P : S->parameters()) { 2720 isl_id *Id = S->getIdForParam(P).release(); 2721 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2722 } 2723 2724 for (auto &Array : S->arrays()) { 2725 auto Id = Array->getBasePtrId().release(); 2726 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2727 } 2728 2729 isl_ast_expr_free(Zero); 2730 2731 return Names; 2732 } 2733 2734 /// Create a new PPCG scop from the current scop. 2735 /// 2736 /// The PPCG scop is initialized with data from the current polly::Scop. From 2737 /// this initial data, the data-dependences in the PPCG scop are initialized. 2738 /// We do not use Polly's dependence analysis for now, to ensure we match 2739 /// the PPCG default behaviour more closely. 2740 /// 2741 /// @returns A new ppcg scop. 2742 ppcg_scop *createPPCGScop() { 2743 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2744 2745 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2746 2747 PPCGScop->options = createPPCGOptions(); 2748 // enable live range reordering 2749 PPCGScop->options->live_range_reordering = 1; 2750 2751 PPCGScop->start = 0; 2752 PPCGScop->end = 0; 2753 2754 PPCGScop->context = S->getContext().release(); 2755 PPCGScop->domain = S->getDomains().release(); 2756 // TODO: investigate this further. PPCG calls collect_call_domains. 2757 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2758 PPCGScop->tagged_reads = getTaggedReads(); 2759 PPCGScop->reads = S->getReads().release(); 2760 PPCGScop->live_in = nullptr; 2761 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2762 PPCGScop->may_writes = S->getWrites().release(); 2763 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2764 PPCGScop->must_writes = S->getMustWrites().release(); 2765 PPCGScop->live_out = nullptr; 2766 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2767 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2768 2769 PPCGScop->tagger = nullptr; 2770 PPCGScop->independence = 2771 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2772 PPCGScop->dep_flow = nullptr; 2773 PPCGScop->tagged_dep_flow = nullptr; 2774 PPCGScop->dep_false = nullptr; 2775 PPCGScop->dep_forced = nullptr; 2776 PPCGScop->dep_order = nullptr; 2777 PPCGScop->tagged_dep_order = nullptr; 2778 2779 PPCGScop->schedule = S->getScheduleTree().release(); 2780 // If we have something non-trivial to kill, add it to the schedule 2781 if (KillsInfo.KillsSchedule.get()) 2782 PPCGScop->schedule = isl_schedule_sequence( 2783 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2784 2785 PPCGScop->names = getNames(); 2786 PPCGScop->pet = nullptr; 2787 2788 compute_tagger(PPCGScop); 2789 compute_dependences(PPCGScop); 2790 eliminate_dead_code(PPCGScop); 2791 2792 return PPCGScop; 2793 } 2794 2795 /// Collect the array accesses in a statement. 2796 /// 2797 /// @param Stmt The statement for which to collect the accesses. 2798 /// 2799 /// @returns A list of array accesses. 2800 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2801 gpu_stmt_access *Accesses = nullptr; 2802 2803 for (MemoryAccess *Acc : Stmt) { 2804 auto Access = 2805 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2806 Access->read = Acc->isRead(); 2807 Access->write = Acc->isWrite(); 2808 Access->access = Acc->getAccessRelation().release(); 2809 isl_space *Space = isl_map_get_space(Access->access); 2810 Space = isl_space_range(Space); 2811 Space = isl_space_from_range(Space); 2812 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2813 isl_map *Universe = isl_map_universe(Space); 2814 Access->tagged_access = 2815 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2816 Access->exact_write = !Acc->isMayWrite(); 2817 Access->ref_id = Acc->getId().release(); 2818 Access->next = Accesses; 2819 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2820 // TODO: Also mark one-element accesses to arrays as fixed-element. 2821 Access->fixed_element = 2822 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2823 Accesses = Access; 2824 } 2825 2826 return Accesses; 2827 } 2828 2829 /// Collect the list of GPU statements. 2830 /// 2831 /// Each statement has an id, a pointer to the underlying data structure, 2832 /// as well as a list with all memory accesses. 2833 /// 2834 /// TODO: Initialize the list of memory accesses. 2835 /// 2836 /// @returns A linked-list of statements. 