1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/IRReader/IRReader.h" 36 #include "llvm/Linker/Linker.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/TargetSelect.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 43 #include "isl/union_map.h" 44 45 extern "C" { 46 #include "ppcg/cuda.h" 47 #include "ppcg/gpu.h" 48 #include "ppcg/gpu_print.h" 49 #include "ppcg/ppcg.h" 50 #include "ppcg/schedule.h" 51 } 52 53 #include "llvm/Support/Debug.h" 54 55 using namespace polly; 56 using namespace llvm; 57 58 #define DEBUG_TYPE "polly-codegen-ppcg" 59 60 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 61 cl::desc("Dump the computed GPU Schedule"), 62 cl::Hidden, cl::init(false), cl::ZeroOrMore, 63 cl::cat(PollyCategory)); 64 65 static cl::opt<bool> 66 DumpCode("polly-acc-dump-code", 67 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 71 cl::desc("Dump the kernel LLVM-IR"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 76 cl::desc("Dump the kernel assembly code"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 80 static cl::opt<bool> FastMath("polly-acc-fastmath", 81 cl::desc("Allow unsafe math optimizations"), 82 cl::Hidden, cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 85 cl::desc("Use shared memory"), cl::Hidden, 86 cl::init(false), cl::ZeroOrMore, 87 cl::cat(PollyCategory)); 88 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 89 cl::desc("Use private memory"), cl::Hidden, 90 cl::init(false), cl::ZeroOrMore, 91 cl::cat(PollyCategory)); 92 93 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 94 cl::desc("Generate Host kernel code assuming" 95 " that all memory has been" 96 " declared as managed memory"), 97 cl::Hidden, cl::init(false), cl::ZeroOrMore, 98 cl::cat(PollyCategory)); 99 100 static cl::opt<bool> 101 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 102 cl::desc("Fail and generate a backtrace if" 103 " verifyModule fails on the GPU " 104 " kernel module."), 105 cl::Hidden, cl::init(false), cl::ZeroOrMore, 106 cl::cat(PollyCategory)); 107 108 static cl::opt<std::string> CUDALibDevice( 109 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 110 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 111 cl::ZeroOrMore, cl::cat(PollyCategory)); 112 113 static cl::opt<std::string> 114 CudaVersion("polly-acc-cuda-version", 115 cl::desc("The CUDA version to compile for"), cl::Hidden, 116 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 117 118 static cl::opt<int> 119 MinCompute("polly-acc-mincompute", 120 cl::desc("Minimal number of compute statements to run on GPU."), 121 cl::Hidden, cl::init(10 * 512 * 512)); 122 123 /// Return a unique name for a Scop, which is the scop region with the 124 /// function name. 125 std::string getUniqueScopName(const Scop *S) { 126 return "Scop Region: " + S->getNameStr() + 127 " | Function: " + std::string(S->getFunction().getName()); 128 } 129 130 /// Used to store information PPCG wants for kills. This information is 131 /// used by live range reordering. 132 /// 133 /// @see computeLiveRangeReordering 134 /// @see GPUNodeBuilder::createPPCGScop 135 /// @see GPUNodeBuilder::createPPCGProg 136 struct MustKillsInfo { 137 /// Collection of all kill statements that will be sequenced at the end of 138 /// PPCGScop->schedule. 139 /// 140 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 141 /// which merges schedules in *arbitrary* order. 142 /// (we don't care about the order of the kills anyway). 143 isl::schedule KillsSchedule; 144 /// Map from kill statement instances to scalars that need to be 145 /// killed. 146 /// 147 /// We currently derive kill information for: 148 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 149 /// consequently all be killed. 150 /// 2. Scalar arrays that are not used outside the Scop. This is 151 /// checked by `isScalarUsesContainedInScop`. 152 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 153 isl::union_map TaggedMustKills; 154 155 /// Tagged must kills stripped of the tags. 156 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 157 isl::union_map MustKills; 158 159 MustKillsInfo() : KillsSchedule(nullptr) {} 160 }; 161 162 /// Check if SAI's uses are entirely contained within Scop S. 163 /// If a scalar is used only with a Scop, we are free to kill it, as no data 164 /// can flow in/out of the value any more. 165 /// @see computeMustKillsInfo 166 static bool isScalarUsesContainedInScop(const Scop &S, 167 const ScopArrayInfo *SAI) { 168 assert(SAI->isValueKind() && "this function only deals with scalars." 169 " Dealing with arrays required alias analysis"); 170 171 const Region &R = S.getRegion(); 172 for (User *U : SAI->getBasePtr()->users()) { 173 Instruction *I = dyn_cast<Instruction>(U); 174 assert(I && "invalid user of scop array info"); 175 if (!R.contains(I)) 176 return false; 177 } 178 return true; 179 } 180 181 /// Compute must-kills needed to enable live range reordering with PPCG. 182 /// 183 /// @params S The Scop to compute live range reordering information 184 /// @returns live range reordering information that can be used to setup 185 /// PPCG. 186 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 187 const isl::space ParamSpace = S.getParamSpace(); 188 MustKillsInfo Info; 189 190 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 191 // 1.1 phi nodes in scop. 192 // 1.2 scalars that are only used within the scop 193 SmallVector<isl::id, 4> KillMemIds; 194 for (ScopArrayInfo *SAI : S.arrays()) { 195 if (SAI->isPHIKind() || 196 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 197 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 198 } 199 200 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 201 Info.MustKills = isl::union_map::empty(ParamSpace); 202 203 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 204 // schedule: 205 // - filter: "[control] -> { }" 206 // So, we choose to not create this to keep the output a little nicer, 207 // at the cost of some code complexity. 208 Info.KillsSchedule = nullptr; 209 210 for (isl::id &ToKillId : KillMemIds) { 211 isl::id KillStmtId = isl::id::alloc( 212 S.getIslCtx(), 213 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 214 215 // NOTE: construction of tagged_must_kill: 216 // 2. We need to construct a map: 217 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 218 // To construct this, we use `isl_map_domain_product` on 2 maps`: 219 // 2a. StmtToScalar: 220 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 221 // 2b. PhantomRefToScalar: 222 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 223 // 224 // Combining these with `isl_map_domain_product` gives us 225 // TaggedMustKill: 226 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 227 228 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 229 isl::map StmtToScalar = isl::map::universe(ParamSpace); 230 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 231 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 232 233 isl::id PhantomRefId = isl::id::alloc( 234 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 235 nullptr); 236 237 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 238 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 239 PhantomRefToScalar = 240 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 241 PhantomRefToScalar = 242 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 243 244 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 245 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 246 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 247 248 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 249 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 250 251 // 3. Create the kill schedule of the form: 252 // "[param] -> { Stmt_phantom[] }" 253 // Then add this to Info.KillsSchedule. 254 isl::space KillStmtSpace = ParamSpace; 255 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 256 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 257 258 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 259 if (Info.KillsSchedule) 260 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 261 else 262 Info.KillsSchedule = KillSchedule; 263 } 264 265 return Info; 266 } 267 268 /// Create the ast expressions for a ScopStmt. 269 /// 270 /// This function is a callback for to generate the ast expressions for each 271 /// of the scheduled ScopStmts. 272 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 273 void *StmtT, __isl_take isl_ast_build *Build_C, 274 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 275 isl_id *Id, void *User), 276 void *UserIndex, 277 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 278 void *UserExpr) { 279 280 ScopStmt *Stmt = (ScopStmt *)StmtT; 281 282 if (!Stmt || !Build_C) 283 return NULL; 284 285 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 286 isl::ctx Ctx = Build.get_ctx(); 287 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 288 289 for (MemoryAccess *Acc : *Stmt) { 290 isl::map AddrFunc = Acc->getAddressFunction(); 291 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 292 293 isl::id RefId = Acc->getId(); 294 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 295 296 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 297 MPA = MPA.coalesce(); 298 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 299 300 isl::ast_expr Access = Build.access_from(MPA); 301 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 302 RefToExpr = RefToExpr.set(RefId, Access); 303 } 304 305 return RefToExpr.release(); 306 } 307 308 /// Given a LLVM Type, compute its size in bytes, 309 static int computeSizeInBytes(const Type *T) { 310 int bytes = T->getPrimitiveSizeInBits() / 8; 311 if (bytes == 0) 312 bytes = T->getScalarSizeInBits() / 8; 313 return bytes; 314 } 315 316 /// Generate code for a GPU specific isl AST. 317 /// 318 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 319 /// generates code for general-purpose AST nodes, with special functionality 320 /// for generating GPU specific user nodes. 321 /// 322 /// @see GPUNodeBuilder::createUser 323 class GPUNodeBuilder : public IslNodeBuilder { 324 public: 325 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 326 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 327 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 328 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 329 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 330 Prog(Prog), Runtime(Runtime), Arch(Arch) { 331 getExprBuilder().setIDToSAI(&IDToSAI); 332 } 333 334 /// Create after-run-time-check initialization code. 335 void initializeAfterRTH(); 336 337 /// Finalize the generated scop. 338 virtual void finalize(); 339 340 /// Track if the full build process was successful. 341 /// 342 /// This value is set to false, if throughout the build process an error 343 /// occurred which prevents us from generating valid GPU code. 344 bool BuildSuccessful = true; 345 346 /// The maximal number of loops surrounding a sequential kernel. 347 unsigned DeepestSequential = 0; 348 349 /// The maximal number of loops surrounding a parallel kernel. 350 unsigned DeepestParallel = 0; 351 352 /// Return the name to set for the ptx_kernel. 353 std::string getKernelFuncName(int Kernel_id); 354 355 private: 356 /// A vector of array base pointers for which a new ScopArrayInfo was created. 357 /// 358 /// This vector is used to delete the ScopArrayInfo when it is not needed any 359 /// more. 360 std::vector<Value *> LocalArrays; 361 362 /// A map from ScopArrays to their corresponding device allocations. 363 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 364 365 /// The current GPU context. 366 Value *GPUContext; 367 368 /// The set of isl_ids allocated in the kernel 369 std::vector<isl_id *> KernelIds; 370 371 /// A module containing GPU code. 372 /// 373 /// This pointer is only set in case we are currently generating GPU code. 374 std::unique_ptr<Module> GPUModule; 375 376 /// The GPU program we generate code for. 377 gpu_prog *Prog; 378 379 /// The GPU Runtime implementation to use (OpenCL or CUDA). 380 GPURuntime Runtime; 381 382 /// The GPU Architecture to target. 383 GPUArch Arch; 384 385 /// Class to free isl_ids. 386 class IslIdDeleter { 387 public: 388 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 389 }; 390 391 /// A set containing all isl_ids allocated in a GPU kernel. 392 /// 393 /// By releasing this set all isl_ids will be freed. 394 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 395 396 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 397 398 /// Create code for user-defined AST nodes. 399 /// 400 /// These AST nodes can be of type: 401 /// 402 /// - ScopStmt: A computational statement (TODO) 403 /// - Kernel: A GPU kernel call (TODO) 404 /// - Data-Transfer: A GPU <-> CPU data-transfer 405 /// - In-kernel synchronization 406 /// - In-kernel memory copy statement 407 /// 408 /// @param UserStmt The ast node to generate code for. 409 virtual void createUser(__isl_take isl_ast_node *UserStmt); 410 411 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 412 413 /// Create code for a data transfer statement 414 /// 415 /// @param TransferStmt The data transfer statement. 416 /// @param Direction The direction in which to transfer data. 417 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 418 enum DataDirection Direction); 419 420 /// Find llvm::Values referenced in GPU kernel. 421 /// 422 /// @param Kernel The kernel to scan for llvm::Values 423 /// 424 /// @returns A tuple, whose: 425 /// - First element contains the set of values referenced by the 426 /// kernel 427 /// - Second element contains the set of functions referenced by the 428 /// kernel. All functions in the set satisfy 429 /// `isValidFunctionInKernel`. 430 /// - Third element contains loops that have induction variables 431 /// which are used in the kernel, *and* these loops are *neither* 432 /// in the scop, nor do they immediately surroung the Scop. 433 /// See [Code generation of induction variables of loops outside 434 /// Scops] 435 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 436 getReferencesInKernel(ppcg_kernel *Kernel); 437 438 /// Compute the sizes of the execution grid for a given kernel. 439 /// 440 /// @param Kernel The kernel to compute grid sizes for. 441 /// 442 /// @returns A tuple with grid sizes for X and Y dimension 443 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 444 445 /// Get the managed array pointer for sending host pointers to the device. 446 /// \note 447 /// This is to be used only with managed memory 448 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 449 450 /// Compute the sizes of the thread blocks for a given kernel. 451 /// 452 /// @param Kernel The kernel to compute thread block sizes for. 453 /// 454 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 455 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 456 457 /// Store a specific kernel launch parameter in the array of kernel launch 458 /// parameters. 459 /// 460 /// @param Parameters The list of parameters in which to store. 461 /// @param Param The kernel launch parameter to store. 