1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/Utils.h" 19 #include "polly/DependenceInfo.h" 20 #include "polly/LinkAllPasses.h" 21 #include "polly/Options.h" 22 #include "polly/ScopDetection.h" 23 #include "polly/ScopInfo.h" 24 #include "polly/Support/SCEVValidator.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Verifier.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/TargetSelect.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 #include "isl/union_map.h" 41 42 extern "C" { 43 #include "ppcg/cuda.h" 44 #include "ppcg/gpu.h" 45 #include "ppcg/gpu_print.h" 46 #include "ppcg/ppcg.h" 47 #include "ppcg/schedule.h" 48 } 49 50 #include "llvm/Support/Debug.h" 51 52 using namespace polly; 53 using namespace llvm; 54 55 #define DEBUG_TYPE "polly-codegen-ppcg" 56 57 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 58 cl::desc("Dump the computed GPU Schedule"), 59 cl::Hidden, cl::init(false), cl::ZeroOrMore, 60 cl::cat(PollyCategory)); 61 62 static cl::opt<bool> 63 DumpCode("polly-acc-dump-code", 64 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 65 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 68 cl::desc("Dump the kernel LLVM-IR"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 73 cl::desc("Dump the kernel assembly code"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 77 static cl::opt<bool> FastMath("polly-acc-fastmath", 78 cl::desc("Allow unsafe math optimizations"), 79 cl::Hidden, cl::init(false), cl::ZeroOrMore, 80 cl::cat(PollyCategory)); 81 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 82 cl::desc("Use shared memory"), cl::Hidden, 83 cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 86 cl::desc("Use private memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 90 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 91 cl::desc("Generate Host kernel code assuming" 92 " that all memory has been" 93 " declared as managed memory"), 94 cl::Hidden, cl::init(false), cl::ZeroOrMore, 95 cl::cat(PollyCategory)); 96 97 static cl::opt<bool> 98 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 99 cl::desc("Fail and generate a backtrace if" 100 " verifyModule fails on the GPU " 101 " kernel module."), 102 cl::Hidden, cl::init(false), cl::ZeroOrMore, 103 cl::cat(PollyCategory)); 104 105 static cl::opt<std::string> 106 CudaVersion("polly-acc-cuda-version", 107 cl::desc("The CUDA version to compile for"), cl::Hidden, 108 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 109 110 static cl::opt<int> 111 MinCompute("polly-acc-mincompute", 112 cl::desc("Minimal number of compute statements to run on GPU."), 113 cl::Hidden, cl::init(10 * 512 * 512)); 114 115 /// Used to store information PPCG wants for kills. This information is 116 /// used by live range reordering. 117 /// 118 /// @see computeLiveRangeReordering 119 /// @see GPUNodeBuilder::createPPCGScop 120 /// @see GPUNodeBuilder::createPPCGProg 121 struct MustKillsInfo { 122 /// Collection of all kill statements that will be sequenced at the end of 123 /// PPCGScop->schedule. 124 /// 125 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 126 /// which merges schedules in *arbitrary* order. 127 /// (we don't care about the order of the kills anyway). 128 isl::schedule KillsSchedule; 129 /// Map from kill statement instances to scalars that need to be 130 /// killed. 131 /// 132 /// We currently only derive kill information for phi nodes, as phi nodes 133 /// allow us to easily derive kill information. PHI nodes are not alive 134 /// outside the scop and can consequently all be "killed". [params] -> { 135 /// [Stmt_phantom[] -> ref_phantom[]] -> phi_ref[] } 136 isl::union_map TaggedMustKills; 137 138 MustKillsInfo() : KillsSchedule(nullptr), TaggedMustKills(nullptr){}; 139 }; 140 141 /// Check if SAI's uses are entirely contained within Scop S. 142 /// If a scalar is used only with a Scop, we are free to kill it, as no data 143 /// can flow in/out of the value any more. 144 /// @see computeMustKillsInfo 145 static bool isScalarUsesContainedInScop(const Scop &S, 146 const ScopArrayInfo *SAI) { 147 assert(SAI->isValueKind() && "this function only deals with scalars." 148 " Dealing with arrays required alias analysis"); 149 150 const Region &R = S.getRegion(); 151 for (User *U : SAI->getBasePtr()->users()) { 152 Instruction *I = dyn_cast<Instruction>(U); 153 assert(I && "invalid user of scop array info"); 154 if (!R.contains(I)) 155 return false; 156 } 157 return true; 158 } 159 160 /// Compute must-kills needed to enable live range reordering with PPCG. 161 /// 162 /// @params S The Scop to compute live range reordering information 163 /// @returns live range reordering information that can be used to setup 164 /// PPCG. 165 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 166 const isl::space ParamSpace(isl::manage(S.getParamSpace())); 167 MustKillsInfo Info; 168 169 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 170 // 1.1 phi nodes in scop. 171 // 1.2 scalars that are only used within the scop 172 SmallVector<isl::id, 4> KillMemIds; 173 for (ScopArrayInfo *SAI : S.arrays()) { 174 if (SAI->isPHIKind() || 175 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 176 KillMemIds.push_back(isl::manage(SAI->getBasePtrId())); 177 } 178 179 Info.TaggedMustKills = isl::union_map::empty(isl::space(ParamSpace)); 180 181 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 182 // schedule: 183 // - filter: "[control] -> { }" 184 // So, we choose to not create this to keep the output a little nicer, 185 // at the cost of some code complexity. 186 Info.KillsSchedule = nullptr; 187 188 for (isl::id &phiId : KillMemIds) { 189 isl::id KillStmtId = isl::id::alloc( 190 S.getIslCtx(), std::string("SKill_phantom_").append(phiId.get_name()), 191 nullptr); 192 193 // NOTE: construction of tagged_must_kill: 194 // 2. We need to construct a map: 195 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> phi_ref } 196 // To construct this, we use `isl_map_domain_product` on 2 maps`: 197 // 2a. StmtToPhi: 198 // [param] -> { Stmt_phantom[] -> phi_ref[] } 199 // 2b. PhantomRefToPhi: 200 // [param] -> { ref_phantom[] -> phi_ref[] } 201 // 202 // Combining these with `isl_map_domain_product` gives us 203 // TaggedMustKill: 204 // [param] -> { [Stmt[] -> phantom_ref[]] -> memref[] } 205 206 // 2a. [param] -> { S_2[] -> phi_ref[] } 207 isl::map StmtToPhi = isl::map::universe(isl::space(ParamSpace)); 208 StmtToPhi = StmtToPhi.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 209 StmtToPhi = StmtToPhi.set_tuple_id(isl::dim::out, isl::id(phiId)); 210 211 isl::id PhantomRefId = isl::id::alloc( 212 S.getIslCtx(), std::string("ref_phantom") + phiId.get_name(), nullptr); 213 214 // 2b. [param] -> { phantom_ref[] -> memref[] } 215 isl::map PhantomRefToPhi = isl::map::universe(isl::space(ParamSpace)); 216 PhantomRefToPhi = PhantomRefToPhi.set_tuple_id(isl::dim::in, PhantomRefId); 217 PhantomRefToPhi = PhantomRefToPhi.set_tuple_id(isl::dim::out, phiId); 218 219 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> memref[] } 220 isl::map TaggedMustKill = StmtToPhi.domain_product(PhantomRefToPhi); 221 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 222 223 // 3. Create the kill schedule of the form: 224 // "[param] -> { Stmt_phantom[] }" 225 // Then add this to Info.KillsSchedule. 226 isl::space KillStmtSpace = ParamSpace; 227 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 228 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 229 230 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 231 if (Info.KillsSchedule) 232 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 233 else 234 Info.KillsSchedule = KillSchedule; 235 } 236 237 return Info; 238 } 239 240 /// Create the ast expressions for a ScopStmt. 241 /// 242 /// This function is a callback for to generate the ast expressions for each 243 /// of the scheduled ScopStmts. 244 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 245 void *StmtT, isl_ast_build *Build, 246 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 247 isl_id *Id, void *User), 248 void *UserIndex, 249 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 250 void *UserExpr) { 251 252 ScopStmt *Stmt = (ScopStmt *)StmtT; 253 254 isl_ctx *Ctx; 255 256 if (!Stmt || !Build) 257 return NULL; 258 259 Ctx = isl_ast_build_get_ctx(Build); 260 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 261 262 for (MemoryAccess *Acc : *Stmt) { 263 isl_map *AddrFunc = Acc->getAddressFunction(); 264 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 265 isl_id *RefId = Acc->getId(); 266 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 267 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 268 MPA = isl_multi_pw_aff_coalesce(MPA); 269 MPA = FunctionIndex(MPA, RefId, UserIndex); 270 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 271 Access = FunctionExpr(Access, RefId, UserExpr); 272 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 273 } 274 275 return RefToExpr; 276 } 277 278 /// Given a LLVM Type, compute its size in bytes, 279 static int computeSizeInBytes(const Type *T) { 280 int bytes = T->getPrimitiveSizeInBits() / 8; 281 if (bytes == 0) 282 bytes = T->getScalarSizeInBits() / 8; 283 return bytes; 284 } 285 286 /// Generate code for a GPU specific isl AST. 287 /// 288 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 289 /// generates code for general-purpose AST nodes, with special functionality 290 /// for generating GPU specific user nodes. 291 /// 292 /// @see GPUNodeBuilder::createUser 293 class GPUNodeBuilder : public IslNodeBuilder { 294 public: 295 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 296 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 297 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 298 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 299 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 300 Prog(Prog), Runtime(Runtime), Arch(Arch) { 301 getExprBuilder().setIDToSAI(&IDToSAI); 302 } 303 304 /// Create after-run-time-check initialization code. 305 void initializeAfterRTH(); 306 307 /// Finalize the generated scop. 308 virtual void finalize(); 309 310 /// Track if the full build process was successful. 311 /// 312 /// This value is set to false, if throughout the build process an error 313 /// occurred which prevents us from generating valid GPU code. 314 bool BuildSuccessful = true; 315 316 /// The maximal number of loops surrounding a sequential kernel. 317 unsigned DeepestSequential = 0; 318 319 /// The maximal number of loops surrounding a parallel kernel. 320 unsigned DeepestParallel = 0; 321 322 /// Return the name to set for the ptx_kernel. 323 std::string getKernelFuncName(int Kernel_id); 324 325 private: 326 /// A vector of array base pointers for which a new ScopArrayInfo was created. 327 /// 328 /// This vector is used to delete the ScopArrayInfo when it is not needed any 329 /// more. 330 std::vector<Value *> LocalArrays; 331 332 /// A map from ScopArrays to their corresponding device allocations. 333 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 334 335 /// The current GPU context. 336 Value *GPUContext; 337 338 /// The set of isl_ids allocated in the kernel 339 std::vector<isl_id *> KernelIds; 340 341 /// A module containing GPU code. 342 /// 343 /// This pointer is only set in case we are currently generating GPU code. 344 std::unique_ptr<Module> GPUModule; 345 346 /// The GPU program we generate code for. 347 gpu_prog *Prog; 348 349 /// The GPU Runtime implementation to use (OpenCL or CUDA). 350 GPURuntime Runtime; 351 352 /// The GPU Architecture to target. 353 GPUArch Arch; 354 355 /// Class to free isl_ids. 356 class IslIdDeleter { 357 public: 358 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 359 }; 360 361 /// A set containing all isl_ids allocated in a GPU kernel. 362 /// 363 /// By releasing this set all isl_ids will be freed. 364 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 365 366 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 367 368 /// Create code for user-defined AST nodes. 369 /// 370 /// These AST nodes can be of type: 371 /// 372 /// - ScopStmt: A computational statement (TODO) 373 /// - Kernel: A GPU kernel call (TODO) 374 /// - Data-Transfer: A GPU <-> CPU data-transfer 375 /// - In-kernel synchronization 376 /// - In-kernel memory copy statement 377 /// 378 /// @param UserStmt The ast node to generate code for. 379 virtual void createUser(__isl_take isl_ast_node *UserStmt); 380 381 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 382 383 /// Create code for a data transfer statement 384 /// 385 /// @param TransferStmt The data transfer statement. 386 /// @param Direction The direction in which to transfer data. 387 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 388 enum DataDirection Direction); 389 390 /// Find llvm::Values referenced in GPU kernel. 391 /// 392 /// @param Kernel The kernel to scan for llvm::Values 393 /// 394 /// @returns A pair, whose first element contains the set of values 395 /// referenced by the kernel, and whose second element contains the 396 /// set of functions referenced by the kernel. All functions in the 397 /// second set satisfy isValidFunctionInKernel. 