2837 gpu_stmt *getStatements() { 2838 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2839 std::distance(S->begin(), S->end())); 2840 2841 int i = 0; 2842 for (auto &Stmt : *S) { 2843 gpu_stmt *GPUStmt = &Stmts[i]; 2844 2845 GPUStmt->id = Stmt.getDomainId().release(); 2846 2847 // We use the pet stmt pointer to keep track of the Polly statements. 2848 GPUStmt->stmt = (pet_stmt *)&Stmt; 2849 GPUStmt->accesses = getStmtAccesses(Stmt); 2850 i++; 2851 } 2852 2853 return Stmts; 2854 } 2855 2856 /// Derive the extent of an array. 2857 /// 2858 /// The extent of an array is the set of elements that are within the 2859 /// accessed array. For the inner dimensions, the extent constraints are 2860 /// 0 and the size of the corresponding array dimension. For the first 2861 /// (outermost) dimension, the extent constraints are the minimal and maximal 2862 /// subscript value for the first dimension. 2863 /// 2864 /// @param Array The array to derive the extent for. 2865 /// 2866 /// @returns An isl_set describing the extent of the array. 2867 isl::set getExtent(ScopArrayInfo *Array) { 2868 unsigned NumDims = Array->getNumberOfDimensions(); 2869 2870 if (Array->getNumberOfDimensions() == 0) 2871 return isl::set::universe(Array->getSpace()); 2872 2873 isl::union_map Accesses = S->getAccesses(Array); 2874 isl::union_set AccessUSet = Accesses.range(); 2875 AccessUSet = AccessUSet.coalesce(); 2876 AccessUSet = AccessUSet.detect_equalities(); 2877 AccessUSet = AccessUSet.coalesce(); 2878 2879 if (AccessUSet.is_empty()) 2880 return isl::set::empty(Array->getSpace()); 2881 2882 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2883 2884 isl::local_space LS = isl::local_space(Array->getSpace()); 2885 2886 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2887 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2888 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2889 OuterMin = OuterMin.add_dims(isl::dim::in, 2890 unsignedFromIslSize(Val.dim(isl::dim::in))); 2891 OuterMax = OuterMax.add_dims(isl::dim::in, 2892 unsignedFromIslSize(Val.dim(isl::dim::in))); 2893 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2894 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2895 2896 isl::set Extent = isl::set::universe(Array->getSpace()); 2897 2898 Extent = Extent.intersect(OuterMin.le_set(Val)); 2899 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2900 2901 for (unsigned i = 1; i < NumDims; ++i) 2902 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2903 2904 for (unsigned i = 0; i < NumDims; ++i) { 2905 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2906 2907 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2908 // Fortran array will we have a legitimate dimension. 2909 if (PwAff.is_null()) { 2910 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2911 continue; 2912 } 2913 2914 isl::pw_aff Val = isl::aff::var_on_domain( 2915 isl::local_space(Array->getSpace()), isl::dim::set, i); 2916 PwAff = PwAff.add_dims(isl::dim::in, 2917 unsignedFromIslSize(Val.dim(isl::dim::in))); 2918 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2919 isl::set Set = PwAff.gt_set(Val); 2920 Extent = Set.intersect(Extent); 2921 } 2922 2923 return Extent; 2924 } 2925 2926 /// Derive the bounds of an array. 2927 /// 2928 /// For the first dimension we derive the bound of the array from the extent 2929 /// of this dimension. For inner dimensions we obtain their size directly from 2930 /// ScopArrayInfo. 2931 /// 2932 /// @param PPCGArray The array to compute bounds for. 2933 /// @param Array The polly array from which to take the information. 2934 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2935 std::vector<isl_pw_aff *> Bounds; 2936 2937 if (PPCGArray.n_index > 0) { 2938 if (isl_set_is_empty(PPCGArray.extent)) { 2939 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2940 isl_local_space *LS = isl_local_space_from_space( 2941 isl_space_params(isl_set_get_space(Dom))); 2942 isl_set_free(Dom); 2943 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2944 Bounds.push_back(Zero); 2945 } else { 2946 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2947 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2948 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2949 isl_set_free(Dom); 2950 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2951 isl_local_space *LS = 2952 isl_local_space_from_space(isl_set_get_space(Dom)); 2953 isl_aff *One = isl_aff_zero_on_domain(LS); 