1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/PerfMonitor.h" 20 #include "polly/CodeGen/Utils.h" 21 #include "polly/DependenceInfo.h" 22 #include "polly/LinkAllPasses.h" 23 #include "polly/Options.h" 24 #include "polly/ScopDetection.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/BasicAliasAnalysis.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/IR/LegacyPassManager.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/IRReader/IRReader.h" 37 #include "llvm/Linker/Linker.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/TargetSelect.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 44 #include "isl/union_map.h" 45 46 extern "C" { 47 #include "ppcg/cuda.h" 48 #include "ppcg/gpu.h" 49 #include "ppcg/gpu_print.h" 50 #include "ppcg/ppcg.h" 51 #include "ppcg/schedule.h" 52 } 53 54 #include "llvm/Support/Debug.h" 55 56 using namespace polly; 57 using namespace llvm; 58 59 #define DEBUG_TYPE "polly-codegen-ppcg" 60 61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 62 cl::desc("Dump the computed GPU Schedule"), 63 cl::Hidden, cl::init(false), cl::ZeroOrMore, 64 cl::cat(PollyCategory)); 65 66 static cl::opt<bool> 67 DumpCode("polly-acc-dump-code", 68 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 69 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 70 71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 72 cl::desc("Dump the kernel LLVM-IR"), 73 cl::Hidden, cl::init(false), cl::ZeroOrMore, 74 cl::cat(PollyCategory)); 75 76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 77 cl::desc("Dump the kernel assembly code"), 78 cl::Hidden, cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 81 static cl::opt<bool> FastMath("polly-acc-fastmath", 82 cl::desc("Allow unsafe math optimizations"), 83 cl::Hidden, cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 86 cl::desc("Use shared memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 90 cl::desc("Use private memory"), cl::Hidden, 91 cl::init(false), cl::ZeroOrMore, 92 cl::cat(PollyCategory)); 93 94 bool polly::PollyManagedMemory; 95 static cl::opt<bool, true> 96 XManagedMemory("polly-acc-codegen-managed-memory", 97 cl::desc("Generate Host kernel code assuming" 98 " that all memory has been" 99 " declared as managed memory"), 100 cl::location(PollyManagedMemory), cl::Hidden, 101 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 102 103 static cl::opt<bool> 104 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 105 cl::desc("Fail and generate a backtrace if" 106 " verifyModule fails on the GPU " 107 " kernel module."), 108 cl::Hidden, cl::init(false), cl::ZeroOrMore, 109 cl::cat(PollyCategory)); 110 111 static cl::opt<std::string> CUDALibDevice( 112 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 113 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 114 cl::ZeroOrMore, cl::cat(PollyCategory)); 115 116 static cl::opt<std::string> 117 CudaVersion("polly-acc-cuda-version", 118 cl::desc("The CUDA version to compile for"), cl::Hidden, 119 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 120 121 static cl::opt<int> 122 MinCompute("polly-acc-mincompute", 123 cl::desc("Minimal number of compute statements to run on GPU."), 124 cl::Hidden, cl::init(10 * 512 * 512)); 125 126 extern bool polly::PerfMonitoring; 127 128 /// Return a unique name for a Scop, which is the scop region with the 129 /// function name. 130 std::string getUniqueScopName(const Scop *S) { 131 return "Scop Region: " + S->getNameStr() + 132 " | Function: " + std::string(S->getFunction().getName()); 133 } 134 135 /// Used to store information PPCG wants for kills. This information is 136 /// used by live range reordering. 137 /// 138 /// @see computeLiveRangeReordering 139 /// @see GPUNodeBuilder::createPPCGScop 140 /// @see GPUNodeBuilder::createPPCGProg 141 struct MustKillsInfo { 142 /// Collection of all kill statements that will be sequenced at the end of 143 /// PPCGScop->schedule. 144 /// 145 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 146 /// which merges schedules in *arbitrary* order. 147 /// (we don't care about the order of the kills anyway). 148 isl::schedule KillsSchedule; 149 /// Map from kill statement instances to scalars that need to be 150 /// killed. 151 /// 152 /// We currently derive kill information for: 153 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 154 /// consequently all be killed. 155 /// 2. Scalar arrays that are not used outside the Scop. This is 156 /// checked by `isScalarUsesContainedInScop`. 157 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 158 isl::union_map TaggedMustKills; 159 160 /// Tagged must kills stripped of the tags. 161 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 162 isl::union_map MustKills; 163 164 MustKillsInfo() : KillsSchedule(nullptr) {} 165 }; 166 167 /// Check if SAI's uses are entirely contained within Scop S. 168 /// If a scalar is used only with a Scop, we are free to kill it, as no data 169 /// can flow in/out of the value any more. 170 /// @see computeMustKillsInfo 171 static bool isScalarUsesContainedInScop(const Scop &S, 172 const ScopArrayInfo *SAI) { 173 assert(SAI->isValueKind() && "this function only deals with scalars." 174 " Dealing with arrays required alias analysis"); 175 176 const Region &R = S.getRegion(); 177 for (User *U : SAI->getBasePtr()->users()) { 178 Instruction *I = dyn_cast<Instruction>(U); 179 assert(I && "invalid user of scop array info"); 180 if (!R.contains(I)) 181 return false; 182 } 183 return true; 184 } 185 186 /// Compute must-kills needed to enable live range reordering with PPCG. 187 /// 188 /// @params S The Scop to compute live range reordering information 189 /// @returns live range reordering information that can be used to setup 190 /// PPCG. 191 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 192 const isl::space ParamSpace = S.getParamSpace(); 193 MustKillsInfo Info; 194 195 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 196 // 1.1 phi nodes in scop. 197 // 1.2 scalars that are only used within the scop 198 SmallVector<isl::id, 4> KillMemIds; 199 for (ScopArrayInfo *SAI : S.arrays()) { 200 if (SAI->isPHIKind() || 201 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 202 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 203 } 204 205 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 206 Info.MustKills = isl::union_map::empty(ParamSpace); 207 208 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 209 // schedule: 210 // - filter: "[control] -> { }" 211 // So, we choose to not create this to keep the output a little nicer, 212 // at the cost of some code complexity. 213 Info.KillsSchedule = nullptr; 214 215 for (isl::id &ToKillId : KillMemIds) { 216 isl::id KillStmtId = isl::id::alloc( 217 S.getIslCtx(), 218 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 219 220 // NOTE: construction of tagged_must_kill: 221 // 2. We need to construct a map: 222 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 223 // To construct this, we use `isl_map_domain_product` on 2 maps`: 224 // 2a. StmtToScalar: 225 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 226 // 2b. PhantomRefToScalar: 227 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 228 // 229 // Combining these with `isl_map_domain_product` gives us 230 // TaggedMustKill: 231 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 232 233 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 234 isl::map StmtToScalar = isl::map::universe(ParamSpace); 235 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 236 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 237 238 isl::id PhantomRefId = isl::id::alloc( 239 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 240 nullptr); 241 242 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 243 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 244 PhantomRefToScalar = 245 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 246 PhantomRefToScalar = 247 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 248 249 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 250 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 251 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 252 253 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 254 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 255 256 // 3. Create the kill schedule of the form: 257 // "[param] -> { Stmt_phantom[] }" 258 // Then add this to Info.KillsSchedule. 