1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/PerfMonitor.h" 20 #include "polly/CodeGen/Utils.h" 21 #include "polly/DependenceInfo.h" 22 #include "polly/LinkAllPasses.h" 23 #include "polly/Options.h" 24 #include "polly/ScopDetection.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/BasicAliasAnalysis.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/IR/LegacyPassManager.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/IRReader/IRReader.h" 37 #include "llvm/Linker/Linker.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/TargetSelect.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 44 #include "isl/union_map.h" 45 46 extern "C" { 47 #include "ppcg/cuda.h" 48 #include "ppcg/gpu.h" 49 #include "ppcg/gpu_print.h" 50 #include "ppcg/ppcg.h" 51 #include "ppcg/schedule.h" 52 } 53 54 #include "llvm/Support/Debug.h" 55 56 using namespace polly; 57 using namespace llvm; 58 59 #define DEBUG_TYPE "polly-codegen-ppcg" 60 61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 62 cl::desc("Dump the computed GPU Schedule"), 63 cl::Hidden, cl::init(false), cl::ZeroOrMore, 64 cl::cat(PollyCategory)); 65 66 static cl::opt<bool> 67 DumpCode("polly-acc-dump-code", 68 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 69 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 70 71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 72 cl::desc("Dump the kernel LLVM-IR"), 73 cl::Hidden, cl::init(false), cl::ZeroOrMore, 74 cl::cat(PollyCategory)); 75 76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 77 cl::desc("Dump the kernel assembly code"), 78 cl::Hidden, cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 81 static cl::opt<bool> FastMath("polly-acc-fastmath", 82 cl::desc("Allow unsafe math optimizations"), 83 cl::Hidden, cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 86 cl::desc("Use shared memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 90 cl::desc("Use private memory"), cl::Hidden, 91 cl::init(false), cl::ZeroOrMore, 92 cl::cat(PollyCategory)); 93 94 bool polly::PollyManagedMemory; 95 static cl::opt<bool, true> 96 XManagedMemory("polly-acc-codegen-managed-memory", 97 cl::desc("Generate Host kernel code assuming" 98 " that all memory has been" 99 " declared as managed memory"), 100 cl::location(PollyManagedMemory), cl::Hidden, 101 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 102 103 static cl::opt<bool> 104 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 105 cl::desc("Fail and generate a backtrace if" 106 " verifyModule fails on the GPU " 107 " kernel module."), 108 cl::Hidden, cl::init(false), cl::ZeroOrMore, 109 cl::cat(PollyCategory)); 110 111 static cl::opt<std::string> CUDALibDevice( 112 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 113 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 114 cl::ZeroOrMore, cl::cat(PollyCategory)); 115 116 static cl::opt<std::string> 117 CudaVersion("polly-acc-cuda-version", 118 cl::desc("The CUDA version to compile for"), cl::Hidden, 119 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 120 121 static cl::opt<int> 122 MinCompute("polly-acc-mincompute", 123 cl::desc("Minimal number of compute statements to run on GPU."), 124 cl::Hidden, cl::init(10 * 512 * 512)); 125 126 extern bool polly::PerfMonitoring; 127 128 /// Return a unique name for a Scop, which is the scop region with the 129 /// function name. 130 std::string getUniqueScopName(const Scop *S) { 131 return "Scop Region: " + S->getNameStr() + 132 " | Function: " + std::string(S->getFunction().getName()); 133 } 134 135 /// Used to store information PPCG wants for kills. This information is 136 /// used by live range reordering. 137 /// 138 /// @see computeLiveRangeReordering 139 /// @see GPUNodeBuilder::createPPCGScop 140 /// @see GPUNodeBuilder::createPPCGProg 141 struct MustKillsInfo { 142 /// Collection of all kill statements that will be sequenced at the end of 143 /// PPCGScop->schedule. 144 /// 145 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 146 /// which merges schedules in *arbitrary* order. 147 /// (we don't care about the order of the kills anyway). 148 isl::schedule KillsSchedule; 149 /// Map from kill statement instances to scalars that need to be 150 /// killed. 151 /// 152 /// We currently derive kill information for: 153 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 154 /// consequently all be killed. 155 /// 2. Scalar arrays that are not used outside the Scop. This is 156 /// checked by `isScalarUsesContainedInScop`. 157 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 158 isl::union_map TaggedMustKills; 159 160 /// Tagged must kills stripped of the tags. 161 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 162 isl::union_map MustKills; 163 164 MustKillsInfo() : KillsSchedule(nullptr) {} 165 }; 166 167 /// Check if SAI's uses are entirely contained within Scop S. 168 /// If a scalar is used only with a Scop, we are free to kill it, as no data 169 /// can flow in/out of the value any more. 170 /// @see computeMustKillsInfo 171 static bool isScalarUsesContainedInScop(const Scop &S, 172 const ScopArrayInfo *SAI) { 173 assert(SAI->isValueKind() && "this function only deals with scalars." 174 " Dealing with arrays required alias analysis"); 175 176 const Region &R = S.getRegion(); 177 for (User *U : SAI->getBasePtr()->users()) { 178 Instruction *I = dyn_cast<Instruction>(U); 179 assert(I && "invalid user of scop array info"); 180 if (!R.contains(I)) 181 return false; 182 } 183 return true; 184 } 185 186 /// Compute must-kills needed to enable live range reordering with PPCG. 187 /// 188 /// @params S The Scop to compute live range reordering information 189 /// @returns live range reordering information that can be used to setup 190 /// PPCG. 191 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 192 const isl::space ParamSpace = S.getParamSpace(); 193 MustKillsInfo Info; 194 195 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 196 // 1.1 phi nodes in scop. 197 // 1.2 scalars that are only used within the scop 198 SmallVector<isl::id, 4> KillMemIds; 199 for (ScopArrayInfo *SAI : S.arrays()) { 200 if (SAI->isPHIKind() || 201 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 202 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 203 } 204 205 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 206 Info.MustKills = isl::union_map::empty(ParamSpace); 207 208 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 209 // schedule: 210 // - filter: "[control] -> { }" 211 // So, we choose to not create this to keep the output a little nicer, 212 // at the cost of some code complexity. 213 Info.KillsSchedule = nullptr; 214 215 for (isl::id &ToKillId : KillMemIds) { 216 isl::id KillStmtId = isl::id::alloc( 217 S.getIslCtx(), 218 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 219 220 // NOTE: construction of tagged_must_kill: 221 // 2. We need to construct a map: 222 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 223 // To construct this, we use `isl_map_domain_product` on 2 maps`: 224 // 2a. StmtToScalar: 225 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 226 // 2b. PhantomRefToScalar: 227 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 228 // 229 // Combining these with `isl_map_domain_product` gives us 230 // TaggedMustKill: 231 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 232 233 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 234 isl::map StmtToScalar = isl::map::universe(ParamSpace); 235 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 236 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 237 238 isl::id PhantomRefId = isl::id::alloc( 239 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 240 nullptr); 241 242 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 243 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 244 PhantomRefToScalar = 245 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 246 PhantomRefToScalar = 247 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 248 249 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 250 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 251 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 252 253 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 254 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 255 256 // 3. Create the kill schedule of the form: 257 // "[param] -> { Stmt_phantom[] }" 258 // Then add this to Info.KillsSchedule. 259 isl::space KillStmtSpace = ParamSpace; 260 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 261 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 262 263 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 264 if (Info.KillsSchedule) 265 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 266 else 267 Info.KillsSchedule = KillSchedule; 268 } 269 270 return Info; 271 } 272 273 /// Create the ast expressions for a ScopStmt. 274 /// 275 /// This function is a callback for to generate the ast expressions for each 276 /// of the scheduled ScopStmts. 277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 278 void *StmtT, __isl_take isl_ast_build *Build_C, 279 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 280 isl_id *Id, void *User), 281 void *UserIndex, 282 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 283 void *UserExpr) { 284 285 ScopStmt *Stmt = (ScopStmt *)StmtT; 286 287 if (!Stmt || !Build_C) 288 return NULL; 289 290 isl::ast_build Build = isl::manage_copy(Build_C); 291 isl::ctx Ctx = Build.get_ctx(); 292 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 293 294 Stmt->setAstBuild(Build); 295 296 for (MemoryAccess *Acc : *Stmt) { 297 isl::map AddrFunc = Acc->getAddressFunction(); 298 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 299 300 isl::id RefId = Acc->getId(); 301 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 302 303 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 304 MPA = MPA.coalesce(); 305 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 306 307 isl::ast_expr Access = Build.access_from(MPA); 308 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 309 RefToExpr = RefToExpr.set(RefId, Access); 310 } 311 312 return RefToExpr.release(); 313 } 314 315 /// Given a LLVM Type, compute its size in bytes, 316 static int computeSizeInBytes(const Type *T) { 317 int bytes = T->getPrimitiveSizeInBits() / 8; 318 if (bytes == 0) 319 bytes = T->getScalarSizeInBits() / 8; 320 return bytes; 321 } 322 323 /// Generate code for a GPU specific isl AST. 324 /// 325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 326 /// generates code for general-purpose AST nodes, with special functionality 327 /// for generating GPU specific user nodes. 328 /// 329 /// @see GPUNodeBuilder::createUser 330 class GPUNodeBuilder : public IslNodeBuilder { 331 public: 332 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 333 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 334 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 335 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 336 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 337 Prog(Prog), Runtime(Runtime), Arch(Arch) { 338 getExprBuilder().setIDToSAI(&IDToSAI); 339 } 340 341 /// Create after-run-time-check initialization code. 342 void initializeAfterRTH(); 343 344 /// Finalize the generated scop. 345 virtual void finalize(); 346 347 /// Track if the full build process was successful. 348 /// 349 /// This value is set to false, if throughout the build process an error 350 /// occurred which prevents us from generating valid GPU code. 351 bool BuildSuccessful = true; 352 353 /// The maximal number of loops surrounding a sequential kernel. 354 unsigned DeepestSequential = 0; 355 356 /// The maximal number of loops surrounding a parallel kernel. 357 unsigned DeepestParallel = 0; 358 359 /// Return the name to set for the ptx_kernel. 360 std::string getKernelFuncName(int Kernel_id); 361 362 private: 363 /// A vector of array base pointers for which a new ScopArrayInfo was created. 364 /// 365 /// This vector is used to delete the ScopArrayInfo when it is not needed any 366 /// more. 367 std::vector<Value *> LocalArrays; 368 369 /// A map from ScopArrays to their corresponding device allocations. 370 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 371 372 /// The current GPU context. 373 Value *GPUContext; 374 375 /// The set of isl_ids allocated in the kernel 376 std::vector<isl_id *> KernelIds; 377 378 /// A module containing GPU code. 379 /// 380 /// This pointer is only set in case we are currently generating GPU code. 381 std::unique_ptr<Module> GPUModule; 382 383 /// The GPU program we generate code for. 384 gpu_prog *Prog; 385 386 /// The GPU Runtime implementation to use (OpenCL or CUDA). 387 GPURuntime Runtime; 388 389 /// The GPU Architecture to target. 390 GPUArch Arch; 391 392 /// Class to free isl_ids. 393 class IslIdDeleter { 394 public: 395 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 396 }; 397 398 /// A set containing all isl_ids allocated in a GPU kernel. 399 /// 400 /// By releasing this set all isl_ids will be freed. 401 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 402 403 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 404 405 /// Create code for user-defined AST nodes. 406 /// 407 /// These AST nodes can be of type: 408 /// 409 /// - ScopStmt: A computational statement (TODO) 410 /// - Kernel: A GPU kernel call (TODO) 411 /// - Data-Transfer: A GPU <-> CPU data-transfer 412 /// - In-kernel synchronization 413 /// - In-kernel memory copy statement 414 /// 415 /// @param UserStmt The ast node to generate code for. 416 virtual void createUser(__isl_take isl_ast_node *UserStmt); 417 418 virtual void createFor(__isl_take isl_ast_node *Node); 419 420 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 421 422 /// Create code for a data transfer statement 423 /// 424 /// @param TransferStmt The data transfer statement. 425 /// @param Direction The direction in which to transfer data. 426 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 427 enum DataDirection Direction); 428 429 /// Find llvm::Values referenced in GPU kernel. 430 /// 431 /// @param Kernel The kernel to scan for llvm::Values 432 /// 433 /// @returns A tuple, whose: 434 /// - First element contains the set of values referenced by the 435 /// kernel 436 /// - Second element contains the set of functions referenced by the 437 /// kernel. All functions in the set satisfy 438 /// `isValidFunctionInKernel`. 439 /// - Third element contains loops that have induction variables 440 /// which are used in the kernel, *and* these loops are *neither* 441 /// in the scop, nor do they immediately surroung the Scop. 442 /// See [Code generation of induction variables of loops outside 443 /// Scops] 444 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 445 isl::space> 446 getReferencesInKernel(ppcg_kernel *Kernel); 447 448 /// Compute the sizes of the execution grid for a given kernel. 449 /// 450 /// @param Kernel The kernel to compute grid sizes for. 451 /// 452 /// @returns A tuple with grid sizes for X and Y dimension 453 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 454 455 /// Get the managed array pointer for sending host pointers to the device. 456 /// \note 457 /// This is to be used only with managed memory 458 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 459 460 /// Compute the sizes of the thread blocks for a given kernel. 461 /// 462 /// @param Kernel The kernel to compute thread block sizes for. 463 /// 464 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 465 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 466 467 /// Store a specific kernel launch parameter in the array of kernel launch 468 /// parameters. 469 /// 470 /// @param Parameters The list of parameters in which to store. 