462 /// @param Index The index in the parameter list, at which to store the 463 /// parameter. 464 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 465 int Index); 466 467 /// Create kernel launch parameters. 468 /// 469 /// @param Kernel The kernel to create parameters for. 470 /// @param F The kernel function that has been created. 471 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 472 /// 473 /// @returns A stack allocated array with pointers to the parameter 474 /// values that are passed to the kernel. 475 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 476 SetVector<Value *> SubtreeValues); 477 478 /// Create declarations for kernel variable. 479 /// 480 /// This includes shared memory declarations. 481 /// 482 /// @param Kernel The kernel definition to create variables for. 483 /// @param FN The function into which to generate the variables. 484 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 485 486 /// Add CUDA annotations to module. 487 /// 488 /// Add a set of CUDA annotations that declares the maximal block dimensions 489 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 490 /// PTX compiler to bound the number of allocated registers to ensure the 491 /// resulting kernel is known to run with up to as many block dimensions 492 /// as specified here. 493 /// 494 /// @param M The module to add the annotations to. 495 /// @param BlockDimX The size of block dimension X. 496 /// @param BlockDimY The size of block dimension Y. 497 /// @param BlockDimZ The size of block dimension Z. 498 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 499 Value *BlockDimZ); 500 501 /// Create GPU kernel. 502 /// 503 /// Code generate the kernel described by @p KernelStmt. 504 /// 505 /// @param KernelStmt The ast node to generate kernel code for. 506 void createKernel(__isl_take isl_ast_node *KernelStmt); 507 508 /// Generate code that computes the size of an array. 509 /// 510 /// @param Array The array for which to compute a size. 511 Value *getArraySize(gpu_array_info *Array); 512 513 /// Generate code to compute the minimal offset at which an array is accessed. 514 /// 515 /// The offset of an array is the minimal array location accessed in a scop. 516 /// 517 /// Example: 518 /// 519 /// for (long i = 0; i < 100; i++) 520 /// A[i + 42] += ... 521 /// 522 /// getArrayOffset(A) results in 42. 523 /// 524 /// @param Array The array for which to compute the offset. 525 /// @returns An llvm::Value that contains the offset of the array. 526 Value *getArrayOffset(gpu_array_info *Array); 527 528 /// Prepare the kernel arguments for kernel code generation 529 /// 530 /// @param Kernel The kernel to generate code for. 531 /// @param FN The function created for the kernel. 532 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 533 534 /// Create kernel function. 535 /// 536 /// Create a kernel function located in a newly created module that can serve 537 /// as target for device code generation. Set the Builder to point to the 538 /// start block of this newly created function. 539 /// 540 /// @param Kernel The kernel to generate code for. 541 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 542 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 543 /// kernel. 544 void createKernelFunction(ppcg_kernel *Kernel, 545 SetVector<Value *> &SubtreeValues, 546 SetVector<Function *> &SubtreeFunctions); 547 548 /// Create the declaration of a kernel function. 549 /// 550 /// The kernel function takes as arguments: 551 /// 552 /// - One i8 pointer for each external array reference used in the kernel. 553 /// - Host iterators 554 /// - Parameters 555 /// - Other LLVM Value references (TODO) 556 /// 557 /// @param Kernel The kernel to generate the function declaration for. 558 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 559 /// 560 /// @returns The newly declared function. 561 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 562 SetVector<Value *> &SubtreeValues); 563 564 /// Insert intrinsic functions to obtain thread and block ids. 565 /// 566 /// @param The kernel to generate the intrinsic functions for. 567 void insertKernelIntrinsics(ppcg_kernel *Kernel); 568 569 /// Insert function calls to retrieve the SPIR group/local ids. 570 /// 571 /// @param The kernel to generate the function calls for. 572 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 573 574 /// Setup the creation of functions referenced by the GPU kernel. 575 /// 576 /// 1. Create new function declarations in GPUModule which are the same as 577 /// SubtreeFunctions. 578 /// 579 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 580 /// old functions (that come from the original module) to new functions 581 /// (that are created within GPUModule). That way, we generate references 582 /// to the correct function (in GPUModule) in BlockGenerator. 583 /// 584 /// @see IslNodeBuilder::ValueMap 585 /// @see BlockGenerator::GlobalMap 586 /// @see BlockGenerator::getNewValue 587 /// @see GPUNodeBuilder::getReferencesInKernel. 588 /// 589 /// @param SubtreeFunctions The set of llvm::Functions referenced by 590 /// this kernel. 591 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 592 593 /// Create a global-to-shared or shared-to-global copy statement. 594 /// 595 /// @param CopyStmt The copy statement to generate code for 596 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 597 598 /// Create code for a ScopStmt called in @p Expr. 599 /// 600 /// @param Expr The expression containing the call. 601 /// @param KernelStmt The kernel statement referenced in the call. 602 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 603 604 /// Create an in-kernel synchronization call. 605 void createKernelSync(); 606 607 /// Create a PTX assembly string for the current GPU kernel. 608 /// 609 /// @returns A string containing the corresponding PTX assembly code. 610 std::string createKernelASM(); 611 612 /// Remove references from the dominator tree to the kernel function @p F. 613 /// 614 /// @param F The function to remove references to. 615 void clearDominators(Function *F); 616 617 /// Remove references from scalar evolution to the kernel function @p F. 618 /// 619 /// @param F The function to remove references to. 620 void clearScalarEvolution(Function *F); 621 622 /// Remove references from loop info to the kernel function @p F. 623 /// 624 /// @param F The function to remove references to. 625 void clearLoops(Function *F); 626 627 /// Check if the scop requires to be linked with CUDA's libdevice. 628 bool requiresCUDALibDevice(); 629 630 /// Link with the NVIDIA libdevice library (if needed and available). 631 void addCUDALibDevice(); 632 633 /// Finalize the generation of the kernel function. 634 /// 635 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 636 /// dump its IR to stderr. 637 /// 638 /// @returns The Assembly string of the kernel. 639 std::string finalizeKernelFunction(); 640 641 /// Finalize the generation of the kernel arguments. 642 /// 643 /// This function ensures that not-read-only scalars used in a kernel are 644 /// stored back to the global memory location they are backed with before 645 /// the kernel terminates. 646 /// 647 /// @params Kernel The kernel to finalize kernel arguments for. 648 void finalizeKernelArguments(ppcg_kernel *Kernel); 649 650 /// Create code that allocates memory to store arrays on device. 651 void allocateDeviceArrays(); 652 653 /// Create code to prepare the managed device pointers. 654 void prepareManagedDeviceArrays(); 655 656 /// Free all allocated device arrays. 657 void freeDeviceArrays(); 658 659 /// Create a call to initialize the GPU context. 660 /// 661 /// @returns A pointer to the newly initialized context. 662 Value *createCallInitContext(); 663 664 /// Create a call to get the device pointer for a kernel allocation. 665 /// 666 /// @param Allocation The Polly GPU allocation 667 /// 668 /// @returns The device parameter corresponding to this allocation. 669 Value *createCallGetDevicePtr(Value *Allocation); 670 671 /// Create a call to free the GPU context. 672 /// 673 /// @param Context A pointer to an initialized GPU context. 674 void createCallFreeContext(Value *Context); 675 676 /// Create a call to allocate memory on the device. 677 /// 678 /// @param Size The size of memory to allocate 679 /// 680 /// @returns A pointer that identifies this allocation. 681 Value *createCallAllocateMemoryForDevice(Value *Size); 682 683 /// Create a call to free a device array. 684 /// 685 /// @param Array The device array to free. 686 void createCallFreeDeviceMemory(Value *Array); 687 688 /// Create a call to copy data from host to device. 689 /// 690 /// @param HostPtr A pointer to the host data that should be copied. 691 /// @param DevicePtr A device pointer specifying the location to copy to. 692 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 693 Value *Size); 694 695 /// Create a call to copy data from device to host. 696 /// 697 /// @param DevicePtr A pointer to the device data that should be copied. 698 /// @param HostPtr A host pointer specifying the location to copy to. 699 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 700 Value *Size); 701 702 /// Create a call to synchronize Host & Device. 703 /// \note 704 /// This is to be used only with managed memory. 705 void createCallSynchronizeDevice(); 706 707 /// Create a call to get a kernel from an assembly string. 708 /// 709 /// @param Buffer The string describing the kernel. 710 /// @param Entry The name of the kernel function to call. 711 /// 712 /// @returns A pointer to a kernel object 713 Value *createCallGetKernel(Value *Buffer, Value *Entry); 714 715 /// Create a call to free a GPU kernel. 716 /// 717 /// @param GPUKernel THe kernel to free. 718 void createCallFreeKernel(Value *GPUKernel); 719 720 /// Create a call to launch a GPU kernel. 721 /// 722 /// @param GPUKernel The kernel to launch. 723 /// @param GridDimX The size of the first grid dimension. 724 /// @param GridDimY The size of the second grid dimension. 725 /// @param GridBlockX The size of the first block dimension. 726 /// @param GridBlockY The size of the second block dimension. 727 /// @param GridBlockZ The size of the third block dimension. 728 /// @param Parameters A pointer to an array that contains itself pointers to 729 /// the parameter values passed for each kernel argument. 730 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 731 Value *GridDimY, Value *BlockDimX, 732 Value *BlockDimY, Value *BlockDimZ, 733 Value *Parameters); 734 }; 735 736 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 737 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 738 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 739 } 740 741 void GPUNodeBuilder::initializeAfterRTH() { 742 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 743 &*Builder.GetInsertPoint(), &DT, &LI); 744 NewBB->setName("polly.acc.initialize"); 745 Builder.SetInsertPoint(&NewBB->front()); 746 747 GPUContext = createCallInitContext(); 748 749 if (!ManagedMemory) 750 allocateDeviceArrays(); 751 else 752 prepareManagedDeviceArrays(); 753 } 754 755 void GPUNodeBuilder::finalize() { 756 if (!ManagedMemory) 757 freeDeviceArrays(); 758 759 createCallFreeContext(GPUContext); 760 IslNodeBuilder::finalize(); 761 } 762 763 void GPUNodeBuilder::allocateDeviceArrays() { 764 assert(!ManagedMemory && "Managed memory will directly send host pointers " 765 "to the kernel. There is no need for device arrays"); 766 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 767 768 for (int i = 0; i < Prog->n_array; ++i) { 769 gpu_array_info *Array = &Prog->array[i]; 770 auto *ScopArray = (ScopArrayInfo *)Array->user; 771 std::string DevArrayName("p_dev_array_"); 772 DevArrayName.append(Array->name); 773 774 Value *ArraySize = getArraySize(Array); 775 Value *Offset = getArrayOffset(Array); 776 if (Offset) 777 ArraySize = Builder.CreateSub( 778 ArraySize, 779 Builder.CreateMul(Offset, 780 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 781 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 782 DevArray->setName(DevArrayName); 783 DeviceAllocations[ScopArray] = DevArray; 784 } 785 786 isl_ast_build_free(Build); 787 } 788 789 void GPUNodeBuilder::prepareManagedDeviceArrays() { 790 assert(ManagedMemory && 791 "Device array most only be prepared in managed-memory mode"); 792 for (int i = 0; i < Prog->n_array; ++i) { 793 gpu_array_info *Array = &Prog->array[i]; 794 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 795 Value *HostPtr; 796 797 if (gpu_array_is_scalar(Array)) 798 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 799 else 800 HostPtr = ScopArray->getBasePtr(); 801 HostPtr = getLatestValue(HostPtr); 802 803 Value *Offset = getArrayOffset(Array); 804 if (Offset) { 805 HostPtr = Builder.CreatePointerCast( 806 HostPtr, ScopArray->getElementType()->getPointerTo()); 807 HostPtr = Builder.CreateGEP(HostPtr, Offset); 808 } 809 810 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 811 DeviceAllocations[ScopArray] = HostPtr; 812 } 813 } 814 815 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 816 Value *BlockDimY, Value *BlockDimZ) { 817 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 818 819 for (auto &F : *M) { 820 if (F.getCallingConv() != CallingConv::PTX_Kernel) 821 continue; 822 823 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 824 825 Metadata *Elements[] = { 826 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 827 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 828 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 829 ValueAsMetadata::get(V[2]), 830 }; 831 MDNode *Node = MDNode::get(M->getContext(), Elements); 832 AnnotationNode->addOperand(Node); 833 } 834 } 835 836 void GPUNodeBuilder::freeDeviceArrays() { 837 assert(!ManagedMemory && "Managed memory does not use device arrays"); 838 for (auto &Array : DeviceAllocations) 839 createCallFreeDeviceMemory(Array.second); 840 } 841 842 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 843 const char *Name = "polly_getKernel"; 844 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 845 Function *F = M->getFunction(Name); 846 847 // If F is not available, declare it. 848 if (!F) { 849 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 850 std::vector<Type *> Args; 851 Args.push_back(Builder.getInt8PtrTy()); 852 Args.push_back(Builder.getInt8PtrTy()); 853 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 854 F = Function::Create(Ty, Linkage, Name, M); 855 } 856 857 return Builder.CreateCall(F, {Buffer, Entry}); 858 } 859 860 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 861 const char *Name = "polly_getDevicePtr"; 862 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 863 Function *F = M->getFunction(Name); 864 865 // If F is not available, declare it. 866 if (!F) { 867 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 868 std::vector<Type *> Args; 869 Args.push_back(Builder.getInt8PtrTy()); 870 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 871 F = Function::Create(Ty, Linkage, Name, M); 