398 std::pair<SetVector<Value *>, SetVector<Function *>> 399 getReferencesInKernel(ppcg_kernel *Kernel); 400 401 /// Compute the sizes of the execution grid for a given kernel. 402 /// 403 /// @param Kernel The kernel to compute grid sizes for. 404 /// 405 /// @returns A tuple with grid sizes for X and Y dimension 406 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 407 408 /// Creates a array that can be sent to the kernel on the device using a 409 /// host pointer. This is required for managed memory, when we directly send 410 /// host pointers to the device. 411 /// \note 412 /// This is to be used only with managed memory 413 Value *getOrCreateManagedDeviceArray(gpu_array_info *Array, 414 ScopArrayInfo *ArrayInfo); 415 416 /// Compute the sizes of the thread blocks for a given kernel. 417 /// 418 /// @param Kernel The kernel to compute thread block sizes for. 419 /// 420 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 421 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 422 423 /// Store a specific kernel launch parameter in the array of kernel launch 424 /// parameters. 425 /// 426 /// @param Parameters The list of parameters in which to store. 427 /// @param Param The kernel launch parameter to store. 428 /// @param Index The index in the parameter list, at which to store the 429 /// parameter. 430 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 431 int Index); 432 433 /// Create kernel launch parameters. 434 /// 435 /// @param Kernel The kernel to create parameters for. 436 /// @param F The kernel function that has been created. 437 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 438 /// 439 /// @returns A stack allocated array with pointers to the parameter 440 /// values that are passed to the kernel. 441 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 442 SetVector<Value *> SubtreeValues); 443 444 /// Create declarations for kernel variable. 445 /// 446 /// This includes shared memory declarations. 447 /// 448 /// @param Kernel The kernel definition to create variables for. 449 /// @param FN The function into which to generate the variables. 450 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 451 452 /// Add CUDA annotations to module. 453 /// 454 /// Add a set of CUDA annotations that declares the maximal block dimensions 455 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 456 /// PTX compiler to bound the number of allocated registers to ensure the 457 /// resulting kernel is known to run with up to as many block dimensions 458 /// as specified here. 459 /// 460 /// @param M The module to add the annotations to. 461 /// @param BlockDimX The size of block dimension X. 462 /// @param BlockDimY The size of block dimension Y. 463 /// @param BlockDimZ The size of block dimension Z. 464 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 465 Value *BlockDimZ); 466 467 /// Create GPU kernel. 468 /// 469 /// Code generate the kernel described by @p KernelStmt. 470 /// 471 /// @param KernelStmt The ast node to generate kernel code for. 472 void createKernel(__isl_take isl_ast_node *KernelStmt); 473 474 /// Generate code that computes the size of an array. 475 /// 476 /// @param Array The array for which to compute a size. 477 Value *getArraySize(gpu_array_info *Array); 478 479 /// Generate code to compute the minimal offset at which an array is accessed. 480 /// 481 /// The offset of an array is the minimal array location accessed in a scop. 482 /// 483 /// Example: 484 /// 485 /// for (long i = 0; i < 100; i++) 486 /// A[i + 42] += ... 487 /// 488 /// getArrayOffset(A) results in 42. 489 /// 490 /// @param Array The array for which to compute the offset. 491 /// @returns An llvm::Value that contains the offset of the array. 492 Value *getArrayOffset(gpu_array_info *Array); 493 494 /// Prepare the kernel arguments for kernel code generation 495 /// 496 /// @param Kernel The kernel to generate code for. 497 /// @param FN The function created for the kernel. 498 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 499 500 /// Create kernel function. 501 /// 502 /// Create a kernel function located in a newly created module that can serve 503 /// as target for device code generation. Set the Builder to point to the 504 /// start block of this newly created function. 505 /// 506 /// @param Kernel The kernel to generate code for. 507 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 508 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 509 /// kernel. 510 void createKernelFunction(ppcg_kernel *Kernel, 511 SetVector<Value *> &SubtreeValues, 512 SetVector<Function *> &SubtreeFunctions); 513 514 /// Create the declaration of a kernel function. 515 /// 516 /// The kernel function takes as arguments: 517 /// 518 /// - One i8 pointer for each external array reference used in the kernel. 519 /// - Host iterators 520 /// - Parameters 521 /// - Other LLVM Value references (TODO) 522 /// 523 /// @param Kernel The kernel to generate the function declaration for. 524 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 525 /// 526 /// @returns The newly declared function. 527 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 528 SetVector<Value *> &SubtreeValues); 529 530 /// Insert intrinsic functions to obtain thread and block ids. 531 /// 532 /// @param The kernel to generate the intrinsic functions for. 533 void insertKernelIntrinsics(ppcg_kernel *Kernel); 534 535 /// Setup the creation of functions referenced by the GPU kernel. 536 /// 537 /// 1. Create new function declarations in GPUModule which are the same as 538 /// SubtreeFunctions. 539 /// 540 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 541 /// old functions (that come from the original module) to new functions 542 /// (that are created within GPUModule). That way, we generate references 543 /// to the correct function (in GPUModule) in BlockGenerator. 544 /// 545 /// @see IslNodeBuilder::ValueMap 546 /// @see BlockGenerator::GlobalMap 547 /// @see BlockGenerator::getNewValue 548 /// @see GPUNodeBuilder::getReferencesInKernel. 549 /// 550 /// @param SubtreeFunctions The set of llvm::Functions referenced by 551 /// this kernel. 552 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 553 554 /// Create a global-to-shared or shared-to-global copy statement. 555 /// 556 /// @param CopyStmt The copy statement to generate code for 557 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 558 559 /// Create code for a ScopStmt called in @p Expr. 560 /// 561 /// @param Expr The expression containing the call. 562 /// @param KernelStmt The kernel statement referenced in the call. 563 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 564 565 /// Create an in-kernel synchronization call. 566 void createKernelSync(); 567 568 /// Create a PTX assembly string for the current GPU kernel. 569 /// 570 /// @returns A string containing the corresponding PTX assembly code. 571 std::string createKernelASM(); 572 573 /// Remove references from the dominator tree to the kernel function @p F. 574 /// 575 /// @param F The function to remove references to. 576 void clearDominators(Function *F); 577 578 /// Remove references from scalar evolution to the kernel function @p F. 579 /// 580 /// @param F The function to remove references to. 581 void clearScalarEvolution(Function *F); 582 583 /// Remove references from loop info to the kernel function @p F. 584 /// 585 /// @param F The function to remove references to. 586 void clearLoops(Function *F); 587 588 /// Finalize the generation of the kernel function. 589 /// 590 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 591 /// dump its IR to stderr. 592 /// 593 /// @returns The Assembly string of the kernel. 594 std::string finalizeKernelFunction(); 595 596 /// Finalize the generation of the kernel arguments. 597 /// 598 /// This function ensures that not-read-only scalars used in a kernel are 599 /// stored back to the global memory location they are backed with before 600 /// the kernel terminates. 601 /// 602 /// @params Kernel The kernel to finalize kernel arguments for. 603 void finalizeKernelArguments(ppcg_kernel *Kernel); 604 605 /// Create code that allocates memory to store arrays on device. 606 void allocateDeviceArrays(); 607 608 /// Free all allocated device arrays. 609 void freeDeviceArrays(); 610 611 /// Create a call to initialize the GPU context. 612 /// 613 /// @returns A pointer to the newly initialized context. 614 Value *createCallInitContext(); 615 616 /// Create a call to get the device pointer for a kernel allocation. 617 /// 618 /// @param Allocation The Polly GPU allocation 619 /// 620 /// @returns The device parameter corresponding to this allocation. 621 Value *createCallGetDevicePtr(Value *Allocation); 622 623 /// Create a call to free the GPU context. 624 /// 625 /// @param Context A pointer to an initialized GPU context. 626 void createCallFreeContext(Value *Context); 627 628 /// Create a call to allocate memory on the device. 629 /// 630 /// @param Size The size of memory to allocate 631 /// 632 /// @returns A pointer that identifies this allocation. 633 Value *createCallAllocateMemoryForDevice(Value *Size); 634 635 /// Create a call to free a device array. 636 /// 637 /// @param Array The device array to free. 638 void createCallFreeDeviceMemory(Value *Array); 639 640 /// Create a call to copy data from host to device. 641 /// 642 /// @param HostPtr A pointer to the host data that should be copied. 643 /// @param DevicePtr A device pointer specifying the location to copy to. 644 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 645 Value *Size); 646 647 /// Create a call to copy data from device to host. 648 /// 649 /// @param DevicePtr A pointer to the device data that should be copied. 650 /// @param HostPtr A host pointer specifying the location to copy to. 651 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 652 Value *Size); 653 654 /// Create a call to synchronize Host & Device. 655 /// \note 656 /// This is to be used only with managed memory. 657 void createCallSynchronizeDevice(); 658 659 /// Create a call to get a kernel from an assembly string. 660 /// 661 /// @param Buffer The string describing the kernel. 662 /// @param Entry The name of the kernel function to call. 663 /// 664 /// @returns A pointer to a kernel object 665 Value *createCallGetKernel(Value *Buffer, Value *Entry); 666 667 /// Create a call to free a GPU kernel. 668 /// 669 /// @param GPUKernel THe kernel to free. 670 void createCallFreeKernel(Value *GPUKernel); 671 672 /// Create a call to launch a GPU kernel. 673 /// 674 /// @param GPUKernel The kernel to launch. 675 /// @param GridDimX The size of the first grid dimension. 676 /// @param GridDimY The size of the second grid dimension. 677 /// @param GridBlockX The size of the first block dimension. 678 /// @param GridBlockY The size of the second block dimension. 679 /// @param GridBlockZ The size of the third block dimension. 680 /// @param Parameters A pointer to an array that contains itself pointers to 681 /// the parameter values passed for each kernel argument. 