471 /// @param Param The kernel launch parameter to store. 472 /// @param Index The index in the parameter list, at which to store the 473 /// parameter. 474 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 475 int Index); 476 477 /// Create kernel launch parameters. 478 /// 479 /// @param Kernel The kernel to create parameters for. 480 /// @param F The kernel function that has been created. 481 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 482 /// 483 /// @returns A stack allocated array with pointers to the parameter 484 /// values that are passed to the kernel. 485 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 486 SetVector<Value *> SubtreeValues); 487 488 /// Create declarations for kernel variable. 489 /// 490 /// This includes shared memory declarations. 491 /// 492 /// @param Kernel The kernel definition to create variables for. 493 /// @param FN The function into which to generate the variables. 494 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 495 496 /// Add CUDA annotations to module. 497 /// 498 /// Add a set of CUDA annotations that declares the maximal block dimensions 499 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 500 /// PTX compiler to bound the number of allocated registers to ensure the 501 /// resulting kernel is known to run with up to as many block dimensions 502 /// as specified here. 503 /// 504 /// @param M The module to add the annotations to. 505 /// @param BlockDimX The size of block dimension X. 506 /// @param BlockDimY The size of block dimension Y. 507 /// @param BlockDimZ The size of block dimension Z. 508 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 509 Value *BlockDimZ); 510 511 /// Create GPU kernel. 512 /// 513 /// Code generate the kernel described by @p KernelStmt. 514 /// 515 /// @param KernelStmt The ast node to generate kernel code for. 516 void createKernel(__isl_take isl_ast_node *KernelStmt); 517 518 /// Generate code that computes the size of an array. 519 /// 520 /// @param Array The array for which to compute a size. 521 Value *getArraySize(gpu_array_info *Array); 522 523 /// Generate code to compute the minimal offset at which an array is accessed. 524 /// 525 /// The offset of an array is the minimal array location accessed in a scop. 526 /// 527 /// Example: 528 /// 529 /// for (long i = 0; i < 100; i++) 530 /// A[i + 42] += ... 531 /// 532 /// getArrayOffset(A) results in 42. 533 /// 534 /// @param Array The array for which to compute the offset. 535 /// @returns An llvm::Value that contains the offset of the array. 536 Value *getArrayOffset(gpu_array_info *Array); 537 538 /// Prepare the kernel arguments for kernel code generation 539 /// 540 /// @param Kernel The kernel to generate code for. 541 /// @param FN The function created for the kernel. 542 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 543 544 /// Create kernel function. 545 /// 546 /// Create a kernel function located in a newly created module that can serve 547 /// as target for device code generation. Set the Builder to point to the 548 /// start block of this newly created function. 549 /// 550 /// @param Kernel The kernel to generate code for. 551 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 552 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 553 /// kernel. 554 void createKernelFunction(ppcg_kernel *Kernel, 555 SetVector<Value *> &SubtreeValues, 556 SetVector<Function *> &SubtreeFunctions); 557 558 /// Create the declaration of a kernel function. 559 /// 560 /// The kernel function takes as arguments: 561 /// 562 /// - One i8 pointer for each external array reference used in the kernel. 563 /// - Host iterators 564 /// - Parameters 565 /// - Other LLVM Value references (TODO) 566 /// 567 /// @param Kernel The kernel to generate the function declaration for. 568 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 569 /// 570 /// @returns The newly declared function. 571 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 572 SetVector<Value *> &SubtreeValues); 573 574 /// Insert intrinsic functions to obtain thread and block ids. 575 /// 576 /// @param The kernel to generate the intrinsic functions for. 577 void insertKernelIntrinsics(ppcg_kernel *Kernel); 578 579 /// Insert function calls to retrieve the SPIR group/local ids. 580 /// 581 /// @param Kernel The kernel to generate the function calls for. 582 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 583 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 584 585 /// Setup the creation of functions referenced by the GPU kernel. 586 /// 587 /// 1. Create new function declarations in GPUModule which are the same as 588 /// SubtreeFunctions. 589 /// 590 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 591 /// old functions (that come from the original module) to new functions 592 /// (that are created within GPUModule). That way, we generate references 593 /// to the correct function (in GPUModule) in BlockGenerator. 594 /// 595 /// @see IslNodeBuilder::ValueMap 596 /// @see BlockGenerator::GlobalMap 597 /// @see BlockGenerator::getNewValue 598 /// @see GPUNodeBuilder::getReferencesInKernel. 599 /// 600 /// @param SubtreeFunctions The set of llvm::Functions referenced by 601 /// this kernel. 602 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 603 604 /// Create a global-to-shared or shared-to-global copy statement. 605 /// 606 /// @param CopyStmt The copy statement to generate code for 607 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 608 609 /// Create code for a ScopStmt called in @p Expr. 610 /// 611 /// @param Expr The expression containing the call. 612 /// @param KernelStmt The kernel statement referenced in the call. 613 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 614 615 /// Create an in-kernel synchronization call. 616 void createKernelSync(); 617 618 /// Create a PTX assembly string for the current GPU kernel. 619 /// 620 /// @returns A string containing the corresponding PTX assembly code. 621 std::string createKernelASM(); 622 623 /// Remove references from the dominator tree to the kernel function @p F. 624 /// 625 /// @param F The function to remove references to. 626 void clearDominators(Function *F); 627 628 /// Remove references from scalar evolution to the kernel function @p F. 629 /// 630 /// @param F The function to remove references to. 631 void clearScalarEvolution(Function *F); 632 633 /// Remove references from loop info to the kernel function @p F. 634 /// 635 /// @param F The function to remove references to. 636 void clearLoops(Function *F); 637 638 /// Check if the scop requires to be linked with CUDA's libdevice. 639 bool requiresCUDALibDevice(); 640 641 /// Link with the NVIDIA libdevice library (if needed and available). 642 void addCUDALibDevice(); 643 644 /// Finalize the generation of the kernel function. 645 /// 646 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 647 /// dump its IR to stderr. 648 /// 649 /// @returns The Assembly string of the kernel. 650 std::string finalizeKernelFunction(); 651 652 /// Finalize the generation of the kernel arguments. 653 /// 654 /// This function ensures that not-read-only scalars used in a kernel are 655 /// stored back to the global memory location they are backed with before 656 /// the kernel terminates. 657 /// 658 /// @params Kernel The kernel to finalize kernel arguments for. 659 void finalizeKernelArguments(ppcg_kernel *Kernel); 660 661 /// Create code that allocates memory to store arrays on device. 662 void allocateDeviceArrays(); 663 664 /// Create code to prepare the managed device pointers. 665 void prepareManagedDeviceArrays(); 666 667 /// Free all allocated device arrays. 668 void freeDeviceArrays(); 669 670 /// Create a call to initialize the GPU context. 671 /// 672 /// @returns A pointer to the newly initialized context. 673 Value *createCallInitContext(); 674 675 /// Create a call to get the device pointer for a kernel allocation. 676 /// 677 /// @param Allocation The Polly GPU allocation 678 /// 679 /// @returns The device parameter corresponding to this allocation. 680 Value *createCallGetDevicePtr(Value *Allocation); 681 682 /// Create a call to free the GPU context. 683 /// 684 /// @param Context A pointer to an initialized GPU context. 685 void createCallFreeContext(Value *Context); 686 687 /// Create a call to allocate memory on the device. 688 /// 689 /// @param Size The size of memory to allocate 690 /// 691 /// @returns A pointer that identifies this allocation. 692 Value *createCallAllocateMemoryForDevice(Value *Size); 693 694 /// Create a call to free a device array. 695 /// 696 /// @param Array The device array to free. 697 void createCallFreeDeviceMemory(Value *Array); 698 699 /// Create a call to copy data from host to device. 700 /// 701 /// @param HostPtr A pointer to the host data that should be copied. 702 /// @param DevicePtr A device pointer specifying the location to copy to. 703 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 704 Value *Size); 705 706 /// Create a call to copy data from device to host. 707 /// 708 /// @param DevicePtr A pointer to the device data that should be copied. 709 /// @param HostPtr A host pointer specifying the location to copy to. 710 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 711 Value *Size); 712 713 /// Create a call to synchronize Host & Device. 714 /// \note 715 /// This is to be used only with managed memory. 716 void createCallSynchronizeDevice(); 717 718 /// Create a call to get a kernel from an assembly string. 719 /// 720 /// @param Buffer The string describing the kernel. 721 /// @param Entry The name of the kernel function to call. 722 /// 723 /// @returns A pointer to a kernel object 724 Value *createCallGetKernel(Value *Buffer, Value *Entry); 725 726 /// Create a call to free a GPU kernel. 727 /// 728 /// @param GPUKernel THe kernel to free. 729 void createCallFreeKernel(Value *GPUKernel); 730 731 /// Create a call to launch a GPU kernel. 732 /// 733 /// @param GPUKernel The kernel to launch. 734 /// @param GridDimX The size of the first grid dimension. 735 /// @param GridDimY The size of the second grid dimension. 736 /// @param GridBlockX The size of the first block dimension. 737 /// @param GridBlockY The size of the second block dimension. 738 /// @param GridBlockZ The size of the third block dimension. 739 /// @param Parameters A pointer to an array that contains itself pointers to 740 /// the parameter values passed for each kernel argument. 741 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 742 Value *GridDimY, Value *BlockDimX, 743 Value *BlockDimY, Value *BlockDimZ, 744 Value *Parameters); 745 }; 746 747 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 748 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 749 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 750 } 751 752 void GPUNodeBuilder::initializeAfterRTH() { 753 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 754 &*Builder.GetInsertPoint(), &DT, &LI); 755 NewBB->setName("polly.acc.initialize"); 756 Builder.SetInsertPoint(&NewBB->front()); 757 758 GPUContext = createCallInitContext(); 759 760 if (!PollyManagedMemory) 761 allocateDeviceArrays(); 762 else 763 prepareManagedDeviceArrays(); 764 } 765 766 void GPUNodeBuilder::finalize() { 767 if (!PollyManagedMemory) 768 freeDeviceArrays(); 769 770 createCallFreeContext(GPUContext); 771 IslNodeBuilder::finalize(); 772 } 773 774 void GPUNodeBuilder::allocateDeviceArrays() { 775 assert(!PollyManagedMemory && 776 "Managed memory will directly send host pointers " 777 "to the kernel. There is no need for device arrays"); 778 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 779 780 for (int i = 0; i < Prog->n_array; ++i) { 781 gpu_array_info *Array = &Prog->array[i]; 782 auto *ScopArray = (ScopArrayInfo *)Array->user; 783 std::string DevArrayName("p_dev_array_"); 784 DevArrayName.append(Array->name); 785 786 Value *ArraySize = getArraySize(Array); 787 Value *Offset = getArrayOffset(Array); 788 if (Offset) 789 ArraySize = Builder.CreateSub( 790 ArraySize, 791 Builder.CreateMul(Offset, 792 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 793 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 794 // It makes no sense to have an array of size 0. The CUDA API will 795 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 796 // choose to be defensive and catch this at the compile phase. It is 797 // most likely that we are doing something wrong with size computation. 798 if (SizeSCEV->isZero()) { 799 errs() << getUniqueScopName(&S) 800 << " has computed array size 0: " << *ArraySize 801 << " | for array: " << *(ScopArray->getBasePtr()) 802 << ". This is illegal, exiting.\n"; 803 report_fatal_error("array size was computed to be 0"); 804 } 805 806 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 807 DevArray->setName(DevArrayName); 808 DeviceAllocations[ScopArray] = DevArray; 809 } 810 811 isl_ast_build_free(Build); 812 } 813 814 void GPUNodeBuilder::prepareManagedDeviceArrays() { 815 assert(PollyManagedMemory && 816 "Device array most only be prepared in managed-memory mode"); 817 for (int i = 0; i < Prog->n_array; ++i) { 818 gpu_array_info *Array = &Prog->array[i]; 819 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 820 Value *HostPtr; 821 822 if (gpu_array_is_scalar(Array)) 823 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 824 else 825 HostPtr = ScopArray->getBasePtr(); 826 HostPtr = getLatestValue(HostPtr); 827 828 Value *Offset = getArrayOffset(Array); 829 if (Offset) { 830 HostPtr = Builder.CreatePointerCast( 831 HostPtr, ScopArray->getElementType()->getPointerTo()); 832 HostPtr = Builder.CreateGEP(HostPtr, Offset); 833 } 834 835 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 836 DeviceAllocations[ScopArray] = HostPtr; 837 } 838 } 839 840 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 841 Value *BlockDimY, Value *BlockDimZ) { 842 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 843 844 for (auto &F : *M) { 845 if (F.getCallingConv() != CallingConv::PTX_Kernel) 846 continue; 847 848 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 849 850 Metadata *Elements[] = { 851 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 852 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 853 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 854 ValueAsMetadata::get(V[2]), 855 }; 856 MDNode *Node = MDNode::get(M->getContext(), Elements); 857 AnnotationNode->addOperand(Node); 858 } 859 } 860 861 void GPUNodeBuilder::freeDeviceArrays() { 862 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 863 for (auto &Array : DeviceAllocations) 864 createCallFreeDeviceMemory(Array.second); 865 } 866 867 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 868 const char *Name = "polly_getKernel"; 869 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 870 Function *F = M->getFunction(Name); 871 872 // If F is not available, declare it. 873 if (!F) { 874 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 875 std::vector<Type *> Args; 876 Args.push_back(Builder.getInt8PtrTy()); 877 Args.push_back(Builder.getInt8PtrTy()); 878 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 879 F = Function::Create(Ty, Linkage, Name, M); 880 } 881 882 return Builder.CreateCall(F, {Buffer, Entry}); 883 } 884 885 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 886 const char *Name = "polly_getDevicePtr"; 887 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 888 Function *F = M->getFunction(Name); 889 890 // If F is not available, declare it. 891 if (!F) { 892 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 893 std::vector<Type *> Args; 894 Args.push_back(Builder.getInt8PtrTy()); 895 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 