2954 One = isl_aff_add_constant_si(One, 1); 2955 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2956 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2957 Bounds.push_back(Bound); 2958 } 2959 } 2960 2961 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2962 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2963 auto LS = isl_pw_aff_get_domain_space(Bound); 2964 auto Aff = isl_multi_aff_zero(LS); 2965 2966 // We need types to work out, which is why we perform this weird dance 2967 // with `Aff` and `Bound`. Consider this example: 2968 2969 // LS: [p] -> { [] } 2970 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2971 // This `~` is used to denote a "null space" (which is different from 2972 // a *zero dimensional* space), which is something that ISL does not 2973 // show you when pretty printing. 2974 2975 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2976 // space, not a "null space" which does not exist at all. 2977 2978 // When we pullback (precompose) `Bound` with `Zero`, we get: 2979 // Bound . Zero = 2980 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2981 // [p] -> { ~ -> [(10p)] } = 2982 // [p] -> [(10p)] (as ISL pretty prints it) 2983 // Bound Pullback: [p] -> { [(10p)] } 2984 2985 // We want this kind of an expression for Bound, without a 2986 // zero dimensional input, but with a "null space" input for the types 2987 // to work out later on, as far as I (Siddharth Bhat) understand. 2988 // I was unable to find a reference to this in the ISL manual. 2989 // References: Tobias Grosser. 2990 2991 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2992 Bounds.push_back(Bound); 2993 } 2994 2995 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2996 /// to have the same parameter dimensions. So, we need to align them to an 2997 /// appropriate space. 2998 /// Scop::Context is _not_ an appropriate space, because when we have 2999 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 3000 /// contain all parameter dimensions. 3001 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 3002 isl_space *SeedAlignSpace = S->getParamSpace().release(); 3003 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 3004 3005 isl_space *AlignSpace = nullptr; 3006 std::vector<isl_pw_aff *> AlignedBounds; 3007 std::tie(AlignSpace, AlignedBounds) = 3008 alignPwAffs(std::move(Bounds), SeedAlignSpace); 3009 3010 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 3011 3012 isl_pw_aff_list *BoundsList = 3013 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 3014 3015 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 3016 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 3017 3018 assert(BoundsSpace && "Unable to access space of array."); 3019 assert(BoundsList && "Unable to access list of bounds."); 3020 3021 PPCGArray.bound = 3022 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 3023 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 3024 } 3025 3026 /// Create the arrays for @p PPCGProg. 3027 /// 3028 /// @param PPCGProg The program to compute the arrays for. 3029 void createArrays(gpu_prog *PPCGProg, 3030 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 3031 int i = 0; 3032 for (auto &Array : ValidSAIs) { 3033 std::string TypeName; 3034 raw_string_ostream OS(TypeName); 3035 3036 OS << *Array->getElementType(); 3037 TypeName = OS.str(); 3038 3039 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3040 3041 PPCGArray.space = Array->getSpace().release(); 3042 PPCGArray.type = strdup(TypeName.c_str()); 3043 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3044 PPCGArray.name = strdup(Array->getName().c_str()); 3045 PPCGArray.extent = nullptr; 3046 PPCGArray.n_index = Array->getNumberOfDimensions(); 3047 PPCGArray.extent = getExtent(Array).release(); 3048 PPCGArray.n_ref = 0; 3049 PPCGArray.refs = nullptr; 3050 PPCGArray.accessed = true; 3051 PPCGArray.read_only_scalar = 3052 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3053 PPCGArray.has_compound_element = false; 3054 PPCGArray.local = false; 3055 PPCGArray.declare_local = false; 3056 PPCGArray.global = false; 3057 PPCGArray.linearize = false; 3058 PPCGArray.dep_order = nullptr; 3059 PPCGArray.user = Array; 3060 3061 PPCGArray.bound = nullptr; 3062 setArrayBounds(PPCGArray, Array); 3063 i++; 3064 3065 collect_references(PPCGProg, &PPCGArray); 3066 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3067 } 3068 } 3069 3070 /// Create an identity map between the arrays in the scop. 3071 /// 3072 /// @returns An identity map between the arrays in the scop. 3073 isl_union_map *getArrayIdentity() { 3074 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3075 3076 for (auto &Array : S->arrays()) { 3077 isl_space *Space = Array->getSpace().release(); 3078 Space = isl_space_map_from_set(Space); 3079 isl_map *Identity = isl_map_identity(Space); 3080 Maps = isl_union_map_add_map(Maps, Identity); 3081 } 3082 3083 return Maps; 3084 } 3085 3086 /// Create a default-initialized PPCG GPU program. 