259 isl::space KillStmtSpace = ParamSpace; 260 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 261 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 262 263 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 264 if (Info.KillsSchedule) 265 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 266 else 267 Info.KillsSchedule = KillSchedule; 268 } 269 270 return Info; 271 } 272 273 /// Create the ast expressions for a ScopStmt. 274 /// 275 /// This function is a callback for to generate the ast expressions for each 276 /// of the scheduled ScopStmts. 277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 278 void *StmtT, __isl_take isl_ast_build *Build_C, 279 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 280 isl_id *Id, void *User), 281 void *UserIndex, 282 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 283 void *UserExpr) { 284 285 ScopStmt *Stmt = (ScopStmt *)StmtT; 286 287 if (!Stmt || !Build_C) 288 return NULL; 289 290 isl::ast_build Build = isl::manage_copy(Build_C); 291 isl::ctx Ctx = Build.get_ctx(); 292 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 293 294 Stmt->setAstBuild(Build); 295 296 for (MemoryAccess *Acc : *Stmt) { 297 isl::map AddrFunc = Acc->getAddressFunction(); 298 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 299 300 isl::id RefId = Acc->getId(); 301 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 302 303 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 304 MPA = MPA.coalesce(); 305 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 306 307 isl::ast_expr Access = Build.access_from(MPA); 308 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 309 RefToExpr = RefToExpr.set(RefId, Access); 310 } 311 312 return RefToExpr.release(); 313 } 314 315 /// Given a LLVM Type, compute its size in bytes, 316 static int computeSizeInBytes(const Type *T) { 317 int bytes = T->getPrimitiveSizeInBits() / 8; 318 if (bytes == 0) 319 bytes = T->getScalarSizeInBits() / 8; 320 return bytes; 321 } 322 323 /// Generate code for a GPU specific isl AST. 324 /// 325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 326 /// generates code for general-purpose AST nodes, with special functionality 327 /// for generating GPU specific user nodes. 328 /// 329 /// @see GPUNodeBuilder::createUser 330 class GPUNodeBuilder : public IslNodeBuilder { 331 public: 332 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 333 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 334 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 335 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 336 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 337 Prog(Prog), Runtime(Runtime), Arch(Arch) { 338 getExprBuilder().setIDToSAI(&IDToSAI); 339 } 340 341 /// Create after-run-time-check initialization code. 342 void initializeAfterRTH(); 343 344 /// Finalize the generated scop. 345 virtual void finalize(); 346 347 /// Track if the full build process was successful. 348 /// 349 /// This value is set to false, if throughout the build process an error 350 /// occurred which prevents us from generating valid GPU code. 351 bool BuildSuccessful = true; 352 353 /// The maximal number of loops surrounding a sequential kernel. 354 unsigned DeepestSequential = 0; 355 356 /// The maximal number of loops surrounding a parallel kernel. 357 unsigned DeepestParallel = 0; 358 359 /// Return the name to set for the ptx_kernel. 360 std::string getKernelFuncName(int Kernel_id); 361 362 private: 363 /// A vector of array base pointers for which a new ScopArrayInfo was created. 364 /// 365 /// This vector is used to delete the ScopArrayInfo when it is not needed any 366 /// more. 367 std::vector<Value *> LocalArrays; 368 369 /// A map from ScopArrays to their corresponding device allocations. 370 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 371 372 /// The current GPU context. 373 Value *GPUContext; 374 375 /// The set of isl_ids allocated in the kernel 376 std::vector<isl_id *> KernelIds; 377 378 /// A module containing GPU code. 379 /// 380 /// This pointer is only set in case we are currently generating GPU code. 381 std::unique_ptr<Module> GPUModule; 382 383 /// The GPU program we generate code for. 384 gpu_prog *Prog; 385 386 /// The GPU Runtime implementation to use (OpenCL or CUDA). 387 GPURuntime Runtime; 388 389 /// The GPU Architecture to target. 390 GPUArch Arch; 391 392 /// Class to free isl_ids. 393 class IslIdDeleter { 394 public: 395 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 396 }; 397 398 /// A set containing all isl_ids allocated in a GPU kernel. 399 /// 400 /// By releasing this set all isl_ids will be freed. 401 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 402 403 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 404 405 /// Create code for user-defined AST nodes. 406 /// 407 /// These AST nodes can be of type: 408 /// 409 /// - ScopStmt: A computational statement (TODO) 410 /// - Kernel: A GPU kernel call (TODO) 411 /// - Data-Transfer: A GPU <-> CPU data-transfer 412 /// - In-kernel synchronization 413 /// - In-kernel memory copy statement 414 /// 415 /// @param UserStmt The ast node to generate code for. 416 virtual void createUser(__isl_take isl_ast_node *UserStmt); 417 418 virtual void createFor(__isl_take isl_ast_node *Node); 419 420 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 421 422 /// Create code for a data transfer statement 423 /// 424 /// @param TransferStmt The data transfer statement. 425 /// @param Direction The direction in which to transfer data. 426 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 427 enum DataDirection Direction); 428 429 /// Find llvm::Values referenced in GPU kernel. 430 /// 431 /// @param Kernel The kernel to scan for llvm::Values 432 /// 433 /// @returns A tuple, whose: 434 /// - First element contains the set of values referenced by the 435 /// kernel 436 /// - Second element contains the set of functions referenced by the 437 /// kernel. All functions in the set satisfy 438 /// `isValidFunctionInKernel`. 439 /// - Third element contains loops that have induction variables 440 /// which are used in the kernel, *and* these loops are *neither* 441 /// in the scop, nor do they immediately surroung the Scop. 442 /// See [Code generation of induction variables of loops outside 443 /// Scops] 444 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 445 isl::space> 446 getReferencesInKernel(ppcg_kernel *Kernel); 447 448 /// Compute the sizes of the execution grid for a given kernel. 449 /// 450 /// @param Kernel The kernel to compute grid sizes for. 451 /// 452 /// @returns A tuple with grid sizes for X and Y dimension 453 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 454 455 /// Get the managed array pointer for sending host pointers to the device. 456 /// \note 457 /// This is to be used only with managed memory 458 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 459 460 /// Compute the sizes of the thread blocks for a given kernel. 461 /// 462 /// @param Kernel The kernel to compute thread block sizes for. 463 /// 464 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 465 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 466 467 /// Store a specific kernel launch parameter in the array of kernel launch 468 /// parameters. 469 /// 470 /// @param Parameters The list of parameters in which to store. 471 /// @param Param The kernel launch parameter to store. 472 /// @param Index The index in the parameter list, at which to store the 473 /// parameter. 474 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 475 int Index); 476 477 /// Create kernel launch parameters. 478 /// 479 /// @param Kernel The kernel to create parameters for. 480 /// @param F The kernel function that has been created. 481 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 482 /// 483 /// @returns A stack allocated array with pointers to the parameter 484 /// values that are passed to the kernel. 485 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 486 SetVector<Value *> SubtreeValues); 487 488 /// Create declarations for kernel variable. 489 /// 490 /// This includes shared memory declarations. 491 /// 492 /// @param Kernel The kernel definition to create variables for. 493 /// @param FN The function into which to generate the variables. 494 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 495 496 /// Add CUDA annotations to module. 497 /// 498 /// Add a set of CUDA annotations that declares the maximal block dimensions 499 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 500 /// PTX compiler to bound the number of allocated registers to ensure the 501 /// resulting kernel is known to run with up to as many block dimensions 502 /// as specified here. 503 /// 504 /// @param M The module to add the annotations to. 505 /// @param BlockDimX The size of block dimension X. 506 /// @param BlockDimY The size of block dimension Y. 507 /// @param BlockDimZ The size of block dimension Z. 508 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 509 Value *BlockDimZ); 510 511 /// Create GPU kernel. 