896 F = Function::Create(Ty, Linkage, Name, M); 897 } 898 899 return Builder.CreateCall(F, {Allocation}); 900 } 901 902 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 903 Value *GridDimY, Value *BlockDimX, 904 Value *BlockDimY, Value *BlockDimZ, 905 Value *Parameters) { 906 const char *Name = "polly_launchKernel"; 907 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 908 Function *F = M->getFunction(Name); 909 910 // If F is not available, declare it. 911 if (!F) { 912 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 913 std::vector<Type *> Args; 914 Args.push_back(Builder.getInt8PtrTy()); 915 Args.push_back(Builder.getInt32Ty()); 916 Args.push_back(Builder.getInt32Ty()); 917 Args.push_back(Builder.getInt32Ty()); 918 Args.push_back(Builder.getInt32Ty()); 919 Args.push_back(Builder.getInt32Ty()); 920 Args.push_back(Builder.getInt8PtrTy()); 921 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 922 F = Function::Create(Ty, Linkage, Name, M); 923 } 924 925 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 926 BlockDimZ, Parameters}); 927 } 928 929 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 930 const char *Name = "polly_freeKernel"; 931 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 932 Function *F = M->getFunction(Name); 933 934 // If F is not available, declare it. 935 if (!F) { 936 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 937 std::vector<Type *> Args; 938 Args.push_back(Builder.getInt8PtrTy()); 939 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 940 F = Function::Create(Ty, Linkage, Name, M); 941 } 942 943 Builder.CreateCall(F, {GPUKernel}); 944 } 945 946 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 947 assert(!PollyManagedMemory && 948 "Managed memory does not allocate or free memory " 949 "for device"); 950 const char *Name = "polly_freeDeviceMemory"; 951 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 952 Function *F = M->getFunction(Name); 953 954 // If F is not available, declare it. 955 if (!F) { 956 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 957 std::vector<Type *> Args; 958 Args.push_back(Builder.getInt8PtrTy()); 959 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 960 F = Function::Create(Ty, Linkage, Name, M); 961 } 962 963 Builder.CreateCall(F, {Array}); 964 } 965 966 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 967 assert(!PollyManagedMemory && 968 "Managed memory does not allocate or free memory " 969 "for device"); 970 const char *Name = "polly_allocateMemoryForDevice"; 971 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 972 Function *F = M->getFunction(Name); 973 974 // If F is not available, declare it. 975 if (!F) { 976 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 977 std::vector<Type *> Args; 978 Args.push_back(Builder.getInt64Ty()); 979 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 980 F = Function::Create(Ty, Linkage, Name, M); 981 } 982 983 return Builder.CreateCall(F, {Size}); 984 } 985 986 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 987 Value *DeviceData, 988 Value *Size) { 989 assert(!PollyManagedMemory && 990 "Managed memory does not transfer memory between " 991 "device and host"); 992 const char *Name = "polly_copyFromHostToDevice"; 993 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 994 Function *F = M->getFunction(Name); 995 996 // If F is not available, declare it. 997 if (!F) { 998 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 999 std::vector<Type *> Args; 1000 Args.push_back(Builder.getInt8PtrTy()); 1001 Args.push_back(Builder.getInt8PtrTy()); 1002 Args.push_back(Builder.getInt64Ty()); 1003 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1004 F = Function::Create(Ty, Linkage, Name, M); 1005 } 1006 1007 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1008 } 1009 1010 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1011 Value *HostData, 1012 Value *Size) { 1013 assert(!PollyManagedMemory && 1014 "Managed memory does not transfer memory between " 1015 "device and host"); 1016 const char *Name = "polly_copyFromDeviceToHost"; 1017 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1018 Function *F = M->getFunction(Name); 1019 1020 // If F is not available, declare it. 1021 if (!F) { 1022 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1023 std::vector<Type *> Args; 1024 Args.push_back(Builder.getInt8PtrTy()); 1025 Args.push_back(Builder.getInt8PtrTy()); 1026 Args.push_back(Builder.getInt64Ty()); 1027 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1028 F = Function::Create(Ty, Linkage, Name, M); 1029 } 1030 1031 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1032 } 1033 1034 void GPUNodeBuilder::createCallSynchronizeDevice() { 1035 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1036 "managed memory"); 1037 const char *Name = "polly_synchronizeDevice"; 1038 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1039 Function *F = M->getFunction(Name); 1040 1041 // If F is not available, declare it. 1042 if (!F) { 1043 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1044 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1045 F = Function::Create(Ty, Linkage, Name, M); 1046 } 1047 1048 Builder.CreateCall(F); 1049 } 1050 1051 Value *GPUNodeBuilder::createCallInitContext() { 1052 const char *Name; 1053 1054 switch (Runtime) { 1055 case GPURuntime::CUDA: 1056 Name = "polly_initContextCUDA"; 1057 break; 1058 case GPURuntime::OpenCL: 1059 Name = "polly_initContextCL"; 1060 break; 1061 } 1062 1063 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1064 Function *F = M->getFunction(Name); 1065 1066 // If F is not available, declare it. 1067 if (!F) { 1068 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1069 std::vector<Type *> Args; 1070 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1071 F = Function::Create(Ty, Linkage, Name, M); 1072 } 1073 1074 return Builder.CreateCall(F, {}); 1075 } 1076 1077 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1078 const char *Name = "polly_freeContext"; 1079 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1080 Function *F = M->getFunction(Name); 1081 1082 // If F is not available, declare it. 1083 if (!F) { 1084 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1085 std::vector<Type *> Args; 1086 Args.push_back(Builder.getInt8PtrTy()); 1087 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1088 F = Function::Create(Ty, Linkage, Name, M); 1089 } 1090 1091 Builder.CreateCall(F, {Context}); 1092 } 1093 1094 /// Check if one string is a prefix of another. 1095 /// 1096 /// @param String The string in which to look for the prefix. 1097 /// @param Prefix The prefix to look for. 1098 static bool isPrefix(std::string String, std::string Prefix) { 1099 return String.find(Prefix) == 0; 1100 } 1101 1102 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1103 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1104 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1105 1106 if (!gpu_array_is_scalar(Array)) { 1107 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1108 1109 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1110 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1111 1112 for (unsigned int i = 1; i < Array->n_index; i++) { 1113 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1114 isl::ast_expr Expr = Build.expr_from(Bound_I); 1115 Res = Res.mul(Expr); 1116 } 1117 1118 Value *NumElements = ExprBuilder.create(Res.release()); 1119 if (NumElements->getType() != ArraySize->getType()) 1120 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1121 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1122 } 1123 return ArraySize; 1124 } 1125 1126 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1127 if (gpu_array_is_scalar(Array)) 1128 return nullptr; 1129 1130 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1131 1132 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1133 1134 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1135 1136 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1137 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1138 1139 if (Min.is_subset(ZeroSet)) { 1140 return nullptr; 1141 } 1142 1143 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1144 1145 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1146 if (i > 0) { 1147 isl::pw_aff Bound_I = 1148 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1149 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1150 Result = Result.mul(BExpr); 1151 } 1152 isl::pw_aff DimMin = Min.dim_min(i); 1153 isl::ast_expr MExpr = Build.expr_from(DimMin); 1154 Result = Result.add(MExpr); 1155 } 1156 1157 return ExprBuilder.create(Result.release()); 1158 } 1159 1160 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1161 ScopArrayInfo *ArrayInfo) { 1162 assert(PollyManagedMemory && "Only used when you wish to get a host " 1163 "pointer for sending data to the kernel, " 1164 "with managed memory"); 1165 std::map<ScopArrayInfo *, Value *>::iterator it; 1166 it = DeviceAllocations.find(ArrayInfo); 1167 assert(it != DeviceAllocations.end() && 1168 "Device array expected to be available"); 1169 return it->second; 1170 } 1171 1172 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1173 enum DataDirection Direction) { 1174 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1175 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1176 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1177 isl_id *Id = isl_ast_expr_get_id(Arg); 1178 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1179 auto ScopArray = (ScopArrayInfo *)(Array->user); 1180 1181 Value *Size = getArraySize(Array); 1182 Value *Offset = getArrayOffset(Array); 1183 Value *DevPtr = DeviceAllocations[ScopArray]; 1184 1185 Value *HostPtr; 1186 1187 if (gpu_array_is_scalar(Array)) 1188 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1189 else 1190 HostPtr = ScopArray->getBasePtr(); 1191 HostPtr = getLatestValue(HostPtr); 1192 1193 if (Offset) { 1194 HostPtr = Builder.CreatePointerCast( 1195 HostPtr, ScopArray->getElementType()->getPointerTo()); 1196 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1197 } 1198 1199 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1200 1201 if (Offset) { 1202 Size = Builder.CreateSub( 1203 Size, Builder.CreateMul( 1204 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1205 } 1206 1207 if (Direction == HOST_TO_DEVICE) 1208 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1209 else 1210 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1211 1212 isl_id_free(Id); 1213 isl_ast_expr_free(Arg); 1214 isl_ast_expr_free(Expr); 1215 isl_ast_node_free(TransferStmt); 1216 } 1217 1218 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1219 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1220 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1221 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1222 isl_id_free(Id); 1223 isl_ast_expr_free(StmtExpr); 1224 1225 const char *Str = isl_id_get_name(Id); 1226 if (!strcmp(Str, "kernel")) { 1227 createKernel(UserStmt); 1228 if (PollyManagedMemory) 1229 createCallSynchronizeDevice(); 1230 isl_ast_expr_free(Expr); 1231 return; 1232 } 1233 if (!strcmp(Str, "init_device")) { 1234 initializeAfterRTH(); 1235 isl_ast_node_free(UserStmt); 1236 isl_ast_expr_free(Expr); 1237 return; 1238 } 1239 if (!strcmp(Str, "clear_device")) { 1240 finalize(); 1241 isl_ast_node_free(UserStmt); 1242 isl_ast_expr_free(Expr); 1243 return; 1244 } 1245 if (isPrefix(Str, "to_device")) { 1246 if (!PollyManagedMemory) 1247 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1248 else 1249 isl_ast_node_free(UserStmt); 1250 1251 isl_ast_expr_free(Expr); 1252 return; 1253 } 1254 1255 if (isPrefix(Str, "from_device")) { 1256 if (!PollyManagedMemory) { 1257 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1258 } else { 1259 isl_ast_node_free(UserStmt); 1260 } 1261 isl_ast_expr_free(Expr); 1262 return; 1263 } 1264 1265 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1266 struct ppcg_kernel_stmt *KernelStmt = 1267 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1268 isl_id_free(Anno); 1269 1270 switch (KernelStmt->type) { 1271 case ppcg_kernel_domain: 1272 createScopStmt(Expr, KernelStmt); 1273 isl_ast_node_free(UserStmt); 1274 return; 1275 case ppcg_kernel_copy: 1276 createKernelCopy(KernelStmt); 1277 isl_ast_expr_free(Expr); 1278 isl_ast_node_free(UserStmt); 1279 return; 1280 case ppcg_kernel_sync: 1281 createKernelSync(); 1282 isl_ast_expr_free(Expr); 1283 isl_ast_node_free(UserStmt); 1284 return; 1285 } 1286 1287 isl_ast_expr_free(Expr); 1288 isl_ast_node_free(UserStmt); 1289 } 1290 1291 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1292 createForSequential(Node, false); 1293 } 1294 1295 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1296 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1297 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1298 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1299 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1300 Index = isl_ast_expr_address_of(Index); 1301 Value *GlobalAddr = ExprBuilder.create(Index); 1302 1303 if (KernelStmt->u.c.read) { 1304 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1305 Builder.CreateStore(Load, LocalAddr); 1306 } else { 1307 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1308 Builder.CreateStore(Load, GlobalAddr); 1309 } 1310 } 1311 1312 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1313 ppcg_kernel_stmt *KernelStmt) { 1314 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1315 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1316 1317 LoopToScevMapT LTS; 1318 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1319 1320 createSubstitutions(Expr, Stmt, LTS); 1321 1322 if (Stmt->isBlockStmt()) 1323 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1324 else 1325 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1326 } 1327 1328 void GPUNodeBuilder::createKernelSync() { 1329 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1330 const char *SpirName = "__gen_ocl_barrier_global"; 1331 1332 Function *Sync; 1333 1334 switch (Arch) { 1335 case GPUArch::SPIR64: 1336 case GPUArch::SPIR32: 1337 Sync = M->getFunction(SpirName); 1338 1339 // If Sync is not available, declare it. 1340 if (!Sync) { 1341 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1342 std::vector<Type *> Args; 1343 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1344 Sync = Function::Create(Ty, Linkage, SpirName, M); 1345 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1346 } 1347 break; 1348 case GPUArch::NVPTX64: 1349 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1350 break; 1351 } 1352 1353 Builder.CreateCall(Sync, {}); 1354 } 1355 1356 /// Collect llvm::Values referenced from @p Node 1357 /// 1358 /// This function only applies to isl_ast_nodes that are user_nodes referring 1359 /// to a ScopStmt. All other node types are ignore. 1360 /// 1361 /// @param Node The node to collect references for. 1362 /// @param User A user pointer used as storage for the data that is collected. 1363 /// 1364 /// @returns isl_bool_true if data could be collected successfully. 1365 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1366 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1367 return isl_bool_true; 1368 1369 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1370 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1371 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1372 const char *Str = isl_id_get_name(Id); 1373 isl_id_free(Id); 1374 isl_ast_expr_free(StmtExpr); 1375 isl_ast_expr_free(Expr); 1376 1377 if (!isPrefix(Str, "Stmt")) 1378 return isl_bool_true; 1379 1380 Id = isl_ast_node_get_annotation(Node); 1381 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1382 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1383 isl_id_free(Id); 1384 1385 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1386 1387 return isl_bool_true; 1388 } 1389 1390 /// A list of functions that are available in NVIDIA's libdevice. 