682 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 683 Value *GridDimY, Value *BlockDimX, 684 Value *BlockDimY, Value *BlockDimZ, 685 Value *Parameters); 686 }; 687 688 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 689 return "FUNC_" + S.getFunction().getName().str() + "_KERNEL_" + 690 std::to_string(Kernel_id); 691 } 692 693 void GPUNodeBuilder::initializeAfterRTH() { 694 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 695 &*Builder.GetInsertPoint(), &DT, &LI); 696 NewBB->setName("polly.acc.initialize"); 697 Builder.SetInsertPoint(&NewBB->front()); 698 699 GPUContext = createCallInitContext(); 700 701 if (!ManagedMemory) 702 allocateDeviceArrays(); 703 } 704 705 void GPUNodeBuilder::finalize() { 706 if (!ManagedMemory) 707 freeDeviceArrays(); 708 709 createCallFreeContext(GPUContext); 710 IslNodeBuilder::finalize(); 711 } 712 713 void GPUNodeBuilder::allocateDeviceArrays() { 714 assert(!ManagedMemory && "Managed memory will directly send host pointers " 715 "to the kernel. There is no need for device arrays"); 716 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 717 718 for (int i = 0; i < Prog->n_array; ++i) { 719 gpu_array_info *Array = &Prog->array[i]; 720 auto *ScopArray = (ScopArrayInfo *)Array->user; 721 std::string DevArrayName("p_dev_array_"); 722 DevArrayName.append(Array->name); 723 724 Value *ArraySize = getArraySize(Array); 725 Value *Offset = getArrayOffset(Array); 726 if (Offset) 727 ArraySize = Builder.CreateSub( 728 ArraySize, 729 Builder.CreateMul(Offset, 730 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 731 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 732 DevArray->setName(DevArrayName); 733 DeviceAllocations[ScopArray] = DevArray; 734 } 735 736 isl_ast_build_free(Build); 737 } 738 739 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 740 Value *BlockDimY, Value *BlockDimZ) { 741 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 742 743 for (auto &F : *M) { 744 if (F.getCallingConv() != CallingConv::PTX_Kernel) 745 continue; 746 747 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 748 749 Metadata *Elements[] = { 750 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 751 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 752 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 753 ValueAsMetadata::get(V[2]), 754 }; 755 MDNode *Node = MDNode::get(M->getContext(), Elements); 756 AnnotationNode->addOperand(Node); 757 } 758 } 759 760 void GPUNodeBuilder::freeDeviceArrays() { 761 assert(!ManagedMemory && "Managed memory does not use device arrays"); 762 for (auto &Array : DeviceAllocations) 763 createCallFreeDeviceMemory(Array.second); 764 } 765 766 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 767 const char *Name = "polly_getKernel"; 768 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 769 Function *F = M->getFunction(Name); 770 771 // If F is not available, declare it. 772 if (!F) { 773 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 774 std::vector<Type *> Args; 775 Args.push_back(Builder.getInt8PtrTy()); 776 Args.push_back(Builder.getInt8PtrTy()); 777 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 778 F = Function::Create(Ty, Linkage, Name, M); 779 } 780 781 return Builder.CreateCall(F, {Buffer, Entry}); 782 } 783 784 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 785 const char *Name = "polly_getDevicePtr"; 786 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 787 Function *F = M->getFunction(Name); 788 789 // If F is not available, declare it. 790 if (!F) { 791 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 792 std::vector<Type *> Args; 793 Args.push_back(Builder.getInt8PtrTy()); 794 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 795 F = Function::Create(Ty, Linkage, Name, M); 796 } 797 798 return Builder.CreateCall(F, {Allocation}); 799 } 800 801 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 802 Value *GridDimY, Value *BlockDimX, 803 Value *BlockDimY, Value *BlockDimZ, 804 Value *Parameters) { 805 const char *Name = "polly_launchKernel"; 806 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 807 Function *F = M->getFunction(Name); 808 809 // If F is not available, declare it. 810 if (!F) { 811 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 812 std::vector<Type *> Args; 813 Args.push_back(Builder.getInt8PtrTy()); 814 Args.push_back(Builder.getInt32Ty()); 815 Args.push_back(Builder.getInt32Ty()); 816 Args.push_back(Builder.getInt32Ty()); 817 Args.push_back(Builder.getInt32Ty()); 818 Args.push_back(Builder.getInt32Ty()); 819 Args.push_back(Builder.getInt8PtrTy()); 820 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 821 F = Function::Create(Ty, Linkage, Name, M); 822 } 823 824 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 825 BlockDimZ, Parameters}); 826 } 827 828 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 829 const char *Name = "polly_freeKernel"; 830 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 831 Function *F = M->getFunction(Name); 832 833 // If F is not available, declare it. 834 if (!F) { 835 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 836 std::vector<Type *> Args; 837 Args.push_back(Builder.getInt8PtrTy()); 838 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 839 F = Function::Create(Ty, Linkage, Name, M); 840 } 841 842 Builder.CreateCall(F, {GPUKernel}); 843 } 844 845 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 846 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 847 "for device"); 848 const char *Name = "polly_freeDeviceMemory"; 849 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 850 Function *F = M->getFunction(Name); 851 852 // If F is not available, declare it. 853 if (!F) { 854 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 855 std::vector<Type *> Args; 856 Args.push_back(Builder.getInt8PtrTy()); 857 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 858 F = Function::Create(Ty, Linkage, Name, M); 859 } 860 861 Builder.CreateCall(F, {Array}); 862 } 863 864 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 865 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 866 "for device"); 867 const char *Name = "polly_allocateMemoryForDevice"; 868 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 869 Function *F = M->getFunction(Name); 870 871 // If F is not available, declare it. 872 if (!F) { 873 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 874 std::vector<Type *> Args; 875 Args.push_back(Builder.getInt64Ty()); 876 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 877 F = Function::Create(Ty, Linkage, Name, M); 878 } 879 880 return Builder.CreateCall(F, {Size}); 881 } 882 883 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 884 Value *DeviceData, 885 Value *Size) { 886 assert(!ManagedMemory && "Managed memory does not transfer memory between " 887 "device and host"); 888 const char *Name = "polly_copyFromHostToDevice"; 889 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 890 Function *F = M->getFunction(Name); 891 892 // If F is not available, declare it. 893 if (!F) { 894 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 895 std::vector<Type *> Args; 896 Args.push_back(Builder.getInt8PtrTy()); 897 Args.push_back(Builder.getInt8PtrTy()); 898 Args.push_back(Builder.getInt64Ty()); 899 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 900 F = Function::Create(Ty, Linkage, Name, M); 901 } 902 903 Builder.CreateCall(F, {HostData, DeviceData, Size}); 904 } 905 906 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 907 Value *HostData, 908 Value *Size) { 909 assert(!ManagedMemory && "Managed memory does not transfer memory between " 910 "device and host"); 911 const char *Name = "polly_copyFromDeviceToHost"; 912 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 913 Function *F = M->getFunction(Name); 914 915 // If F is not available, declare it. 916 if (!F) { 917 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 918 std::vector<Type *> Args; 919 Args.push_back(Builder.getInt8PtrTy()); 920 Args.push_back(Builder.getInt8PtrTy()); 921 Args.push_back(Builder.getInt64Ty()); 922 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 923 F = Function::Create(Ty, Linkage, Name, M); 924 } 925 926 Builder.CreateCall(F, {DeviceData, HostData, Size}); 927 } 928 929 void GPUNodeBuilder::createCallSynchronizeDevice() { 930 assert(ManagedMemory && "explicit synchronization is only necessary for " 931 "managed memory"); 932 const char *Name = "polly_synchronizeDevice"; 933 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 934 Function *F = M->getFunction(Name); 935 936 // If F is not available, declare it. 937 if (!F) { 938 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 939 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 940 F = Function::Create(Ty, Linkage, Name, M); 941 } 942 943 Builder.CreateCall(F); 944 } 945 946 Value *GPUNodeBuilder::createCallInitContext() { 947 const char *Name; 948 949 switch (Runtime) { 950 case GPURuntime::CUDA: 951 Name = "polly_initContextCUDA"; 952 break; 953 case GPURuntime::OpenCL: 954 Name = "polly_initContextCL"; 955 break; 956 } 957 958 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 959 Function *F = M->getFunction(Name); 960 961 // If F is not available, declare it. 962 if (!F) { 963 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 964 std::vector<Type *> Args; 965 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 966 F = Function::Create(Ty, Linkage, Name, M); 967 } 968 969 return Builder.CreateCall(F, {}); 970 } 971 972 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 973 const char *Name = "polly_freeContext"; 974 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 975 Function *F = M->getFunction(Name); 976 977 // If F is not available, declare it. 978 if (!F) { 979 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 980 std::vector<Type *> Args; 981 Args.push_back(Builder.getInt8PtrTy()); 982 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 983 F = Function::Create(Ty, Linkage, Name, M); 984 } 985 986 Builder.CreateCall(F, {Context}); 987 } 988 989 /// Check if one string is a prefix of another. 990 /// 991 /// @param String The string in which to look for the prefix. 992 /// @param Prefix The prefix to look for. 993 static bool isPrefix(std::string String, std::string Prefix) { 994 return String.find(Prefix) == 0; 995 } 996 997 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 998 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 999 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1000 1001 if (!gpu_array_is_scalar(Array)) { 1002 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 1003 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 1004 1005 for (unsigned int i = 1; i < Array->n_index; i++) { 1006 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 1007 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1008 Res = isl_ast_expr_mul(Res, Expr); 1009 } 1010 1011 Value *NumElements = ExprBuilder.create(Res); 1012 if (NumElements->getType() != ArraySize->getType()) 1013 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1014 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1015 } 1016 isl_ast_build_free(Build); 1017 return ArraySize; 1018 } 1019 1020 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1021 if (gpu_array_is_scalar(Array)) 1022 return nullptr; 1023 1024 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 1025 1026 isl_set *Min = isl_set_lexmin(isl_set_copy(Array->extent)); 1027 1028 isl_set *ZeroSet = isl_set_universe(isl_set_get_space(Min)); 1029 1030 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) 1031 ZeroSet = isl_set_fix_si(ZeroSet, isl_dim_set, i, 0); 1032 1033 if (isl_set_is_subset(Min, ZeroSet)) { 1034 isl_set_free(Min); 1035 isl_set_free(ZeroSet); 1036 isl_ast_build_free(Build); 1037 return nullptr; 1038 } 1039 isl_set_free(ZeroSet); 1040 1041 isl_ast_expr *Result = 1042 isl_ast_expr_from_val(isl_val_int_from_si(isl_set_get_ctx(Min), 0)); 1043 1044 for (long i = 0; i < isl_set_dim(Min, isl_dim_set); i++) { 1045 if (i > 0) { 1046 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i - 1]); 1047 isl_ast_expr *BExpr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 1048 Result = isl_ast_expr_mul(Result, BExpr); 1049 } 1050 isl_pw_aff *DimMin = isl_set_dim_min(isl_set_copy(Min), i); 1051 isl_ast_expr *MExpr = isl_ast_build_expr_from_pw_aff(Build, DimMin); 1052 Result = isl_ast_expr_add(Result, MExpr); 1053 } 1054 1055 Value *ResultValue = ExprBuilder.create(Result); 1056 isl_set_free(Min); 1057 isl_ast_build_free(Build); 1058 1059 return ResultValue; 1060 } 1061 1062 Value *GPUNodeBuilder::getOrCreateManagedDeviceArray(gpu_array_info *Array, 1063 ScopArrayInfo *ArrayInfo) { 1064 1065 assert(ManagedMemory && "Only used when you wish to get a host " 1066 "pointer for sending data to the kernel, " 1067 "with managed memory"); 1068 std::map<ScopArrayInfo *, Value *>::iterator it; 1069 if ((it = DeviceAllocations.find(ArrayInfo)) != DeviceAllocations.end()) { 1070 return it->second; 1071 } else { 1072 Value *HostPtr; 1073 1074 if (gpu_array_is_scalar(Array)) 1075 HostPtr = BlockGen.getOrCreateAlloca(ArrayInfo); 1076 else 1077 HostPtr = ArrayInfo->getBasePtr(); 1078 1079 Value *Offset = getArrayOffset(Array); 1080 if (Offset) { 1081 HostPtr = Builder.CreatePointerCast( 1082 HostPtr, ArrayInfo->getElementType()->getPointerTo()); 1083 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1084 } 1085 1086 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1087 DeviceAllocations[ArrayInfo] = HostPtr; 1088 return HostPtr; 1089 } 1090 } 1091 1092 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1093 enum DataDirection Direction) { 1094 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1095 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1096 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1097 isl_id *Id = isl_ast_expr_get_id(Arg); 1098 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1099 auto ScopArray = (ScopArrayInfo *)(Array->user); 1100 1101 Value *Size = getArraySize(Array); 1102 Value *Offset = getArrayOffset(Array); 1103 Value *DevPtr = DeviceAllocations[ScopArray]; 1104 1105 Value *HostPtr; 1106 1107 if (gpu_array_is_scalar(Array)) 1108 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1109 else 1110 HostPtr = ScopArray->getBasePtr(); 1111 1112 if (Offset) { 1113 HostPtr = Builder.CreatePointerCast( 1114 HostPtr, ScopArray->getElementType()->getPointerTo()); 1115 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1116 } 1117 1118 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1119 1120 if (Offset) { 1121 Size = Builder.CreateSub( 1122 Size, Builder.CreateMul( 1123 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1124 } 1125 1126 if (Direction == HOST_TO_DEVICE) 1127 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1128 else 1129 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1130 