512 /// 513 /// Code generate the kernel described by @p KernelStmt. 514 /// 515 /// @param KernelStmt The ast node to generate kernel code for. 516 void createKernel(__isl_take isl_ast_node *KernelStmt); 517 518 /// Generate code that computes the size of an array. 519 /// 520 /// @param Array The array for which to compute a size. 521 Value *getArraySize(gpu_array_info *Array); 522 523 /// Generate code to compute the minimal offset at which an array is accessed. 524 /// 525 /// The offset of an array is the minimal array location accessed in a scop. 526 /// 527 /// Example: 528 /// 529 /// for (long i = 0; i < 100; i++) 530 /// A[i + 42] += ... 531 /// 532 /// getArrayOffset(A) results in 42. 533 /// 534 /// @param Array The array for which to compute the offset. 535 /// @returns An llvm::Value that contains the offset of the array. 536 Value *getArrayOffset(gpu_array_info *Array); 537 538 /// Prepare the kernel arguments for kernel code generation 539 /// 540 /// @param Kernel The kernel to generate code for. 541 /// @param FN The function created for the kernel. 542 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 543 544 /// Create kernel function. 545 /// 546 /// Create a kernel function located in a newly created module that can serve 547 /// as target for device code generation. Set the Builder to point to the 548 /// start block of this newly created function. 549 /// 550 /// @param Kernel The kernel to generate code for. 551 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 552 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 553 /// kernel. 554 void createKernelFunction(ppcg_kernel *Kernel, 555 SetVector<Value *> &SubtreeValues, 556 SetVector<Function *> &SubtreeFunctions); 557 558 /// Create the declaration of a kernel function. 559 /// 560 /// The kernel function takes as arguments: 561 /// 562 /// - One i8 pointer for each external array reference used in the kernel. 563 /// - Host iterators 564 /// - Parameters 565 /// - Other LLVM Value references (TODO) 566 /// 567 /// @param Kernel The kernel to generate the function declaration for. 568 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 569 /// 570 /// @returns The newly declared function. 571 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 572 SetVector<Value *> &SubtreeValues); 573 574 /// Insert intrinsic functions to obtain thread and block ids. 575 /// 576 /// @param The kernel to generate the intrinsic functions for. 577 void insertKernelIntrinsics(ppcg_kernel *Kernel); 578 579 /// Insert function calls to retrieve the SPIR group/local ids. 580 /// 581 /// @param The kernel to generate the function calls for. 582 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 583 584 /// Setup the creation of functions referenced by the GPU kernel. 585 /// 586 /// 1. Create new function declarations in GPUModule which are the same as 587 /// SubtreeFunctions. 588 /// 589 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 590 /// old functions (that come from the original module) to new functions 591 /// (that are created within GPUModule). That way, we generate references 592 /// to the correct function (in GPUModule) in BlockGenerator. 593 /// 594 /// @see IslNodeBuilder::ValueMap 595 /// @see BlockGenerator::GlobalMap 596 /// @see BlockGenerator::getNewValue 597 /// @see GPUNodeBuilder::getReferencesInKernel. 598 /// 599 /// @param SubtreeFunctions The set of llvm::Functions referenced by 600 /// this kernel. 601 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 602 603 /// Create a global-to-shared or shared-to-global copy statement. 604 /// 605 /// @param CopyStmt The copy statement to generate code for 606 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 607 608 /// Create code for a ScopStmt called in @p Expr. 609 /// 610 /// @param Expr The expression containing the call. 611 /// @param KernelStmt The kernel statement referenced in the call. 612 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 613 614 /// Create an in-kernel synchronization call. 615 void createKernelSync(); 616 617 /// Create a PTX assembly string for the current GPU kernel. 618 /// 619 /// @returns A string containing the corresponding PTX assembly code. 620 std::string createKernelASM(); 621 622 /// Remove references from the dominator tree to the kernel function @p F. 623 /// 624 /// @param F The function to remove references to. 625 void clearDominators(Function *F); 626 627 /// Remove references from scalar evolution to the kernel function @p F. 628 /// 629 /// @param F The function to remove references to. 630 void clearScalarEvolution(Function *F); 631 632 /// Remove references from loop info to the kernel function @p F. 633 /// 634 /// @param F The function to remove references to. 635 void clearLoops(Function *F); 636 637 /// Check if the scop requires to be linked with CUDA's libdevice. 638 bool requiresCUDALibDevice(); 639 640 /// Link with the NVIDIA libdevice library (if needed and available). 641 void addCUDALibDevice(); 642 643 /// Finalize the generation of the kernel function. 644 /// 645 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 646 /// dump its IR to stderr. 647 /// 648 /// @returns The Assembly string of the kernel. 649 std::string finalizeKernelFunction(); 650 651 /// Finalize the generation of the kernel arguments. 652 /// 653 /// This function ensures that not-read-only scalars used in a kernel are 654 /// stored back to the global memory location they are backed with before 655 /// the kernel terminates. 656 /// 657 /// @params Kernel The kernel to finalize kernel arguments for. 658 void finalizeKernelArguments(ppcg_kernel *Kernel); 659 660 /// Create code that allocates memory to store arrays on device. 661 void allocateDeviceArrays(); 662 663 /// Create code to prepare the managed device pointers. 664 void prepareManagedDeviceArrays(); 665 666 /// Free all allocated device arrays. 667 void freeDeviceArrays(); 668 669 /// Create a call to initialize the GPU context. 670 /// 671 /// @returns A pointer to the newly initialized context. 672 Value *createCallInitContext(); 673 674 /// Create a call to get the device pointer for a kernel allocation. 675 /// 676 /// @param Allocation The Polly GPU allocation 677 /// 678 /// @returns The device parameter corresponding to this allocation. 679 Value *createCallGetDevicePtr(Value *Allocation); 680 681 /// Create a call to free the GPU context. 682 /// 683 /// @param Context A pointer to an initialized GPU context. 684 void createCallFreeContext(Value *Context); 685 686 /// Create a call to allocate memory on the device. 687 /// 688 /// @param Size The size of memory to allocate 689 /// 690 /// @returns A pointer that identifies this allocation. 691 Value *createCallAllocateMemoryForDevice(Value *Size); 692 693 /// Create a call to free a device array. 694 /// 695 /// @param Array The device array to free. 696 void createCallFreeDeviceMemory(Value *Array); 697 698 /// Create a call to copy data from host to device. 699 /// 700 /// @param HostPtr A pointer to the host data that should be copied. 701 /// @param DevicePtr A device pointer specifying the location to copy to. 702 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 703 Value *Size); 704 705 /// Create a call to copy data from device to host. 706 /// 707 /// @param DevicePtr A pointer to the device data that should be copied. 708 /// @param HostPtr A host pointer specifying the location to copy to. 709 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 710 Value *Size); 711 712 /// Create a call to synchronize Host & Device. 713 /// \note 714 /// This is to be used only with managed memory. 715 void createCallSynchronizeDevice(); 716 717 /// Create a call to get a kernel from an assembly string. 718 /// 719 /// @param Buffer The string describing the kernel. 720 /// @param Entry The name of the kernel function to call. 721 /// 722 /// @returns A pointer to a kernel object 723 Value *createCallGetKernel(Value *Buffer, Value *Entry); 724 725 /// Create a call to free a GPU kernel. 726 /// 727 /// @param GPUKernel THe kernel to free. 728 void createCallFreeKernel(Value *GPUKernel); 729 730 /// Create a call to launch a GPU kernel. 731 /// 732 /// @param GPUKernel The kernel to launch. 