1391 const std::set<std::string> CUDALibDeviceFunctions = { 1392 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1393 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1394 1395 // A map from intrinsics to their corresponding libdevice functions. 1396 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1397 {"llvm.exp.f64", "exp"}, 1398 {"llvm.exp.f32", "expf"}, 1399 {"llvm.powi.f64", "powi"}, 1400 {"llvm.powi.f32", "powif"}}; 1401 1402 /// Return the corresponding CUDA libdevice function name @p Name. 1403 /// Note that this function will try to convert instrinsics in the list 1404 /// IntrinsicToLibdeviceFunc into libdevice functions. 1405 /// This is because some intrinsics such as `exp` 1406 /// are not supported by the NVPTX backend. 1407 /// If this restriction of the backend is lifted, we should refactor our code 1408 /// so that we use intrinsics whenever possible. 1409 /// 1410 /// Return "" if we are not compiling for CUDA. 1411 std::string getCUDALibDeviceFuntion(StringRef Name) { 1412 auto It = IntrinsicToLibdeviceFunc.find(Name); 1413 if (It != IntrinsicToLibdeviceFunc.end()) 1414 return getCUDALibDeviceFuntion(It->second); 1415 1416 if (CUDALibDeviceFunctions.count(Name)) 1417 return ("__nv_" + Name).str(); 1418 1419 return ""; 1420 } 1421 1422 /// Check if F is a function that we can code-generate in a GPU kernel. 1423 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1424 assert(F && "F is an invalid pointer"); 1425 // We string compare against the name of the function to allow 1426 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1427 // "llvm.copysign". 1428 const StringRef Name = F->getName(); 1429 1430 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1431 return true; 1432 1433 return F->isIntrinsic() && 1434 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1435 Name.startswith("llvm.copysign")); 1436 } 1437 1438 /// Do not take `Function` as a subtree value. 1439 /// 1440 /// We try to take the reference of all subtree values and pass them along 1441 /// to the kernel from the host. Taking an address of any function and 1442 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1443 /// `Function`s. 1444 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1445 1446 /// Return `Function`s from `RawSubtreeValues`. 1447 static SetVector<Function *> 1448 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1449 bool AllowCUDALibDevice) { 1450 SetVector<Function *> SubtreeFunctions; 1451 for (Value *It : RawSubtreeValues) { 1452 Function *F = dyn_cast<Function>(It); 1453 if (F) { 1454 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1455 "Code should have bailed out by " 1456 "this point if an invalid function " 1457 "were present in a kernel."); 1458 SubtreeFunctions.insert(F); 1459 } 1460 } 1461 return SubtreeFunctions; 1462 } 1463 1464 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1465 isl::space> 1466 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1467 SetVector<Value *> SubtreeValues; 1468 SetVector<const SCEV *> SCEVs; 1469 SetVector<const Loop *> Loops; 1470 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1471 SubtreeReferences References = { 1472 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1473 &ParamSpace}; 1474 1475 for (const auto &I : IDToValue) 1476 SubtreeValues.insert(I.second); 1477 1478 // NOTE: this is populated in IslNodeBuilder::addParameters 1479 // See [Code generation of induction variables of loops outside Scops]. 1480 for (const auto &I : OutsideLoopIterations) 1481 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1482 1483 isl_ast_node_foreach_descendant_top_down( 1484 Kernel->tree, collectReferencesInGPUStmt, &References); 1485 1486 for (const SCEV *Expr : SCEVs) { 1487 findValues(Expr, SE, SubtreeValues); 1488 findLoops(Expr, Loops); 1489 } 1490 1491 Loops.remove_if([this](const Loop *L) { 1492 return S.contains(L) || L->contains(S.getEntry()); 1493 }); 1494 1495 for (auto &SAI : S.arrays()) 1496 SubtreeValues.remove(SAI->getBasePtr()); 1497 1498 isl_space *Space = S.getParamSpace().release(); 1499 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1500 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1501 assert(IDToValue.count(Id)); 1502 Value *Val = IDToValue[Id]; 1503 SubtreeValues.remove(Val); 1504 isl_id_free(Id); 1505 } 1506 isl_space_free(Space); 1507 1508 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1509 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1510 assert(IDToValue.count(Id)); 1511 Value *Val = IDToValue[Id]; 1512 SubtreeValues.remove(Val); 1513 isl_id_free(Id); 1514 } 1515 1516 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1517 // SubtreeValues. This is important, because we should not lose any 1518 // SubtreeValues in the process of constructing the 1519 // "ValidSubtree{Values, Functions} sets. Nor should the set 1520 // ValidSubtree{Values, Functions} have any common element. 1521 auto ValidSubtreeValuesIt = 1522 make_filter_range(SubtreeValues, isValidSubtreeValue); 1523 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1524 ValidSubtreeValuesIt.end()); 1525 1526 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1527 1528 SetVector<Function *> ValidSubtreeFunctions( 1529 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1530 1531 // @see IslNodeBuilder::getReferencesInSubtree 1532 SetVector<Value *> ReplacedValues; 1533 for (Value *V : ValidSubtreeValues) { 1534 auto It = ValueMap.find(V); 1535 if (It == ValueMap.end()) 1536 ReplacedValues.insert(V); 1537 else 1538 ReplacedValues.insert(It->second); 1539 } 1540 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1541 ParamSpace); 1542 } 1543 1544 void GPUNodeBuilder::clearDominators(Function *F) { 1545 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1546 std::vector<BasicBlock *> Nodes; 1547 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1548 Nodes.push_back(I->getBlock()); 1549 1550 for (BasicBlock *BB : Nodes) 1551 DT.eraseNode(BB); 1552 } 1553 1554 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1555 for (BasicBlock &BB : *F) { 1556 Loop *L = LI.getLoopFor(&BB); 1557 if (L) 1558 SE.forgetLoop(L); 1559 } 1560 } 1561 1562 void GPUNodeBuilder::clearLoops(Function *F) { 1563 SmallSet<Loop *, 1> WorkList; 1564 for (BasicBlock &BB : *F) { 1565 Loop *L = LI.getLoopFor(&BB); 1566 if (L) 1567 WorkList.insert(L); 1568 } 1569 for (auto *L : WorkList) 1570 LI.erase(L); 1571 } 1572 1573 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1574 std::vector<Value *> Sizes; 1575 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1576 1577 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1578 for (long i = 0; i < Kernel->n_grid; i++) { 1579 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1580 isl::ast_expr GridSize = Context.expr_from(Size); 1581 Value *Res = ExprBuilder.create(GridSize.release()); 1582 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1583 Sizes.push_back(Res); 1584 } 1585 1586 for (long i = Kernel->n_grid; i < 3; i++) 1587 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1588 1589 return std::make_tuple(Sizes[0], Sizes[1]); 1590 } 1591 1592 std::tuple<Value *, Value *, Value *> 1593 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1594 std::vector<Value *> Sizes; 1595 1596 for (long i = 0; i < Kernel->n_block; i++) { 1597 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1598 Sizes.push_back(Res); 1599 } 1600 1601 for (long i = Kernel->n_block; i < 3; i++) 1602 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1603 1604 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1605 } 1606 1607 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1608 Instruction *Param, int Index) { 1609 Value *Slot = Builder.CreateGEP( 1610 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1611 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1612 Builder.CreateStore(ParamTyped, Slot); 1613 } 1614 1615 Value * 1616 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1617 SetVector<Value *> SubtreeValues) { 1618 const int NumArgs = F->arg_size(); 1619 std::vector<int> ArgSizes(NumArgs); 1620 1621 // If we are using the OpenCL Runtime, we need to add the kernel argument 1622 // sizes to the end of the launch-parameter list, so OpenCL can determine 1623 // how big the respective kernel arguments are. 1624 // Here we need to reserve adequate space for that. 1625 Type *ArrayTy; 1626 if (Runtime == GPURuntime::OpenCL) 1627 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1628 else 1629 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1630 1631 BasicBlock *EntryBlock = 1632 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1633 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1634 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1635 Instruction *Parameters = new AllocaInst( 1636 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1637 1638 int Index = 0; 1639 for (long i = 0; i < Prog->n_array; i++) { 1640 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1641 continue; 1642 1643 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1644 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1645 1646 if (Runtime == GPURuntime::OpenCL) 1647 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1648 1649 Value *DevArray = nullptr; 1650 if (PollyManagedMemory) { 1651 DevArray = getManagedDeviceArray(&Prog->array[i], 1652 const_cast<ScopArrayInfo *>(SAI)); 1653 } else { 1654 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1655 DevArray = createCallGetDevicePtr(DevArray); 1656 } 1657 assert(DevArray != nullptr && "Array to be offloaded to device not " 1658 "initialized"); 1659 Value *Offset = getArrayOffset(&Prog->array[i]); 1660 1661 if (Offset) { 1662 DevArray = Builder.CreatePointerCast( 1663 DevArray, SAI->getElementType()->getPointerTo()); 1664 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1665 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1666 } 1667 Value *Slot = Builder.CreateGEP( 1668 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1669 1670 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1671 Value *ValPtr = nullptr; 1672 if (PollyManagedMemory) 1673 ValPtr = DevArray; 1674 else 1675 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1676 1677 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1678 " to be stored into Parameters"); 1679 Value *ValPtrCast = 1680 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1681 Builder.CreateStore(ValPtrCast, Slot); 1682 } else { 1683 Instruction *Param = 1684 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1685 Launch + "_param_" + std::to_string(Index), 1686 EntryBlock->getTerminator()); 1687 Builder.CreateStore(DevArray, Param); 1688 Value *ParamTyped = 1689 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1690 Builder.CreateStore(ParamTyped, Slot); 1691 } 1692 Index++; 1693 } 1694 1695 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1696 1697 for (long i = 0; i < NumHostIters; i++) { 1698 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1699 Value *Val = IDToValue[Id]; 1700 isl_id_free(Id); 1701 1702 if (Runtime == GPURuntime::OpenCL) 1703 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1704 1705 Instruction *Param = 1706 new AllocaInst(Val->getType(), AddressSpace, 1707 Launch + "_param_" + std::to_string(Index), 1708 EntryBlock->getTerminator()); 1709 Builder.CreateStore(Val, Param); 1710 insertStoreParameter(Parameters, Param, Index); 1711 Index++; 1712 } 1713 1714 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1715 1716 for (long i = 0; i < NumVars; i++) { 1717 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1718 Value *Val = IDToValue[Id]; 1719 if (ValueMap.count(Val)) 1720 Val = ValueMap[Val]; 1721 isl_id_free(Id); 1722 1723 if (Runtime == GPURuntime::OpenCL) 1724 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1725 1726 Instruction *Param = 1727 new AllocaInst(Val->getType(), AddressSpace, 1728 Launch + "_param_" + std::to_string(Index), 1729 EntryBlock->getTerminator()); 1730 Builder.CreateStore(Val, Param); 1731 insertStoreParameter(Parameters, Param, Index); 1732 Index++; 1733 } 1734 1735 for (auto Val : SubtreeValues) { 1736 if (Runtime == GPURuntime::OpenCL) 1737 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1738 1739 Instruction *Param = 1740 new AllocaInst(Val->getType(), AddressSpace, 1741 Launch + "_param_" + std::to_string(Index), 1742 EntryBlock->getTerminator()); 1743 Builder.CreateStore(Val, Param); 1744 insertStoreParameter(Parameters, Param, Index); 1745 Index++; 1746 } 1747 1748 if (Runtime == GPURuntime::OpenCL) { 1749 for (int i = 0; i < NumArgs; i++) { 1750 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1751 Instruction *Param = 1752 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1753 Launch + "_param_size_" + std::to_string(i), 1754 EntryBlock->getTerminator()); 1755 Builder.CreateStore(Val, Param); 1756 insertStoreParameter(Parameters, Param, Index); 1757 Index++; 1758 } 1759 } 1760 1761 auto Location = EntryBlock->getTerminator(); 1762 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1763 Launch + "_params_i8ptr", Location); 1764 } 1765 1766 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1767 SetVector<Function *> SubtreeFunctions) { 1768 for (auto Fn : SubtreeFunctions) { 1769 const std::string ClonedFnName = Fn->getName(); 1770 Function *Clone = GPUModule->getFunction(ClonedFnName); 1771 if (!Clone) 1772 Clone = 1773 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1774 ClonedFnName, GPUModule.get()); 1775 assert(Clone && "Expected cloned function to be initialized."); 1776 assert(ValueMap.find(Fn) == ValueMap.end() && 1777 "Fn already present in ValueMap"); 1778 ValueMap[Fn] = Clone; 1779 } 1780 } 1781 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1782 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1783 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1784 isl_id_free(Id); 1785 isl_ast_node_free(KernelStmt); 1786 1787 if (Kernel->n_grid > 1) 1788 DeepestParallel = 1789 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1790 else 1791 DeepestSequential = 1792 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1793 1794 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1795 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1796 1797 SetVector<Value *> SubtreeValues; 1798 SetVector<Function *> SubtreeFunctions; 1799 SetVector<const Loop *> Loops; 1800 isl::space ParamSpace; 1801 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1802 getReferencesInKernel(Kernel); 1803 1804 // Add parameters that appear only in the access function to the kernel 1805 // space. This is important to make sure that all isl_ids are passed as 1806 // parameters to the kernel, even though we may not have all parameters 1807 // in the context to improve compile time. 1808 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1809 1810 assert(Kernel->tree && "Device AST of kernel node is empty"); 1811 1812 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1813 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1814 ValueMapT HostValueMap = ValueMap; 1815 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1816 ScalarMap.clear(); 1817 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1818 EscapeMap.clear(); 1819 1820 // Create for all loops we depend on values that contain the current loop 1821 // iteration. These values are necessary to generate code for SCEVs that 1822 // depend on such loops. As a result we need to pass them to the subfunction. 