1131 isl_id_free(Id); 1132 isl_ast_expr_free(Arg); 1133 isl_ast_expr_free(Expr); 1134 isl_ast_node_free(TransferStmt); 1135 } 1136 1137 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1138 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1139 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1140 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1141 isl_id_free(Id); 1142 isl_ast_expr_free(StmtExpr); 1143 1144 const char *Str = isl_id_get_name(Id); 1145 if (!strcmp(Str, "kernel")) { 1146 createKernel(UserStmt); 1147 isl_ast_expr_free(Expr); 1148 return; 1149 } 1150 1151 if (isPrefix(Str, "to_device")) { 1152 if (!ManagedMemory) 1153 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1154 else 1155 isl_ast_node_free(UserStmt); 1156 1157 isl_ast_expr_free(Expr); 1158 return; 1159 } 1160 1161 if (isPrefix(Str, "from_device")) { 1162 if (!ManagedMemory) { 1163 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1164 } else { 1165 createCallSynchronizeDevice(); 1166 isl_ast_node_free(UserStmt); 1167 } 1168 isl_ast_expr_free(Expr); 1169 return; 1170 } 1171 1172 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1173 struct ppcg_kernel_stmt *KernelStmt = 1174 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1175 isl_id_free(Anno); 1176 1177 switch (KernelStmt->type) { 1178 case ppcg_kernel_domain: 1179 createScopStmt(Expr, KernelStmt); 1180 isl_ast_node_free(UserStmt); 1181 return; 1182 case ppcg_kernel_copy: 1183 createKernelCopy(KernelStmt); 1184 isl_ast_expr_free(Expr); 1185 isl_ast_node_free(UserStmt); 1186 return; 1187 case ppcg_kernel_sync: 1188 createKernelSync(); 1189 isl_ast_expr_free(Expr); 1190 isl_ast_node_free(UserStmt); 1191 return; 1192 } 1193 1194 isl_ast_expr_free(Expr); 1195 isl_ast_node_free(UserStmt); 1196 return; 1197 } 1198 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1199 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1200 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1201 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1202 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1203 Index = isl_ast_expr_address_of(Index); 1204 Value *GlobalAddr = ExprBuilder.create(Index); 1205 1206 if (KernelStmt->u.c.read) { 1207 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1208 Builder.CreateStore(Load, LocalAddr); 1209 } else { 1210 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1211 Builder.CreateStore(Load, GlobalAddr); 1212 } 1213 } 1214 1215 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1216 ppcg_kernel_stmt *KernelStmt) { 1217 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1218 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1219 1220 LoopToScevMapT LTS; 1221 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1222 1223 createSubstitutions(Expr, Stmt, LTS); 1224 1225 if (Stmt->isBlockStmt()) 1226 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1227 else 1228 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1229 } 1230 1231 void GPUNodeBuilder::createKernelSync() { 1232 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1233 1234 Function *Sync; 1235 1236 switch (Arch) { 1237 case GPUArch::NVPTX64: 1238 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1239 break; 1240 } 1241 1242 Builder.CreateCall(Sync, {}); 1243 } 1244 1245 /// Collect llvm::Values referenced from @p Node 1246 /// 1247 /// This function only applies to isl_ast_nodes that are user_nodes referring 1248 /// to a ScopStmt. All other node types are ignore. 1249 /// 1250 /// @param Node The node to collect references for. 1251 /// @param User A user pointer used as storage for the data that is collected. 1252 /// 1253 /// @returns isl_bool_true if data could be collected successfully. 1254 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1255 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1256 return isl_bool_true; 1257 1258 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1259 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1260 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1261 const char *Str = isl_id_get_name(Id); 1262 isl_id_free(Id); 1263 isl_ast_expr_free(StmtExpr); 1264 isl_ast_expr_free(Expr); 1265 1266 if (!isPrefix(Str, "Stmt")) 1267 return isl_bool_true; 1268 1269 Id = isl_ast_node_get_annotation(Node); 1270 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1271 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1272 isl_id_free(Id); 1273 1274 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1275 1276 return isl_bool_true; 1277 } 1278 1279 /// Check if F is a function that we can code-generate in a GPU kernel. 1280 static bool isValidFunctionInKernel(llvm::Function *F) { 1281 assert(F && "F is an invalid pointer"); 1282 // We string compare against the name of the function to allow 1283 // all variants of the intrinsic "llvm.sqrt.*" 1284 return F->isIntrinsic() && F->getName().startswith("llvm.sqrt"); 1285 } 1286 1287 /// Do not take `Function` as a subtree value. 1288 /// 1289 /// We try to take the reference of all subtree values and pass them along 1290 /// to the kernel from the host. Taking an address of any function and 1291 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1292 /// `Function`s. 1293 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1294 1295 /// Return `Function`s from `RawSubtreeValues`. 1296 static SetVector<Function *> 1297 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues) { 1298 SetVector<Function *> SubtreeFunctions; 1299 for (Value *It : RawSubtreeValues) { 1300 Function *F = dyn_cast<Function>(It); 1301 if (F) { 1302 assert(isValidFunctionInKernel(F) && "Code should have bailed out by " 1303 "this point if an invalid function " 1304 "were present in a kernel."); 1305 SubtreeFunctions.insert(F); 1306 } 1307 } 1308 return SubtreeFunctions; 1309 } 1310 1311 std::pair<SetVector<Value *>, SetVector<Function *>> 1312 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1313 SetVector<Value *> SubtreeValues; 1314 SetVector<const SCEV *> SCEVs; 1315 SetVector<const Loop *> Loops; 1316 SubtreeReferences References = { 1317 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1318 1319 for (const auto &I : IDToValue) 1320 SubtreeValues.insert(I.second); 1321 1322 isl_ast_node_foreach_descendant_top_down( 1323 Kernel->tree, collectReferencesInGPUStmt, &References); 1324 1325 for (const SCEV *Expr : SCEVs) 1326 findValues(Expr, SE, SubtreeValues); 1327 1328 for (auto &SAI : S.arrays()) 1329 SubtreeValues.remove(SAI->getBasePtr()); 1330 1331 isl_space *Space = S.getParamSpace(); 1332 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1333 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1334 assert(IDToValue.count(Id)); 1335 Value *Val = IDToValue[Id]; 1336 SubtreeValues.remove(Val); 1337 isl_id_free(Id); 1338 } 1339 isl_space_free(Space); 1340 1341 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1342 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1343 assert(IDToValue.count(Id)); 1344 Value *Val = IDToValue[Id]; 1345 SubtreeValues.remove(Val); 1346 isl_id_free(Id); 1347 } 1348 1349 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1350 // SubtreeValues. This is important, because we should not lose any 1351 // SubtreeValues in the process of constructing the 1352 // "ValidSubtree{Values, Functions} sets. Nor should the set 1353 // ValidSubtree{Values, Functions} have any common element. 1354 auto ValidSubtreeValuesIt = 1355 make_filter_range(SubtreeValues, isValidSubtreeValue); 1356 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1357 ValidSubtreeValuesIt.end()); 1358 SetVector<Function *> ValidSubtreeFunctions( 1359 getFunctionsFromRawSubtreeValues(SubtreeValues)); 1360 1361 return std::make_pair(ValidSubtreeValues, ValidSubtreeFunctions); 1362 } 1363 1364 void GPUNodeBuilder::clearDominators(Function *F) { 1365 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1366 std::vector<BasicBlock *> Nodes; 1367 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1368 Nodes.push_back(I->getBlock()); 1369 1370 for (BasicBlock *BB : Nodes) 1371 DT.eraseNode(BB); 1372 } 1373 1374 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1375 for (BasicBlock &BB : *F) { 1376 Loop *L = LI.getLoopFor(&BB); 1377 if (L) 1378 SE.forgetLoop(L); 1379 } 1380 } 1381 1382 void GPUNodeBuilder::clearLoops(Function *F) { 1383 for (BasicBlock &BB : *F) { 1384 Loop *L = LI.getLoopFor(&BB); 1385 if (L) 1386 SE.forgetLoop(L); 1387 LI.removeBlock(&BB); 1388 } 1389 } 1390 1391 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1392 std::vector<Value *> Sizes; 1393 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 1394 1395 for (long i = 0; i < Kernel->n_grid; i++) { 1396 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 1397 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 1398 Value *Res = ExprBuilder.create(GridSize); 1399 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1400 Sizes.push_back(Res); 1401 } 1402 isl_ast_build_free(Context); 1403 1404 for (long i = Kernel->n_grid; i < 3; i++) 1405 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1406 1407 return std::make_tuple(Sizes[0], Sizes[1]); 1408 } 1409 1410 std::tuple<Value *, Value *, Value *> 1411 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1412 std::vector<Value *> Sizes; 1413 1414 for (long i = 0; i < Kernel->n_block; i++) { 1415 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1416 Sizes.push_back(Res); 1417 } 1418 1419 for (long i = Kernel->n_block; i < 3; i++) 1420 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1421 1422 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1423 } 1424 1425 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1426 Instruction *Param, int Index) { 1427 Value *Slot = Builder.CreateGEP( 1428 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1429 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1430 Builder.CreateStore(ParamTyped, Slot); 1431 } 1432 1433 Value * 1434 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1435 SetVector<Value *> SubtreeValues) { 1436 const int NumArgs = F->arg_size(); 1437 std::vector<int> ArgSizes(NumArgs); 1438 1439 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1440 1441 BasicBlock *EntryBlock = 1442 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1443 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1444 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1445 Instruction *Parameters = new AllocaInst( 1446 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1447 1448 int Index = 0; 1449 for (long i = 0; i < Prog->n_array; i++) { 1450 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1451 continue; 1452 1453 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1454 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1455 1456 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1457 1458 Value *DevArray = nullptr; 1459 if (ManagedMemory) { 1460 DevArray = getOrCreateManagedDeviceArray( 1461 &Prog->array[i], const_cast<ScopArrayInfo *>(SAI)); 1462 } else { 1463 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1464 DevArray = createCallGetDevicePtr(DevArray); 1465 } 1466 assert(DevArray != nullptr && "Array to be offloaded to device not " 1467 "initialized"); 1468 Value *Offset = getArrayOffset(&Prog->array[i]); 1469 1470 if (Offset) { 1471 DevArray = Builder.CreatePointerCast( 1472 DevArray, SAI->getElementType()->getPointerTo()); 1473 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1474 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1475 } 1476 Value *Slot = Builder.CreateGEP( 1477 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1478 1479 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1480 Value *ValPtr = nullptr; 1481 if (ManagedMemory) 1482 ValPtr = DevArray; 1483 else 1484 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1485 1486 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1487 " to be stored into Parameters"); 1488 Value *ValPtrCast = 1489 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1490 Builder.CreateStore(ValPtrCast, Slot); 1491 } else { 1492 Instruction *Param = 1493 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1494 Launch + "_param_" + std::to_string(Index), 1495 EntryBlock->getTerminator()); 1496 Builder.CreateStore(DevArray, Param); 1497 Value *ParamTyped = 1498 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1499 Builder.CreateStore(ParamTyped, Slot); 1500 } 1501 Index++; 1502 } 1503 1504 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1505 1506 for (long i = 0; i < NumHostIters; i++) { 1507 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1508 Value *Val = IDToValue[Id]; 1509 isl_id_free(Id); 1510 1511 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1512 1513 Instruction *Param = 1514 new AllocaInst(Val->getType(), AddressSpace, 1515 Launch + "_param_" + std::to_string(Index), 1516 EntryBlock->getTerminator()); 1517 Builder.CreateStore(Val, Param); 1518 insertStoreParameter(Parameters, Param, Index); 1519 Index++; 1520 } 1521 1522 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1523 1524 for (long i = 0; i < NumVars; i++) { 1525 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1526 Value *Val = IDToValue[Id]; 1527 isl_id_free(Id); 1528 1529 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1530 1531 Instruction *Param = 1532 new AllocaInst(Val->getType(), AddressSpace, 1533 Launch + "_param_" + std::to_string(Index), 1534 EntryBlock->getTerminator()); 1535 Builder.CreateStore(Val, Param); 1536 insertStoreParameter(Parameters, Param, Index); 1537 Index++; 1538 } 1539 1540 for (auto Val : SubtreeValues) { 1541 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1542 1543 Instruction *Param = 1544 new AllocaInst(Val->getType(), AddressSpace, 1545 Launch + "_param_" + std::to_string(Index), 1546 EntryBlock->getTerminator()); 1547 Builder.CreateStore(Val, Param); 1548 insertStoreParameter(Parameters, Param, Index); 1549 Index++; 1550 } 1551 1552 for (int i = 0; i < NumArgs; i++) { 1553 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1554 Instruction *Param = 1555 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1556 Launch + "_param_size_" + std::to_string(i), 1557 EntryBlock->getTerminator()); 1558 Builder.CreateStore(Val, Param); 1559 insertStoreParameter(Parameters, Param, Index); 1560 Index++; 1561 } 1562 1563 auto Location = EntryBlock->getTerminator(); 1564 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1565 Launch + "_params_i8ptr", Location); 1566 } 1567 1568 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1569 SetVector<Function *> SubtreeFunctions) { 1570 for (auto Fn : SubtreeFunctions) { 1571 const std::string ClonedFnName = Fn->getName(); 1572 Function *Clone = GPUModule->getFunction(ClonedFnName); 1573 if (!Clone) 1574 Clone = 1575 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1576 ClonedFnName, GPUModule.get()); 1577 assert(Clone && "Expected cloned function to be initialized."); 1578 assert(ValueMap.find(Fn) == ValueMap.end() && 1579 "Fn already present in ValueMap"); 1580 ValueMap[Fn] = Clone; 1581 } 1582 } 1583 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1584 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1585 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1586 isl_id_free(Id); 1587 isl_ast_node_free(KernelStmt); 1588 1589 if (Kernel->n_grid > 1) 1590 DeepestParallel = 1591 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1592 else 1593 DeepestSequential = 1594 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1595 1596 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1597 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1598 1599 SetVector<Value *> SubtreeValues; 1600 SetVector<Function *> SubtreeFunctions; 1601 std::tie(SubtreeValues, SubtreeFunctions) = getReferencesInKernel(Kernel); 1602 1603 assert(Kernel->tree && "Device AST of kernel node is empty"); 1604 1605 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1606 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1607 ValueMapT HostValueMap = ValueMap; 1608 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1609 ScalarMap.clear(); 1610 1611 SetVector<const Loop *> Loops; 1612 1613 // Create for all loops we depend on values that contain the current loop 1614 // iteration. These values are necessary to generate code for SCEVs that 1615 // depend on such loops. As a result we need to pass them to the subfunction. 1616 for (const Loop *L : Loops) { 1617 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1618 SE.getUnknown(Builder.getInt64(1)), 1619 L, SCEV::FlagAnyWrap); 1620 Value *V = generateSCEV(OuterLIV); 1621 OutsideLoopIterations[L] = SE.getUnknown(V); 1622 SubtreeValues.insert(V); 1623 } 1624 1625 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1626 setupKernelSubtreeFunctions(SubtreeFunctions); 1627 1628 create(isl_ast_node_copy(Kernel->tree)); 1629 1630 finalizeKernelArguments(Kernel); 1631 Function *F = Builder.GetInsertBlock()->getParent(); 1632 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1633 clearDominators(F); 1634 clearScalarEvolution(F); 1635 clearLoops(F); 1636 1637 IDToValue = HostIDs; 1638 1639 ValueMap = std::move(HostValueMap); 1640 ScalarMap = std::move(HostScalarMap); 1641 EscapeMap.clear(); 1642 IDToSAI.clear(); 1643 Annotator.resetAlternativeAliasBases(); 1644 for (auto &BasePtr : LocalArrays) 1645 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1646 LocalArrays.clear(); 1647 1648 std::string ASMString = finalizeKernelFunction(); 1649 Builder.SetInsertPoint(&HostInsertPoint); 1650 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1651 1652 std::string Name = getKernelFuncName(Kernel->id); 1653 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1654 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1655 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1656 1657 Value *GridDimX, *GridDimY; 1658 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1659 1660 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1661 BlockDimZ, Parameters); 1662 createCallFreeKernel(GPUKernel); 1663 1664 for (auto Id : KernelIds) 1665 isl_id_free(Id); 1666 1667 KernelIds.clear(); 1668 } 1669 1670 /// Compute the DataLayout string for the NVPTX backend. 1671 /// 1672 /// @param is64Bit Are we looking for a 64 bit architecture? 1673 static std::string computeNVPTXDataLayout(bool is64Bit) { 1674 std::string Ret = ""; 1675 1676 if (!is64Bit) { 1677 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1678 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1679 "64-v128:128:128-n16:32:64"; 1680 } else { 1681 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1682 "64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1683 "64-v128:128:128-n16:32:64"; 1684 } 1685 1686 return Ret; 1687 } 1688 1689 Function * 1690 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1691 SetVector<Value *> &SubtreeValues) { 1692 std::vector<Type *> Args; 1693 std::string Identifier = getKernelFuncName(Kernel->id); 1694 1695 for (long i = 0; i < Prog->n_array; i++) { 1696 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1697 continue; 1698 1699 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1700 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1701 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 1702 Args.push_back(SAI->getElementType()); 1703 } else { 1704 static const int UseGlobalMemory = 1; 1705 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1706 } 1707 } 1708 1709 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1710 1711 for (long i = 0; i < NumHostIters; i++) 1712 Args.push_back(Builder.getInt64Ty()); 1713 1714 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1715 1716 for (long i = 0; i < NumVars; i++) { 1717 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1718 Value *Val = IDToValue[Id]; 1719 isl_id_free(Id); 1720 Args.push_back(Val->getType()); 1721 } 1722 1723 for (auto *V : SubtreeValues) 1724 Args.push_back(V->getType()); 1725 1726 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1727 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1728 GPUModule.get()); 1729 1730 switch (Arch) { 1731 case GPUArch::NVPTX64: 1732 FN->setCallingConv(CallingConv::PTX_Kernel); 1733 break; 1734 } 1735 1736 auto Arg = FN->arg_begin(); 1737 for (long i = 0; i < Kernel->n_array; i++) { 1738 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1739 continue; 1740 1741 Arg->setName(Kernel->array[i].array->name); 1742 1743 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1744 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1745 Type *EleTy = SAI->getElementType(); 1746 Value *Val = &*Arg; 1747 SmallVector<const SCEV *, 4> Sizes; 1748 isl_ast_build *Build = 1749 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1750 Sizes.push_back(nullptr); 1751 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1752 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1753 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1754 auto V = ExprBuilder.create(DimSize); 1755 Sizes.push_back(SE.getSCEV(V)); 1756 } 1757 const ScopArrayInfo *SAIRep = 1758 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1759 LocalArrays.push_back(Val); 1760 1761 isl_ast_build_free(Build); 1762 KernelIds.push_back(Id); 1763 IDToSAI[Id] = SAIRep; 1764 Arg++; 1765 } 1766 1767 for (long i = 0; i < NumHostIters; i++) { 1768 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1769 Arg->setName(isl_id_get_name(Id)); 1770 IDToValue[Id] = &*Arg; 1771 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1772 Arg++; 1773 } 1774 1775 for (long i = 0; i < NumVars; i++) { 1776 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1777 Arg->setName(isl_id_get_name(Id)); 1778 Value *Val = IDToValue[Id]; 1779 ValueMap[Val] = &*Arg; 1780 IDToValue[Id] = &*Arg; 1781 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1782 Arg++; 1783 } 1784 1785 for (auto *V : SubtreeValues) { 1786 Arg->setName(V->getName()); 1787 ValueMap[V] = &*Arg; 1788 Arg++; 1789 } 1790 1791 return FN; 1792 } 1793 1794 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1795 Intrinsic::ID IntrinsicsBID[2]; 1796 Intrinsic::ID IntrinsicsTID[3]; 1797 1798 switch (Arch) { 1799 case GPUArch::NVPTX64: 1800 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1801 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1802 1803 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1804 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1805 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 1806 break; 1807 } 1808 1809 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1810 std::string Name = isl_id_get_name(Id); 1811 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1812 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1813 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1814 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1815 IDToValue[Id] = Val; 1816 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1817 }; 1818 1819 for (int i = 0; i < Kernel->n_grid; ++i) { 1820 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1821 addId(Id, IntrinsicsBID[i]); 1822 } 1823 1824 for (int i = 0; i < Kernel->n_block; ++i) { 1825 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1826 addId(Id, IntrinsicsTID[i]); 1827 } 1828 } 1829 1830 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1831 auto Arg = FN->arg_begin(); 1832 for (long i = 0; i < Kernel->n_array; i++) { 1833 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1834 continue; 1835 1836 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1837 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1838 isl_id_free(Id); 1839 1840 if (SAI->getNumberOfDimensions() > 0) { 1841 Arg++; 1842 continue; 1843 } 1844 1845 Value *Val = &*Arg; 1846 1847 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 1848 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1849 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 1850 Val = Builder.CreateLoad(TypedArgPtr); 1851 } 1852 1853 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1854 Builder.CreateStore(Val, Alloca); 1855 1856 Arg++; 1857 } 1858 } 1859 1860 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 1861 auto *FN = Builder.GetInsertBlock()->getParent(); 1862 auto Arg = FN->arg_begin(); 1863 1864 bool StoredScalar = false; 1865 for (long i = 0; i < Kernel->n_array; i++) { 1866 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1867 continue; 1868 1869 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1870 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1871 isl_id_free(Id); 1872 1873 if (SAI->getNumberOfDimensions() > 0) { 1874 Arg++; 1875 continue; 1876 } 1877 1878 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1879 Arg++; 1880 continue; 1881 } 1882 1883 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 1884 Value *ArgPtr = &*Arg; 1885 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1886 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1887 Value *Val = Builder.CreateLoad(Alloca); 1888 Builder.CreateStore(Val, TypedArgPtr); 1889 StoredScalar = true; 1890 1891 Arg++; 1892 } 1893 1894 if (StoredScalar) 1895 /// In case more than one thread contains scalar stores, the generated 1896 /// code might be incorrect, if we only store at the end of the kernel. 1897 /// To support this case we need to store these scalars back at each 1898 /// memory store or at least before each kernel barrier. 