872 } 873 874 return Builder.CreateCall(F, {Allocation}); 875 } 876 877 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 878 Value *GridDimY, Value *BlockDimX, 879 Value *BlockDimY, Value *BlockDimZ, 880 Value *Parameters) { 881 const char *Name = "polly_launchKernel"; 882 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 883 Function *F = M->getFunction(Name); 884 885 // If F is not available, declare it. 886 if (!F) { 887 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 888 std::vector<Type *> Args; 889 Args.push_back(Builder.getInt8PtrTy()); 890 Args.push_back(Builder.getInt32Ty()); 891 Args.push_back(Builder.getInt32Ty()); 892 Args.push_back(Builder.getInt32Ty()); 893 Args.push_back(Builder.getInt32Ty()); 894 Args.push_back(Builder.getInt32Ty()); 895 Args.push_back(Builder.getInt8PtrTy()); 896 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 897 F = Function::Create(Ty, Linkage, Name, M); 898 } 899 900 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 901 BlockDimZ, Parameters}); 902 } 903 904 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 905 const char *Name = "polly_freeKernel"; 906 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 907 Function *F = M->getFunction(Name); 908 909 // If F is not available, declare it. 910 if (!F) { 911 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 912 std::vector<Type *> Args; 913 Args.push_back(Builder.getInt8PtrTy()); 914 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 915 F = Function::Create(Ty, Linkage, Name, M); 916 } 917 918 Builder.CreateCall(F, {GPUKernel}); 919 } 920 921 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 922 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 923 "for device"); 924 const char *Name = "polly_freeDeviceMemory"; 925 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 926 Function *F = M->getFunction(Name); 927 928 // If F is not available, declare it. 929 if (!F) { 930 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 931 std::vector<Type *> Args; 932 Args.push_back(Builder.getInt8PtrTy()); 933 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 934 F = Function::Create(Ty, Linkage, Name, M); 935 } 936 937 Builder.CreateCall(F, {Array}); 938 } 939 940 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 941 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 942 "for device"); 943 const char *Name = "polly_allocateMemoryForDevice"; 944 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 945 Function *F = M->getFunction(Name); 946 947 // If F is not available, declare it. 948 if (!F) { 949 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 950 std::vector<Type *> Args; 951 Args.push_back(Builder.getInt64Ty()); 952 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 953 F = Function::Create(Ty, Linkage, Name, M); 954 } 955 956 return Builder.CreateCall(F, {Size}); 957 } 958 959 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 960 Value *DeviceData, 961 Value *Size) { 962 assert(!ManagedMemory && "Managed memory does not transfer memory between " 963 "device and host"); 964 const char *Name = "polly_copyFromHostToDevice"; 965 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 966 Function *F = M->getFunction(Name); 967 968 // If F is not available, declare it. 969 if (!F) { 970 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 971 std::vector<Type *> Args; 972 Args.push_back(Builder.getInt8PtrTy()); 973 Args.push_back(Builder.getInt8PtrTy()); 974 Args.push_back(Builder.getInt64Ty()); 975 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 976 F = Function::Create(Ty, Linkage, Name, M); 977 } 978 979 Builder.CreateCall(F, {HostData, DeviceData, Size}); 980 } 981 982 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 983 Value *HostData, 984 Value *Size) { 985 assert(!ManagedMemory && "Managed memory does not transfer memory between " 986 "device and host"); 987 const char *Name = "polly_copyFromDeviceToHost"; 988 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 989 Function *F = M->getFunction(Name); 990 991 // If F is not available, declare it. 992 if (!F) { 993 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 994 std::vector<Type *> Args; 995 Args.push_back(Builder.getInt8PtrTy()); 996 Args.push_back(Builder.getInt8PtrTy()); 997 Args.push_back(Builder.getInt64Ty()); 998 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 999 F = Function::Create(Ty, Linkage, Name, M); 1000 } 1001 1002 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1003 } 1004 1005 void GPUNodeBuilder::createCallSynchronizeDevice() { 1006 assert(ManagedMemory && "explicit synchronization is only necessary for " 1007 "managed memory"); 1008 const char *Name = "polly_synchronizeDevice"; 1009 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1010 Function *F = M->getFunction(Name); 1011 1012 // If F is not available, declare it. 1013 if (!F) { 1014 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1015 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1016 F = Function::Create(Ty, Linkage, Name, M); 1017 } 1018 1019 Builder.CreateCall(F); 1020 } 1021 1022 Value *GPUNodeBuilder::createCallInitContext() { 1023 const char *Name; 1024 1025 switch (Runtime) { 1026 case GPURuntime::CUDA: 1027 Name = "polly_initContextCUDA"; 1028 break; 1029 case GPURuntime::OpenCL: 1030 Name = "polly_initContextCL"; 1031 break; 1032 } 1033 1034 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1035 Function *F = M->getFunction(Name); 1036 1037 // If F is not available, declare it. 1038 if (!F) { 1039 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1040 std::vector<Type *> Args; 1041 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1042 F = Function::Create(Ty, Linkage, Name, M); 1043 } 1044 1045 return Builder.CreateCall(F, {}); 1046 } 1047 1048 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1049 const char *Name = "polly_freeContext"; 1050 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1051 Function *F = M->getFunction(Name); 1052 1053 // If F is not available, declare it. 1054 if (!F) { 1055 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1056 std::vector<Type *> Args; 1057 Args.push_back(Builder.getInt8PtrTy()); 1058 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1059 F = Function::Create(Ty, Linkage, Name, M); 1060 } 1061 1062 Builder.CreateCall(F, {Context}); 1063 } 1064 1065 /// Check if one string is a prefix of another. 1066 /// 1067 /// @param String The string in which to look for the prefix. 1068 /// @param Prefix The prefix to look for. 1069 static bool isPrefix(std::string String, std::string Prefix) { 1070 return String.find(Prefix) == 0; 1071 } 1072 1073 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1074 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1075 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1076 1077 if (!gpu_array_is_scalar(Array)) { 1078 isl::multi_pw_aff ArrayBound = 1079 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1080 1081 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1082 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1083 1084 for (unsigned int i = 1; i < Array->n_index; i++) { 1085 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1086 isl::ast_expr Expr = Build.expr_from(Bound_I); 1087 Res = Res.mul(Expr); 1088 } 1089 1090 Value *NumElements = ExprBuilder.create(Res.release()); 1091 if (NumElements->getType() != ArraySize->getType()) 1092 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1093 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1094 } 1095 return ArraySize; 1096 } 1097 1098 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1099 if (gpu_array_is_scalar(Array)) 1100 return nullptr; 1101 1102 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1103 1104 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1105 1106 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1107 1108 for (long i = 0; i < Min.dim(isl::dim::set); i++) 1109 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1110 1111 if (Min.is_subset(ZeroSet)) { 1112 return nullptr; 1113 } 1114 1115 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1116 1117 for (long i = 0; i < Min.dim(isl::dim::set); i++) { 1118 if (i > 0) { 1119 isl::pw_aff Bound_I = 1120 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1121 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1122 Result = Result.mul(BExpr); 1123 } 1124 isl::pw_aff DimMin = Min.dim_min(i); 1125 isl::ast_expr MExpr = Build.expr_from(DimMin); 1126 Result = Result.add(MExpr); 1127 } 1128 1129 return ExprBuilder.create(Result.release()); 1130 } 1131 1132 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1133 ScopArrayInfo *ArrayInfo) { 1134 assert(ManagedMemory && "Only used when you wish to get a host " 1135 "pointer for sending data to the kernel, " 1136 "with managed memory"); 1137 std::map<ScopArrayInfo *, Value *>::iterator it; 1138 it = DeviceAllocations.find(ArrayInfo); 1139 assert(it != DeviceAllocations.end() && 1140 "Device array expected to be available"); 1141 return it->second; 1142 } 1143 1144 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1145 enum DataDirection Direction) { 1146 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1147 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1148 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1149 isl_id *Id = isl_ast_expr_get_id(Arg); 1150 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1151 auto ScopArray = (ScopArrayInfo *)(Array->user); 1152 1153 Value *Size = getArraySize(Array); 1154 Value *Offset = getArrayOffset(Array); 1155 Value *DevPtr = DeviceAllocations[ScopArray]; 1156 1157 Value *HostPtr; 1158 1159 if (gpu_array_is_scalar(Array)) 1160 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1161 else 1162 HostPtr = ScopArray->getBasePtr(); 1163 HostPtr = getLatestValue(HostPtr); 1164 1165 if (Offset) { 1166 HostPtr = Builder.CreatePointerCast( 1167 HostPtr, ScopArray->getElementType()->getPointerTo()); 1168 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1169 } 1170 1171 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1172 1173 if (Offset) { 1174 Size = Builder.CreateSub( 1175 Size, Builder.CreateMul( 1176 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1177 } 1178 1179 if (Direction == HOST_TO_DEVICE) 1180 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1181 else 1182 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1183 1184 isl_id_free(Id); 1185 isl_ast_expr_free(Arg); 1186 isl_ast_expr_free(Expr); 1187 isl_ast_node_free(TransferStmt); 1188 } 1189 1190 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1191 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1192 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1193 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1194 isl_id_free(Id); 1195 isl_ast_expr_free(StmtExpr); 1196 1197 const char *Str = isl_id_get_name(Id); 1198 if (!strcmp(Str, "kernel")) { 1199 createKernel(UserStmt); 1200 isl_ast_expr_free(Expr); 1201 return; 1202 } 1203 if (!strcmp(Str, "init_device")) { 1204 initializeAfterRTH(); 1205 isl_ast_node_free(UserStmt); 1206 isl_ast_expr_free(Expr); 1207 return; 1208 } 1209 if (!strcmp(Str, "clear_device")) { 1210 finalize(); 1211 isl_ast_node_free(UserStmt); 1212 isl_ast_expr_free(Expr); 1213 return; 1214 } 1215 if (isPrefix(Str, "to_device")) { 1216 if (!ManagedMemory) 1217 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1218 else 1219 isl_ast_node_free(UserStmt); 1220 1221 isl_ast_expr_free(Expr); 1222 return; 1223 } 1224 1225 if (isPrefix(Str, "from_device")) { 1226 if (!ManagedMemory) { 1227 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1228 } else { 1229 createCallSynchronizeDevice(); 1230 isl_ast_node_free(UserStmt); 1231 } 1232 isl_ast_expr_free(Expr); 1233 return; 1234 } 1235 1236 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1237 struct ppcg_kernel_stmt *KernelStmt = 1238 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1239 isl_id_free(Anno); 1240 1241 switch (KernelStmt->type) { 1242 case ppcg_kernel_domain: 1243 createScopStmt(Expr, KernelStmt); 1244 isl_ast_node_free(UserStmt); 1245 return; 1246 case ppcg_kernel_copy: 1247 createKernelCopy(KernelStmt); 1248 isl_ast_expr_free(Expr); 1249 isl_ast_node_free(UserStmt); 1250 return; 1251 case ppcg_kernel_sync: 1252 createKernelSync(); 1253 isl_ast_expr_free(Expr); 1254 isl_ast_node_free(UserStmt); 1255 return; 1256 } 1257 1258 isl_ast_expr_free(Expr); 1259 isl_ast_node_free(UserStmt); 1260 return; 1261 } 1262 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1263 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1264 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1265 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1266 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1267 Index = isl_ast_expr_address_of(Index); 1268 Value *GlobalAddr = ExprBuilder.create(Index); 1269 1270 if (KernelStmt->u.c.read) { 1271 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1272 Builder.CreateStore(Load, LocalAddr); 1273 } else { 1274 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1275 Builder.CreateStore(Load, GlobalAddr); 1276 } 1277 } 1278 1279 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1280 ppcg_kernel_stmt *KernelStmt) { 1281 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1282 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1283 1284 LoopToScevMapT LTS; 1285 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1286 1287 createSubstitutions(Expr, Stmt, LTS); 1288 1289 if (Stmt->isBlockStmt()) 1290 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1291 else 1292 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1293 } 1294 1295 void GPUNodeBuilder::createKernelSync() { 1296 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1297 const char *SpirName = "__gen_ocl_barrier_global"; 1298 1299 Function *Sync; 1300 1301 switch (Arch) { 1302 case GPUArch::SPIR64: 1303 case GPUArch::SPIR32: 1304 Sync = M->getFunction(SpirName); 1305 1306 // If Sync is not available, declare it. 1307 if (!Sync) { 1308 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1309 std::vector<Type *> Args; 1310 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1311 Sync = Function::Create(Ty, Linkage, SpirName, M); 1312 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1313 } 1314 break; 1315 case GPUArch::NVPTX64: 1316 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1317 break; 1318 } 1319 1320 Builder.CreateCall(Sync, {}); 1321 } 1322 1323 /// Collect llvm::Values referenced from @p Node 1324 /// 1325 /// This function only applies to isl_ast_nodes that are user_nodes referring 1326 /// to a ScopStmt. All other node types are ignore. 1327 /// 1328 /// @param Node The node to collect references for. 1329 /// @param User A user pointer used as storage for the data that is collected. 1330 /// 1331 /// @returns isl_bool_true if data could be collected successfully. 