1823 for (const Loop *L : Loops) { 1824 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1825 SE.getUnknown(Builder.getInt64(1)), 1826 L, SCEV::FlagAnyWrap); 1827 Value *V = generateSCEV(OuterLIV); 1828 OutsideLoopIterations[L] = SE.getUnknown(V); 1829 SubtreeValues.insert(V); 1830 } 1831 1832 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1833 setupKernelSubtreeFunctions(SubtreeFunctions); 1834 1835 create(isl_ast_node_copy(Kernel->tree)); 1836 1837 finalizeKernelArguments(Kernel); 1838 Function *F = Builder.GetInsertBlock()->getParent(); 1839 if (Arch == GPUArch::NVPTX64) 1840 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1841 clearDominators(F); 1842 clearScalarEvolution(F); 1843 clearLoops(F); 1844 1845 IDToValue = HostIDs; 1846 1847 ValueMap = std::move(HostValueMap); 1848 ScalarMap = std::move(HostScalarMap); 1849 EscapeMap = std::move(HostEscapeMap); 1850 IDToSAI.clear(); 1851 Annotator.resetAlternativeAliasBases(); 1852 for (auto &BasePtr : LocalArrays) 1853 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1854 LocalArrays.clear(); 1855 1856 std::string ASMString = finalizeKernelFunction(); 1857 Builder.SetInsertPoint(&HostInsertPoint); 1858 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1859 1860 std::string Name = getKernelFuncName(Kernel->id); 1861 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1862 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1863 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1864 1865 Value *GridDimX, *GridDimY; 1866 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1867 1868 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1869 BlockDimZ, Parameters); 1870 createCallFreeKernel(GPUKernel); 1871 1872 for (auto Id : KernelIds) 1873 isl_id_free(Id); 1874 1875 KernelIds.clear(); 1876 } 1877 1878 /// Compute the DataLayout string for the NVPTX backend. 1879 /// 1880 /// @param is64Bit Are we looking for a 64 bit architecture? 1881 static std::string computeNVPTXDataLayout(bool is64Bit) { 1882 std::string Ret = ""; 1883 1884 if (!is64Bit) { 1885 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1886 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1887 "64-v128:128:128-n16:32:64"; 1888 } else { 1889 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1890 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1891 "64-v128:128:128-n16:32:64"; 1892 } 1893 1894 return Ret; 1895 } 1896 1897 /// Compute the DataLayout string for a SPIR kernel. 1898 /// 1899 /// @param is64Bit Are we looking for a 64 bit architecture? 1900 static std::string computeSPIRDataLayout(bool is64Bit) { 1901 std::string Ret = ""; 1902 1903 if (!is64Bit) { 1904 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1905 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1906 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1907 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1908 } else { 1909 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1910 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1911 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1912 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1913 } 1914 1915 return Ret; 1916 } 1917 1918 Function * 1919 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1920 SetVector<Value *> &SubtreeValues) { 1921 std::vector<Type *> Args; 1922 std::string Identifier = getKernelFuncName(Kernel->id); 1923 1924 std::vector<Metadata *> MemoryType; 1925 1926 for (long i = 0; i < Prog->n_array; i++) { 1927 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1928 continue; 1929 1930 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1931 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1932 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1933 Args.push_back(SAI->getElementType()); 1934 MemoryType.push_back( 1935 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1936 } else { 1937 static const int UseGlobalMemory = 1; 1938 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1939 MemoryType.push_back( 1940 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1941 } 1942 } 1943 1944 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1945 1946 for (long i = 0; i < NumHostIters; i++) { 1947 Args.push_back(Builder.getInt64Ty()); 1948 MemoryType.push_back( 1949 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1950 } 1951 1952 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1953 1954 for (long i = 0; i < NumVars; i++) { 1955 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1956 Value *Val = IDToValue[Id]; 1957 isl_id_free(Id); 1958 Args.push_back(Val->getType()); 1959 MemoryType.push_back( 1960 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1961 } 1962 1963 for (auto *V : SubtreeValues) { 1964 Args.push_back(V->getType()); 1965 MemoryType.push_back( 1966 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1967 } 1968 1969 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1970 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1971 GPUModule.get()); 1972 1973 std::vector<Metadata *> EmptyStrings; 1974 1975 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1976 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1977 } 1978 1979 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1980 FN->setMetadata("kernel_arg_addr_space", 1981 MDNode::get(FN->getContext(), MemoryType)); 1982 FN->setMetadata("kernel_arg_name", 1983 MDNode::get(FN->getContext(), EmptyStrings)); 1984 FN->setMetadata("kernel_arg_access_qual", 1985 MDNode::get(FN->getContext(), EmptyStrings)); 1986 FN->setMetadata("kernel_arg_type", 1987 MDNode::get(FN->getContext(), EmptyStrings)); 1988 FN->setMetadata("kernel_arg_type_qual", 1989 MDNode::get(FN->getContext(), EmptyStrings)); 1990 FN->setMetadata("kernel_arg_base_type", 1991 MDNode::get(FN->getContext(), EmptyStrings)); 1992 } 1993 1994 switch (Arch) { 1995 case GPUArch::NVPTX64: 1996 FN->setCallingConv(CallingConv::PTX_Kernel); 1997 break; 1998 case GPUArch::SPIR32: 1999 case GPUArch::SPIR64: 2000 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2001 break; 2002 } 2003 2004 auto Arg = FN->arg_begin(); 2005 for (long i = 0; i < Kernel->n_array; i++) { 2006 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2007 continue; 2008 2009 Arg->setName(Kernel->array[i].array->name); 2010 2011 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2012 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2013 Type *EleTy = SAI->getElementType(); 2014 Value *Val = &*Arg; 2015 SmallVector<const SCEV *, 4> Sizes; 2016 isl_ast_build *Build = 2017 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2018 Sizes.push_back(nullptr); 2019 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2020 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2021 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2022 auto V = ExprBuilder.create(DimSize); 2023 Sizes.push_back(SE.getSCEV(V)); 2024 } 2025 const ScopArrayInfo *SAIRep = 2026 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2027 LocalArrays.push_back(Val); 2028 2029 isl_ast_build_free(Build); 2030 KernelIds.push_back(Id); 2031 IDToSAI[Id] = SAIRep; 2032 Arg++; 2033 } 2034 2035 for (long i = 0; i < NumHostIters; i++) { 2036 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2037 Arg->setName(isl_id_get_name(Id)); 2038 IDToValue[Id] = &*Arg; 2039 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2040 Arg++; 2041 } 2042 2043 for (long i = 0; i < NumVars; i++) { 2044 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2045 Arg->setName(isl_id_get_name(Id)); 2046 Value *Val = IDToValue[Id]; 2047 ValueMap[Val] = &*Arg; 2048 IDToValue[Id] = &*Arg; 2049 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2050 Arg++; 2051 } 2052 2053 for (auto *V : SubtreeValues) { 2054 Arg->setName(V->getName()); 2055 ValueMap[V] = &*Arg; 2056 Arg++; 2057 } 2058 2059 return FN; 2060 } 2061 2062 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2063 Intrinsic::ID IntrinsicsBID[2]; 2064 Intrinsic::ID IntrinsicsTID[3]; 2065 2066 switch (Arch) { 2067 case GPUArch::SPIR64: 2068 case GPUArch::SPIR32: 2069 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2070 case GPUArch::NVPTX64: 2071 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2072 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2073 2074 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2075 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2076 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2077 break; 2078 } 2079 2080 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2081 std::string Name = isl_id_get_name(Id); 2082 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2083 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2084 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2085 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2086 IDToValue[Id] = Val; 2087 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2088 }; 2089 2090 for (int i = 0; i < Kernel->n_grid; ++i) { 2091 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2092 addId(Id, IntrinsicsBID[i]); 2093 } 2094 2095 for (int i = 0; i < Kernel->n_block; ++i) { 2096 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2097 addId(Id, IntrinsicsTID[i]); 2098 } 2099 } 2100 2101 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2102 bool SizeTypeIs64bit) { 2103 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2104 "__gen_ocl_get_group_id1", 2105 "__gen_ocl_get_group_id2"}; 2106 2107 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2108 "__gen_ocl_get_local_id1", 2109 "__gen_ocl_get_local_id2"}; 2110 IntegerType *SizeT = 2111 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2112 2113 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2114 IntegerType *SizeT) mutable { 2115 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2116 Function *FN = M->getFunction(Name); 2117 2118 // If FN is not available, declare it. 2119 if (!FN) { 2120 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2121 std::vector<Type *> Args; 2122 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2123 FN = Function::Create(Ty, Linkage, Name, M); 2124 FN->setCallingConv(CallingConv::SPIR_FUNC); 2125 } 2126 2127 Value *Val = Builder.CreateCall(FN, {}); 2128 if (SizeT == Builder.getInt32Ty()) 2129 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2130 IDToValue[Id] = Val; 2131 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2132 }; 2133 2134 for (int i = 0; i < Kernel->n_grid; ++i) 2135 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2136 2137 for (int i = 0; i < Kernel->n_block; ++i) 2138 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2139 } 2140 2141 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2142 auto Arg = FN->arg_begin(); 2143 for (long i = 0; i < Kernel->n_array; i++) { 2144 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2145 continue; 2146 2147 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2148 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2149 isl_id_free(Id); 2150 2151 if (SAI->getNumberOfDimensions() > 0) { 2152 Arg++; 2153 continue; 2154 } 2155 2156 Value *Val = &*Arg; 2157 2158 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2159 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2160 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2161 Val = Builder.CreateLoad(TypedArgPtr); 2162 } 2163 2164 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2165 Builder.CreateStore(Val, Alloca); 2166 2167 Arg++; 2168 } 2169 } 2170 2171 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2172 auto *FN = Builder.GetInsertBlock()->getParent(); 2173 auto Arg = FN->arg_begin(); 2174 2175 bool StoredScalar = false; 2176 for (long i = 0; i < Kernel->n_array; i++) { 2177 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2178 continue; 2179 2180 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2181 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2182 isl_id_free(Id); 2183 2184 if (SAI->getNumberOfDimensions() > 0) { 2185 Arg++; 2186 continue; 2187 } 2188 2189 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2190 Arg++; 2191 continue; 2192 } 2193 2194 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2195 Value *ArgPtr = &*Arg; 2196 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2197 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2198 Value *Val = Builder.CreateLoad(Alloca); 2199 Builder.CreateStore(Val, TypedArgPtr); 2200 StoredScalar = true; 2201 2202 Arg++; 2203 } 2204 2205 if (StoredScalar) { 2206 /// In case more than one thread contains scalar stores, the generated 2207 /// code might be incorrect, if we only store at the end of the kernel. 2208 /// To support this case we need to store these scalars back at each 2209 /// memory store or at least before each kernel barrier. 2210 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2211 BuildSuccessful = 0; 2212 LLVM_DEBUG( 2213 dbgs() << getUniqueScopName(&S) 2214 << " has a store to a scalar value that" 2215 " would be undefined to run in parallel. Bailing out.\n";); 2216 } 2217 } 2218 } 2219 2220 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2221 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2222 2223 for (int i = 0; i < Kernel->n_var; ++i) { 2224 struct ppcg_kernel_var &Var = Kernel->var[i]; 2225 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2226 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2227 2228 Type *ArrayTy = EleTy; 2229 SmallVector<const SCEV *, 4> Sizes; 2230 2231 Sizes.push_back(nullptr); 2232 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2233 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2234 long Bound = isl_val_get_num_si(Val); 2235 isl_val_free(Val); 2236 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2237 } 2238 2239 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2240 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2241 long Bound = isl_val_get_num_si(Val); 2242 isl_val_free(Val); 2243 ArrayTy = ArrayType::get(ArrayTy, Bound); 2244 } 2245 2246 const ScopArrayInfo *SAI; 2247 Value *Allocation; 2248 if (Var.type == ppcg_access_shared) { 2249 auto GlobalVar = new GlobalVariable( 2250 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2251 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2252 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2253 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2254 2255 Allocation = GlobalVar; 2256 } else if (Var.type == ppcg_access_private) { 2257 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2258 } else { 2259 llvm_unreachable("unknown variable type"); 2260 } 2261 SAI = 2262 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2263 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2264 IDToValue[Id] = Allocation; 2265 LocalArrays.push_back(Allocation); 2266 KernelIds.push_back(Id); 2267 IDToSAI[Id] = SAI; 2268 } 2269 } 2270 2271 void GPUNodeBuilder::createKernelFunction( 2272 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2273 SetVector<Function *> &SubtreeFunctions) { 2274 std::string Identifier = getKernelFuncName(Kernel->id); 2275 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2276 2277 switch (Arch) { 2278 case GPUArch::NVPTX64: 2279 if (Runtime == GPURuntime::CUDA) 2280 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2281 else if (Runtime == GPURuntime::OpenCL) 2282 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2283 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2284 break; 2285 case GPUArch::SPIR32: 2286 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2287 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2288 break; 2289 case GPUArch::SPIR64: 2290 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2291 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2292 break; 2293 } 2294 2295 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2296 2297 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2298 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2299 2300 DT.addNewBlock(EntryBlock, PrevBlock); 2301 2302 Builder.SetInsertPoint(EntryBlock); 2303 Builder.CreateRetVoid(); 2304 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2305 2306 ScopDetection::markFunctionAsInvalid(FN); 2307 2308 prepareKernelArguments(Kernel, FN); 2309 createKernelVariables(Kernel, FN); 2310 2311 switch (Arch) { 2312 case GPUArch::NVPTX64: 2313 insertKernelIntrinsics(Kernel); 2314 break; 2315 case GPUArch::SPIR32: 2316 insertKernelCallsSPIR(Kernel, false); 2317 break; 2318 case GPUArch::SPIR64: 2319 insertKernelCallsSPIR(Kernel, true); 2320 break; 2321 } 2322 } 2323 2324 std::string GPUNodeBuilder::createKernelASM() { 2325 llvm::Triple GPUTriple; 2326 2327 switch (Arch) { 2328 case GPUArch::NVPTX64: 2329 switch (Runtime) { 2330 case GPURuntime::CUDA: 2331 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2332 break; 2333 case GPURuntime::OpenCL: 2334 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2335 break; 2336 } 2337 break; 2338 case GPUArch::SPIR64: 2339 case GPUArch::SPIR32: 2340 std::string SPIRAssembly; 2341 raw_string_ostream IROstream(SPIRAssembly); 2342 IROstream << *GPUModule; 2343 IROstream.flush(); 2344 return SPIRAssembly; 2345 } 2346 2347 std::string ErrMsg; 2348 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2349 2350 if (!GPUTarget) { 2351 errs() << ErrMsg << "\n"; 2352 return ""; 2353 } 2354 2355 TargetOptions Options; 2356 Options.UnsafeFPMath = FastMath; 2357 2358 std::string subtarget; 2359 2360 switch (Arch) { 2361 case GPUArch::NVPTX64: 2362 subtarget = CudaVersion; 2363 break; 2364 case GPUArch::SPIR32: 2365 case GPUArch::SPIR64: 2366 llvm_unreachable("No subtarget for SPIR architecture"); 2367 } 2368 2369 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2370 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2371 2372 SmallString<0> ASMString; 2373 raw_svector_ostream ASMStream(ASMString); 2374 llvm::legacy::PassManager PM; 2375 2376 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2377 2378 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, 2379 TargetMachine::CGFT_AssemblyFile, 2380 true /* verify */)) { 2381 errs() << "The target does not support generation of this file type!