1899 if (Kernel->n_block != 0 || Kernel->n_grid != 0) 1900 BuildSuccessful = 0; 1901 } 1902 1903 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1904 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1905 1906 for (int i = 0; i < Kernel->n_var; ++i) { 1907 struct ppcg_kernel_var &Var = Kernel->var[i]; 1908 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1909 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1910 1911 Type *ArrayTy = EleTy; 1912 SmallVector<const SCEV *, 4> Sizes; 1913 1914 Sizes.push_back(nullptr); 1915 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1916 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1917 long Bound = isl_val_get_num_si(Val); 1918 isl_val_free(Val); 1919 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1920 } 1921 1922 for (int j = Var.array->n_index - 1; j >= 0; --j) { 1923 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1924 long Bound = isl_val_get_num_si(Val); 1925 isl_val_free(Val); 1926 ArrayTy = ArrayType::get(ArrayTy, Bound); 1927 } 1928 1929 const ScopArrayInfo *SAI; 1930 Value *Allocation; 1931 if (Var.type == ppcg_access_shared) { 1932 auto GlobalVar = new GlobalVariable( 1933 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1934 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1935 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1936 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 1937 1938 Allocation = GlobalVar; 1939 } else if (Var.type == ppcg_access_private) { 1940 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1941 } else { 1942 llvm_unreachable("unknown variable type"); 1943 } 1944 SAI = 1945 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 1946 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1947 IDToValue[Id] = Allocation; 1948 LocalArrays.push_back(Allocation); 1949 KernelIds.push_back(Id); 1950 IDToSAI[Id] = SAI; 1951 } 1952 } 1953 1954 void GPUNodeBuilder::createKernelFunction( 1955 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 1956 SetVector<Function *> &SubtreeFunctions) { 1957 std::string Identifier = getKernelFuncName(Kernel->id); 1958 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1959 1960 switch (Arch) { 1961 case GPUArch::NVPTX64: 1962 if (Runtime == GPURuntime::CUDA) 1963 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1964 else if (Runtime == GPURuntime::OpenCL) 1965 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 1966 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1967 break; 1968 } 1969 1970 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1971 1972 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1973 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1974 1975 DT.addNewBlock(EntryBlock, PrevBlock); 1976 1977 Builder.SetInsertPoint(EntryBlock); 1978 Builder.CreateRetVoid(); 1979 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1980 1981 ScopDetection::markFunctionAsInvalid(FN); 1982 1983 prepareKernelArguments(Kernel, FN); 1984 createKernelVariables(Kernel, FN); 1985 insertKernelIntrinsics(Kernel); 1986 } 1987 1988 std::string GPUNodeBuilder::createKernelASM() { 1989 llvm::Triple GPUTriple; 1990 1991 switch (Arch) { 1992 case GPUArch::NVPTX64: 1993 switch (Runtime) { 1994 case GPURuntime::CUDA: 1995 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 1996 break; 1997 case GPURuntime::OpenCL: 1998 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 1999 break; 2000 } 2001 break; 2002 } 2003 2004 std::string ErrMsg; 2005 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2006 2007 if (!GPUTarget) { 2008 errs() << ErrMsg << "\n"; 2009 return ""; 2010 } 2011 2012 TargetOptions Options; 2013 Options.UnsafeFPMath = FastMath; 2014 2015 std::string subtarget; 2016 2017 switch (Arch) { 2018 case GPUArch::NVPTX64: 2019 subtarget = CudaVersion; 2020 break; 2021 } 2022 2023 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2024 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2025 2026 SmallString<0> ASMString; 2027 raw_svector_ostream ASMStream(ASMString); 2028 llvm::legacy::PassManager PM; 2029 2030 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2031 2032 if (TargetM->addPassesToEmitFile( 2033 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2034 errs() << "The target does not support generation of this file type!\n"; 2035 return ""; 2036 } 2037 2038 PM.run(*GPUModule); 2039 2040 return ASMStream.str(); 2041 } 2042 2043 std::string GPUNodeBuilder::finalizeKernelFunction() { 2044 2045 if (verifyModule(*GPUModule)) { 2046 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2047 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2048 2049 if (FailOnVerifyModuleFailure) 2050 llvm_unreachable("VerifyModule failed."); 2051 2052 BuildSuccessful = false; 2053 return ""; 2054 } 2055 2056 if (DumpKernelIR) 2057 outs() << *GPUModule << "\n"; 2058 2059 // Optimize module. 2060 llvm::legacy::PassManager OptPasses; 2061 PassManagerBuilder PassBuilder; 2062 PassBuilder.OptLevel = 3; 2063 PassBuilder.SizeLevel = 0; 2064 PassBuilder.populateModulePassManager(OptPasses); 2065 OptPasses.run(*GPUModule); 2066 2067 std::string Assembly = createKernelASM(); 2068 2069 if (DumpKernelASM) 2070 outs() << Assembly << "\n"; 2071 2072 GPUModule.release(); 2073 KernelIDs.clear(); 2074 2075 return Assembly; 2076 } 2077 2078 namespace { 2079 class PPCGCodeGeneration : public ScopPass { 2080 public: 2081 static char ID; 2082 2083 GPURuntime Runtime = GPURuntime::CUDA; 2084 2085 GPUArch Architecture = GPUArch::NVPTX64; 2086 2087 /// The scop that is currently processed. 2088 Scop *S; 2089 2090 LoopInfo *LI; 2091 DominatorTree *DT; 2092 ScalarEvolution *SE; 2093 const DataLayout *DL; 2094 RegionInfo *RI; 2095 2096 PPCGCodeGeneration() : ScopPass(ID) {} 2097 2098 /// Construct compilation options for PPCG. 2099 /// 2100 /// @returns The compilation options. 2101 ppcg_options *createPPCGOptions() { 2102 auto DebugOptions = 2103 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2104 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2105 2106 DebugOptions->dump_schedule_constraints = false; 2107 DebugOptions->dump_schedule = false; 2108 DebugOptions->dump_final_schedule = false; 2109 DebugOptions->dump_sizes = false; 2110 DebugOptions->verbose = false; 2111 2112 Options->debug = DebugOptions; 2113 2114 Options->reschedule = true; 2115 Options->scale_tile_loops = false; 2116 Options->wrap = false; 2117 2118 Options->non_negative_parameters = false; 2119 Options->ctx = nullptr; 2120 Options->sizes = nullptr; 2121 2122 Options->tile_size = 32; 2123 2124 Options->use_private_memory = PrivateMemory; 2125 Options->use_shared_memory = SharedMemory; 2126 Options->max_shared_memory = 48 * 1024; 2127 2128 Options->target = PPCG_TARGET_CUDA; 2129 Options->openmp = false; 2130 Options->linearize_device_arrays = true; 2131 Options->live_range_reordering = false; 2132 2133 Options->opencl_compiler_options = nullptr; 2134 Options->opencl_use_gpu = false; 2135 Options->opencl_n_include_file = 0; 2136 Options->opencl_include_files = nullptr; 2137 Options->opencl_print_kernel_types = false; 2138 Options->opencl_embed_kernel_code = false; 2139 2140 Options->save_schedule_file = nullptr; 2141 Options->load_schedule_file = nullptr; 2142 2143 return Options; 2144 } 2145 2146 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2147 /// 2148 /// Instead of a normal access of the form: 2149 /// 2150 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2151 /// 2152 /// a tagged access has the form 2153 /// 2154 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2155 /// 2156 /// where 'id' is an additional space that references the memory access that 2157 /// triggered the access. 2158 /// 2159 /// @param AccessTy The type of the memory accesses to collect. 2160 /// 2161 /// @return The relation describing all tagged memory accesses. 2162 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2163 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 2164 2165 for (auto &Stmt : *S) 2166 for (auto &Acc : Stmt) 2167 if (Acc->getType() == AccessTy) { 2168 isl_map *Relation = Acc->getAccessRelation(); 2169 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 2170 2171 isl_space *Space = isl_map_get_space(Relation); 2172 Space = isl_space_range(Space); 2173 Space = isl_space_from_range(Space); 2174 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2175 isl_map *Universe = isl_map_universe(Space); 2176 Relation = isl_map_domain_product(Relation, Universe); 2177 Accesses = isl_union_map_add_map(Accesses, Relation); 2178 } 2179 2180 return Accesses; 2181 } 2182 2183 /// Get the set of all read accesses, tagged with the access id. 2184 /// 2185 /// @see getTaggedAccesses 2186 isl_union_map *getTaggedReads() { 2187 return getTaggedAccesses(MemoryAccess::READ); 2188 } 2189 2190 /// Get the set of all may (and must) accesses, tagged with the access id. 2191 /// 2192 /// @see getTaggedAccesses 2193 isl_union_map *getTaggedMayWrites() { 2194 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2195 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2196 } 2197 2198 /// Get the set of all must accesses, tagged with the access id. 2199 /// 2200 /// @see getTaggedAccesses 2201 isl_union_map *getTaggedMustWrites() { 2202 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2203 } 2204 2205 /// Collect parameter and array names as isl_ids. 2206 /// 2207 /// To reason about the different parameters and arrays used, ppcg requires 2208 /// a list of all isl_ids in use. As PPCG traditionally performs 2209 /// source-to-source compilation each of these isl_ids is mapped to the 2210 /// expression that represents it. As we do not have a corresponding 2211 /// expression in Polly, we just map each id to a 'zero' expression to match 2212 /// the data format that ppcg expects. 2213 /// 2214 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2215 __isl_give isl_id_to_ast_expr *getNames() { 2216 auto *Names = isl_id_to_ast_expr_alloc( 2217 S->getIslCtx(), 2218 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2219 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2220 auto *Space = S->getParamSpace(); 2221 2222 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 2223 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 2224 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2225 } 2226 2227 for (auto &Array : S->arrays()) { 2228 auto Id = Array->getBasePtrId(); 2229 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2230 } 2231 2232 isl_space_free(Space); 2233 isl_ast_expr_free(Zero); 2234 2235 return Names; 2236 } 2237 2238 /// Create a new PPCG scop from the current scop. 2239 /// 2240 /// The PPCG scop is initialized with data from the current polly::Scop. From 2241 /// this initial data, the data-dependences in the PPCG scop are initialized. 2242 /// We do not use Polly's dependence analysis for now, to ensure we match 2243 /// the PPCG default behaviour more closely. 2244 /// 2245 /// @returns A new ppcg scop. 2246 ppcg_scop *createPPCGScop() { 2247 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2248 2249 PPCGScop->options = createPPCGOptions(); 2250 // enable live range reordering 2251 PPCGScop->options->live_range_reordering = 1; 2252 2253 PPCGScop->start = 0; 2254 PPCGScop->end = 0; 2255 2256 PPCGScop->context = S->getContext(); 2257 PPCGScop->domain = S->getDomains(); 2258 PPCGScop->call = nullptr; 2259 PPCGScop->tagged_reads = getTaggedReads(); 2260 PPCGScop->reads = S->getReads(); 2261 PPCGScop->live_in = nullptr; 2262 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2263 PPCGScop->may_writes = S->getWrites(); 2264 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2265 PPCGScop->must_writes = S->getMustWrites(); 2266 PPCGScop->live_out = nullptr; 2267 PPCGScop->tagger = nullptr; 2268 PPCGScop->independence = 2269 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2270 PPCGScop->dep_flow = nullptr; 2271 PPCGScop->tagged_dep_flow = nullptr; 2272 PPCGScop->dep_false = nullptr; 2273 PPCGScop->dep_forced = nullptr; 2274 PPCGScop->dep_order = nullptr; 2275 PPCGScop->tagged_dep_order = nullptr; 2276 2277 PPCGScop->schedule = S->getScheduleTree(); 2278 2279 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2280 // If we have something non-trivial to kill, add it to the schedule 2281 if (KillsInfo.KillsSchedule.get()) 2282 PPCGScop->schedule = isl_schedule_sequence( 2283 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2284 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2285 2286 PPCGScop->names = getNames(); 2287 PPCGScop->pet = nullptr; 2288 2289 compute_tagger(PPCGScop); 2290 compute_dependences(PPCGScop); 2291 2292 return PPCGScop; 2293 } 2294 2295 /// Collect the array accesses in a statement. 2296 /// 2297 /// @param Stmt The statement for which to collect the accesses. 2298 /// 2299 /// @returns A list of array accesses. 2300 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2301 gpu_stmt_access *Accesses = nullptr; 2302 2303 for (MemoryAccess *Acc : Stmt) { 2304 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2305 Access->read = Acc->isRead(); 2306 Access->write = Acc->isWrite(); 2307 Access->access = Acc->getAccessRelation(); 2308 isl_space *Space = isl_map_get_space(Access->access); 2309 Space = isl_space_range(Space); 2310 Space = isl_space_from_range(Space); 2311 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 2312 isl_map *Universe = isl_map_universe(Space); 2313 Access->tagged_access = 2314 isl_map_domain_product(Acc->getAccessRelation(), Universe); 2315 Access->exact_write = !Acc->isMayWrite(); 2316 Access->ref_id = Acc->getId(); 2317 Access->next = Accesses; 2318 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2319 Accesses = Access; 2320 } 2321 2322 return Accesses; 2323 } 2324 2325 /// Collect the list of GPU statements. 