3087 /// 3088 /// @returns A new gpu program description. 3089 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3090 3091 if (!PPCGScop) 3092 return nullptr; 3093 3094 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3095 3096 PPCGProg->ctx = S->getIslCtx().get(); 3097 PPCGProg->scop = PPCGScop; 3098 PPCGProg->context = isl_set_copy(PPCGScop->context); 3099 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3100 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3101 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3102 PPCGProg->tagged_must_kill = 3103 isl_union_map_copy(PPCGScop->tagged_must_kills); 3104 PPCGProg->to_inner = getArrayIdentity(); 3105 PPCGProg->to_outer = getArrayIdentity(); 3106 // TODO: verify that this assignment is correct. 3107 PPCGProg->any_to_outer = nullptr; 3108 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3109 PPCGProg->stmts = getStatements(); 3110 3111 // Only consider arrays that have a non-empty extent. 3112 // Otherwise, this will cause us to consider the following kinds of 3113 // empty arrays: 3114 // 1. Invariant loads that are represented by SAI objects. 3115 // 2. Arrays with statically known zero size. 3116 auto ValidSAIsRange = 3117 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3118 return !getExtent(SAI).is_empty(); 3119 }); 3120 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3121 ValidSAIsRange.end()); 3122 3123 PPCGProg->n_array = 3124 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3125 PPCGProg->array = isl_calloc_array( 3126 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3127 3128 createArrays(PPCGProg, ValidSAIs); 3129 3130 PPCGProg->array_order = nullptr; 3131 collect_order_dependences(PPCGProg); 3132 3133 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3134 return PPCGProg; 3135 } 3136 3137 struct PrintGPUUserData { 3138 struct cuda_info *CudaInfo; 3139 struct gpu_prog *PPCGProg; 3140 std::vector<ppcg_kernel *> Kernels; 3141 }; 3142 3143 /// Print a user statement node in the host code. 3144 /// 3145 /// We use ppcg's printing facilities to print the actual statement and 3146 /// additionally build up a list of all kernels that are encountered in the 3147 /// host ast. 3148 /// 3149 /// @param P The printer to print to 3150 /// @param Options The printing options to use 3151 /// @param Node The node to print 3152 /// @param User A user pointer to carry additional data. This pointer is 3153 /// expected to be of type PrintGPUUserData. 3154 /// 3155 /// @returns A printer to which the output has been printed. 3156 static __isl_give isl_printer * 3157 printHostUser(__isl_take isl_printer *P, 3158 __isl_take isl_ast_print_options *Options, 3159 __isl_take isl_ast_node *Node, void *User) { 3160 auto Data = (struct PrintGPUUserData *)User; 3161 auto Id = isl_ast_node_get_annotation(Node); 3162 3163 if (Id) { 3164 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3165 3166 // If this is a user statement, format it ourselves as ppcg would 3167 // otherwise try to call pet functionality that is not available in 3168 // Polly. 3169 if (IsUser) { 3170 P = isl_printer_start_line(P); 3171 P = isl_printer_print_ast_node(P, Node); 3172 P = isl_printer_end_line(P); 3173 isl_id_free(Id); 3174 isl_ast_print_options_free(Options); 3175 return P; 3176 } 3177 3178 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3179 isl_id_free(Id); 3180 Data->Kernels.push_back(Kernel); 3181 } 3182 3183 return print_host_user(P, Options, Node, User); 3184 } 3185 3186 /// Print C code corresponding to the control flow in @p Kernel. 