\n"; 2382 return ""; 2383 } 2384 2385 PM.run(*GPUModule); 2386 2387 return ASMStream.str(); 2388 } 2389 2390 bool GPUNodeBuilder::requiresCUDALibDevice() { 2391 bool RequiresLibDevice = false; 2392 for (Function &F : GPUModule->functions()) { 2393 if (!F.isDeclaration()) 2394 continue; 2395 2396 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2397 if (CUDALibDeviceFunc.length() != 0) { 2398 // We need to handle the case where a module looks like this: 2399 // @expf(..) 2400 // @llvm.exp.f64(..) 2401 // Both of these functions would be renamed to `__nv_expf`. 2402 // 2403 // So, we must first check for the existence of the libdevice function. 2404 // If this exists, we replace our current function with it. 2405 // 2406 // If it does not exist, we rename the current function to the 2407 // libdevice functiono name. 2408 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2409 F.replaceAllUsesWith(Replacement); 2410 else 2411 F.setName(CUDALibDeviceFunc); 2412 RequiresLibDevice = true; 2413 } 2414 } 2415 2416 return RequiresLibDevice; 2417 } 2418 2419 void GPUNodeBuilder::addCUDALibDevice() { 2420 if (Arch != GPUArch::NVPTX64) 2421 return; 2422 2423 if (requiresCUDALibDevice()) { 2424 SMDiagnostic Error; 2425 2426 errs() << CUDALibDevice << "\n"; 2427 auto LibDeviceModule = 2428 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2429 2430 if (!LibDeviceModule) { 2431 BuildSuccessful = false; 2432 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2433 "kernel generation. Please set -polly-acc-libdevice " 2434 "accordingly.\n"); 2435 return; 2436 } 2437 2438 Linker L(*GPUModule); 2439 2440 // Set an nvptx64 target triple to avoid linker warnings. The original 2441 // triple of the libdevice files are nvptx-unknown-unknown. 2442 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2443 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2444 } 2445 } 2446 2447 std::string GPUNodeBuilder::finalizeKernelFunction() { 2448 2449 if (verifyModule(*GPUModule)) { 2450 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2451 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2452 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2453 verifyModule(*GPUModule, &dbgs());); 2454 2455 if (FailOnVerifyModuleFailure) 2456 llvm_unreachable("VerifyModule failed."); 2457 2458 BuildSuccessful = false; 2459 return ""; 2460 } 2461 2462 addCUDALibDevice(); 2463 2464 if (DumpKernelIR) 2465 outs() << *GPUModule << "\n"; 2466 2467 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2468 // Optimize module. 2469 llvm::legacy::PassManager OptPasses; 2470 PassManagerBuilder PassBuilder; 2471 PassBuilder.OptLevel = 3; 2472 PassBuilder.SizeLevel = 0; 2473 PassBuilder.populateModulePassManager(OptPasses); 2474 OptPasses.run(*GPUModule); 2475 } 2476 2477 std::string Assembly = createKernelASM(); 2478 2479 if (DumpKernelASM) 2480 outs() << Assembly << "\n"; 2481 2482 GPUModule.release(); 2483 KernelIDs.clear(); 2484 2485 return Assembly; 2486 } 2487 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2488 /// @param PwAffs The list of piecewise affine functions to create an 2489 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2490 /// all the isl_pw_aff are used up by this function. 2491 /// 2492 /// @returns The `isl_pw_aff_list`. 2493 __isl_give isl_pw_aff_list * 2494 createPwAffList(isl_ctx *Context, 2495 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2496 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2497 2498 for (unsigned i = 0; i < PwAffs.size(); i++) { 2499 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2500 } 2501 return List; 2502 } 2503 2504 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2505 /// 2506 /// We loop over all `pw_aff` and align all of their spaces together to 2507 /// create a common space for all the `pw_aff`. This common space is the 2508 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2509 /// with the given `SeedSpace`. 2510 /// @param PwAffs The list of piecewise affine functions we want to align. 2511 /// This is an rvalue reference because the entire vector is 2512 /// used up by the end of the operation. 2513 /// @param SeedSpace The space to start the alignment process with. 2514 /// @returns A std::pair, whose first element is the aligned space, 2515 /// whose second element is the vector of aligned piecewise 2516 /// affines. 2517 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2518 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2519 __isl_take isl_space *SeedSpace) { 2520 assert(SeedSpace && "Invalid seed space given."); 2521 2522 isl_space *AlignSpace = SeedSpace; 2523 for (isl_pw_aff *PwAff : PwAffs) { 2524 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2525 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2526 } 2527 std::vector<isl_pw_aff *> AdjustedPwAffs; 2528 2529 for (unsigned i = 0; i < PwAffs.size(); i++) { 2530 isl_pw_aff *Adjusted = PwAffs[i]; 2531 assert(Adjusted && "Invalid pw_aff given."); 2532 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2533 AdjustedPwAffs.push_back(Adjusted); 2534 } 2535 return std::make_pair(AlignSpace, AdjustedPwAffs); 2536 } 2537 2538 namespace { 2539 class PPCGCodeGeneration : public ScopPass { 2540 public: 2541 static char ID; 2542 2543 GPURuntime Runtime = GPURuntime::CUDA; 2544 2545 GPUArch Architecture = GPUArch::NVPTX64; 2546 2547 /// The scop that is currently processed. 2548 Scop *S; 2549 2550 LoopInfo *LI; 2551 DominatorTree *DT; 2552 ScalarEvolution *SE; 2553 const DataLayout *DL; 2554 RegionInfo *RI; 2555 2556 PPCGCodeGeneration() : ScopPass(ID) {} 2557 2558 /// Construct compilation options for PPCG. 2559 /// 2560 /// @returns The compilation options. 2561 ppcg_options *createPPCGOptions() { 2562 auto DebugOptions = 2563 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2564 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2565 2566 DebugOptions->dump_schedule_constraints = false; 2567 DebugOptions->dump_schedule = false; 2568 DebugOptions->dump_final_schedule = false; 2569 DebugOptions->dump_sizes = false; 2570 DebugOptions->verbose = false; 2571 2572 Options->debug = DebugOptions; 2573 2574 Options->group_chains = false; 2575 Options->reschedule = true; 2576 Options->scale_tile_loops = false; 2577 Options->wrap = false; 2578 2579 Options->non_negative_parameters = false; 2580 Options->ctx = nullptr; 2581 Options->sizes = nullptr; 2582 2583 Options->tile = true; 2584 Options->tile_size = 32; 2585 2586 Options->isolate_full_tiles = false; 2587 2588 Options->use_private_memory = PrivateMemory; 2589 Options->use_shared_memory = SharedMemory; 2590 Options->max_shared_memory = 48 * 1024; 2591 2592 Options->target = PPCG_TARGET_CUDA; 2593 Options->openmp = false; 2594 Options->linearize_device_arrays = true; 2595 Options->allow_gnu_extensions = false; 2596 2597 Options->unroll_copy_shared = false; 2598 Options->unroll_gpu_tile = false; 2599 Options->live_range_reordering = true; 2600 2601 Options->live_range_reordering = true; 2602 Options->hybrid = false; 2603 Options->opencl_compiler_options = nullptr; 2604 Options->opencl_use_gpu = false; 2605 Options->opencl_n_include_file = 0; 2606 Options->opencl_include_files = nullptr; 2607 Options->opencl_print_kernel_types = false; 2608 Options->opencl_embed_kernel_code = false; 2609 2610 Options->save_schedule_file = nullptr; 2611 Options->load_schedule_file = nullptr; 2612 2613 return Options; 2614 } 2615 2616 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2617 /// 2618 /// Instead of a normal access of the form: 2619 /// 2620 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2621 /// 2622 /// a tagged access has the form 2623 /// 2624 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2625 /// 2626 /// where 'id' is an additional space that references the memory access that 2627 /// triggered the access. 2628 /// 2629 /// @param AccessTy The type of the memory accesses to collect. 2630 /// 2631 /// @return The relation describing all tagged memory accesses. 2632 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2633 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2634 2635 for (auto &Stmt : *S) 2636 for (auto &Acc : Stmt) 2637 if (Acc->getType() == AccessTy) { 2638 isl_map *Relation = Acc->getAccessRelation().release(); 2639 Relation = 2640 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2641 2642 isl_space *Space = isl_map_get_space(Relation); 2643 Space = isl_space_range(Space); 2644 Space = isl_space_from_range(Space); 2645 Space = 2646 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2647 isl_map *Universe = isl_map_universe(Space); 2648 Relation = isl_map_domain_product(Relation, Universe); 2649 Accesses = isl_union_map_add_map(Accesses, Relation); 2650 } 2651 2652 return Accesses; 2653 } 2654 2655 /// Get the set of all read accesses, tagged with the access id. 2656 /// 2657 /// @see getTaggedAccesses 2658 isl_union_map *getTaggedReads() { 2659 return getTaggedAccesses(MemoryAccess::READ); 2660 } 2661 2662 /// Get the set of all may (and must) accesses, tagged with the access id. 2663 /// 2664 /// @see getTaggedAccesses 2665 isl_union_map *getTaggedMayWrites() { 2666 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2667 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2668 } 2669 2670 /// Get the set of all must accesses, tagged with the access id. 2671 /// 2672 /// @see getTaggedAccesses 2673 isl_union_map *getTaggedMustWrites() { 2674 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2675 } 2676 2677 /// Collect parameter and array names as isl_ids. 2678 /// 2679 /// To reason about the different parameters and arrays used, ppcg requires 2680 /// a list of all isl_ids in use. As PPCG traditionally performs 2681 /// source-to-source compilation each of these isl_ids is mapped to the 2682 /// expression that represents it. As we do not have a corresponding 2683 /// expression in Polly, we just map each id to a 'zero' expression to match 2684 /// the data format that ppcg expects. 2685 /// 2686 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2687 __isl_give isl_id_to_ast_expr *getNames() { 2688 auto *Names = isl_id_to_ast_expr_alloc( 2689 S->getIslCtx().get(), 2690 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2691 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2692 2693 for (const SCEV *P : S->parameters()) { 2694 isl_id *Id = S->getIdForParam(P).release(); 2695 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2696 } 2697 2698 for (auto &Array : S->arrays()) { 2699 auto Id = Array->getBasePtrId().release(); 2700 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2701 } 2702 2703 isl_ast_expr_free(Zero); 2704 2705 return Names; 2706 } 2707 2708 /// Create a new PPCG scop from the current scop. 2709 /// 2710 /// The PPCG scop is initialized with data from the current polly::Scop. From 2711 /// this initial data, the data-dependences in the PPCG scop are initialized. 2712 /// We do not use Polly's dependence analysis for now, to ensure we match 2713 /// the PPCG default behaviour more closely. 2714 /// 2715 /// @returns A new ppcg scop. 2716 ppcg_scop *createPPCGScop() { 2717 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2718 2719 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2720 2721 PPCGScop->options = createPPCGOptions(); 2722 // enable live range reordering 2723 PPCGScop->options->live_range_reordering = 1; 2724 2725 PPCGScop->start = 0; 2726 PPCGScop->end = 0; 2727 2728 PPCGScop->context = S->getContext().release(); 2729 PPCGScop->domain = S->getDomains().release(); 2730 // TODO: investigate this further. PPCG calls collect_call_domains. 2731 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2732 PPCGScop->tagged_reads = getTaggedReads(); 2733 PPCGScop->reads = S->getReads().release(); 2734 PPCGScop->live_in = nullptr; 2735 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2736 PPCGScop->may_writes = S->getWrites().release(); 2737 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2738 PPCGScop->must_writes = S->getMustWrites().release(); 2739 PPCGScop->live_out = nullptr; 2740 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2741 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2742 2743 PPCGScop->tagger = nullptr; 2744 PPCGScop->independence = 2745 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2746 PPCGScop->dep_flow = nullptr; 2747 PPCGScop->tagged_dep_flow = nullptr; 2748 PPCGScop->dep_false = nullptr; 2749 PPCGScop->dep_forced = nullptr; 2750 PPCGScop->dep_order = nullptr; 2751 PPCGScop->tagged_dep_order = nullptr; 2752 2753 PPCGScop->schedule = S->getScheduleTree().release(); 2754 // If we have something non-trivial to kill, add it to the schedule 2755 if (KillsInfo.KillsSchedule.get()) 2756 PPCGScop->schedule = isl_schedule_sequence( 2757 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2758 2759 PPCGScop->names = getNames(); 2760 PPCGScop->pet = nullptr; 2761 2762 compute_tagger(PPCGScop); 2763 compute_dependences(PPCGScop); 2764 eliminate_dead_code(PPCGScop); 2765 2766 return PPCGScop; 2767 } 2768 2769 /// Collect the array accesses in a statement. 2770 /// 2771 /// @param Stmt The statement for which to collect the accesses. 2772 /// 2773 /// @returns A list of array accesses. 