733 /// @param GridDimX The size of the first grid dimension. 734 /// @param GridDimY The size of the second grid dimension. 735 /// @param GridBlockX The size of the first block dimension. 736 /// @param GridBlockY The size of the second block dimension. 737 /// @param GridBlockZ The size of the third block dimension. 738 /// @param Parameters A pointer to an array that contains itself pointers to 739 /// the parameter values passed for each kernel argument. 740 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 741 Value *GridDimY, Value *BlockDimX, 742 Value *BlockDimY, Value *BlockDimZ, 743 Value *Parameters); 744 }; 745 746 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 747 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 748 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 749 } 750 751 void GPUNodeBuilder::initializeAfterRTH() { 752 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 753 &*Builder.GetInsertPoint(), &DT, &LI); 754 NewBB->setName("polly.acc.initialize"); 755 Builder.SetInsertPoint(&NewBB->front()); 756 757 GPUContext = createCallInitContext(); 758 759 if (!PollyManagedMemory) 760 allocateDeviceArrays(); 761 else 762 prepareManagedDeviceArrays(); 763 } 764 765 void GPUNodeBuilder::finalize() { 766 if (!PollyManagedMemory) 767 freeDeviceArrays(); 768 769 createCallFreeContext(GPUContext); 770 IslNodeBuilder::finalize(); 771 } 772 773 void GPUNodeBuilder::allocateDeviceArrays() { 774 assert(!PollyManagedMemory && 775 "Managed memory will directly send host pointers " 776 "to the kernel. There is no need for device arrays"); 777 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 778 779 for (int i = 0; i < Prog->n_array; ++i) { 780 gpu_array_info *Array = &Prog->array[i]; 781 auto *ScopArray = (ScopArrayInfo *)Array->user; 782 std::string DevArrayName("p_dev_array_"); 783 DevArrayName.append(Array->name); 784 785 Value *ArraySize = getArraySize(Array); 786 Value *Offset = getArrayOffset(Array); 787 if (Offset) 788 ArraySize = Builder.CreateSub( 789 ArraySize, 790 Builder.CreateMul(Offset, 791 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 792 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 793 // It makes no sense to have an array of size 0. The CUDA API will 794 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 795 // choose to be defensive and catch this at the compile phase. It is 796 // most likely that we are doing something wrong with size computation. 797 if (SizeSCEV->isZero()) { 798 errs() << getUniqueScopName(&S) 799 << " has computed array size 0: " << *ArraySize 800 << " | for array: " << *(ScopArray->getBasePtr()) 801 << ". This is illegal, exiting.\n"; 802 report_fatal_error("array size was computed to be 0"); 803 } 804 805 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 806 DevArray->setName(DevArrayName); 807 DeviceAllocations[ScopArray] = DevArray; 808 } 809 810 isl_ast_build_free(Build); 811 } 812 813 void GPUNodeBuilder::prepareManagedDeviceArrays() { 814 assert(PollyManagedMemory && 815 "Device array most only be prepared in managed-memory mode"); 816 for (int i = 0; i < Prog->n_array; ++i) { 817 gpu_array_info *Array = &Prog->array[i]; 818 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 819 Value *HostPtr; 820 821 if (gpu_array_is_scalar(Array)) 822 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 823 else 824 HostPtr = ScopArray->getBasePtr(); 825 HostPtr = getLatestValue(HostPtr); 826 827 Value *Offset = getArrayOffset(Array); 828 if (Offset) { 829 HostPtr = Builder.CreatePointerCast( 830 HostPtr, ScopArray->getElementType()->getPointerTo()); 831 HostPtr = Builder.CreateGEP(HostPtr, Offset); 832 } 833 834 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 835 DeviceAllocations[ScopArray] = HostPtr; 836 } 837 } 838 839 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 840 Value *BlockDimY, Value *BlockDimZ) { 841 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 842 843 for (auto &F : *M) { 844 if (F.getCallingConv() != CallingConv::PTX_Kernel) 845 continue; 846 847 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 848 849 Metadata *Elements[] = { 850 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 851 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 852 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 853 ValueAsMetadata::get(V[2]), 854 }; 855 MDNode *Node = MDNode::get(M->getContext(), Elements); 856 AnnotationNode->addOperand(Node); 857 } 858 } 859 860 void GPUNodeBuilder::freeDeviceArrays() { 861 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 862 for (auto &Array : DeviceAllocations) 863 createCallFreeDeviceMemory(Array.second); 864 } 865 866 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 867 const char *Name = "polly_getKernel"; 868 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 869 Function *F = M->getFunction(Name); 870 871 // If F is not available, declare it. 872 if (!F) { 873 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 874 std::vector<Type *> Args; 875 Args.push_back(Builder.getInt8PtrTy()); 876 Args.push_back(Builder.getInt8PtrTy()); 877 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 878 F = Function::Create(Ty, Linkage, Name, M); 879 } 880 881 return Builder.CreateCall(F, {Buffer, Entry}); 882 } 883 884 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 885 const char *Name = "polly_getDevicePtr"; 886 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 887 Function *F = M->getFunction(Name); 888 889 // If F is not available, declare it. 890 if (!F) { 891 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 892 std::vector<Type *> Args; 893 Args.push_back(Builder.getInt8PtrTy()); 894 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 895 F = Function::Create(Ty, Linkage, Name, M); 896 } 897 898 return Builder.CreateCall(F, {Allocation}); 899 } 900 901 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 902 Value *GridDimY, Value *BlockDimX, 903 Value *BlockDimY, Value *BlockDimZ, 904 Value *Parameters) { 905 const char *Name = "polly_launchKernel"; 906 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 907 Function *F = M->getFunction(Name); 908 909 // If F is not available, declare it. 910 if (!F) { 911 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 912 std::vector<Type *> Args; 913 Args.push_back(Builder.getInt8PtrTy()); 914 Args.push_back(Builder.getInt32Ty()); 915 Args.push_back(Builder.getInt32Ty()); 916 Args.push_back(Builder.getInt32Ty()); 917 Args.push_back(Builder.getInt32Ty()); 918 Args.push_back(Builder.getInt32Ty()); 919 Args.push_back(Builder.getInt8PtrTy()); 920 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 921 F = Function::Create(Ty, Linkage, Name, M); 922 } 923 924 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 925 BlockDimZ, Parameters}); 926 } 927 928 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 929 const char *Name = "polly_freeKernel"; 930 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 931 Function *F = M->getFunction(Name); 932 933 // If F is not available, declare it. 934 if (!F) { 935 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 936 std::vector<Type *> Args; 937 Args.push_back(Builder.getInt8PtrTy()); 938 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 939 F = Function::Create(Ty, Linkage, Name, M); 940 } 941 942 Builder.CreateCall(F, {GPUKernel}); 943 } 944 945 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 946 assert(!PollyManagedMemory && 947 "Managed memory does not allocate or free memory " 948 "for device"); 949 const char *Name = "polly_freeDeviceMemory"; 950 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 951 Function *F = M->getFunction(Name); 952 953 // If F is not available, declare it. 954 if (!F) { 955 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 956 std::vector<Type *> Args; 957 Args.push_back(Builder.getInt8PtrTy()); 958 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 959 F = Function::Create(Ty, Linkage, Name, M); 960 } 961 962 Builder.CreateCall(F, {Array}); 963 } 964 965 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 966 assert(!PollyManagedMemory && 967 "Managed memory does not allocate or free memory " 968 "for device"); 969 const char *Name = "polly_allocateMemoryForDevice"; 970 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 971 Function *F = M->getFunction(Name); 972 973 // If F is not available, declare it. 974 if (!F) { 975 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 976 std::vector<Type *> Args; 977 Args.push_back(Builder.getInt64Ty()); 978 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 979 F = Function::Create(Ty, Linkage, Name, M); 980 } 981 982 return Builder.CreateCall(F, {Size}); 983 } 984 985 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 986 Value *DeviceData, 987 Value *Size) { 988 assert(!PollyManagedMemory && 989 "Managed memory does not transfer memory between " 990 "device and host"); 991 const char *Name = "polly_copyFromHostToDevice"; 992 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 993 Function *F = M->getFunction(Name); 994 995 // If F is not available, declare it. 996 if (!F) { 997 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 998 std::vector<Type *> Args; 999 Args.push_back(Builder.getInt8PtrTy()); 1000 Args.push_back(Builder.getInt8PtrTy()); 1001 Args.push_back(Builder.getInt64Ty()); 1002 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1003 F = Function::Create(Ty, Linkage, Name, M); 1004 } 1005 1006 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1007 } 1008 1009 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1010 Value *HostData, 1011 Value *Size) { 1012 assert(!PollyManagedMemory && 1013 "Managed memory does not transfer memory between " 1014 "device and host"); 1015 const char *Name = "polly_copyFromDeviceToHost"; 1016 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1017 Function *F = M->getFunction(Name); 1018 1019 // If F is not available, declare it. 1020 if (!F) { 1021 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1022 std::vector<Type *> Args; 1023 Args.push_back(Builder.getInt8PtrTy()); 1024 Args.push_back(Builder.getInt8PtrTy()); 1025 Args.push_back(Builder.getInt64Ty()); 1026 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1027 F = Function::Create(Ty, Linkage, Name, M); 1028 } 1029 1030 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1031 } 1032 1033 void GPUNodeBuilder::createCallSynchronizeDevice() { 1034 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1035 "managed memory"); 1036 const char *Name = "polly_synchronizeDevice"; 1037 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1038 Function *F = M->getFunction(Name); 1039 1040 // If F is not available, declare it. 1041 if (!F) { 1042 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1043 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1044 F = Function::Create(Ty, Linkage, Name, M); 1045 } 1046 1047 Builder.CreateCall(F); 1048 } 1049 1050 Value *GPUNodeBuilder::createCallInitContext() { 1051 const char *Name; 1052 1053 switch (Runtime) { 1054 case GPURuntime::CUDA: 1055 Name = "polly_initContextCUDA"; 1056 break; 1057 case GPURuntime::OpenCL: 1058 Name = "polly_initContextCL"; 1059 break; 1060 } 1061 1062 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1063 Function *F = M->getFunction(Name); 1064 1065 // If F is not available, declare it. 1066 if (!F) { 1067 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1068 std::vector<Type *> Args; 1069 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1070 F = Function::Create(Ty, Linkage, Name, M); 1071 } 1072 1073 return Builder.CreateCall(F, {}); 1074 } 1075 1076 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1077 const char *Name = "polly_freeContext"; 1078 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1079 Function *F = M->getFunction(Name); 1080 1081 // If F is not available, declare it. 1082 if (!F) { 1083 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1084 std::vector<Type *> Args; 1085 Args.push_back(Builder.getInt8PtrTy()); 1086 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1087 F = Function::Create(Ty, Linkage, Name, M); 1088 } 1089 1090 Builder.CreateCall(F, {Context}); 1091 } 1092 1093 /// Check if one string is a prefix of another. 1094 /// 1095 /// @param String The string in which to look for the prefix. 1096 /// @param Prefix The prefix to look for. 1097 static bool isPrefix(std::string String, std::string Prefix) { 1098 return String.find(Prefix) == 0; 1099 } 1100 1101 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1102 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1103 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1104 1105 if (!gpu_array_is_scalar(Array)) { 1106 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1107 1108 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1109 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1110 1111 for (unsigned int i = 1; i < Array->n_index; i++) { 1112 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1113 isl::ast_expr Expr = Build.expr_from(Bound_I); 1114 Res = Res.mul(Expr); 1115 } 1116 1117 Value *NumElements = ExprBuilder.create(Res.release()); 1118 if (NumElements->getType() != ArraySize->getType()) 1119 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1120 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1121 } 1122 return ArraySize; 1123 } 1124 1125 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1126 if (gpu_array_is_scalar(Array)) 1127 return nullptr; 1128 1129 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1130 1131 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1132 1133 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1134 1135 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1136 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1137 1138 if (Min.is_subset(ZeroSet)) { 1139 return nullptr; 1140 } 1141 1142 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1143 1144 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1145 if (i > 0) { 1146 isl::pw_aff Bound_I = 1147 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1148 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1149 Result = Result.mul(BExpr); 1150 } 1151 isl::pw_aff DimMin = Min.dim_min(i); 1152 isl::ast_expr MExpr = Build.expr_from(DimMin); 1153 Result = Result.add(MExpr); 1154 } 1155 1156 return ExprBuilder.create(Result.release()); 1157 } 1158 1159 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1160 ScopArrayInfo *ArrayInfo) { 1161 assert(PollyManagedMemory && "Only used when you wish to get a host " 1162 "pointer for sending data to the kernel, " 1163 "with managed memory"); 1164 std::map<ScopArrayInfo *, Value *>::iterator it; 1165 it = DeviceAllocations.find(ArrayInfo); 1166 assert(it != DeviceAllocations.end() && 1167 "Device array expected to be available"); 1168 return it->second; 1169 } 1170 1171 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1172 enum DataDirection Direction) { 1173 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1174 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1175 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1176 isl_id *Id = isl_ast_expr_get_id(Arg); 1177 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1178 auto ScopArray = (ScopArrayInfo *)(Array->user); 1179 1180 Value *Size = getArraySize(Array); 1181 Value *Offset = getArrayOffset(Array); 1182 Value *DevPtr = DeviceAllocations[ScopArray]; 1183 1184 Value *HostPtr; 1185 1186 if (gpu_array_is_scalar(Array)) 1187 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1188 else 1189 HostPtr = ScopArray->getBasePtr(); 1190 HostPtr = getLatestValue(HostPtr); 1191 1192 if (Offset) { 1193 HostPtr = Builder.CreatePointerCast( 1194 HostPtr, ScopArray->getElementType()->getPointerTo()); 1195 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1196 } 1197 1198 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1199 1200 if (Offset) { 1201 Size = Builder.CreateSub( 1202 Size, Builder.CreateMul( 1203 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1204 } 1205 1206 if (Direction == HOST_TO_DEVICE) 1207 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1208 else 1209 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1210 1211 isl_id_free(Id); 1212 isl_ast_expr_free(Arg); 1213 isl_ast_expr_free(Expr); 1214 isl_ast_node_free(TransferStmt); 1215 } 1216 1217 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1218 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1219 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1220 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1221 isl_id_free(Id); 1222 isl_ast_expr_free(StmtExpr); 1223 1224 const char *Str = isl_id_get_name(Id); 1225 if (!strcmp(Str, "kernel")) { 1226 createKernel(UserStmt); 1227 if (PollyManagedMemory) 1228 createCallSynchronizeDevice(); 1229 isl_ast_expr_free(Expr); 1230 return; 1231 } 1232 if (!strcmp(Str, "init_device")) { 1233 initializeAfterRTH(); 1234 isl_ast_node_free(UserStmt); 1235 isl_ast_expr_free(Expr); 1236 return; 1237 } 1238 if (!strcmp(Str, "clear_device")) { 1239 finalize(); 1240 isl_ast_node_free(UserStmt); 1241 isl_ast_expr_free(Expr); 1242 return; 1243 } 1244 if (isPrefix(Str, "to_device")) { 