2326 /// 2327 /// Each statement has an id, a pointer to the underlying data structure, 2328 /// as well as a list with all memory accesses. 2329 /// 2330 /// TODO: Initialize the list of memory accesses. 2331 /// 2332 /// @returns A linked-list of statements. 2333 gpu_stmt *getStatements() { 2334 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2335 std::distance(S->begin(), S->end())); 2336 2337 int i = 0; 2338 for (auto &Stmt : *S) { 2339 gpu_stmt *GPUStmt = &Stmts[i]; 2340 2341 GPUStmt->id = Stmt.getDomainId(); 2342 2343 // We use the pet stmt pointer to keep track of the Polly statements. 2344 GPUStmt->stmt = (pet_stmt *)&Stmt; 2345 GPUStmt->accesses = getStmtAccesses(Stmt); 2346 i++; 2347 } 2348 2349 return Stmts; 2350 } 2351 2352 /// Derive the extent of an array. 2353 /// 2354 /// The extent of an array is the set of elements that are within the 2355 /// accessed array. For the inner dimensions, the extent constraints are 2356 /// 0 and the size of the corresponding array dimension. For the first 2357 /// (outermost) dimension, the extent constraints are the minimal and maximal 2358 /// subscript value for the first dimension. 2359 /// 2360 /// @param Array The array to derive the extent for. 2361 /// 2362 /// @returns An isl_set describing the extent of the array. 2363 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2364 unsigned NumDims = Array->getNumberOfDimensions(); 2365 isl_union_map *Accesses = S->getAccesses(); 2366 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 2367 Accesses = isl_union_map_detect_equalities(Accesses); 2368 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2369 AccessUSet = isl_union_set_coalesce(AccessUSet); 2370 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2371 AccessUSet = isl_union_set_coalesce(AccessUSet); 2372 2373 if (isl_union_set_is_empty(AccessUSet)) { 2374 isl_union_set_free(AccessUSet); 2375 return isl_set_empty(Array->getSpace()); 2376 } 2377 2378 if (Array->getNumberOfDimensions() == 0) { 2379 isl_union_set_free(AccessUSet); 2380 return isl_set_universe(Array->getSpace()); 2381 } 2382 2383 isl_set *AccessSet = 2384 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 2385 2386 isl_union_set_free(AccessUSet); 2387 isl_local_space *LS = isl_local_space_from_space(Array->getSpace()); 2388 2389 isl_pw_aff *Val = 2390 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2391 2392 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2393 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2394 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2395 isl_pw_aff_dim(Val, isl_dim_in)); 2396 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2397 isl_pw_aff_dim(Val, isl_dim_in)); 2398 OuterMin = 2399 isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, Array->getBasePtrId()); 2400 OuterMax = 2401 isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, Array->getBasePtrId()); 2402 2403 isl_set *Extent = isl_set_universe(Array->getSpace()); 2404 2405 Extent = isl_set_intersect( 2406 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2407 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2408 2409 for (unsigned i = 1; i < NumDims; ++i) 2410 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2411 2412 for (unsigned i = 0; i < NumDims; ++i) { 2413 isl_pw_aff *PwAff = 2414 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i)); 2415 2416 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2417 // Fortran array will we have a legitimate dimension. 2418 if (!PwAff) { 2419 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2420 continue; 2421 } 2422 2423 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2424 isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); 2425 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2426 isl_pw_aff_dim(Val, isl_dim_in)); 2427 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2428 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2429 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2430 Extent = isl_set_intersect(Set, Extent); 2431 } 2432 2433 return Extent; 2434 } 2435 2436 /// Derive the bounds of an array. 2437 /// 2438 /// For the first dimension we derive the bound of the array from the extent 2439 /// of this dimension. For inner dimensions we obtain their size directly from 2440 /// ScopArrayInfo. 2441 /// 2442 /// @param PPCGArray The array to compute bounds for. 2443 /// @param Array The polly array from which to take the information. 2444 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2445 if (PPCGArray.n_index > 0) { 2446 if (isl_set_is_empty(PPCGArray.extent)) { 2447 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2448 isl_local_space *LS = isl_local_space_from_space( 2449 isl_space_params(isl_set_get_space(Dom))); 2450 isl_set_free(Dom); 2451 isl_aff *Zero = isl_aff_zero_on_domain(LS); 2452 PPCGArray.bound[0] = isl_pw_aff_from_aff(Zero); 2453 } else { 2454 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2455 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2456 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2457 isl_set_free(Dom); 2458 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2459 isl_local_space *LS = 2460 isl_local_space_from_space(isl_set_get_space(Dom)); 2461 isl_aff *One = isl_aff_zero_on_domain(LS); 2462 One = isl_aff_add_constant_si(One, 1); 2463 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2464 Bound = isl_pw_aff_gist(Bound, S->getContext()); 2465 PPCGArray.bound[0] = Bound; 2466 } 2467 } 2468 2469 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2470 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 2471 auto LS = isl_pw_aff_get_domain_space(Bound); 2472 auto Aff = isl_multi_aff_zero(LS); 2473 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2474 PPCGArray.bound[i] = Bound; 2475 } 2476 } 2477 2478 /// Create the arrays for @p PPCGProg. 2479 /// 2480 /// @param PPCGProg The program to compute the arrays for. 2481 void createArrays(gpu_prog *PPCGProg) { 2482 int i = 0; 2483 for (auto &Array : S->arrays()) { 2484 std::string TypeName; 2485 raw_string_ostream OS(TypeName); 2486 2487 OS << *Array->getElementType(); 2488 TypeName = OS.str(); 2489 2490 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2491 2492 PPCGArray.space = Array->getSpace(); 2493 PPCGArray.type = strdup(TypeName.c_str()); 2494 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2495 PPCGArray.name = strdup(Array->getName().c_str()); 2496 PPCGArray.extent = nullptr; 2497 PPCGArray.n_index = Array->getNumberOfDimensions(); 2498 PPCGArray.bound = 2499 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 2500 PPCGArray.extent = getExtent(Array); 2501 PPCGArray.n_ref = 0; 2502 PPCGArray.refs = nullptr; 2503 PPCGArray.accessed = true; 2504 PPCGArray.read_only_scalar = 2505 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2506 PPCGArray.has_compound_element = false; 2507 PPCGArray.local = false; 2508 PPCGArray.declare_local = false; 2509 PPCGArray.global = false; 2510 PPCGArray.linearize = false; 2511 PPCGArray.dep_order = nullptr; 2512 PPCGArray.user = Array; 2513 2514 setArrayBounds(PPCGArray, Array); 2515 i++; 2516 2517 collect_references(PPCGProg, &PPCGArray); 2518 } 2519 } 2520 2521 /// Create an identity map between the arrays in the scop. 2522 /// 2523 /// @returns An identity map between the arrays in the scop. 2524 isl_union_map *getArrayIdentity() { 2525 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 2526 2527 for (auto &Array : S->arrays()) { 2528 isl_space *Space = Array->getSpace(); 2529 Space = isl_space_map_from_set(Space); 2530 isl_map *Identity = isl_map_identity(Space); 2531 Maps = isl_union_map_add_map(Maps, Identity); 2532 } 2533 2534 return Maps; 2535 } 2536 2537 /// Create a default-initialized PPCG GPU program. 2538 /// 2539 /// @returns A new gpu program description. 2540 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2541 2542 if (!PPCGScop) 2543 return nullptr; 2544 2545 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2546 2547 PPCGProg->ctx = S->getIslCtx(); 2548 PPCGProg->scop = PPCGScop; 2549 PPCGProg->context = isl_set_copy(PPCGScop->context); 2550 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2551 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2552 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2553 PPCGProg->tagged_must_kill = 2554 isl_union_map_copy(PPCGScop->tagged_must_kills); 2555 PPCGProg->to_inner = getArrayIdentity(); 2556 PPCGProg->to_outer = getArrayIdentity(); 2557 PPCGProg->any_to_outer = nullptr; 2558 2559 // this needs to be set when live range reordering is enabled. 2560 // NOTE: I believe that is conservatively correct. I'm not sure 2561 // what the semantics of this is. 2562 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2563 PPCGProg->array_order = 2564 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2565 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2566 PPCGProg->stmts = getStatements(); 2567 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 2568 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2569 PPCGProg->n_array); 2570 2571 createArrays(PPCGProg); 2572 2573 PPCGProg->may_persist = compute_may_persist(PPCGProg); 2574 return PPCGProg; 2575 } 2576 2577 struct PrintGPUUserData { 2578 struct cuda_info *CudaInfo; 2579 struct gpu_prog *PPCGProg; 2580 std::vector<ppcg_kernel *> Kernels; 2581 }; 2582 2583 /// Print a user statement node in the host code. 2584 /// 2585 /// We use ppcg's printing facilities to print the actual statement and 2586 /// additionally build up a list of all kernels that are encountered in the 2587 /// host ast. 2588 /// 2589 /// @param P The printer to print to 2590 /// @param Options The printing options to use 2591 /// @param Node The node to print 2592 /// @param User A user pointer to carry additional data. This pointer is 2593 /// expected to be of type PrintGPUUserData. 2594 /// 2595 /// @returns A printer to which the output has been printed. 2596 static __isl_give isl_printer * 2597 printHostUser(__isl_take isl_printer *P, 2598 __isl_take isl_ast_print_options *Options, 2599 __isl_take isl_ast_node *Node, void *User) { 2600 auto Data = (struct PrintGPUUserData *)User; 2601 auto Id = isl_ast_node_get_annotation(Node); 2602 2603 if (Id) { 2604 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 2605 2606 // If this is a user statement, format it ourselves as ppcg would 2607 // otherwise try to call pet functionality that is not available in 2608 // Polly. 2609 if (IsUser) { 2610 P = isl_printer_start_line(P); 2611 P = isl_printer_print_ast_node(P, Node); 2612 P = isl_printer_end_line(P); 2613 isl_id_free(Id); 2614 isl_ast_print_options_free(Options); 2615 return P; 2616 } 2617 2618 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 2619 isl_id_free(Id); 2620 Data->Kernels.push_back(Kernel); 2621 } 2622 2623 return print_host_user(P, Options, Node, User); 2624 } 2625 2626 /// Print C code corresponding to the control flow in @p Kernel. 2627 /// 2628 /// @param Kernel The kernel to print 2629 void printKernel(ppcg_kernel *Kernel) { 2630 auto *P = isl_printer_to_str(S->getIslCtx()); 2631 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2632 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2633 P = isl_ast_node_print(Kernel->tree, P, Options); 2634 char *String = isl_printer_get_str(P); 2635 printf("%s\n", String); 2636 free(String); 2637 isl_printer_free(P); 2638 } 2639 2640 /// Print C code corresponding to the GPU code described by @p Tree. 2641 /// 2642 /// @param Tree An AST describing GPU code 2643 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 2644 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 2645 auto *P = isl_printer_to_str(S->getIslCtx()); 2646 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 2647 2648 PrintGPUUserData Data; 2649 Data.PPCGProg = PPCGProg; 2650 2651 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 2652 Options = 2653 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 2654 P = isl_ast_node_print(Tree, P, Options); 2655 char *String = isl_printer_get_str(P); 2656 printf("# host\n"); 2657 printf("%s\n", String); 2658 free(String); 2659 isl_printer_free(P); 2660 2661 for (auto Kernel : Data.Kernels) { 2662 printf("# kernel%d\n", Kernel->id); 2663 printKernel(Kernel); 2664 } 2665 } 2666 2667 // Generate a GPU program using PPCG. 2668 // 2669 // GPU mapping consists of multiple steps: 2670 // 2671 // 1) Compute new schedule for the program. 2672 // 2) Map schedule to GPU (TODO) 2673 // 3) Generate code for new schedule (TODO) 2674 // 2675 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 2676 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 2677 // strategy directly from this pass. 2678 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 2679 2680 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 2681 2682 PPCGGen->ctx = S->getIslCtx(); 2683 PPCGGen->options = PPCGScop->options; 2684 PPCGGen->print = nullptr; 2685 PPCGGen->print_user = nullptr; 2686 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 2687 PPCGGen->prog = PPCGProg; 2688 PPCGGen->tree = nullptr; 2689 PPCGGen->types.n = 0; 2690 PPCGGen->types.name = nullptr; 2691 PPCGGen->sizes = nullptr; 2692 PPCGGen->used_sizes = nullptr; 2693 PPCGGen->kernel_id = 0; 2694 2695 // Set scheduling strategy to same strategy PPCG is using. 