1332 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1333 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1334 return isl_bool_true; 1335 1336 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1337 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1338 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1339 const char *Str = isl_id_get_name(Id); 1340 isl_id_free(Id); 1341 isl_ast_expr_free(StmtExpr); 1342 isl_ast_expr_free(Expr); 1343 1344 if (!isPrefix(Str, "Stmt")) 1345 return isl_bool_true; 1346 1347 Id = isl_ast_node_get_annotation(Node); 1348 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1349 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1350 isl_id_free(Id); 1351 1352 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1353 1354 return isl_bool_true; 1355 } 1356 1357 /// A list of functions that are available in NVIDIA's libdevice. 1358 const std::set<std::string> CUDALibDeviceFunctions = { 1359 "exp", "expf", "expl", "cos", "cosf", 1360 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"}; 1361 1362 /// Return the corresponding CUDA libdevice function name for @p F. 1363 /// 1364 /// Return "" if we are not compiling for CUDA. 1365 std::string getCUDALibDeviceFuntion(Function *F) { 1366 if (CUDALibDeviceFunctions.count(F->getName())) 1367 return std::string("__nv_") + std::string(F->getName()); 1368 1369 return ""; 1370 } 1371 1372 /// Check if F is a function that we can code-generate in a GPU kernel. 1373 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1374 assert(F && "F is an invalid pointer"); 1375 // We string compare against the name of the function to allow 1376 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1377 // "llvm.copysign". 1378 const StringRef Name = F->getName(); 1379 1380 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1381 return true; 1382 1383 return F->isIntrinsic() && 1384 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1385 Name.startswith("llvm.copysign")); 1386 } 1387 1388 /// Do not take `Function` as a subtree value. 1389 /// 1390 /// We try to take the reference of all subtree values and pass them along 1391 /// to the kernel from the host. Taking an address of any function and 1392 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1393 /// `Function`s. 1394 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1395 1396 /// Return `Function`s from `RawSubtreeValues`. 1397 static SetVector<Function *> 1398 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1399 bool AllowCUDALibDevice) { 1400 SetVector<Function *> SubtreeFunctions; 1401 for (Value *It : RawSubtreeValues) { 1402 Function *F = dyn_cast<Function>(It); 1403 if (F) { 1404 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1405 "Code should have bailed out by " 1406 "this point if an invalid function " 1407 "were present in a kernel."); 1408 SubtreeFunctions.insert(F); 1409 } 1410 } 1411 return SubtreeFunctions; 1412 } 1413 1414 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 1415 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1416 SetVector<Value *> SubtreeValues; 1417 SetVector<const SCEV *> SCEVs; 1418 SetVector<const Loop *> Loops; 1419 SubtreeReferences References = { 1420 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1421 1422 for (const auto &I : IDToValue) 1423 SubtreeValues.insert(I.second); 1424 1425 // NOTE: this is populated in IslNodeBuilder::addParameters 1426 // See [Code generation of induction variables of loops outside Scops]. 1427 for (const auto &I : OutsideLoopIterations) 1428 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1429 1430 isl_ast_node_foreach_descendant_top_down( 1431 Kernel->tree, collectReferencesInGPUStmt, &References); 1432 1433 for (const SCEV *Expr : SCEVs) { 1434 findValues(Expr, SE, SubtreeValues); 1435 findLoops(Expr, Loops); 1436 } 1437 1438 Loops.remove_if([this](const Loop *L) { 1439 return S.contains(L) || L->contains(S.getEntry()); 1440 }); 1441 1442 for (auto &SAI : S.arrays()) 1443 SubtreeValues.remove(SAI->getBasePtr()); 1444 1445 isl_space *Space = S.getParamSpace().release(); 1446 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1447 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1448 assert(IDToValue.count(Id)); 1449 Value *Val = IDToValue[Id]; 1450 SubtreeValues.remove(Val); 1451 isl_id_free(Id); 1452 } 1453 isl_space_free(Space); 1454 1455 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1456 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1457 assert(IDToValue.count(Id)); 1458 Value *Val = IDToValue[Id]; 1459 SubtreeValues.remove(Val); 1460 isl_id_free(Id); 1461 } 1462 1463 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1464 // SubtreeValues. This is important, because we should not lose any 1465 // SubtreeValues in the process of constructing the 1466 // "ValidSubtree{Values, Functions} sets. Nor should the set 1467 // ValidSubtree{Values, Functions} have any common element. 1468 auto ValidSubtreeValuesIt = 1469 make_filter_range(SubtreeValues, isValidSubtreeValue); 1470 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1471 ValidSubtreeValuesIt.end()); 1472 1473 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1474 1475 SetVector<Function *> ValidSubtreeFunctions( 1476 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1477 1478 // @see IslNodeBuilder::getReferencesInSubtree 1479 SetVector<Value *> ReplacedValues; 1480 for (Value *V : ValidSubtreeValues) { 1481 auto It = ValueMap.find(V); 1482 if (It == ValueMap.end()) 1483 ReplacedValues.insert(V); 1484 else 1485 ReplacedValues.insert(It->second); 1486 } 1487 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops); 1488 } 1489 1490 void GPUNodeBuilder::clearDominators(Function *F) { 1491 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1492 std::vector<BasicBlock *> Nodes; 1493 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1494 Nodes.push_back(I->getBlock()); 1495 1496 for (BasicBlock *BB : Nodes) 1497 DT.eraseNode(BB); 1498 } 1499 1500 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1501 for (BasicBlock &BB : *F) { 1502 Loop *L = LI.getLoopFor(&BB); 1503 if (L) 1504 SE.forgetLoop(L); 1505 } 1506 } 1507 1508 void GPUNodeBuilder::clearLoops(Function *F) { 1509 for (BasicBlock &BB : *F) { 1510 Loop *L = LI.getLoopFor(&BB); 1511 if (L) 1512 SE.forgetLoop(L); 1513 LI.removeBlock(&BB); 1514 } 1515 } 1516 1517 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1518 std::vector<Value *> Sizes; 1519 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1520 1521 isl::multi_pw_aff GridSizePwAffs = 1522 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1523 for (long i = 0; i < Kernel->n_grid; i++) { 1524 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1525 isl::ast_expr GridSize = Context.expr_from(Size); 1526 Value *Res = ExprBuilder.create(GridSize.release()); 1527 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1528 Sizes.push_back(Res); 1529 } 1530 1531 for (long i = Kernel->n_grid; i < 3; i++) 1532 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1533 1534 return std::make_tuple(Sizes[0], Sizes[1]); 1535 } 1536 1537 std::tuple<Value *, Value *, Value *> 1538 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1539 std::vector<Value *> Sizes; 1540 1541 for (long i = 0; i < Kernel->n_block; i++) { 1542 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1543 Sizes.push_back(Res); 1544 } 1545 1546 for (long i = Kernel->n_block; i < 3; i++) 1547 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1548 1549 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1550 } 1551 1552 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1553 Instruction *Param, int Index) { 1554 Value *Slot = Builder.CreateGEP( 1555 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1556 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1557 Builder.CreateStore(ParamTyped, Slot); 1558 } 1559 1560 Value * 1561 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1562 SetVector<Value *> SubtreeValues) { 1563 const int NumArgs = F->arg_size(); 1564 std::vector<int> ArgSizes(NumArgs); 1565 1566 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1567 1568 BasicBlock *EntryBlock = 1569 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1570 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1571 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1572 Instruction *Parameters = new AllocaInst( 1573 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1574 1575 int Index = 0; 1576 for (long i = 0; i < Prog->n_array; i++) { 1577 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1578 continue; 1579 1580 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1581 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1582 1583 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1584 1585 Value *DevArray = nullptr; 1586 if (ManagedMemory) { 1587 DevArray = getManagedDeviceArray(&Prog->array[i], 1588 const_cast<ScopArrayInfo *>(SAI)); 1589 } else { 1590 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1591 DevArray = createCallGetDevicePtr(DevArray); 1592 } 1593 assert(DevArray != nullptr && "Array to be offloaded to device not " 1594 "initialized"); 1595 Value *Offset = getArrayOffset(&Prog->array[i]); 1596 1597 if (Offset) { 1598 DevArray = Builder.CreatePointerCast( 1599 DevArray, SAI->getElementType()->getPointerTo()); 1600 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1601 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1602 } 1603 Value *Slot = Builder.CreateGEP( 1604 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1605 1606 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1607 Value *ValPtr = nullptr; 1608 if (ManagedMemory) 1609 ValPtr = DevArray; 1610 else 1611 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1612 1613 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1614 " to be stored into Parameters"); 1615 Value *ValPtrCast = 1616 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1617 Builder.CreateStore(ValPtrCast, Slot); 1618 } else { 1619 Instruction *Param = 1620 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1621 Launch + "_param_" + std::to_string(Index), 1622 EntryBlock->getTerminator()); 1623 Builder.CreateStore(DevArray, Param); 1624 Value *ParamTyped = 1625 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1626 Builder.CreateStore(ParamTyped, Slot); 1627 } 1628 Index++; 1629 } 1630 1631 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1632 1633 for (long i = 0; i < NumHostIters; i++) { 1634 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1635 Value *Val = IDToValue[Id]; 1636 isl_id_free(Id); 1637 1638 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1639 1640 Instruction *Param = 1641 new AllocaInst(Val->getType(), AddressSpace, 1642 Launch + "_param_" + std::to_string(Index), 1643 EntryBlock->getTerminator()); 1644 Builder.CreateStore(Val, Param); 1645 insertStoreParameter(Parameters, Param, Index); 1646 Index++; 1647 } 1648 1649 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1650 1651 for (long i = 0; i < NumVars; i++) { 1652 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1653 Value *Val = IDToValue[Id]; 1654 if (ValueMap.count(Val)) 1655 Val = ValueMap[Val]; 1656 isl_id_free(Id); 1657 1658 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1659 1660 Instruction *Param = 1661 new AllocaInst(Val->getType(), AddressSpace, 1662 Launch + "_param_" + std::to_string(Index), 1663 EntryBlock->getTerminator()); 1664 Builder.CreateStore(Val, Param); 1665 insertStoreParameter(Parameters, Param, Index); 1666 Index++; 1667 } 1668 1669 for (auto Val : SubtreeValues) { 1670 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1671 1672 Instruction *Param = 1673 new AllocaInst(Val->getType(), AddressSpace, 1674 Launch + "_param_" + std::to_string(Index), 1675 EntryBlock->getTerminator()); 1676 Builder.CreateStore(Val, Param); 1677 insertStoreParameter(Parameters, Param, Index); 1678 Index++; 1679 } 1680 1681 for (int i = 0; i < NumArgs; i++) { 1682 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1683 Instruction *Param = 1684 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1685 Launch + "_param_size_" + std::to_string(i), 1686 EntryBlock->getTerminator()); 1687 Builder.CreateStore(Val, Param); 1688 insertStoreParameter(Parameters, Param, Index); 1689 Index++; 1690 } 1691 1692 auto Location = EntryBlock->getTerminator(); 1693 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1694 Launch + "_params_i8ptr", Location); 1695 } 1696 1697 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1698 SetVector<Function *> SubtreeFunctions) { 1699 for (auto Fn : SubtreeFunctions) { 1700 const std::string ClonedFnName = Fn->getName(); 1701 Function *Clone = GPUModule->getFunction(ClonedFnName); 1702 if (!Clone) 1703 Clone = 1704 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1705 ClonedFnName, GPUModule.get()); 1706 assert(Clone && "Expected cloned function to be initialized."); 1707 assert(ValueMap.find(Fn) == ValueMap.end() && 1708 "Fn already present in ValueMap"); 1709 ValueMap[Fn] = Clone; 1710 } 1711 } 1712 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1713 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1714 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1715 isl_id_free(Id); 1716 isl_ast_node_free(KernelStmt); 1717 1718 if (Kernel->n_grid > 1) 1719 DeepestParallel = 1720 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1721 else 1722 DeepestSequential = 1723 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1724 1725 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1726 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1727 1728 SetVector<Value *> SubtreeValues; 1729 SetVector<Function *> SubtreeFunctions; 1730 SetVector<const Loop *> Loops; 1731 std::tie(SubtreeValues, SubtreeFunctions, Loops) = 1732 getReferencesInKernel(Kernel); 1733 1734 assert(Kernel->tree && "Device AST of kernel node is empty"); 1735 1736 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1737 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1738 ValueMapT HostValueMap = ValueMap; 1739 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1740 ScalarMap.clear(); 1741 1742 // Create for all loops we depend on values that contain the current loop 1743 // iteration. These values are necessary to generate code for SCEVs that 1744 // depend on such loops. As a result we need to pass them to the subfunction. 