1245 if (!PollyManagedMemory) 1246 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1247 else 1248 isl_ast_node_free(UserStmt); 1249 1250 isl_ast_expr_free(Expr); 1251 return; 1252 } 1253 1254 if (isPrefix(Str, "from_device")) { 1255 if (!PollyManagedMemory) { 1256 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1257 } else { 1258 isl_ast_node_free(UserStmt); 1259 } 1260 isl_ast_expr_free(Expr); 1261 return; 1262 } 1263 1264 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1265 struct ppcg_kernel_stmt *KernelStmt = 1266 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1267 isl_id_free(Anno); 1268 1269 switch (KernelStmt->type) { 1270 case ppcg_kernel_domain: 1271 createScopStmt(Expr, KernelStmt); 1272 isl_ast_node_free(UserStmt); 1273 return; 1274 case ppcg_kernel_copy: 1275 createKernelCopy(KernelStmt); 1276 isl_ast_expr_free(Expr); 1277 isl_ast_node_free(UserStmt); 1278 return; 1279 case ppcg_kernel_sync: 1280 createKernelSync(); 1281 isl_ast_expr_free(Expr); 1282 isl_ast_node_free(UserStmt); 1283 return; 1284 } 1285 1286 isl_ast_expr_free(Expr); 1287 isl_ast_node_free(UserStmt); 1288 } 1289 1290 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1291 createForSequential(Node, false); 1292 } 1293 1294 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1295 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1296 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1297 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1298 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1299 Index = isl_ast_expr_address_of(Index); 1300 Value *GlobalAddr = ExprBuilder.create(Index); 1301 1302 if (KernelStmt->u.c.read) { 1303 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1304 Builder.CreateStore(Load, LocalAddr); 1305 } else { 1306 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1307 Builder.CreateStore(Load, GlobalAddr); 1308 } 1309 } 1310 1311 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1312 ppcg_kernel_stmt *KernelStmt) { 1313 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1314 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1315 1316 LoopToScevMapT LTS; 1317 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1318 1319 createSubstitutions(Expr, Stmt, LTS); 1320 1321 if (Stmt->isBlockStmt()) 1322 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1323 else 1324 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1325 } 1326 1327 void GPUNodeBuilder::createKernelSync() { 1328 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1329 const char *SpirName = "__gen_ocl_barrier_global"; 1330 1331 Function *Sync; 1332 1333 switch (Arch) { 1334 case GPUArch::SPIR64: 1335 case GPUArch::SPIR32: 1336 Sync = M->getFunction(SpirName); 1337 1338 // If Sync is not available, declare it. 1339 if (!Sync) { 1340 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1341 std::vector<Type *> Args; 1342 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1343 Sync = Function::Create(Ty, Linkage, SpirName, M); 1344 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1345 } 1346 break; 1347 case GPUArch::NVPTX64: 1348 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1349 break; 1350 } 1351 1352 Builder.CreateCall(Sync, {}); 1353 } 1354 1355 /// Collect llvm::Values referenced from @p Node 1356 /// 1357 /// This function only applies to isl_ast_nodes that are user_nodes referring 1358 /// to a ScopStmt. All other node types are ignore. 1359 /// 1360 /// @param Node The node to collect references for. 1361 /// @param User A user pointer used as storage for the data that is collected. 1362 /// 1363 /// @returns isl_bool_true if data could be collected successfully. 1364 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1365 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1366 return isl_bool_true; 1367 1368 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1369 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1370 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1371 const char *Str = isl_id_get_name(Id); 1372 isl_id_free(Id); 1373 isl_ast_expr_free(StmtExpr); 1374 isl_ast_expr_free(Expr); 1375 1376 if (!isPrefix(Str, "Stmt")) 1377 return isl_bool_true; 1378 1379 Id = isl_ast_node_get_annotation(Node); 1380 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1381 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1382 isl_id_free(Id); 1383 1384 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1385 1386 return isl_bool_true; 1387 } 1388 1389 /// A list of functions that are available in NVIDIA's libdevice. 1390 const std::set<std::string> CUDALibDeviceFunctions = { 1391 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1392 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1393 1394 // A map from intrinsics to their corresponding libdevice functions. 1395 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1396 {"llvm.exp.f64", "exp"}, 1397 {"llvm.exp.f32", "expf"}, 1398 {"llvm.powi.f64", "powi"}, 1399 {"llvm.powi.f32", "powif"}}; 1400 1401 /// Return the corresponding CUDA libdevice function name for @p F. 1402 /// Note that this function will try to convert instrinsics in the list 1403 /// IntrinsicToLibdeviceFunc into libdevice functions. 1404 /// This is because some intrinsics such as `exp` 1405 /// are not supported by the NVPTX backend. 1406 /// If this restriction of the backend is lifted, we should refactor our code 1407 /// so that we use intrinsics whenever possible. 1408 /// 1409 /// Return "" if we are not compiling for CUDA. 1410 std::string getCUDALibDeviceFuntion(Function *F) { 1411 auto FnName = [&]() -> const std::string { 1412 auto It = IntrinsicToLibdeviceFunc.find(F->getName()); 1413 if (It != IntrinsicToLibdeviceFunc.end()) 1414 return It->second; 1415 1416 return std::string(F->getName()); 1417 }(); 1418 1419 if (CUDALibDeviceFunctions.count(FnName)) 1420 return "__nv_" + FnName; 1421 1422 return ""; 1423 } 1424 1425 /// Check if F is a function that we can code-generate in a GPU kernel. 1426 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1427 assert(F && "F is an invalid pointer"); 1428 // We string compare against the name of the function to allow 1429 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1430 // "llvm.copysign". 1431 const StringRef Name = F->getName(); 1432 1433 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1434 return true; 1435 1436 return F->isIntrinsic() && 1437 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1438 Name.startswith("llvm.copysign")); 1439 } 1440 1441 /// Do not take `Function` as a subtree value. 1442 /// 1443 /// We try to take the reference of all subtree values and pass them along 1444 /// to the kernel from the host. Taking an address of any function and 1445 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1446 /// `Function`s. 1447 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1448 1449 /// Return `Function`s from `RawSubtreeValues`. 1450 static SetVector<Function *> 1451 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1452 bool AllowCUDALibDevice) { 1453 SetVector<Function *> SubtreeFunctions; 1454 for (Value *It : RawSubtreeValues) { 1455 Function *F = dyn_cast<Function>(It); 1456 if (F) { 1457 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1458 "Code should have bailed out by " 1459 "this point if an invalid function " 1460 "were present in a kernel."); 1461 SubtreeFunctions.insert(F); 1462 } 1463 } 1464 return SubtreeFunctions; 1465 } 1466 1467 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1468 isl::space> 1469 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1470 SetVector<Value *> SubtreeValues; 1471 SetVector<const SCEV *> SCEVs; 1472 SetVector<const Loop *> Loops; 1473 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1474 SubtreeReferences References = { 1475 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1476 &ParamSpace}; 1477 1478 for (const auto &I : IDToValue) 1479 SubtreeValues.insert(I.second); 1480 1481 // NOTE: this is populated in IslNodeBuilder::addParameters 1482 // See [Code generation of induction variables of loops outside Scops]. 