2774 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2775 gpu_stmt_access *Accesses = nullptr; 2776 2777 for (MemoryAccess *Acc : Stmt) { 2778 auto Access = 2779 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2780 Access->read = Acc->isRead(); 2781 Access->write = Acc->isWrite(); 2782 Access->access = Acc->getAccessRelation().release(); 2783 isl_space *Space = isl_map_get_space(Access->access); 2784 Space = isl_space_range(Space); 2785 Space = isl_space_from_range(Space); 2786 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2787 isl_map *Universe = isl_map_universe(Space); 2788 Access->tagged_access = 2789 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2790 Access->exact_write = !Acc->isMayWrite(); 2791 Access->ref_id = Acc->getId().release(); 2792 Access->next = Accesses; 2793 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2794 // TODO: Also mark one-element accesses to arrays as fixed-element. 2795 Access->fixed_element = 2796 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2797 Accesses = Access; 2798 } 2799 2800 return Accesses; 2801 } 2802 2803 /// Collect the list of GPU statements. 2804 /// 2805 /// Each statement has an id, a pointer to the underlying data structure, 2806 /// as well as a list with all memory accesses. 2807 /// 2808 /// TODO: Initialize the list of memory accesses. 2809 /// 2810 /// @returns A linked-list of statements. 2811 gpu_stmt *getStatements() { 2812 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2813 std::distance(S->begin(), S->end())); 2814 2815 int i = 0; 2816 for (auto &Stmt : *S) { 2817 gpu_stmt *GPUStmt = &Stmts[i]; 2818 2819 GPUStmt->id = Stmt.getDomainId().release(); 2820 2821 // We use the pet stmt pointer to keep track of the Polly statements. 2822 GPUStmt->stmt = (pet_stmt *)&Stmt; 2823 GPUStmt->accesses = getStmtAccesses(Stmt); 2824 i++; 2825 } 2826 2827 return Stmts; 2828 } 2829 2830 /// Derive the extent of an array. 2831 /// 2832 /// The extent of an array is the set of elements that are within the 2833 /// accessed array. For the inner dimensions, the extent constraints are 2834 /// 0 and the size of the corresponding array dimension. For the first 2835 /// (outermost) dimension, the extent constraints are the minimal and maximal 2836 /// subscript value for the first dimension. 2837 /// 2838 /// @param Array The array to derive the extent for. 2839 /// 2840 /// @returns An isl_set describing the extent of the array. 2841 isl::set getExtent(ScopArrayInfo *Array) { 2842 unsigned NumDims = Array->getNumberOfDimensions(); 2843 2844 if (Array->getNumberOfDimensions() == 0) 2845 return isl::set::universe(Array->getSpace()); 2846 2847 isl::union_map Accesses = S->getAccesses(Array); 2848 isl::union_set AccessUSet = Accesses.range(); 2849 AccessUSet = AccessUSet.coalesce(); 2850 AccessUSet = AccessUSet.detect_equalities(); 2851 AccessUSet = AccessUSet.coalesce(); 2852 2853 if (AccessUSet.is_empty()) 2854 return isl::set::empty(Array->getSpace()); 2855 2856 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2857 2858 isl::local_space LS = isl::local_space(Array->getSpace()); 2859 2860 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2861 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2862 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2863 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2864 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2865 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2866 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2867 2868 isl::set Extent = isl::set::universe(Array->getSpace()); 2869 2870 Extent = Extent.intersect(OuterMin.le_set(Val)); 2871 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2872 2873 for (unsigned i = 1; i < NumDims; ++i) 2874 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2875 2876 for (unsigned i = 0; i < NumDims; ++i) { 2877 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2878 2879 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2880 // Fortran array will we have a legitimate dimension. 2881 if (PwAff.is_null()) { 2882 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2883 continue; 2884 } 2885 2886 isl::pw_aff Val = isl::aff::var_on_domain( 2887 isl::local_space(Array->getSpace()), isl::dim::set, i); 2888 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2889 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2890 isl::set Set = PwAff.gt_set(Val); 2891 Extent = Set.intersect(Extent); 2892 } 2893 2894 return Extent; 2895 } 2896 2897 /// Derive the bounds of an array. 2898 /// 2899 /// For the first dimension we derive the bound of the array from the extent 2900 /// of this dimension. For inner dimensions we obtain their size directly from 2901 /// ScopArrayInfo. 2902 /// 2903 /// @param PPCGArray The array to compute bounds for. 2904 /// @param Array The polly array from which to take the information. 2905 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2906 std::vector<isl_pw_aff *> Bounds; 2907 2908 if (PPCGArray.n_index > 0) { 2909 if (isl_set_is_empty(PPCGArray.extent)) { 2910 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2911 isl_local_space *LS = isl_local_space_from_space( 2912 isl_space_params(isl_set_get_space(Dom))); 2913 isl_set_free(Dom); 2914 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2915 Bounds.push_back(Zero); 2916 } else { 2917 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2918 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2919 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2920 isl_set_free(Dom); 2921 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2922 isl_local_space *LS = 2923 isl_local_space_from_space(isl_set_get_space(Dom)); 2924 isl_aff *One = isl_aff_zero_on_domain(LS); 2925 One = isl_aff_add_constant_si(One, 1); 2926 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2927 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2928 Bounds.push_back(Bound); 2929 } 2930 } 2931 2932 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2933 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2934 auto LS = isl_pw_aff_get_domain_space(Bound); 2935 auto Aff = isl_multi_aff_zero(LS); 2936 2937 // We need types to work out, which is why we perform this weird dance 2938 // with `Aff` and `Bound`. Consider this example: 2939 2940 // LS: [p] -> { [] } 2941 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2942 // This `~` is used to denote a "null space" (which is different from 2943 // a *zero dimensional* space), which is something that ISL does not 2944 // show you when pretty printing. 2945 2946 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2947 // space, not a "null space" which does not exist at all. 2948 2949 // When we pullback (precompose) `Bound` with `Zero`, we get: 2950 // Bound . Zero = 2951 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2952 // [p] -> { ~ -> [(10p)] } = 2953 // [p] -> [(10p)] (as ISL pretty prints it) 2954 // Bound Pullback: [p] -> { [(10p)] } 2955 2956 // We want this kind of an expression for Bound, without a 2957 // zero dimensional input, but with a "null space" input for the types 2958 // to work out later on, as far as I (Siddharth Bhat) understand. 2959 // I was unable to find a reference to this in the ISL manual. 2960 // References: Tobias Grosser. 2961 2962 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2963 Bounds.push_back(Bound); 2964 } 2965 2966 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2967 /// to have the same parameter dimensions. So, we need to align them to an 2968 /// appropriate space. 2969 /// Scop::Context is _not_ an appropriate space, because when we have 2970 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2971 /// contain all parameter dimensions. 2972 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2973 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2974 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2975 2976 isl_space *AlignSpace = nullptr; 2977 std::vector<isl_pw_aff *> AlignedBounds; 2978 std::tie(AlignSpace, AlignedBounds) = 2979 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2980 2981 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2982 2983 isl_pw_aff_list *BoundsList = 2984 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 2985 2986 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2987 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2988 2989 assert(BoundsSpace && "Unable to access space of array."); 2990 assert(BoundsList && "Unable to access list of bounds."); 2991 2992 PPCGArray.bound = 2993 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2994 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2995 } 2996 2997 /// Create the arrays for @p PPCGProg. 2998 /// 2999 /// @param PPCGProg The program to compute the arrays for. 3000 void createArrays(gpu_prog *PPCGProg, 3001 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 3002 int i = 0; 3003 for (auto &Array : ValidSAIs) { 3004 std::string TypeName; 3005 raw_string_ostream OS(TypeName); 3006 3007 OS << *Array->getElementType(); 3008 TypeName = OS.str(); 3009 3010 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3011 3012 PPCGArray.space = Array->getSpace().release(); 3013 PPCGArray.type = strdup(TypeName.c_str()); 3014 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3015 PPCGArray.name = strdup(Array->getName().c_str()); 3016 PPCGArray.extent = nullptr; 3017 PPCGArray.n_index = Array->getNumberOfDimensions(); 3018 PPCGArray.extent = getExtent(Array).release(); 3019 PPCGArray.n_ref = 0; 3020 PPCGArray.refs = nullptr; 3021 PPCGArray.accessed = true; 3022 PPCGArray.read_only_scalar = 3023 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3024 PPCGArray.has_compound_element = false; 3025 PPCGArray.local = false; 3026 PPCGArray.declare_local = false; 3027 PPCGArray.global = false; 3028 PPCGArray.linearize = false; 3029 PPCGArray.dep_order = nullptr; 3030 PPCGArray.user = Array; 3031 3032 PPCGArray.bound = nullptr; 3033 setArrayBounds(PPCGArray, Array); 3034 i++; 3035 3036 collect_references(PPCGProg, &PPCGArray); 3037 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3038 } 3039 } 3040 3041 /// Create an identity map between the arrays in the scop. 3042 /// 3043 /// @returns An identity map between the arrays in the scop. 3044 isl_union_map *getArrayIdentity() { 3045 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3046 3047 for (auto &Array : S->arrays()) { 3048 isl_space *Space = Array->getSpace().release(); 3049 Space = isl_space_map_from_set(Space); 3050 isl_map *Identity = isl_map_identity(Space); 3051 Maps = isl_union_map_add_map(Maps, Identity); 3052 } 3053 3054 return Maps; 3055 } 3056 3057 /// Create a default-initialized PPCG GPU program. 3058 /// 3059 /// @returns A new gpu program description. 3060 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3061 3062 if (!PPCGScop) 3063 return nullptr; 3064 3065 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3066 3067 PPCGProg->ctx = S->getIslCtx().get(); 3068 PPCGProg->scop = PPCGScop; 3069 PPCGProg->context = isl_set_copy(PPCGScop->context); 3070 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3071 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3072 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3073 PPCGProg->tagged_must_kill = 3074 isl_union_map_copy(PPCGScop->tagged_must_kills); 3075 PPCGProg->to_inner = getArrayIdentity(); 3076 PPCGProg->to_outer = getArrayIdentity(); 3077 // TODO: verify that this assignment is correct. 3078 PPCGProg->any_to_outer = nullptr; 3079 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3080 PPCGProg->stmts = getStatements(); 3081 3082 // Only consider arrays that have a non-empty extent. 3083 // Otherwise, this will cause us to consider the following kinds of 3084 // empty arrays: 3085 // 1. Invariant loads that are represented by SAI objects. 3086 // 2. Arrays with statically known zero size. 3087 auto ValidSAIsRange = 3088 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3089 return !getExtent(SAI).is_empty(); 3090 }); 3091 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3092 ValidSAIsRange.end()); 3093 3094 PPCGProg->n_array = 3095 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3096 PPCGProg->array = isl_calloc_array( 3097 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3098 3099 createArrays(PPCGProg, ValidSAIs); 3100 3101 PPCGProg->array_order = nullptr; 3102 collect_order_dependences(PPCGProg); 3103 3104 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3105 return PPCGProg; 3106 } 3107 3108 struct PrintGPUUserData { 3109 struct cuda_info *CudaInfo; 3110 struct gpu_prog *PPCGProg; 3111 std::vector<ppcg_kernel *> Kernels; 3112 }; 3113 3114 /// Print a user statement node in the host code. 3115 /// 3116 /// We use ppcg's printing facilities to print the actual statement and 3117 /// additionally build up a list of all kernels that are encountered in the 3118 /// host ast. 3119 /// 3120 /// @param P The printer to print to 3121 /// @param Options The printing options to use 3122 /// @param Node The node to print 3123 /// @param User A user pointer to carry additional data. This pointer is 3124 /// expected to be of type PrintGPUUserData. 3125 /// 3126 /// @returns A printer to which the output has been printed. 3127 static __isl_give isl_printer * 3128 printHostUser(__isl_take isl_printer *P, 3129 __isl_take isl_ast_print_options *Options, 3130 __isl_take isl_ast_node *Node, void *User) { 3131 auto Data = (struct PrintGPUUserData *)User; 3132 auto Id = isl_ast_node_get_annotation(Node); 3133 3134 if (Id) { 3135 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3136 3137 // If this is a user statement, format it ourselves as ppcg would 3138 // otherwise try to call pet functionality that is not available in 3139 // Polly. 3140 if (IsUser) { 3141 P = isl_printer_start_line(P); 3142 P = isl_printer_print_ast_node(P, Node); 3143 P = isl_printer_end_line(P); 3144 isl_id_free(Id); 3145 isl_ast_print_options_free(Options); 3146 return P; 3147 } 3148 3149 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3150 isl_id_free(Id); 3151 Data->Kernels.push_back(Kernel); 3152 } 3153 3154 return print_host_user(P, Options, Node, User); 3155 } 3156 3157 /// Print C code corresponding to the control flow in @p Kernel. 3158 /// 3159 /// @param Kernel The kernel to print 3160 void printKernel(ppcg_kernel *Kernel) { 3161 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3162 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3163 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3164 P = isl_ast_node_print(Kernel->tree, P, Options); 3165 char *String = isl_printer_get_str(P); 3166 printf("%s\n", String); 3167 free(String); 3168 isl_printer_free(P); 3169 } 3170 3171 /// Print C code corresponding to the GPU code described by @p Tree. 3172 /// 3173 /// @param Tree An AST describing GPU code 3174 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3175 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3176 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3177 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3178 3179 PrintGPUUserData Data; 3180 Data.PPCGProg = PPCGProg; 3181 3182 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3183 Options = 3184 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3185 P = isl_ast_node_print(Tree, P, Options); 3186 char *String = isl_printer_get_str(P); 3187 printf("# host\n"); 3188 printf("%s\n", String); 3189 free(String); 3190 isl_printer_free(P); 3191 3192 for (auto Kernel : Data.Kernels) { 3193 printf("# kernel%d\n", Kernel->id); 3194 printKernel(Kernel); 3195 } 3196 } 3197 3198 // Generate a GPU program using PPCG. 3199 // 3200 // GPU mapping consists of multiple steps: 3201 // 3202 // 1) Compute new schedule for the program. 