1745 for (const Loop *L : Loops) { 1746 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1747 SE.getUnknown(Builder.getInt64(1)), 1748 L, SCEV::FlagAnyWrap); 1749 Value *V = generateSCEV(OuterLIV); 1750 OutsideLoopIterations[L] = SE.getUnknown(V); 1751 SubtreeValues.insert(V); 1752 } 1753 1754 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1755 setupKernelSubtreeFunctions(SubtreeFunctions); 1756 1757 create(isl_ast_node_copy(Kernel->tree)); 1758 1759 finalizeKernelArguments(Kernel); 1760 Function *F = Builder.GetInsertBlock()->getParent(); 1761 if (Arch == GPUArch::NVPTX64) 1762 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1763 clearDominators(F); 1764 clearScalarEvolution(F); 1765 clearLoops(F); 1766 1767 IDToValue = HostIDs; 1768 1769 ValueMap = std::move(HostValueMap); 1770 ScalarMap = std::move(HostScalarMap); 1771 EscapeMap.clear(); 1772 IDToSAI.clear(); 1773 Annotator.resetAlternativeAliasBases(); 1774 for (auto &BasePtr : LocalArrays) 1775 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1776 LocalArrays.clear(); 1777 1778 std::string ASMString = finalizeKernelFunction(); 1779 Builder.SetInsertPoint(&HostInsertPoint); 1780 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1781 1782 std::string Name = getKernelFuncName(Kernel->id); 1783 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1784 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1785 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1786 1787 Value *GridDimX, *GridDimY; 1788 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1789 1790 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1791 BlockDimZ, Parameters); 1792 createCallFreeKernel(GPUKernel); 1793 1794 for (auto Id : KernelIds) 1795 isl_id_free(Id); 1796 1797 KernelIds.clear(); 1798 } 1799 1800 /// Compute the DataLayout string for the NVPTX backend. 1801 /// 1802 /// @param is64Bit Are we looking for a 64 bit architecture? 1803 static std::string computeNVPTXDataLayout(bool is64Bit) { 1804 std::string Ret = ""; 1805 1806 if (!is64Bit) { 1807 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1808 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1809 "64-v128:128:128-n16:32:64"; 1810 } else { 1811 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1812 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1813 "64-v128:128:128-n16:32:64"; 1814 } 1815 1816 return Ret; 1817 } 1818 1819 /// Compute the DataLayout string for a SPIR kernel. 1820 /// 1821 /// @param is64Bit Are we looking for a 64 bit architecture? 1822 static std::string computeSPIRDataLayout(bool is64Bit) { 1823 std::string Ret = ""; 1824 1825 if (!is64Bit) { 1826 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1827 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1828 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1829 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1830 } else { 1831 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1832 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1833 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1834 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1835 } 1836 1837 return Ret; 1838 } 1839 1840 Function * 1841 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1842 SetVector<Value *> &SubtreeValues) { 1843 std::vector<Type *> Args; 1844 std::string Identifier = getKernelFuncName(Kernel->id); 1845 1846 std::vector<Metadata *> MemoryType; 1847 1848 for (long i = 0; i < Prog->n_array; i++) { 1849 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1850 continue; 1851 1852 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1853 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1854 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1855 Args.push_back(SAI->getElementType()); 1856 MemoryType.push_back( 1857 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1858 } else { 1859 static const int UseGlobalMemory = 1; 1860 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1861 MemoryType.push_back( 1862 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1863 } 1864 } 1865 1866 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1867 1868 for (long i = 0; i < NumHostIters; i++) { 1869 Args.push_back(Builder.getInt64Ty()); 1870 MemoryType.push_back( 1871 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1872 } 1873 1874 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1875 1876 for (long i = 0; i < NumVars; i++) { 1877 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1878 Value *Val = IDToValue[Id]; 1879 isl_id_free(Id); 1880 Args.push_back(Val->getType()); 1881 MemoryType.push_back( 1882 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1883 } 1884 1885 for (auto *V : SubtreeValues) { 1886 Args.push_back(V->getType()); 1887 MemoryType.push_back( 1888 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1889 } 1890 1891 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1892 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1893 GPUModule.get()); 1894 1895 std::vector<Metadata *> EmptyStrings; 1896 1897 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1898 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1899 } 1900 1901 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1902 FN->setMetadata("kernel_arg_addr_space", 1903 MDNode::get(FN->getContext(), MemoryType)); 1904 FN->setMetadata("kernel_arg_name", 1905 MDNode::get(FN->getContext(), EmptyStrings)); 1906 FN->setMetadata("kernel_arg_access_qual", 1907 MDNode::get(FN->getContext(), EmptyStrings)); 1908 FN->setMetadata("kernel_arg_type", 1909 MDNode::get(FN->getContext(), EmptyStrings)); 1910 FN->setMetadata("kernel_arg_type_qual", 1911 MDNode::get(FN->getContext(), EmptyStrings)); 1912 FN->setMetadata("kernel_arg_base_type", 1913 MDNode::get(FN->getContext(), EmptyStrings)); 1914 } 1915 1916 switch (Arch) { 1917 case GPUArch::NVPTX64: 1918 FN->setCallingConv(CallingConv::PTX_Kernel); 1919 break; 1920 case GPUArch::SPIR32: 1921 case GPUArch::SPIR64: 1922 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1923 break; 1924 } 1925 1926 auto Arg = FN->arg_begin(); 1927 for (long i = 0; i < Kernel->n_array; i++) { 1928 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1929 continue; 1930 1931 Arg->setName(Kernel->array[i].array->name); 1932 1933 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1934 const ScopArrayInfo *SAI = 1935 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1936 Type *EleTy = SAI->getElementType(); 1937 Value *Val = &*Arg; 1938 SmallVector<const SCEV *, 4> Sizes; 1939 isl_ast_build *Build = 1940 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1941 Sizes.push_back(nullptr); 1942 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1943 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1944 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1945 auto V = ExprBuilder.create(DimSize); 1946 Sizes.push_back(SE.getSCEV(V)); 1947 } 1948 const ScopArrayInfo *SAIRep = 1949 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1950 LocalArrays.push_back(Val); 1951 1952 isl_ast_build_free(Build); 1953 KernelIds.push_back(Id); 1954 IDToSAI[Id] = SAIRep; 1955 Arg++; 1956 } 1957 1958 for (long i = 0; i < NumHostIters; i++) { 1959 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1960 Arg->setName(isl_id_get_name(Id)); 1961 IDToValue[Id] = &*Arg; 1962 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1963 Arg++; 1964 } 1965 1966 for (long i = 0; i < NumVars; i++) { 1967 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1968 Arg->setName(isl_id_get_name(Id)); 1969 Value *Val = IDToValue[Id]; 1970 ValueMap[Val] = &*Arg; 1971 IDToValue[Id] = &*Arg; 1972 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1973 Arg++; 1974 } 1975 1976 for (auto *V : SubtreeValues) { 1977 Arg->setName(V->getName()); 1978 ValueMap[V] = &*Arg; 1979 Arg++; 1980 } 1981 1982 return FN; 1983 } 1984 1985 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1986 Intrinsic::ID IntrinsicsBID[2]; 1987 Intrinsic::ID IntrinsicsTID[3]; 1988 1989 switch (Arch) { 1990 case GPUArch::SPIR64: 1991 case GPUArch::SPIR32: 1992 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 1993 case GPUArch::NVPTX64: 1994 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 1995 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 1996 1997 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 1998 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 1999 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2000 break; 2001 } 2002 2003 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2004 std::string Name = isl_id_get_name(Id); 2005 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2006 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2007 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2008 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2009 IDToValue[Id] = Val; 2010 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2011 }; 2012 2013 for (int i = 0; i < Kernel->n_grid; ++i) { 2014 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2015 addId(Id, IntrinsicsBID[i]); 2016 } 2017 2018 for (int i = 0; i < Kernel->n_block; ++i) { 2019 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2020 addId(Id, IntrinsicsTID[i]); 2021 } 2022 } 2023 2024 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2025 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2026 "__gen_ocl_get_group_id1", 2027 "__gen_ocl_get_group_id2"}; 2028 2029 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2030 "__gen_ocl_get_local_id1", 2031 "__gen_ocl_get_local_id2"}; 2032 2033 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2034 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2035 Function *FN = M->getFunction(Name); 2036 2037 // If FN is not available, declare it. 2038 if (!FN) { 2039 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2040 std::vector<Type *> Args; 2041 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2042 FN = Function::Create(Ty, Linkage, Name, M); 2043 FN->setCallingConv(CallingConv::SPIR_FUNC); 2044 } 2045 2046 Value *Val = Builder.CreateCall(FN, {}); 2047 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2048 IDToValue[Id] = Val; 2049 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2050 }; 2051 2052 for (int i = 0; i < Kernel->n_grid; ++i) 2053 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2054 2055 for (int i = 0; i < Kernel->n_block; ++i) 2056 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2057 } 2058 2059 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2060 auto Arg = FN->arg_begin(); 2061 for (long i = 0; i < Kernel->n_array; i++) { 2062 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2063 continue; 2064 2065 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2066 const ScopArrayInfo *SAI = 2067 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2068 isl_id_free(Id); 2069 2070 if (SAI->getNumberOfDimensions() > 0) { 2071 Arg++; 2072 continue; 2073 } 2074 2075 Value *Val = &*Arg; 2076 2077 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2078 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2079 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2080 Val = Builder.CreateLoad(TypedArgPtr); 2081 } 2082 2083 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2084 Builder.CreateStore(Val, Alloca); 2085 2086 Arg++; 2087 } 2088 } 2089 2090 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2091 auto *FN = Builder.GetInsertBlock()->getParent(); 2092 auto Arg = FN->arg_begin(); 2093 2094 bool StoredScalar = false; 2095 for (long i = 0; i < Kernel->n_array; i++) { 2096 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2097 continue; 2098 2099 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2100 const ScopArrayInfo *SAI = 2101 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2102 isl_id_free(Id); 2103 2104 if (SAI->getNumberOfDimensions() > 0) { 2105 Arg++; 2106 continue; 2107 } 2108 2109 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2110 Arg++; 2111 continue; 2112 } 2113 2114 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2115 Value *ArgPtr = &*Arg; 2116 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2117 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2118 Value *Val = Builder.CreateLoad(Alloca); 2119 Builder.CreateStore(Val, TypedArgPtr); 2120 StoredScalar = true; 2121 2122 Arg++; 2123 } 2124 2125 if (StoredScalar) { 2126 /// In case more than one thread contains scalar stores, the generated 2127 /// code might be incorrect, if we only store at the end of the kernel. 2128 /// To support this case we need to store these scalars back at each 2129 /// memory store or at least before each kernel barrier. 2130 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2131 BuildSuccessful = 0; 2132 DEBUG( 2133 dbgs() << getUniqueScopName(&S) 2134 << " has a store to a scalar value that" 2135 " would be undefined to run in parallel. Bailing out.\n";); 2136 } 2137 } 2138 } 2139 2140 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2141 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2142 2143 for (int i = 0; i < Kernel->n_var; ++i) { 2144 struct ppcg_kernel_var &Var = Kernel->var[i]; 2145 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2146 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2147 2148 Type *ArrayTy = EleTy; 2149 SmallVector<const SCEV *, 4> Sizes; 2150 2151 Sizes.push_back(nullptr); 2152 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2153 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2154 long Bound = isl_val_get_num_si(Val); 2155 isl_val_free(Val); 2156 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2157 } 2158 2159 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2160 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2161 long Bound = isl_val_get_num_si(Val); 2162 isl_val_free(Val); 2163 ArrayTy = ArrayType::get(ArrayTy, Bound); 2164 } 2165 2166 const ScopArrayInfo *SAI; 2167 Value *Allocation; 2168 if (Var.type == ppcg_access_shared) { 2169 auto GlobalVar = new GlobalVariable( 2170 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2171 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2172 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2173 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2174 2175 Allocation = GlobalVar; 2176 } else if (Var.type == ppcg_access_private) { 2177 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2178 } else { 2179 llvm_unreachable("unknown variable type"); 2180 } 2181 SAI = 2182 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2183 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2184 IDToValue[Id] = Allocation; 2185 LocalArrays.push_back(Allocation); 2186 KernelIds.push_back(Id); 2187 IDToSAI[Id] = SAI; 2188 } 2189 } 2190 2191 void GPUNodeBuilder::createKernelFunction( 2192 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2193 SetVector<Function *> &SubtreeFunctions) { 2194 std::string Identifier = getKernelFuncName(Kernel->id); 2195 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2196 2197 switch (Arch) { 2198 case GPUArch::NVPTX64: 2199 if (Runtime == GPURuntime::CUDA) 2200 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2201 else if (Runtime == GPURuntime::OpenCL) 2202 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2203 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2204 break; 2205 case GPUArch::SPIR32: 2206 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2207 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2208 break; 2209 case GPUArch::SPIR64: 2210 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2211 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2212 break; 2213 } 2214 2215 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2216 2217 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2218 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2219 2220 DT.addNewBlock(EntryBlock, PrevBlock); 2221 2222 Builder.SetInsertPoint(EntryBlock); 2223 Builder.CreateRetVoid(); 2224 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2225 2226 ScopDetection::markFunctionAsInvalid(FN); 2227 2228 prepareKernelArguments(Kernel, FN); 2229 createKernelVariables(Kernel, FN); 2230 2231 switch (Arch) { 2232 case GPUArch::NVPTX64: 2233 insertKernelIntrinsics(Kernel); 2234 break; 2235 case GPUArch::SPIR32: 2236 case GPUArch::SPIR64: 2237 insertKernelCallsSPIR(Kernel); 2238 break; 2239 } 2240 } 2241 2242 std::string GPUNodeBuilder::createKernelASM() { 2243 llvm::Triple GPUTriple; 2244 2245 switch (Arch) { 2246 case GPUArch::NVPTX64: 2247 switch (Runtime) { 2248 case GPURuntime::CUDA: 2249 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2250 break; 2251 case GPURuntime::OpenCL: 2252 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2253 break; 2254 } 2255 break; 2256 case GPUArch::SPIR64: 2257 case GPUArch::SPIR32: 2258 std::string SPIRAssembly; 2259 raw_string_ostream IROstream(SPIRAssembly); 2260 IROstream << *GPUModule; 2261 IROstream.flush(); 2262 return SPIRAssembly; 2263 } 2264 2265 std::string ErrMsg; 2266 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2267 2268 if (!GPUTarget) { 2269 errs() << ErrMsg << "\n"; 2270 return ""; 2271 } 2272 2273 TargetOptions Options; 2274 Options.UnsafeFPMath = FastMath; 2275 2276 std::string subtarget; 2277 2278 switch (Arch) { 2279 case GPUArch::NVPTX64: 2280 subtarget = CudaVersion; 2281 break; 2282 case GPUArch::SPIR32: 2283 case GPUArch::SPIR64: 2284 llvm_unreachable("No subtarget for SPIR architecture"); 2285 } 2286 2287 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2288 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2289 2290 SmallString<0> ASMString; 2291 raw_svector_ostream ASMStream(ASMString); 2292 llvm::legacy::PassManager PM; 2293 2294 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2295 2296 if (TargetM->addPassesToEmitFile( 2297 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2298 errs() << "The target does not support generation of this file type!