1483 for (const auto &I : OutsideLoopIterations) 1484 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1485 1486 isl_ast_node_foreach_descendant_top_down( 1487 Kernel->tree, collectReferencesInGPUStmt, &References); 1488 1489 for (const SCEV *Expr : SCEVs) { 1490 findValues(Expr, SE, SubtreeValues); 1491 findLoops(Expr, Loops); 1492 } 1493 1494 Loops.remove_if([this](const Loop *L) { 1495 return S.contains(L) || L->contains(S.getEntry()); 1496 }); 1497 1498 for (auto &SAI : S.arrays()) 1499 SubtreeValues.remove(SAI->getBasePtr()); 1500 1501 isl_space *Space = S.getParamSpace().release(); 1502 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1503 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1504 assert(IDToValue.count(Id)); 1505 Value *Val = IDToValue[Id]; 1506 SubtreeValues.remove(Val); 1507 isl_id_free(Id); 1508 } 1509 isl_space_free(Space); 1510 1511 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1512 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1513 assert(IDToValue.count(Id)); 1514 Value *Val = IDToValue[Id]; 1515 SubtreeValues.remove(Val); 1516 isl_id_free(Id); 1517 } 1518 1519 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1520 // SubtreeValues. This is important, because we should not lose any 1521 // SubtreeValues in the process of constructing the 1522 // "ValidSubtree{Values, Functions} sets. Nor should the set 1523 // ValidSubtree{Values, Functions} have any common element. 1524 auto ValidSubtreeValuesIt = 1525 make_filter_range(SubtreeValues, isValidSubtreeValue); 1526 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1527 ValidSubtreeValuesIt.end()); 1528 1529 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1530 1531 SetVector<Function *> ValidSubtreeFunctions( 1532 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1533 1534 // @see IslNodeBuilder::getReferencesInSubtree 1535 SetVector<Value *> ReplacedValues; 1536 for (Value *V : ValidSubtreeValues) { 1537 auto It = ValueMap.find(V); 1538 if (It == ValueMap.end()) 1539 ReplacedValues.insert(V); 1540 else 1541 ReplacedValues.insert(It->second); 1542 } 1543 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1544 ParamSpace); 1545 } 1546 1547 void GPUNodeBuilder::clearDominators(Function *F) { 1548 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1549 std::vector<BasicBlock *> Nodes; 1550 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1551 Nodes.push_back(I->getBlock()); 1552 1553 for (BasicBlock *BB : Nodes) 1554 DT.eraseNode(BB); 1555 } 1556 1557 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1558 for (BasicBlock &BB : *F) { 1559 Loop *L = LI.getLoopFor(&BB); 1560 if (L) 1561 SE.forgetLoop(L); 1562 } 1563 } 1564 1565 void GPUNodeBuilder::clearLoops(Function *F) { 1566 SmallSet<Loop *, 1> WorkList; 1567 for (BasicBlock &BB : *F) { 1568 Loop *L = LI.getLoopFor(&BB); 1569 if (L) 1570 WorkList.insert(L); 1571 } 1572 for (auto *L : WorkList) 1573 LI.erase(L); 1574 } 1575 1576 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1577 std::vector<Value *> Sizes; 1578 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1579 1580 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1581 for (long i = 0; i < Kernel->n_grid; i++) { 1582 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1583 isl::ast_expr GridSize = Context.expr_from(Size); 1584 Value *Res = ExprBuilder.create(GridSize.release()); 1585 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1586 Sizes.push_back(Res); 1587 } 1588 1589 for (long i = Kernel->n_grid; i < 3; i++) 1590 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1591 1592 return std::make_tuple(Sizes[0], Sizes[1]); 1593 } 1594 1595 std::tuple<Value *, Value *, Value *> 1596 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1597 std::vector<Value *> Sizes; 1598 1599 for (long i = 0; i < Kernel->n_block; i++) { 1600 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1601 Sizes.push_back(Res); 1602 } 1603 1604 for (long i = Kernel->n_block; i < 3; i++) 1605 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1606 1607 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1608 } 1609 1610 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1611 Instruction *Param, int Index) { 1612 Value *Slot = Builder.CreateGEP( 1613 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1614 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1615 Builder.CreateStore(ParamTyped, Slot); 1616 } 1617 1618 Value * 1619 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1620 SetVector<Value *> SubtreeValues) { 1621 const int NumArgs = F->arg_size(); 1622 std::vector<int> ArgSizes(NumArgs); 1623 1624 // If we are using the OpenCL Runtime, we need to add the kernel argument 1625 // sizes to the end of the launch-parameter list, so OpenCL can determine 1626 // how big the respective kernel arguments are. 1627 // Here we need to reserve adequate space for that. 1628 Type *ArrayTy; 1629 if (Runtime == GPURuntime::OpenCL) 1630 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1631 else 1632 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1633 1634 BasicBlock *EntryBlock = 1635 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1636 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1637 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1638 Instruction *Parameters = new AllocaInst( 1639 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1640 1641 int Index = 0; 1642 for (long i = 0; i < Prog->n_array; i++) { 1643 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1644 continue; 1645 1646 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1647 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1648 1649 if (Runtime == GPURuntime::OpenCL) 1650 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1651 1652 Value *DevArray = nullptr; 1653 if (PollyManagedMemory) { 1654 DevArray = getManagedDeviceArray(&Prog->array[i], 1655 const_cast<ScopArrayInfo *>(SAI)); 1656 } else { 1657 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1658 DevArray = createCallGetDevicePtr(DevArray); 1659 } 1660 assert(DevArray != nullptr && "Array to be offloaded to device not " 1661 "initialized"); 1662 Value *Offset = getArrayOffset(&Prog->array[i]); 1663 1664 if (Offset) { 1665 DevArray = Builder.CreatePointerCast( 1666 DevArray, SAI->getElementType()->getPointerTo()); 1667 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1668 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1669 } 1670 Value *Slot = Builder.CreateGEP( 1671 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1672 1673 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1674 Value *ValPtr = nullptr; 1675 if (PollyManagedMemory) 1676 ValPtr = DevArray; 1677 else 1678 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1679 1680 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1681 " to be stored into Parameters"); 1682 Value *ValPtrCast = 1683 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1684 Builder.CreateStore(ValPtrCast, Slot); 1685 } else { 1686 Instruction *Param = 1687 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1688 Launch + "_param_" + std::to_string(Index), 1689 EntryBlock->getTerminator()); 1690 Builder.CreateStore(DevArray, Param); 1691 Value *ParamTyped = 1692 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1693 Builder.CreateStore(ParamTyped, Slot); 1694 } 1695 Index++; 1696 } 1697 1698 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1699 1700 for (long i = 0; i < NumHostIters; i++) { 1701 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1702 Value *Val = IDToValue[Id]; 1703 isl_id_free(Id); 1704 1705 if (Runtime == GPURuntime::OpenCL) 1706 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1707 1708 Instruction *Param = 1709 new AllocaInst(Val->getType(), AddressSpace, 1710 Launch + "_param_" + std::to_string(Index), 1711 EntryBlock->getTerminator()); 1712 Builder.CreateStore(Val, Param); 1713 insertStoreParameter(Parameters, Param, Index); 1714 Index++; 1715 } 1716 1717 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1718 1719 for (long i = 0; i < NumVars; i++) { 1720 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1721 Value *Val = IDToValue[Id]; 1722 if (ValueMap.count(Val)) 1723 Val = ValueMap[Val]; 1724 isl_id_free(Id); 1725 1726 if (Runtime == GPURuntime::OpenCL) 1727 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1728 1729 Instruction *Param = 1730 new AllocaInst(Val->getType(), AddressSpace, 1731 Launch + "_param_" + std::to_string(Index), 1732 EntryBlock->getTerminator()); 1733 Builder.CreateStore(Val, Param); 1734 insertStoreParameter(Parameters, Param, Index); 1735 Index++; 1736 } 1737 1738 for (auto Val : SubtreeValues) { 1739 if (Runtime == GPURuntime::OpenCL) 1740 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1741 1742 Instruction *Param = 1743 new AllocaInst(Val->getType(), AddressSpace, 1744 Launch + "_param_" + std::to_string(Index), 1745 EntryBlock->getTerminator()); 1746 Builder.CreateStore(Val, Param); 1747 insertStoreParameter(Parameters, Param, Index); 1748 Index++; 1749 } 1750 1751 if (Runtime == GPURuntime::OpenCL) { 