3203 // 2) Map schedule to GPU (TODO) 3204 // 3) Generate code for new schedule (TODO) 3205 // 3206 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3207 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3208 // strategy directly from this pass. 3209 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3210 3211 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3212 3213 PPCGGen->ctx = S->getIslCtx().get(); 3214 PPCGGen->options = PPCGScop->options; 3215 PPCGGen->print = nullptr; 3216 PPCGGen->print_user = nullptr; 3217 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3218 PPCGGen->prog = PPCGProg; 3219 PPCGGen->tree = nullptr; 3220 PPCGGen->types.n = 0; 3221 PPCGGen->types.name = nullptr; 3222 PPCGGen->sizes = nullptr; 3223 PPCGGen->used_sizes = nullptr; 3224 PPCGGen->kernel_id = 0; 3225 3226 // Set scheduling strategy to same strategy PPCG is using. 3227 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3228 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3229 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3230 3231 isl_schedule *Schedule = get_schedule(PPCGGen); 3232 3233 int has_permutable = has_any_permutable_node(Schedule); 3234 3235 Schedule = 3236 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3237 3238 if (!has_permutable || has_permutable < 0) { 3239 Schedule = isl_schedule_free(Schedule); 3240 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3241 << " does not have permutable bands. Bailing out\n";); 3242 } else { 3243 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3244 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3245 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3246 } 3247 3248 if (DumpSchedule) { 3249 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3250 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3251 P = isl_printer_print_str(P, "Schedule\n"); 3252 P = isl_printer_print_str(P, "========\n"); 3253 if (Schedule) 3254 P = isl_printer_print_schedule(P, Schedule); 3255 else 3256 P = isl_printer_print_str(P, "No schedule found\n"); 3257 3258 printf("%s\n", isl_printer_get_str(P)); 3259 isl_printer_free(P); 3260 } 3261 3262 if (DumpCode) { 3263 printf("Code\n"); 3264 printf("====\n"); 3265 if (PPCGGen->tree) 3266 printGPUTree(PPCGGen->tree, PPCGProg); 3267 else 3268 printf("No code generated\n"); 3269 } 3270 3271 isl_schedule_free(Schedule); 3272 3273 return PPCGGen; 3274 } 3275 3276 /// Free gpu_gen structure. 3277 /// 3278 /// @param PPCGGen The ppcg_gen object to free. 3279 void freePPCGGen(gpu_gen *PPCGGen) { 3280 isl_ast_node_free(PPCGGen->tree); 3281 isl_union_map_free(PPCGGen->sizes); 3282 isl_union_map_free(PPCGGen->used_sizes); 3283 free(PPCGGen); 3284 } 3285 3286 /// Free the options in the ppcg scop structure. 3287 /// 3288 /// ppcg is not freeing these options for us. To avoid leaks we do this 3289 /// ourselves. 3290 /// 3291 /// @param PPCGScop The scop referencing the options to free. 3292 void freeOptions(ppcg_scop *PPCGScop) { 3293 free(PPCGScop->options->debug); 3294 PPCGScop->options->debug = nullptr; 3295 free(PPCGScop->options); 3296 PPCGScop->options = nullptr; 3297 } 3298 3299 /// Approximate the number of points in the set. 3300 /// 3301 /// This function returns an ast expression that overapproximates the number 3302 /// of points in an isl set through the rectangular hull surrounding this set. 3303 /// 3304 /// @param Set The set to count. 3305 /// @param Build The isl ast build object to use for creating the ast 3306 /// expression. 3307 /// 3308 /// @returns An approximation of the number of points in the set. 3309 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3310 __isl_keep isl_ast_build *Build) { 3311 3312 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3313 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3314 3315 isl_space *Space = isl_set_get_space(Set); 3316 Space = isl_space_params(Space); 3317 auto *Univ = isl_set_universe(Space); 3318 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3319 3320 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3321 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3322 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3323 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3324 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3325 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3326 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3327 } 3328 3329 isl_set_free(Set); 3330 isl_pw_aff_free(OneAff); 3331 3332 return Expr; 3333 } 3334 3335 /// Approximate a number of dynamic instructions executed by a given 3336 /// statement. 3337 /// 3338 /// @param Stmt The statement for which to compute the number of dynamic 3339 /// instructions. 3340 /// @param Build The isl ast build object to use for creating the ast 3341 /// expression. 3342 /// @returns An approximation of the number of dynamic instructions executed 3343 /// by @p Stmt. 3344 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3345 __isl_keep isl_ast_build *Build) { 3346 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3347 3348 long InstCount = 0; 3349 3350 if (Stmt.isBlockStmt()) { 3351 auto *BB = Stmt.getBasicBlock(); 3352 InstCount = std::distance(BB->begin(), BB->end()); 3353 } else { 3354 auto *R = Stmt.getRegion(); 3355 3356 for (auto *BB : R->blocks()) { 3357 InstCount += std::distance(BB->begin(), BB->end()); 3358 } 3359 } 3360 3361 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3362 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3363 return isl_ast_expr_mul(InstExpr, Iterations); 3364 } 3365 3366 /// Approximate dynamic instructions executed in scop. 3367 /// 3368 /// @param S The scop for which to approximate dynamic instructions. 3369 /// @param Build The isl ast build object to use for creating the ast 3370 /// expression. 3371 /// @returns An approximation of the number of dynamic instructions executed 3372 /// in @p S. 3373 __isl_give isl_ast_expr * 3374 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3375 isl_ast_expr *Instructions; 3376 3377 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3378 Instructions = isl_ast_expr_from_val(Zero); 3379 3380 for (ScopStmt &Stmt : S) { 3381 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3382 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3383 } 3384 return Instructions; 3385 } 3386 3387 /// Create a check that ensures sufficient compute in scop. 3388 /// 3389 /// @param S The scop for which to ensure sufficient compute. 3390 /// @param Build The isl ast build object to use for creating the ast 3391 /// expression. 3392 /// @returns An expression that evaluates to TRUE in case of sufficient 3393 /// compute and to FALSE, otherwise. 3394 __isl_give isl_ast_expr * 3395 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3396 auto Iterations = getNumberOfIterations(S, Build); 3397 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3398 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3399 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3400 } 3401 3402 /// Check if the basic block contains a function we cannot codegen for GPU 3403 /// kernels. 3404 /// 3405 /// If this basic block does something with a `Function` other than calling 3406 /// a function that we support in a kernel, return true. 3407 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3408 bool AllowCUDALibDevice) { 3409 for (const Instruction &Inst : *BB) { 3410 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3411 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3412 AllowCUDALibDevice)) 3413 continue; 3414 3415 for (Value *Op : Inst.operands()) 3416 // Look for (<func-type>*) among operands of Inst 3417 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3418 if (isa<FunctionType>(PtrTy->getElementType())) { 3419 LLVM_DEBUG(dbgs() 3420 << Inst << " has illegal use of function in kernel.\n"); 3421 return true; 3422 } 3423 } 3424 } 3425 return false; 3426 } 3427 3428 /// Return whether the Scop S uses functions in a way that we do not support. 3429 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3430 for (auto &Stmt : S) { 3431 if (Stmt.isBlockStmt()) { 3432 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3433 AllowCUDALibDevice)) 3434 return true; 3435 } else { 3436 assert(Stmt.isRegionStmt() && 3437 "Stmt was neither block nor region statement"); 3438 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3439 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3440 return true; 3441 } 3442 } 3443 return false; 3444 } 3445 3446 /// Generate code for a given GPU AST described by @p Root. 3447 /// 3448 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3449 /// @param Prog The GPU Program to generate code for. 3450 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3451 ScopAnnotator Annotator; 3452 Annotator.buildAliasScopes(*S); 3453 3454 Region *R = &S->getRegion(); 3455 3456 simplifyRegion(R, DT, LI, RI); 3457 3458 BasicBlock *EnteringBB = R->getEnteringBlock(); 3459 3460 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3461 3462 // Only build the run-time condition and parameters _after_ having 3463 // introduced the conditional branch. This is important as the conditional 3464 // branch will guard the original scop from new induction variables that 3465 // the SCEVExpander may introduce while code generating the parameters and 3466 // which may introduce scalar dependences that prevent us from correctly 3467 // code generating this scop. 3468 BBPair StartExitBlocks; 3469 BranchInst *CondBr = nullptr; 3470 std::tie(StartExitBlocks, CondBr) = 3471 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3472 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3473 3474 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3475 3476 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3477 StartBlock, Prog, Runtime, Architecture); 3478 3479 // TODO: Handle LICM 3480 auto SplitBlock = StartBlock->getSinglePredecessor(); 3481 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3482 3483 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3484 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3485 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3486 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3487 isl_ast_build_free(Build); 3488 3489 // preload invariant loads. Note: This should happen before the RTC 3490 // because the RTC may depend on values that are invariant load hoisted. 3491 if (!NodeBuilder.preloadInvariantLoads()) { 3492 // Patch the introduced branch condition to ensure that we always execute 3493 // the original SCoP. 3494 auto *FalseI1 = Builder.getFalse(); 3495 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3496 SplitBBTerm->setOperand(0, FalseI1); 3497 3498 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3499 S->getFunction().getName() + 3500 " | Scop Region: " + S->getNameStr()); 3501 // adjust the dominator tree accordingly. 3502 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3503 assert(ExitingBlock); 3504 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3505 assert(MergeBlock); 3506 polly::markBlockUnreachable(*StartBlock, Builder); 3507 polly::markBlockUnreachable(*ExitingBlock, Builder); 3508 auto *ExitingBB = S->getExitingBlock(); 3509 assert(ExitingBB); 3510 3511 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3512 DT->eraseNode(ExitingBlock); 3513 isl_ast_expr_free(Condition); 3514 isl_ast_node_free(Root); 3515 } else { 3516 3517 if (polly::PerfMonitoring) { 3518 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3519 P.initialize(); 3520 P.insertRegionStart(SplitBlock->getTerminator()); 3521 3522 // TODO: actually think if this is the correct exiting block to place 3523 // the `end` performance marker. Invariant load hoisting changes 3524 // the CFG in a way that I do not precisely understand, so I 3525 // (Siddharth<[email protected]>) should come back to this and 3526 // think about which exiting block to use. 3527 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3528 assert(ExitingBlock); 3529 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3530 P.insertRegionEnd(MergeBlock->getTerminator()); 3531 } 3532 3533 NodeBuilder.addParameters(S->getContext().release()); 3534 Value *RTC = NodeBuilder.createRTC(Condition); 3535 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3536 3537 Builder.SetInsertPoint(&*StartBlock->begin()); 3538 3539 NodeBuilder.create(Root); 3540 } 3541 3542 /// In case a sequential kernel has more surrounding loops as any parallel 3543 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3544 /// point in running it on a GPU. 3545 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3546 CondBr->setOperand(0, Builder.getFalse()); 3547 3548 if (!NodeBuilder.BuildSuccessful) 3549 CondBr->setOperand(0, Builder.getFalse()); 3550 } 3551 3552 bool runOnScop(Scop &CurrentScop) override { 3553 S = &CurrentScop; 3554 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3555 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3556 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3557 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3558 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3559 3560 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3561 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3562 3563 // We currently do not support functions other than intrinsics inside 3564 // kernels, as code generation will need to offload function calls to the 3565 // kernel. This may lead to a kernel trying to call a function on the host. 3566 // This also allows us to prevent codegen from trying to take the 3567 // address of an intrinsic function to send to the kernel. 3568 if (containsInvalidKernelFunction(CurrentScop, 3569 Architecture == GPUArch::NVPTX64)) { 3570 LLVM_DEBUG( 3571 dbgs() << getUniqueScopName(S) 3572 << " contains function which cannot be materialised in a GPU " 3573 "kernel. Bailing out.\n";); 3574 return false; 3575 } 3576 3577 auto PPCGScop = createPPCGScop(); 3578 auto PPCGProg = createPPCGProg(PPCGScop); 3579 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3580 3581 if (PPCGGen->tree) { 3582 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3583 CurrentScop.markAsToBeSkipped(); 3584 } else { 3585 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3586 << " has empty PPCGGen->tree. Bailing out.\n"); 3587 } 3588 3589 freeOptions(PPCGScop); 3590 freePPCGGen(PPCGGen); 3591 gpu_prog_free(PPCGProg); 3592 ppcg_scop_free(PPCGScop); 3593 3594 return true; 3595 } 3596 3597 void printScop(raw_ostream &, Scop &) const override {} 3598 3599 void getAnalysisUsage(AnalysisUsage &AU) const override { 3600 ScopPass::getAnalysisUsage(AU); 3601 3602 AU.addRequired<DominatorTreeWrapperPass>(); 3603 AU.addRequired<RegionInfoPass>(); 3604 AU.addRequired<ScalarEvolutionWrapperPass>(); 3605 AU.addRequired<ScopDetectionWrapperPass>(); 3606 AU.addRequired<ScopInfoRegionPass>(); 3607 AU.addRequired<LoopInfoWrapperPass>(); 3608 3609 // FIXME: We do not yet add regions for the newly generated code to the 3610 // region tree. 3611 } 3612 }; 3613 } // namespace 3614 3615 char PPCGCodeGeneration::ID = 1; 3616 3617 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3618 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3619 generator->Runtime = Runtime; 3620 generator->Architecture = Arch; 3621 return generator; 3622 } 3623 3624 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3625 "Polly - Apply PPCG translation to SCOP", false, false) 3626 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3627 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3628 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3629 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3630 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3631 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3632 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3633 "Polly - Apply PPCG translation to SCOP", false, false) 3634