\n"; 2299 return ""; 2300 } 2301 2302 PM.run(*GPUModule); 2303 2304 return ASMStream.str(); 2305 } 2306 2307 bool GPUNodeBuilder::requiresCUDALibDevice() { 2308 bool RequiresLibDevice = false; 2309 for (Function &F : GPUModule->functions()) { 2310 if (!F.isDeclaration()) 2311 continue; 2312 2313 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2314 if (CUDALibDeviceFunc.length() != 0) { 2315 F.setName(CUDALibDeviceFunc); 2316 RequiresLibDevice = true; 2317 } 2318 } 2319 2320 return RequiresLibDevice; 2321 } 2322 2323 void GPUNodeBuilder::addCUDALibDevice() { 2324 if (Arch != GPUArch::NVPTX64) 2325 return; 2326 2327 if (requiresCUDALibDevice()) { 2328 SMDiagnostic Error; 2329 2330 errs() << CUDALibDevice << "\n"; 2331 auto LibDeviceModule = 2332 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2333 2334 if (!LibDeviceModule) { 2335 BuildSuccessful = false; 2336 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2337 "kernel generation. Please set -polly-acc-libdevice " 2338 "accordingly.\n"); 2339 return; 2340 } 2341 2342 Linker L(*GPUModule); 2343 2344 // Set an nvptx64 target triple to avoid linker warnings. The original 2345 // triple of the libdevice files are nvptx-unknown-unknown. 2346 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2347 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2348 } 2349 } 2350 2351 std::string GPUNodeBuilder::finalizeKernelFunction() { 2352 2353 if (verifyModule(*GPUModule)) { 2354 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2355 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2356 DEBUG(dbgs() << "verifyModule Error:\n"; 2357 verifyModule(*GPUModule, &dbgs());); 2358 2359 if (FailOnVerifyModuleFailure) 2360 llvm_unreachable("VerifyModule failed."); 2361 2362 BuildSuccessful = false; 2363 return ""; 2364 } 2365 2366 addCUDALibDevice(); 2367 2368 if (DumpKernelIR) 2369 outs() << *GPUModule << "\n"; 2370 2371 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2372 // Optimize module. 2373 llvm::legacy::PassManager OptPasses; 2374 PassManagerBuilder PassBuilder; 2375 PassBuilder.OptLevel = 3; 2376 PassBuilder.SizeLevel = 0; 2377 PassBuilder.populateModulePassManager(OptPasses); 2378 OptPasses.run(*GPUModule); 2379 } 2380 2381 std::string Assembly = createKernelASM(); 2382 2383 if (DumpKernelASM) 2384 outs() << Assembly << "\n"; 2385 2386 GPUModule.release(); 2387 KernelIDs.clear(); 2388 2389 return Assembly; 2390 } 2391 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2392 /// @param PwAffs The list of piecewise affine functions to create an 2393 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2394 /// all the isl_pw_aff are used up by this function. 2395 /// 2396 /// @returns The `isl_pw_aff_list`. 2397 __isl_give isl_pw_aff_list * 2398 createPwAffList(isl_ctx *Context, 2399 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2400 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2401 2402 for (unsigned i = 0; i < PwAffs.size(); i++) { 2403 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2404 } 2405 return List; 2406 } 2407 2408 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2409 /// 2410 /// We loop over all `pw_aff` and align all of their spaces together to 2411 /// create a common space for all the `pw_aff`. This common space is the 2412 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2413 /// with the given `SeedSpace`. 2414 /// @param PwAffs The list of piecewise affine functions we want to align. 2415 /// This is an rvalue reference because the entire vector is 2416 /// used up by the end of the operation. 2417 /// @param SeedSpace The space to start the alignment process with. 2418 /// @returns A std::pair, whose first element is the aligned space, 2419 /// whose second element is the vector of aligned piecewise 2420 /// affines. 2421 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2422 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2423 __isl_take isl_space *SeedSpace) { 2424 assert(SeedSpace && "Invalid seed space given."); 2425 2426 isl_space *AlignSpace = SeedSpace; 2427 for (isl_pw_aff *PwAff : PwAffs) { 2428 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2429 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2430 } 2431 std::vector<isl_pw_aff *> AdjustedPwAffs; 2432 2433 for (unsigned i = 0; i < PwAffs.size(); i++) { 2434 isl_pw_aff *Adjusted = PwAffs[i]; 2435 assert(Adjusted && "Invalid pw_aff given."); 2436 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2437 AdjustedPwAffs.push_back(Adjusted); 2438 } 2439 return std::make_pair(AlignSpace, AdjustedPwAffs); 2440 } 2441 2442 namespace { 2443 class PPCGCodeGeneration : public ScopPass { 2444 public: 2445 static char ID; 2446 2447 GPURuntime Runtime = GPURuntime::CUDA; 2448 2449 GPUArch Architecture = GPUArch::NVPTX64; 2450 2451 /// The scop that is currently processed. 2452 Scop *S; 2453 2454 LoopInfo *LI; 2455 DominatorTree *DT; 2456 ScalarEvolution *SE; 2457 const DataLayout *DL; 2458 RegionInfo *RI; 2459 2460 PPCGCodeGeneration() : ScopPass(ID) {} 2461 2462 /// Construct compilation options for PPCG. 2463 /// 2464 /// @returns The compilation options. 2465 ppcg_options *createPPCGOptions() { 2466 auto DebugOptions = 2467 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2468 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2469 2470 DebugOptions->dump_schedule_constraints = false; 2471 DebugOptions->dump_schedule = false; 2472 DebugOptions->dump_final_schedule = false; 2473 DebugOptions->dump_sizes = false; 2474 DebugOptions->verbose = false; 2475 2476 Options->debug = DebugOptions; 2477 2478 Options->group_chains = false; 2479 Options->reschedule = true; 2480 Options->scale_tile_loops = false; 2481 Options->wrap = false; 2482 2483 Options->non_negative_parameters = false; 2484 Options->ctx = nullptr; 2485 Options->sizes = nullptr; 2486 2487 Options->tile = true; 2488 Options->tile_size = 32; 2489 2490 Options->isolate_full_tiles = false; 2491 2492 Options->use_private_memory = PrivateMemory; 2493 Options->use_shared_memory = SharedMemory; 2494 Options->max_shared_memory = 48 * 1024; 2495 2496 Options->target = PPCG_TARGET_CUDA; 2497 Options->openmp = false; 2498 Options->linearize_device_arrays = true; 2499 Options->allow_gnu_extensions = false; 2500 2501 Options->unroll_copy_shared = false; 2502 Options->unroll_gpu_tile = false; 2503 Options->live_range_reordering = true; 2504 2505 Options->live_range_reordering = true; 2506 Options->hybrid = false; 2507 Options->opencl_compiler_options = nullptr; 2508 Options->opencl_use_gpu = false; 2509 Options->opencl_n_include_file = 0; 2510 Options->opencl_include_files = nullptr; 2511 Options->opencl_print_kernel_types = false; 2512 Options->opencl_embed_kernel_code = false; 2513 2514 Options->save_schedule_file = nullptr; 2515 Options->load_schedule_file = nullptr; 2516 2517 return Options; 2518 } 2519 2520 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2521 /// 2522 /// Instead of a normal access of the form: 2523 /// 2524 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2525 /// 2526 /// a tagged access has the form 2527 /// 2528 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2529 /// 2530 /// where 'id' is an additional space that references the memory access that 2531 /// triggered the access. 2532 /// 2533 /// @param AccessTy The type of the memory accesses to collect. 2534 /// 2535 /// @return The relation describing all tagged memory accesses. 2536 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2537 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2538 2539 for (auto &Stmt : *S) 2540 for (auto &Acc : Stmt) 2541 if (Acc->getType() == AccessTy) { 2542 isl_map *Relation = Acc->getAccessRelation().release(); 2543 Relation = 2544 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2545 2546 isl_space *Space = isl_map_get_space(Relation); 2547 Space = isl_space_range(Space); 2548 Space = isl_space_from_range(Space); 2549 Space = 2550 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2551 isl_map *Universe = isl_map_universe(Space); 2552 Relation = isl_map_domain_product(Relation, Universe); 2553 Accesses = isl_union_map_add_map(Accesses, Relation); 2554 } 2555 2556 return Accesses; 2557 } 2558 2559 /// Get the set of all read accesses, tagged with the access id. 2560 /// 2561 /// @see getTaggedAccesses 2562 isl_union_map *getTaggedReads() { 2563 return getTaggedAccesses(MemoryAccess::READ); 2564 } 2565 2566 /// Get the set of all may (and must) accesses, tagged with the access id. 2567 /// 2568 /// @see getTaggedAccesses 2569 isl_union_map *getTaggedMayWrites() { 2570 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2571 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2572 } 2573 2574 /// Get the set of all must accesses, tagged with the access id. 2575 /// 2576 /// @see getTaggedAccesses 2577 isl_union_map *getTaggedMustWrites() { 2578 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2579 } 2580 2581 /// Collect parameter and array names as isl_ids. 2582 /// 2583 /// To reason about the different parameters and arrays used, ppcg requires 2584 /// a list of all isl_ids in use. As PPCG traditionally performs 2585 /// source-to-source compilation each of these isl_ids is mapped to the 2586 /// expression that represents it. As we do not have a corresponding 2587 /// expression in Polly, we just map each id to a 'zero' expression to match 2588 /// the data format that ppcg expects. 2589 /// 2590 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2591 __isl_give isl_id_to_ast_expr *getNames() { 2592 auto *Names = isl_id_to_ast_expr_alloc( 2593 S->getIslCtx(), 2594 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2595 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2596 2597 for (const SCEV *P : S->parameters()) { 2598 isl_id *Id = S->getIdForParam(P).release(); 2599 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2600 } 2601 2602 for (auto &Array : S->arrays()) { 2603 auto Id = Array->getBasePtrId().release(); 2604 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2605 } 2606 2607 isl_ast_expr_free(Zero); 2608 2609 return Names; 2610 } 2611 2612 /// Create a new PPCG scop from the current scop. 2613 /// 2614 /// The PPCG scop is initialized with data from the current polly::Scop. From 2615 /// this initial data, the data-dependences in the PPCG scop are initialized. 2616 /// We do not use Polly's dependence analysis for now, to ensure we match 2617 /// the PPCG default behaviour more closely. 2618 /// 2619 /// @returns A new ppcg scop. 2620 ppcg_scop *createPPCGScop() { 2621 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2622 2623 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2624 2625 PPCGScop->options = createPPCGOptions(); 2626 // enable live range reordering 2627 PPCGScop->options->live_range_reordering = 1; 2628 2629 PPCGScop->start = 0; 2630 PPCGScop->end = 0; 2631 2632 PPCGScop->context = S->getContext().release(); 2633 PPCGScop->domain = S->getDomains().release(); 2634 // TODO: investigate this further. PPCG calls collect_call_domains. 2635 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2636 PPCGScop->tagged_reads = getTaggedReads(); 2637 PPCGScop->reads = S->getReads().release(); 2638 PPCGScop->live_in = nullptr; 2639 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2640 PPCGScop->may_writes = S->getWrites().release(); 2641 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2642 PPCGScop->must_writes = S->getMustWrites().release(); 2643 PPCGScop->live_out = nullptr; 2644 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2645 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2646 2647 PPCGScop->tagger = nullptr; 2648 PPCGScop->independence = 2649 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2650 PPCGScop->dep_flow = nullptr; 2651 PPCGScop->tagged_dep_flow = nullptr; 2652 PPCGScop->dep_false = nullptr; 2653 PPCGScop->dep_forced = nullptr; 2654 PPCGScop->dep_order = nullptr; 2655 PPCGScop->tagged_dep_order = nullptr; 2656 2657 PPCGScop->schedule = S->getScheduleTree().release(); 2658 // If we have something non-trivial to kill, add it to the schedule 2659 if (KillsInfo.KillsSchedule.get()) 2660 PPCGScop->schedule = isl_schedule_sequence( 2661 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2662 2663 PPCGScop->names = getNames(); 2664 PPCGScop->pet = nullptr; 2665 2666 compute_tagger(PPCGScop); 2667 compute_dependences(PPCGScop); 2668 eliminate_dead_code(PPCGScop); 2669 2670 return PPCGScop; 2671 } 2672 2673 /// Collect the array accesses in a statement. 2674 /// 2675 /// @param Stmt The statement for which to collect the accesses. 2676 /// 2677 /// @returns A list of array accesses. 