3187 /// 3188 /// @param Kernel The kernel to print 3189 void printKernel(ppcg_kernel *Kernel) { 3190 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3191 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3192 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3193 P = isl_ast_node_print(Kernel->tree, P, Options); 3194 char *String = isl_printer_get_str(P); 3195 outs() << String << "\n"; 3196 free(String); 3197 isl_printer_free(P); 3198 } 3199 3200 /// Print C code corresponding to the GPU code described by @p Tree. 3201 /// 3202 /// @param Tree An AST describing GPU code 3203 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3204 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3205 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3206 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3207 3208 PrintGPUUserData Data; 3209 Data.PPCGProg = PPCGProg; 3210 3211 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3212 Options = 3213 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3214 P = isl_ast_node_print(Tree, P, Options); 3215 char *String = isl_printer_get_str(P); 3216 outs() << "# host\n"; 3217 outs() << String << "\n"; 3218 free(String); 3219 isl_printer_free(P); 3220 3221 for (auto Kernel : Data.Kernels) { 3222 outs() << "# kernel" << Kernel->id << "\n"; 3223 printKernel(Kernel); 3224 } 3225 } 3226 3227 // Generate a GPU program using PPCG. 3228 // 3229 // GPU mapping consists of multiple steps: 3230 // 3231 // 1) Compute new schedule for the program. 3232 // 2) Map schedule to GPU (TODO) 3233 // 3) Generate code for new schedule (TODO) 3234 // 3235 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3236 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3237 // strategy directly from this pass. 3238 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3239 3240 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3241 3242 PPCGGen->ctx = S->getIslCtx().get(); 3243 PPCGGen->options = PPCGScop->options; 3244 PPCGGen->print = nullptr; 3245 PPCGGen->print_user = nullptr; 3246 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3247 PPCGGen->prog = PPCGProg; 3248 PPCGGen->tree = nullptr; 3249 PPCGGen->types.n = 0; 3250 PPCGGen->types.name = nullptr; 3251 PPCGGen->sizes = nullptr; 3252 PPCGGen->used_sizes = nullptr; 3253 PPCGGen->kernel_id = 0; 3254 3255 // Set scheduling strategy to same strategy PPCG is using. 3256 isl_options_set_schedule_serialize_sccs(PPCGGen->ctx, false); 3257 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3258 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3259 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3260 3261 isl_schedule *Schedule = get_schedule(PPCGGen); 3262 3263 int has_permutable = has_any_permutable_node(Schedule); 3264 3265 Schedule = 3266 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3267 3268 if (!has_permutable || has_permutable < 0) { 3269 Schedule = isl_schedule_free(Schedule); 3270 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3271 << " does not have permutable bands. Bailing out\n";); 3272 } else { 3273 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3274 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3275 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3276 } 3277 3278 if (DumpSchedule) { 3279 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3280 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3281 P = isl_printer_print_str(P, "Schedule\n"); 3282 P = isl_printer_print_str(P, "========\n"); 3283 if (Schedule) 3284 P = isl_printer_print_schedule(P, Schedule); 3285 else 3286 P = isl_printer_print_str(P, "No schedule found\n"); 3287 3288 outs() << isl_printer_get_str(P) << "\n"; 3289 isl_printer_free(P); 3290 } 3291 3292 if (DumpCode) { 3293 outs() << "Code\n"; 3294 outs() << "====\n"; 3295 if (PPCGGen->tree) 3296 printGPUTree(PPCGGen->tree, PPCGProg); 3297 else 3298 outs() << "No code generated\n"; 3299 } 3300 3301 isl_schedule_free(Schedule); 3302 3303 return PPCGGen; 3304 } 3305 3306 /// Free gpu_gen structure. 3307 /// 3308 /// @param PPCGGen The ppcg_gen object to free. 3309 void freePPCGGen(gpu_gen *PPCGGen) { 3310 isl_ast_node_free(PPCGGen->tree); 3311 isl_union_map_free(PPCGGen->sizes); 3312 isl_union_map_free(PPCGGen->used_sizes); 3313 free(PPCGGen); 3314 } 3315 3316 /// Free the options in the ppcg scop structure. 3317 /// 3318 /// ppcg is not freeing these options for us. To avoid leaks we do this 3319 /// ourselves. 