2696 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 2697 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 2698 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 2699 2700 isl_schedule *Schedule = get_schedule(PPCGGen); 2701 2702 int has_permutable = has_any_permutable_node(Schedule); 2703 2704 if (!has_permutable || has_permutable < 0) { 2705 Schedule = isl_schedule_free(Schedule); 2706 } else { 2707 Schedule = map_to_device(PPCGGen, Schedule); 2708 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 2709 } 2710 2711 if (DumpSchedule) { 2712 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 2713 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 2714 P = isl_printer_print_str(P, "Schedule\n"); 2715 P = isl_printer_print_str(P, "========\n"); 2716 if (Schedule) 2717 P = isl_printer_print_schedule(P, Schedule); 2718 else 2719 P = isl_printer_print_str(P, "No schedule found\n"); 2720 2721 printf("%s\n", isl_printer_get_str(P)); 2722 isl_printer_free(P); 2723 } 2724 2725 if (DumpCode) { 2726 printf("Code\n"); 2727 printf("====\n"); 2728 if (PPCGGen->tree) 2729 printGPUTree(PPCGGen->tree, PPCGProg); 2730 else 2731 printf("No code generated\n"); 2732 } 2733 2734 isl_schedule_free(Schedule); 2735 2736 return PPCGGen; 2737 } 2738 2739 /// Free gpu_gen structure. 2740 /// 2741 /// @param PPCGGen The ppcg_gen object to free. 2742 void freePPCGGen(gpu_gen *PPCGGen) { 2743 isl_ast_node_free(PPCGGen->tree); 2744 isl_union_map_free(PPCGGen->sizes); 2745 isl_union_map_free(PPCGGen->used_sizes); 2746 free(PPCGGen); 2747 } 2748 2749 /// Free the options in the ppcg scop structure. 2750 /// 2751 /// ppcg is not freeing these options for us. To avoid leaks we do this 2752 /// ourselves. 2753 /// 2754 /// @param PPCGScop The scop referencing the options to free. 2755 void freeOptions(ppcg_scop *PPCGScop) { 2756 free(PPCGScop->options->debug); 2757 PPCGScop->options->debug = nullptr; 2758 free(PPCGScop->options); 2759 PPCGScop->options = nullptr; 2760 } 2761 2762 /// Approximate the number of points in the set. 2763 /// 2764 /// This function returns an ast expression that overapproximates the number 2765 /// of points in an isl set through the rectangular hull surrounding this set. 2766 /// 2767 /// @param Set The set to count. 2768 /// @param Build The isl ast build object to use for creating the ast 2769 /// expression. 2770 /// 2771 /// @returns An approximation of the number of points in the set. 2772 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 2773 __isl_keep isl_ast_build *Build) { 2774 2775 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 2776 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 2777 2778 isl_space *Space = isl_set_get_space(Set); 2779 Space = isl_space_params(Space); 2780 auto *Univ = isl_set_universe(Space); 2781 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 2782 2783 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 2784 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 2785 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 2786 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 2787 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 2788 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 2789 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 2790 } 2791 2792 isl_set_free(Set); 2793 isl_pw_aff_free(OneAff); 2794 2795 return Expr; 2796 } 2797 2798 /// Approximate a number of dynamic instructions executed by a given 2799 /// statement. 2800 /// 2801 /// @param Stmt The statement for which to compute the number of dynamic 2802 /// instructions. 2803 /// @param Build The isl ast build object to use for creating the ast 2804 /// expression. 2805 /// @returns An approximation of the number of dynamic instructions executed 2806 /// by @p Stmt. 2807 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 2808 __isl_keep isl_ast_build *Build) { 2809 auto Iterations = approxPointsInSet(Stmt.getDomain(), Build); 2810 2811 long InstCount = 0; 2812 2813 if (Stmt.isBlockStmt()) { 2814 auto *BB = Stmt.getBasicBlock(); 2815 InstCount = std::distance(BB->begin(), BB->end()); 2816 } else { 2817 auto *R = Stmt.getRegion(); 2818 2819 for (auto *BB : R->blocks()) { 2820 InstCount += std::distance(BB->begin(), BB->end()); 2821 } 2822 } 2823 2824 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 2825 auto *InstExpr = isl_ast_expr_from_val(InstVal); 2826 return isl_ast_expr_mul(InstExpr, Iterations); 2827 } 2828 2829 /// Approximate dynamic instructions executed in scop. 2830 /// 2831 /// @param S The scop for which to approximate dynamic instructions. 2832 /// @param Build The isl ast build object to use for creating the ast 2833 /// expression. 2834 /// @returns An approximation of the number of dynamic instructions executed 2835 /// in @p S. 2836 __isl_give isl_ast_expr * 2837 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 2838 isl_ast_expr *Instructions; 2839 2840 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 2841 Instructions = isl_ast_expr_from_val(Zero); 2842 2843 for (ScopStmt &Stmt : S) { 2844 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 2845 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 2846 } 2847 return Instructions; 2848 } 2849 2850 /// Create a check that ensures sufficient compute in scop. 2851 /// 2852 /// @param S The scop for which to ensure sufficient compute. 2853 /// @param Build The isl ast build object to use for creating the ast 2854 /// expression. 2855 /// @returns An expression that evaluates to TRUE in case of sufficient 2856 /// compute and to FALSE, otherwise. 2857 __isl_give isl_ast_expr * 2858 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 2859 auto Iterations = getNumberOfIterations(S, Build); 2860 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 2861 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 2862 return isl_ast_expr_ge(Iterations, MinComputeExpr); 2863 } 2864 2865 /// Check if the basic block contains a function we cannot codegen for GPU 2866 /// kernels. 2867 /// 2868 /// If this basic block does something with a `Function` other than calling 2869 /// a function that we support in a kernel, return true. 2870 bool containsInvalidKernelFunctionInBllock(const BasicBlock *BB) { 2871 for (const Instruction &Inst : *BB) { 2872 const CallInst *Call = dyn_cast<CallInst>(&Inst); 2873 if (Call && isValidFunctionInKernel(Call->getCalledFunction())) { 2874 continue; 2875 } 2876 2877 for (Value *SrcVal : Inst.operands()) { 2878 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 2879 if (!p) 2880 continue; 2881 if (isa<FunctionType>(p->getElementType())) 2882 return true; 2883 } 2884 } 2885 return false; 2886 } 2887 2888 /// Return whether the Scop S uses functions in a way that we do not support. 2889 bool containsInvalidKernelFunction(const Scop &S) { 2890 for (auto &Stmt : S) { 2891 if (Stmt.isBlockStmt()) { 2892 if (containsInvalidKernelFunctionInBllock(Stmt.getBasicBlock())) 2893 return true; 2894 } else { 2895 assert(Stmt.isRegionStmt() && 2896 "Stmt was neither block nor region statement"); 2897 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 2898 if (containsInvalidKernelFunctionInBllock(BB)) 2899 return true; 2900 } 2901 } 2902 return false; 2903 } 2904 2905 /// Generate code for a given GPU AST described by @p Root. 2906 /// 2907 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 2908 /// @param Prog The GPU Program to generate code for. 2909 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 2910 ScopAnnotator Annotator; 2911 Annotator.buildAliasScopes(*S); 2912 2913 Region *R = &S->getRegion(); 2914 2915 simplifyRegion(R, DT, LI, RI); 2916 2917 BasicBlock *EnteringBB = R->getEnteringBlock(); 2918 2919 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 2920 2921 // Only build the run-time condition and parameters _after_ having 2922 // introduced the conditional branch. This is important as the conditional 2923 // branch will guard the original scop from new induction variables that 2924 // the SCEVExpander may introduce while code generating the parameters and 2925 // which may introduce scalar dependences that prevent us from correctly 2926 // code generating this scop. 2927 BBPair StartExitBlocks = 2928 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 2929 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 2930 2931 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 2932 StartBlock, Prog, Runtime, Architecture); 2933 2934 // TODO: Handle LICM 2935 auto SplitBlock = StartBlock->getSinglePredecessor(); 2936 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2937 NodeBuilder.addParameters(S->getContext()); 2938 2939 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 2940 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 2941 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 2942 Condition = isl_ast_expr_and(Condition, SufficientCompute); 2943 isl_ast_build_free(Build); 2944 2945 Value *RTC = NodeBuilder.createRTC(Condition); 2946 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 2947 2948 Builder.SetInsertPoint(&*StartBlock->begin()); 2949 2950 NodeBuilder.initializeAfterRTH(); 2951 NodeBuilder.create(Root); 2952 NodeBuilder.finalize(); 2953 2954 /// In case a sequential kernel has more surrounding loops as any parallel 2955 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 2956 /// point in running it on a GPU. 2957 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 2958 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2959 2960 if (!NodeBuilder.BuildSuccessful) 2961 SplitBlock->getTerminator()->setOperand(0, Builder.getFalse()); 2962 } 2963 2964 bool runOnScop(Scop &CurrentScop) override { 2965 S = &CurrentScop; 2966 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2967 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2968 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2969 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 2970 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2971 2972 // We currently do not support functions other than intrinsics inside 2973 // kernels, as code generation will need to offload function calls to the 2974 // kernel. This may lead to a kernel trying to call a function on the host. 2975 // This also allows us to prevent codegen from trying to take the 2976 // address of an intrinsic function to send to the kernel. 2977 if (containsInvalidKernelFunction(CurrentScop)) { 2978 DEBUG( 2979 dbgs() 2980 << "Scop contains function which cannot be materialised in a GPU " 2981 "kernel. Bailing out.\n";); 2982 return false; 2983 } 2984 2985 auto PPCGScop = createPPCGScop(); 2986 auto PPCGProg = createPPCGProg(PPCGScop); 2987 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2988 2989 if (PPCGGen->tree) { 2990 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2991 CurrentScop.markAsToBeSkipped(); 2992 } 2993 2994 freeOptions(PPCGScop); 2995 freePPCGGen(PPCGGen); 2996 gpu_prog_free(PPCGProg); 2997 ppcg_scop_free(PPCGScop); 2998 2999 return true; 3000 } 3001 3002 void printScop(raw_ostream &, Scop &) const override {} 3003 3004 void getAnalysisUsage(AnalysisUsage &AU) const override { 3005 AU.addRequired<DominatorTreeWrapperPass>(); 3006 AU.addRequired<RegionInfoPass>(); 3007 AU.addRequired<ScalarEvolutionWrapperPass>(); 3008 AU.addRequired<ScopDetectionWrapperPass>(); 3009 AU.addRequired<ScopInfoRegionPass>(); 3010 AU.addRequired<LoopInfoWrapperPass>(); 3011 3012 AU.addPreserved<AAResultsWrapperPass>(); 3013 AU.addPreserved<BasicAAWrapperPass>(); 3014 AU.addPreserved<LoopInfoWrapperPass>(); 3015 AU.addPreserved<DominatorTreeWrapperPass>(); 3016 AU.addPreserved<GlobalsAAWrapperPass>(); 3017 AU.addPreserved<ScopDetectionWrapperPass>(); 3018 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3019 AU.addPreserved<SCEVAAWrapperPass>(); 3020 3021 // FIXME: We do not yet add regions for the newly generated code to the 3022 // region tree. 3023 AU.addPreserved<RegionInfoPass>(); 3024 AU.addPreserved<ScopInfoRegionPass>(); 3025 } 3026 }; 3027 } // namespace 3028 3029 char PPCGCodeGeneration::ID = 1; 3030 3031 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3032 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3033 generator->Runtime = Runtime; 3034 generator->Architecture = Arch; 3035 return generator; 3036 } 3037 3038 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3039 "Polly - Apply PPCG translation to SCOP", false, false) 3040 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3041 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3042 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3043 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3044 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3045 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3046 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3047 "Polly - Apply PPCG translation to SCOP", false, false) 3048