2678 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2679 gpu_stmt_access *Accesses = nullptr; 2680 2681 for (MemoryAccess *Acc : Stmt) { 2682 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2683 Access->read = Acc->isRead(); 2684 Access->write = Acc->isWrite(); 2685 Access->access = Acc->getAccessRelation().release(); 2686 isl_space *Space = isl_map_get_space(Access->access); 2687 Space = isl_space_range(Space); 2688 Space = isl_space_from_range(Space); 2689 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2690 isl_map *Universe = isl_map_universe(Space); 2691 Access->tagged_access = 2692 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2693 Access->exact_write = !Acc->isMayWrite(); 2694 Access->ref_id = Acc->getId().release(); 2695 Access->next = Accesses; 2696 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2697 Accesses = Access; 2698 } 2699 2700 return Accesses; 2701 } 2702 2703 /// Collect the list of GPU statements. 2704 /// 2705 /// Each statement has an id, a pointer to the underlying data structure, 2706 /// as well as a list with all memory accesses. 2707 /// 2708 /// TODO: Initialize the list of memory accesses. 2709 /// 2710 /// @returns A linked-list of statements. 2711 gpu_stmt *getStatements() { 2712 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2713 std::distance(S->begin(), S->end())); 2714 2715 int i = 0; 2716 for (auto &Stmt : *S) { 2717 gpu_stmt *GPUStmt = &Stmts[i]; 2718 2719 GPUStmt->id = Stmt.getDomainId().release(); 2720 2721 // We use the pet stmt pointer to keep track of the Polly statements. 2722 GPUStmt->stmt = (pet_stmt *)&Stmt; 2723 GPUStmt->accesses = getStmtAccesses(Stmt); 2724 i++; 2725 } 2726 2727 return Stmts; 2728 } 2729 2730 /// Derive the extent of an array. 2731 /// 2732 /// The extent of an array is the set of elements that are within the 2733 /// accessed array. For the inner dimensions, the extent constraints are 2734 /// 0 and the size of the corresponding array dimension. For the first 2735 /// (outermost) dimension, the extent constraints are the minimal and maximal 2736 /// subscript value for the first dimension. 2737 /// 2738 /// @param Array The array to derive the extent for. 2739 /// 2740 /// @returns An isl_set describing the extent of the array. 2741 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2742 unsigned NumDims = Array->getNumberOfDimensions(); 2743 isl_union_map *Accesses = S->getAccesses().release(); 2744 Accesses = 2745 isl_union_map_intersect_domain(Accesses, S->getDomains().release()); 2746 Accesses = isl_union_map_detect_equalities(Accesses); 2747 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2748 AccessUSet = isl_union_set_coalesce(AccessUSet); 2749 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2750 AccessUSet = isl_union_set_coalesce(AccessUSet); 2751 2752 if (isl_union_set_is_empty(AccessUSet)) { 2753 isl_union_set_free(AccessUSet); 2754 return isl_set_empty(Array->getSpace().release()); 2755 } 2756 2757 if (Array->getNumberOfDimensions() == 0) { 2758 isl_union_set_free(AccessUSet); 2759 return isl_set_universe(Array->getSpace().release()); 2760 } 2761 2762 isl_set *AccessSet = 2763 isl_union_set_extract_set(AccessUSet, Array->getSpace().release()); 2764 2765 isl_union_set_free(AccessUSet); 2766 isl_local_space *LS = 2767 isl_local_space_from_space(Array->getSpace().release()); 2768 2769 isl_pw_aff *Val = 2770 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2771 2772 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2773 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2774 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2775 isl_pw_aff_dim(Val, isl_dim_in)); 2776 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2777 isl_pw_aff_dim(Val, isl_dim_in)); 2778 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, 2779 Array->getBasePtrId().release()); 2780 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, 2781 Array->getBasePtrId().release()); 2782 2783 isl_set *Extent = isl_set_universe(Array->getSpace().release()); 2784 2785 Extent = isl_set_intersect( 2786 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2787 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2788 2789 for (unsigned i = 1; i < NumDims; ++i) 2790 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2791 2792 for (unsigned i = 0; i < NumDims; ++i) { 2793 isl_pw_aff *PwAff = 2794 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release()); 2795 2796 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2797 // Fortran array will we have a legitimate dimension. 2798 if (!PwAff) { 2799 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2800 continue; 2801 } 2802 2803 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2804 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set, 2805 i)); 2806 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2807 isl_pw_aff_dim(Val, isl_dim_in)); 2808 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2809 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2810 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2811 Extent = isl_set_intersect(Set, Extent); 2812 } 2813 2814 return Extent; 2815 } 2816 2817 /// Derive the bounds of an array. 2818 /// 2819 /// For the first dimension we derive the bound of the array from the extent 2820 /// of this dimension. For inner dimensions we obtain their size directly from 2821 /// ScopArrayInfo. 2822 /// 2823 /// @param PPCGArray The array to compute bounds for. 2824 /// @param Array The polly array from which to take the information. 2825 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2826 std::vector<isl_pw_aff *> Bounds; 2827 2828 if (PPCGArray.n_index > 0) { 2829 if (isl_set_is_empty(PPCGArray.extent)) { 2830 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2831 isl_local_space *LS = isl_local_space_from_space( 2832 isl_space_params(isl_set_get_space(Dom))); 2833 isl_set_free(Dom); 2834 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2835 Bounds.push_back(Zero); 2836 } else { 2837 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2838 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2839 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2840 isl_set_free(Dom); 2841 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2842 isl_local_space *LS = 2843 isl_local_space_from_space(isl_set_get_space(Dom)); 2844 isl_aff *One = isl_aff_zero_on_domain(LS); 2845 One = isl_aff_add_constant_si(One, 1); 2846 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2847 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2848 Bounds.push_back(Bound); 2849 } 2850 } 2851 2852 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2853 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2854 auto LS = isl_pw_aff_get_domain_space(Bound); 2855 auto Aff = isl_multi_aff_zero(LS); 2856 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2857 Bounds.push_back(Bound); 2858 } 2859 2860 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2861 /// to have the same parameter dimensions. So, we need to align them to an 2862 /// appropriate space. 2863 /// Scop::Context is _not_ an appropriate space, because when we have 2864 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2865 /// contain all parameter dimensions. 2866 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2867 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2868 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2869 2870 isl_space *AlignSpace = nullptr; 2871 std::vector<isl_pw_aff *> AlignedBounds; 2872 std::tie(AlignSpace, AlignedBounds) = 2873 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2874 2875 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2876 2877 isl_pw_aff_list *BoundsList = 2878 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2879 2880 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2881 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2882 2883 assert(BoundsSpace && "Unable to access space of array."); 2884 assert(BoundsList && "Unable to access list of bounds."); 2885 2886 PPCGArray.bound = 2887 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2888 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2889 } 2890 2891 /// Create the arrays for @p PPCGProg. 2892 /// 2893 /// @param PPCGProg The program to compute the arrays for. 2894 void createArrays(gpu_prog *PPCGProg, 2895 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2896 int i = 0; 2897 for (auto &Array : ValidSAIs) { 2898 std::string TypeName; 2899 raw_string_ostream OS(TypeName); 2900 2901 OS << *Array->getElementType(); 2902 TypeName = OS.str(); 2903 2904 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2905 2906 PPCGArray.space = Array->getSpace().release(); 2907 PPCGArray.type = strdup(TypeName.c_str()); 2908 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 2909 PPCGArray.name = strdup(Array->getName().c_str()); 2910 PPCGArray.extent = nullptr; 2911 PPCGArray.n_index = Array->getNumberOfDimensions(); 2912 PPCGArray.extent = getExtent(Array); 2913 PPCGArray.n_ref = 0; 2914 PPCGArray.refs = nullptr; 2915 PPCGArray.accessed = true; 2916 PPCGArray.read_only_scalar = 2917 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2918 PPCGArray.has_compound_element = false; 2919 PPCGArray.local = false; 2920 PPCGArray.declare_local = false; 2921 PPCGArray.global = false; 2922 PPCGArray.linearize = false; 2923 PPCGArray.dep_order = nullptr; 2924 PPCGArray.user = Array; 2925 2926 PPCGArray.bound = nullptr; 2927 setArrayBounds(PPCGArray, Array); 2928 i++; 2929 2930 collect_references(PPCGProg, &PPCGArray); 2931 } 2932 } 2933 2934 /// Create an identity map between the arrays in the scop. 2935 /// 2936 /// @returns An identity map between the arrays in the scop. 2937 isl_union_map *getArrayIdentity() { 2938 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 2939 2940 for (auto &Array : S->arrays()) { 2941 isl_space *Space = Array->getSpace().release(); 2942 Space = isl_space_map_from_set(Space); 2943 isl_map *Identity = isl_map_identity(Space); 2944 Maps = isl_union_map_add_map(Maps, Identity); 2945 } 2946 2947 return Maps; 2948 } 2949 2950 /// Create a default-initialized PPCG GPU program. 2951 /// 2952 /// @returns A new gpu program description. 2953 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2954 2955 if (!PPCGScop) 2956 return nullptr; 2957 2958 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2959 2960 PPCGProg->ctx = S->getIslCtx(); 2961 PPCGProg->scop = PPCGScop; 2962 PPCGProg->context = isl_set_copy(PPCGScop->context); 2963 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2964 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2965 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2966 PPCGProg->tagged_must_kill = 2967 isl_union_map_copy(PPCGScop->tagged_must_kills); 2968 PPCGProg->to_inner = getArrayIdentity(); 2969 PPCGProg->to_outer = getArrayIdentity(); 2970 // TODO: verify that this assignment is correct. 2971 PPCGProg->any_to_outer = nullptr; 2972 2973 // this needs to be set when live range reordering is enabled. 2974 // NOTE: I believe that is conservatively correct. I'm not sure 2975 // what the semantics of this is. 2976 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2977 PPCGProg->array_order = 2978 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2979 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2980 PPCGProg->stmts = getStatements(); 2981 2982 // Only consider arrays that have a non-empty extent. 2983 // Otherwise, this will cause us to consider the following kinds of 2984 // empty arrays: 2985 // 1. Invariant loads that are represented by SAI objects. 2986 // 2. Arrays with statically known zero size. 2987 auto ValidSAIsRange = 2988 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 2989 return !isl::manage(getExtent(SAI)).is_empty(); 2990 }); 2991 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 2992 ValidSAIsRange.end()); 2993 2994 PPCGProg->n_array = 2995 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 2996 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 2997 PPCGProg->n_array); 2998 2999 createArrays(PPCGProg, ValidSAIs); 3000 3001 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3002 return PPCGProg; 3003 } 3004 3005 struct PrintGPUUserData { 3006 struct cuda_info *CudaInfo; 3007 struct gpu_prog *PPCGProg; 3008 std::vector<ppcg_kernel *> Kernels; 3009 }; 3010 3011 /// Print a user statement node in the host code. 3012 /// 3013 /// We use ppcg's printing facilities to print the actual statement and 3014 /// additionally build up a list of all kernels that are encountered in the 3015 /// host ast. 3016 /// 3017 /// @param P The printer to print to 3018 /// @param Options The printing options to use 3019 /// @param Node The node to print 3020 /// @param User A user pointer to carry additional data. This pointer is 3021 /// expected to be of type PrintGPUUserData. 3022 /// 3023 /// @returns A printer to which the output has been printed. 3024 static __isl_give isl_printer * 3025 printHostUser(__isl_take isl_printer *P, 3026 __isl_take isl_ast_print_options *Options, 3027 __isl_take isl_ast_node *Node, void *User) { 3028 auto Data = (struct PrintGPUUserData *)User; 3029 auto Id = isl_ast_node_get_annotation(Node); 3030 3031 if (Id) { 3032 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3033 3034 // If this is a user statement, format it ourselves as ppcg would 3035 // otherwise try to call pet functionality that is not available in 3036 // Polly. 3037 if (IsUser) { 3038 P = isl_printer_start_line(P); 3039 P = isl_printer_print_ast_node(P, Node); 3040 P = isl_printer_end_line(P); 3041 isl_id_free(Id); 3042 isl_ast_print_options_free(Options); 3043 return P; 3044 } 3045 3046 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3047 isl_id_free(Id); 3048 Data->Kernels.push_back(Kernel); 3049 } 3050 3051 return print_host_user(P, Options, Node, User); 3052 } 3053 3054 /// Print C code corresponding to the control flow in @p Kernel. 3055 /// 3056 /// @param Kernel The kernel to print 3057 void printKernel(ppcg_kernel *Kernel) { 3058 auto *P = isl_printer_to_str(S->getIslCtx()); 3059 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3060 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3061 P = isl_ast_node_print(Kernel->tree, P, Options); 3062 char *String = isl_printer_get_str(P); 3063 printf("%s\n", String); 3064 free(String); 3065 isl_printer_free(P); 3066 } 3067 3068 /// Print C code corresponding to the GPU code described by @p Tree. 3069 /// 3070 /// @param Tree An AST describing GPU code 3071 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3072 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3073 auto *P = isl_printer_to_str(S->getIslCtx()); 3074 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3075 3076 PrintGPUUserData Data; 3077 Data.PPCGProg = PPCGProg; 3078 3079 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3080 Options = 3081 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3082 P = isl_ast_node_print(Tree, P, Options); 3083 char *String = isl_printer_get_str(P); 3084 printf("# host\n"); 3085 printf("%s\n", String); 3086 free(String); 3087 isl_printer_free(P); 3088 3089 for (auto Kernel : Data.Kernels) { 3090 printf("# kernel%d\n", Kernel->id); 3091 printKernel(Kernel); 3092 } 3093 } 3094 3095 // Generate a GPU program using PPCG. 3096 // 3097 // GPU mapping consists of multiple steps: 3098 // 3099 // 1) Compute new schedule for the program. 