3320 /// 3321 /// @param PPCGScop The scop referencing the options to free. 3322 void freeOptions(ppcg_scop *PPCGScop) { 3323 free(PPCGScop->options->debug); 3324 PPCGScop->options->debug = nullptr; 3325 free(PPCGScop->options); 3326 PPCGScop->options = nullptr; 3327 } 3328 3329 /// Approximate the number of points in the set. 3330 /// 3331 /// This function returns an ast expression that overapproximates the number 3332 /// of points in an isl set through the rectangular hull surrounding this set. 3333 /// 3334 /// @param Set The set to count. 3335 /// @param Build The isl ast build object to use for creating the ast 3336 /// expression. 3337 /// 3338 /// @returns An approximation of the number of points in the set. 3339 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3340 __isl_keep isl_ast_build *Build) { 3341 3342 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3343 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3344 3345 isl_space *Space = isl_set_get_space(Set); 3346 Space = isl_space_params(Space); 3347 auto *Univ = isl_set_universe(Space); 3348 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3349 3350 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3351 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3352 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3353 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3354 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3355 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3356 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3357 } 3358 3359 isl_set_free(Set); 3360 isl_pw_aff_free(OneAff); 3361 3362 return Expr; 3363 } 3364 3365 /// Approximate a number of dynamic instructions executed by a given 3366 /// statement. 3367 /// 3368 /// @param Stmt The statement for which to compute the number of dynamic 3369 /// instructions. 3370 /// @param Build The isl ast build object to use for creating the ast 3371 /// expression. 3372 /// @returns An approximation of the number of dynamic instructions executed 3373 /// by @p Stmt. 3374 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3375 __isl_keep isl_ast_build *Build) { 3376 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3377 3378 long InstCount = 0; 3379 3380 if (Stmt.isBlockStmt()) { 3381 auto *BB = Stmt.getBasicBlock(); 3382 InstCount = std::distance(BB->begin(), BB->end()); 3383 } else { 3384 auto *R = Stmt.getRegion(); 3385 3386 for (auto *BB : R->blocks()) { 3387 InstCount += std::distance(BB->begin(), BB->end()); 3388 } 3389 } 3390 3391 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3392 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3393 return isl_ast_expr_mul(InstExpr, Iterations); 3394 } 3395 3396 /// Approximate dynamic instructions executed in scop. 3397 /// 3398 /// @param S The scop for which to approximate dynamic instructions. 3399 /// @param Build The isl ast build object to use for creating the ast 3400 /// expression. 3401 /// @returns An approximation of the number of dynamic instructions executed 3402 /// in @p S. 3403 __isl_give isl_ast_expr * 3404 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3405 isl_ast_expr *Instructions; 3406 3407 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3408 Instructions = isl_ast_expr_from_val(Zero); 3409 3410 for (ScopStmt &Stmt : S) { 3411 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3412 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3413 } 3414 return Instructions; 3415 } 3416 3417 /// Create a check that ensures sufficient compute in scop. 3418 /// 3419 /// @param S The scop for which to ensure sufficient compute. 3420 /// @param Build The isl ast build object to use for creating the ast 3421 /// expression. 3422 /// @returns An expression that evaluates to TRUE in case of sufficient 3423 /// compute and to FALSE, otherwise. 3424 __isl_give isl_ast_expr * 3425 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3426 auto Iterations = getNumberOfIterations(S, Build); 3427 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3428 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3429 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3430 } 3431 3432 /// Check if the basic block contains a function we cannot codegen for GPU 3433 /// kernels. 