3100 // 2) Map schedule to GPU (TODO) 3101 // 3) Generate code for new schedule (TODO) 3102 // 3103 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3104 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3105 // strategy directly from this pass. 3106 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3107 3108 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3109 3110 PPCGGen->ctx = S->getIslCtx(); 3111 PPCGGen->options = PPCGScop->options; 3112 PPCGGen->print = nullptr; 3113 PPCGGen->print_user = nullptr; 3114 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3115 PPCGGen->prog = PPCGProg; 3116 PPCGGen->tree = nullptr; 3117 PPCGGen->types.n = 0; 3118 PPCGGen->types.name = nullptr; 3119 PPCGGen->sizes = nullptr; 3120 PPCGGen->used_sizes = nullptr; 3121 PPCGGen->kernel_id = 0; 3122 3123 // Set scheduling strategy to same strategy PPCG is using. 3124 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3125 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3126 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3127 3128 isl_schedule *Schedule = get_schedule(PPCGGen); 3129 3130 int has_permutable = has_any_permutable_node(Schedule); 3131 3132 Schedule = 3133 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3134 3135 if (!has_permutable || has_permutable < 0) { 3136 Schedule = isl_schedule_free(Schedule); 3137 DEBUG(dbgs() << getUniqueScopName(S) 3138 << " does not have permutable bands. Bailing out\n";); 3139 } else { 3140 Schedule = map_to_device(PPCGGen, Schedule); 3141 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3142 } 3143 3144 if (DumpSchedule) { 3145 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3146 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3147 P = isl_printer_print_str(P, "Schedule\n"); 3148 P = isl_printer_print_str(P, "========\n"); 3149 if (Schedule) 3150 P = isl_printer_print_schedule(P, Schedule); 3151 else 3152 P = isl_printer_print_str(P, "No schedule found\n"); 3153 3154 printf("%s\n", isl_printer_get_str(P)); 3155 isl_printer_free(P); 3156 } 3157 3158 if (DumpCode) { 3159 printf("Code\n"); 3160 printf("====\n"); 3161 if (PPCGGen->tree) 3162 printGPUTree(PPCGGen->tree, PPCGProg); 3163 else 3164 printf("No code generated\n"); 3165 } 3166 3167 isl_schedule_free(Schedule); 3168 3169 return PPCGGen; 3170 } 3171 3172 /// Free gpu_gen structure. 3173 /// 3174 /// @param PPCGGen The ppcg_gen object to free. 3175 void freePPCGGen(gpu_gen *PPCGGen) { 3176 isl_ast_node_free(PPCGGen->tree); 3177 isl_union_map_free(PPCGGen->sizes); 3178 isl_union_map_free(PPCGGen->used_sizes); 3179 free(PPCGGen); 3180 } 3181 3182 /// Free the options in the ppcg scop structure. 3183 /// 3184 /// ppcg is not freeing these options for us. To avoid leaks we do this 3185 /// ourselves. 3186 /// 3187 /// @param PPCGScop The scop referencing the options to free. 3188 void freeOptions(ppcg_scop *PPCGScop) { 3189 free(PPCGScop->options->debug); 3190 PPCGScop->options->debug = nullptr; 3191 free(PPCGScop->options); 3192 PPCGScop->options = nullptr; 3193 } 3194 3195 /// Approximate the number of points in the set. 3196 /// 3197 /// This function returns an ast expression that overapproximates the number 3198 /// of points in an isl set through the rectangular hull surrounding this set. 3199 /// 3200 /// @param Set The set to count. 3201 /// @param Build The isl ast build object to use for creating the ast 3202 /// expression. 3203 /// 3204 /// @returns An approximation of the number of points in the set. 3205 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3206 __isl_keep isl_ast_build *Build) { 3207 3208 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3209 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3210 3211 isl_space *Space = isl_set_get_space(Set); 3212 Space = isl_space_params(Space); 3213 auto *Univ = isl_set_universe(Space); 3214 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3215 3216 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 3217 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3218 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3219 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3220 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3221 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3222 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3223 } 3224 3225 isl_set_free(Set); 3226 isl_pw_aff_free(OneAff); 3227 3228 return Expr; 3229 } 3230 3231 /// Approximate a number of dynamic instructions executed by a given 3232 /// statement. 3233 /// 3234 /// @param Stmt The statement for which to compute the number of dynamic 3235 /// instructions. 3236 /// @param Build The isl ast build object to use for creating the ast 3237 /// expression. 3238 /// @returns An approximation of the number of dynamic instructions executed 3239 /// by @p Stmt. 3240 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3241 __isl_keep isl_ast_build *Build) { 3242 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3243 3244 long InstCount = 0; 3245 3246 if (Stmt.isBlockStmt()) { 3247 auto *BB = Stmt.getBasicBlock(); 3248 InstCount = std::distance(BB->begin(), BB->end()); 3249 } else { 3250 auto *R = Stmt.getRegion(); 3251 3252 for (auto *BB : R->blocks()) { 3253 InstCount += std::distance(BB->begin(), BB->end()); 3254 } 3255 } 3256 3257 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3258 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3259 return isl_ast_expr_mul(InstExpr, Iterations); 3260 } 3261 3262 /// Approximate dynamic instructions executed in scop. 3263 /// 3264 /// @param S The scop for which to approximate dynamic instructions. 3265 /// @param Build The isl ast build object to use for creating the ast 3266 /// expression. 3267 /// @returns An approximation of the number of dynamic instructions executed 3268 /// in @p S. 3269 __isl_give isl_ast_expr * 3270 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3271 isl_ast_expr *Instructions; 3272 3273 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3274 Instructions = isl_ast_expr_from_val(Zero); 3275 3276 for (ScopStmt &Stmt : S) { 3277 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3278 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3279 } 3280 return Instructions; 3281 } 3282 3283 /// Create a check that ensures sufficient compute in scop. 3284 /// 3285 /// @param S The scop for which to ensure sufficient compute. 3286 /// @param Build The isl ast build object to use for creating the ast 3287 /// expression. 3288 /// @returns An expression that evaluates to TRUE in case of sufficient 3289 /// compute and to FALSE, otherwise. 3290 __isl_give isl_ast_expr * 3291 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3292 auto Iterations = getNumberOfIterations(S, Build); 3293 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3294 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3295 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3296 } 3297 3298 /// Check if the basic block contains a function we cannot codegen for GPU 3299 /// kernels. 3300 /// 3301 /// If this basic block does something with a `Function` other than calling 3302 /// a function that we support in a kernel, return true. 3303 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3304 bool AllowCUDALibDevice) { 3305 for (const Instruction &Inst : *BB) { 3306 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3307 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3308 AllowCUDALibDevice)) { 3309 continue; 3310 } 3311 3312 for (Value *SrcVal : Inst.operands()) { 3313 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 3314 if (!p) 3315 continue; 3316 if (isa<FunctionType>(p->getElementType())) 3317 return true; 3318 } 3319 } 3320 return false; 3321 } 3322 3323 /// Return whether the Scop S uses functions in a way that we do not support. 3324 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3325 for (auto &Stmt : S) { 3326 if (Stmt.isBlockStmt()) { 3327 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3328 AllowCUDALibDevice)) 3329 return true; 3330 } else { 3331 assert(Stmt.isRegionStmt() && 3332 "Stmt was neither block nor region statement"); 3333 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3334 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3335 return true; 3336 } 3337 } 3338 return false; 3339 } 3340 3341 /// Generate code for a given GPU AST described by @p Root. 3342 /// 3343 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3344 /// @param Prog The GPU Program to generate code for. 3345 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3346 ScopAnnotator Annotator; 3347 Annotator.buildAliasScopes(*S); 3348 3349 Region *R = &S->getRegion(); 3350 3351 simplifyRegion(R, DT, LI, RI); 3352 3353 BasicBlock *EnteringBB = R->getEnteringBlock(); 3354 3355 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3356 3357 // Only build the run-time condition and parameters _after_ having 3358 // introduced the conditional branch. This is important as the conditional 3359 // branch will guard the original scop from new induction variables that 3360 // the SCEVExpander may introduce while code generating the parameters and 3361 // which may introduce scalar dependences that prevent us from correctly 3362 // code generating this scop. 3363 BBPair StartExitBlocks; 3364 BranchInst *CondBr = nullptr; 3365 std::tie(StartExitBlocks, CondBr) = 3366 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3367 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3368 3369 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3370 3371 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3372 StartBlock, Prog, Runtime, Architecture); 3373 3374 // TODO: Handle LICM 3375 auto SplitBlock = StartBlock->getSinglePredecessor(); 3376 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3377 3378 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3379 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3380 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3381 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3382 isl_ast_build_free(Build); 3383 3384 // preload invariant loads. Note: This should happen before the RTC 3385 // because the RTC may depend on values that are invariant load hoisted. 3386 if (!NodeBuilder.preloadInvariantLoads()) { 3387 DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3388 S->getFunction().getName() + 3389 " | Scop Region: " + S->getNameStr()); 3390 // adjust the dominator tree accordingly. 3391 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3392 assert(ExitingBlock); 3393 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3394 assert(MergeBlock); 3395 polly::markBlockUnreachable(*StartBlock, Builder); 3396 polly::markBlockUnreachable(*ExitingBlock, Builder); 3397 auto *ExitingBB = S->getExitingBlock(); 3398 assert(ExitingBB); 3399 3400 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3401 DT->eraseNode(ExitingBlock); 3402 isl_ast_expr_free(Condition); 3403 isl_ast_node_free(Root); 3404 } else { 3405 3406 NodeBuilder.addParameters(S->getContext().release()); 3407 Value *RTC = NodeBuilder.createRTC(Condition); 3408 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3409 3410 Builder.SetInsertPoint(&*StartBlock->begin()); 3411 3412 NodeBuilder.create(Root); 3413 } 3414 3415 /// In case a sequential kernel has more surrounding loops as any parallel 3416 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3417 /// point in running it on a GPU. 3418 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3419 CondBr->setOperand(0, Builder.getFalse()); 3420 3421 if (!NodeBuilder.BuildSuccessful) 3422 CondBr->setOperand(0, Builder.getFalse()); 3423 } 3424 3425 bool runOnScop(Scop &CurrentScop) override { 3426 S = &CurrentScop; 3427 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3428 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3429 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3430 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3431 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3432 3433 // We currently do not support functions other than intrinsics inside 3434 // kernels, as code generation will need to offload function calls to the 3435 // kernel. This may lead to a kernel trying to call a function on the host. 3436 // This also allows us to prevent codegen from trying to take the 3437 // address of an intrinsic function to send to the kernel. 3438 if (containsInvalidKernelFunction(CurrentScop, 3439 Architecture == GPUArch::NVPTX64)) { 3440 DEBUG( 3441 dbgs() << getUniqueScopName(S) 3442 << " contains function which cannot be materialised in a GPU " 3443 "kernel. Bailing out.\n";); 3444 return false; 3445 } 3446 3447 auto PPCGScop = createPPCGScop(); 3448 auto PPCGProg = createPPCGProg(PPCGScop); 3449 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3450 3451 if (PPCGGen->tree) { 3452 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3453 CurrentScop.markAsToBeSkipped(); 3454 } else { 3455 DEBUG(dbgs() << getUniqueScopName(S) 3456 << " has empty PPCGGen->tree. Bailing out.\n"); 3457 } 3458 3459 freeOptions(PPCGScop); 3460 freePPCGGen(PPCGGen); 3461 gpu_prog_free(PPCGProg); 3462 ppcg_scop_free(PPCGScop); 3463 3464 return true; 3465 } 3466 3467 void printScop(raw_ostream &, Scop &) const override {} 3468 3469 void getAnalysisUsage(AnalysisUsage &AU) const override { 3470 AU.addRequired<DominatorTreeWrapperPass>(); 3471 AU.addRequired<RegionInfoPass>(); 3472 AU.addRequired<ScalarEvolutionWrapperPass>(); 3473 AU.addRequired<ScopDetectionWrapperPass>(); 3474 AU.addRequired<ScopInfoRegionPass>(); 3475 AU.addRequired<LoopInfoWrapperPass>(); 3476 3477 AU.addPreserved<AAResultsWrapperPass>(); 3478 AU.addPreserved<BasicAAWrapperPass>(); 3479 AU.addPreserved<LoopInfoWrapperPass>(); 3480 AU.addPreserved<DominatorTreeWrapperPass>(); 3481 AU.addPreserved<GlobalsAAWrapperPass>(); 3482 AU.addPreserved<ScopDetectionWrapperPass>(); 3483 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3484 AU.addPreserved<SCEVAAWrapperPass>(); 3485 3486 // FIXME: We do not yet add regions for the newly generated code to the 3487 // region tree. 3488 AU.addPreserved<RegionInfoPass>(); 3489 AU.addPreserved<ScopInfoRegionPass>(); 3490 } 3491 }; 3492 } // namespace 3493 3494 char PPCGCodeGeneration::ID = 1; 3495 3496 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3497 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3498 generator->Runtime = Runtime; 3499 generator->Architecture = Arch; 3500 return generator; 3501 } 3502 3503 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3504 "Polly - Apply PPCG translation to SCOP", false, false) 3505 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3506 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3507 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3508 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3509 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3510 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3511 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3512 "Polly - Apply PPCG translation to SCOP", false, false) 3513