3434 /// 3435 /// If this basic block does something with a `Function` other than calling 3436 /// a function that we support in a kernel, return true. 3437 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3438 bool AllowCUDALibDevice) { 3439 for (const Instruction &Inst : *BB) { 3440 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3441 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3442 AllowCUDALibDevice)) 3443 continue; 3444 3445 for (Value *Op : Inst.operands()) 3446 // Look for (<func-type>*) among operands of Inst 3447 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3448 if (isa<FunctionType>(PtrTy->getPointerElementType())) { 3449 LLVM_DEBUG(dbgs() 3450 << Inst << " has illegal use of function in kernel.\n"); 3451 return true; 3452 } 3453 } 3454 } 3455 return false; 3456 } 3457 3458 /// Return whether the Scop S uses functions in a way that we do not support. 3459 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3460 for (auto &Stmt : S) { 3461 if (Stmt.isBlockStmt()) { 3462 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3463 AllowCUDALibDevice)) 3464 return true; 3465 } else { 3466 assert(Stmt.isRegionStmt() && 3467 "Stmt was neither block nor region statement"); 3468 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3469 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3470 return true; 3471 } 3472 } 3473 return false; 3474 } 3475 3476 /// Generate code for a given GPU AST described by @p Root. 3477 /// 3478 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3479 /// @param Prog The GPU Program to generate code for. 3480 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3481 ScopAnnotator Annotator; 3482 Annotator.buildAliasScopes(*S); 3483 3484 Region *R = &S->getRegion(); 3485 3486 simplifyRegion(R, DT, LI, RI); 3487 3488 BasicBlock *EnteringBB = R->getEnteringBlock(); 3489 3490 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 3491 IRInserter(Annotator)); 3492 Builder.SetInsertPoint(EnteringBB->getTerminator()); 3493 3494 // Only build the run-time condition and parameters _after_ having 3495 // introduced the conditional branch. This is important as the conditional 3496 // branch will guard the original scop from new induction variables that 3497 // the SCEVExpander may introduce while code generating the parameters and 3498 // which may introduce scalar dependences that prevent us from correctly 3499 // code generating this scop. 3500 BBPair StartExitBlocks; 3501 BranchInst *CondBr = nullptr; 3502 std::tie(StartExitBlocks, CondBr) = 3503 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3504 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3505 3506 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3507 3508 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3509 StartBlock, Prog, Runtime, Architecture); 3510 3511 // TODO: Handle LICM 3512 auto SplitBlock = StartBlock->getSinglePredecessor(); 3513 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3514 3515 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3516 isl::ast_expr Condition = 3517 IslAst::buildRunCondition(*S, isl::manage_copy(Build)); 3518 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3519 Condition = 3520 isl::manage(isl_ast_expr_and(Condition.release(), SufficientCompute)); 3521 isl_ast_build_free(Build); 3522 3523 // preload invariant loads. Note: This should happen before the RTC 3524 // because the RTC may depend on values that are invariant load hoisted. 3525 if (!NodeBuilder.preloadInvariantLoads()) { 3526 // Patch the introduced branch condition to ensure that we always execute 3527 // the original SCoP. 3528 auto *FalseI1 = Builder.getFalse(); 3529 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3530 SplitBBTerm->setOperand(0, FalseI1); 3531 3532 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3533 S->getFunction().getName() + 3534 " | Scop Region: " + S->getNameStr()); 3535 // adjust the dominator tree accordingly. 3536 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3537 assert(ExitingBlock); 3538 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3539 assert(MergeBlock); 3540 polly::markBlockUnreachable(*StartBlock, Builder); 3541 polly::markBlockUnreachable(*ExitingBlock, Builder); 3542 auto *ExitingBB = S->getExitingBlock(); 3543 assert(ExitingBB); 3544 3545 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3546 DT->eraseNode(ExitingBlock); 3547 isl_ast_node_free(Root); 3548 } else { 3549 3550 if (polly::PerfMonitoring) { 3551 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3552 P.initialize(); 3553 P.insertRegionStart(SplitBlock->getTerminator()); 3554 3555 // TODO: actually think if this is the correct exiting block to place 3556 // the `end` performance marker. Invariant load hoisting changes 3557 // the CFG in a way that I do not precisely understand, so I 3558 // (Siddharth<[email protected]>) should come back to this and 3559 // think about which exiting block to use. 3560 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3561 assert(ExitingBlock); 3562 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3563 P.insertRegionEnd(MergeBlock->getTerminator()); 3564 } 3565 3566 NodeBuilder.addParameters(S->getContext().release()); 3567 Value *RTC = NodeBuilder.createRTC(Condition.release()); 3568 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3569 3570 Builder.SetInsertPoint(&*StartBlock->begin()); 3571 3572 NodeBuilder.create(Root); 3573 } 3574 3575 /// In case a sequential kernel has more surrounding loops as any parallel 3576 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3577 /// point in running it on a GPU. 3578 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3579 CondBr->setOperand(0, Builder.getFalse()); 3580 3581 if (!NodeBuilder.BuildSuccessful) 3582 CondBr->setOperand(0, Builder.getFalse()); 3583 } 3584 3585 bool runOnScop(Scop &CurrentScop) override { 3586 S = &CurrentScop; 3587 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3588 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3589 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3590 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3591 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3592 3593 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3594 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3595 3596 // We currently do not support functions other than intrinsics inside 3597 // kernels, as code generation will need to offload function calls to the 3598 // kernel. This may lead to a kernel trying to call a function on the host. 3599 // This also allows us to prevent codegen from trying to take the 3600 // address of an intrinsic function to send to the kernel. 3601 if (containsInvalidKernelFunction(CurrentScop, 3602 Architecture == GPUArch::NVPTX64)) { 3603 LLVM_DEBUG( 3604 dbgs() << getUniqueScopName(S) 3605 << " contains function which cannot be materialised in a GPU " 3606 "kernel. Bailing out.\n";); 3607 return false; 3608 } 3609 3610 auto PPCGScop = createPPCGScop(); 3611 auto PPCGProg = createPPCGProg(PPCGScop); 3612 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3613 3614 if (PPCGGen->tree) { 3615 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3616 CurrentScop.markAsToBeSkipped(); 3617 } else { 3618 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3619 << " has empty PPCGGen->tree. Bailing out.\n"); 3620 } 3621 3622 freeOptions(PPCGScop); 3623 freePPCGGen(PPCGGen); 3624 gpu_prog_free(PPCGProg); 3625 ppcg_scop_free(PPCGScop); 3626 3627 return true; 3628 } 3629 3630 void printScop(raw_ostream &, Scop &) const override {} 3631 3632 void getAnalysisUsage(AnalysisUsage &AU) const override { 3633 ScopPass::getAnalysisUsage(AU); 3634 3635 AU.addRequired<DominatorTreeWrapperPass>(); 3636 AU.addRequired<RegionInfoPass>(); 3637 AU.addRequired<ScalarEvolutionWrapperPass>(); 3638 AU.addRequired<ScopDetectionWrapperPass>(); 3639 AU.addRequired<ScopInfoRegionPass>(); 3640 AU.addRequired<LoopInfoWrapperPass>(); 3641 3642 // FIXME: We do not yet add regions for the newly generated code to the 3643 // region tree. 3644 } 3645 }; 3646 } // namespace 3647 3648 char PPCGCodeGeneration::ID = 1; 3649 3650 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3651 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3652 generator->Runtime = Runtime; 3653 generator->Architecture = Arch; 3654 return generator; 3655 } 3656 3657 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3658 "Polly - Apply PPCG translation to SCOP", false, false) 3659 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3660 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3661 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3662 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3663 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3664 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3665 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3666 "Polly - Apply PPCG translation to SCOP", false, false) 3667