1752 for (int i = 0; i < NumArgs; i++) { 1753 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1754 Instruction *Param = 1755 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1756 Launch + "_param_size_" + std::to_string(i), 1757 EntryBlock->getTerminator()); 1758 Builder.CreateStore(Val, Param); 1759 insertStoreParameter(Parameters, Param, Index); 1760 Index++; 1761 } 1762 } 1763 1764 auto Location = EntryBlock->getTerminator(); 1765 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1766 Launch + "_params_i8ptr", Location); 1767 } 1768 1769 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1770 SetVector<Function *> SubtreeFunctions) { 1771 for (auto Fn : SubtreeFunctions) { 1772 const std::string ClonedFnName = Fn->getName(); 1773 Function *Clone = GPUModule->getFunction(ClonedFnName); 1774 if (!Clone) 1775 Clone = 1776 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1777 ClonedFnName, GPUModule.get()); 1778 assert(Clone && "Expected cloned function to be initialized."); 1779 assert(ValueMap.find(Fn) == ValueMap.end() && 1780 "Fn already present in ValueMap"); 1781 ValueMap[Fn] = Clone; 1782 } 1783 } 1784 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1785 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1786 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1787 isl_id_free(Id); 1788 isl_ast_node_free(KernelStmt); 1789 1790 if (Kernel->n_grid > 1) 1791 DeepestParallel = 1792 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1793 else 1794 DeepestSequential = 1795 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1796 1797 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1798 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1799 1800 SetVector<Value *> SubtreeValues; 1801 SetVector<Function *> SubtreeFunctions; 1802 SetVector<const Loop *> Loops; 1803 isl::space ParamSpace; 1804 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1805 getReferencesInKernel(Kernel); 1806 1807 // Add parameters that appear only in the access function to the kernel 1808 // space. This is important to make sure that all isl_ids are passed as 1809 // parameters to the kernel, even though we may not have all parameters 1810 // in the context to improve compile time. 1811 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1812 1813 assert(Kernel->tree && "Device AST of kernel node is empty"); 1814 1815 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1816 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1817 ValueMapT HostValueMap = ValueMap; 1818 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1819 ScalarMap.clear(); 1820 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1821 EscapeMap.clear(); 1822 1823 // Create for all loops we depend on values that contain the current loop 1824 // iteration. These values are necessary to generate code for SCEVs that 1825 // depend on such loops. As a result we need to pass them to the subfunction. 1826 for (const Loop *L : Loops) { 1827 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1828 SE.getUnknown(Builder.getInt64(1)), 1829 L, SCEV::FlagAnyWrap); 1830 Value *V = generateSCEV(OuterLIV); 1831 OutsideLoopIterations[L] = SE.getUnknown(V); 1832 SubtreeValues.insert(V); 1833 } 1834 1835 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1836 setupKernelSubtreeFunctions(SubtreeFunctions); 1837 1838 create(isl_ast_node_copy(Kernel->tree)); 1839 1840 finalizeKernelArguments(Kernel); 1841 Function *F = Builder.GetInsertBlock()->getParent(); 1842 if (Arch == GPUArch::NVPTX64) 1843 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1844 clearDominators(F); 1845 clearScalarEvolution(F); 1846 clearLoops(F); 1847 1848 IDToValue = HostIDs; 1849 1850 ValueMap = std::move(HostValueMap); 1851 ScalarMap = std::move(HostScalarMap); 1852 EscapeMap = std::move(HostEscapeMap); 1853 IDToSAI.clear(); 1854 Annotator.resetAlternativeAliasBases(); 1855 for (auto &BasePtr : LocalArrays) 1856 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1857 LocalArrays.clear(); 1858 1859 std::string ASMString = finalizeKernelFunction(); 1860 Builder.SetInsertPoint(&HostInsertPoint); 1861 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1862 1863 std::string Name = getKernelFuncName(Kernel->id); 1864 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1865 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1866 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1867 1868 Value *GridDimX, *GridDimY; 1869 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1870 1871 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1872 BlockDimZ, Parameters); 1873 createCallFreeKernel(GPUKernel); 1874 1875 for (auto Id : KernelIds) 1876 isl_id_free(Id); 1877 1878 KernelIds.clear(); 1879 } 1880 1881 /// Compute the DataLayout string for the NVPTX backend. 1882 /// 1883 /// @param is64Bit Are we looking for a 64 bit architecture? 1884 static std::string computeNVPTXDataLayout(bool is64Bit) { 1885 std::string Ret = ""; 1886 1887 if (!is64Bit) { 1888 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1889 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1890 "64-v128:128:128-n16:32:64"; 1891 } else { 1892 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1893 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1894 "64-v128:128:128-n16:32:64"; 1895 } 1896 1897 return Ret; 1898 } 1899 1900 /// Compute the DataLayout string for a SPIR kernel. 1901 /// 1902 /// @param is64Bit Are we looking for a 64 bit architecture? 1903 static std::string computeSPIRDataLayout(bool is64Bit) { 1904 std::string Ret = ""; 1905 1906 if (!is64Bit) { 1907 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1908 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1909 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1910 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1911 } else { 1912 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1913 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1914 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1915 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1916 } 1917 1918 return Ret; 1919 } 1920 1921 Function * 1922 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1923 SetVector<Value *> &SubtreeValues) { 1924 std::vector<Type *> Args; 1925 std::string Identifier = getKernelFuncName(Kernel->id); 1926 1927 std::vector<Metadata *> MemoryType; 1928 1929 for (long i = 0; i < Prog->n_array; i++) { 1930 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1931 continue; 1932 1933 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1934 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1935 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1936 Args.push_back(SAI->getElementType()); 1937 MemoryType.push_back( 1938 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1939 } else { 1940 static const int UseGlobalMemory = 1; 1941 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1942 MemoryType.push_back( 1943 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1944 } 1945 } 1946 1947 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1948 1949 for (long i = 0; i < NumHostIters; i++) { 1950 Args.push_back(Builder.getInt64Ty()); 1951 MemoryType.push_back( 1952 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1953 } 1954 1955 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1956 1957 for (long i = 0; i < NumVars; i++) { 1958 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1959 Value *Val = IDToValue[Id]; 1960 isl_id_free(Id); 1961 Args.push_back(Val->getType()); 1962 MemoryType.push_back( 1963 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1964 } 1965 1966 for (auto *V : SubtreeValues) { 1967 Args.push_back(V->getType()); 1968 MemoryType.push_back( 1969 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1970 } 1971 1972 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1973 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1974 GPUModule.get()); 1975 1976 std::vector<Metadata *> EmptyStrings; 1977 1978 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1979 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1980 } 1981 1982 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1983 FN->setMetadata("kernel_arg_addr_space", 1984 MDNode::get(FN->getContext(), MemoryType)); 1985 FN->setMetadata("kernel_arg_name", 1986 MDNode::get(FN->getContext(), EmptyStrings)); 1987 FN->setMetadata("kernel_arg_access_qual", 1988 MDNode::get(FN->getContext(), EmptyStrings)); 1989 FN->setMetadata("kernel_arg_type", 1990 MDNode::get(FN->getContext(), EmptyStrings)); 1991 FN->setMetadata("kernel_arg_type_qual", 1992 MDNode::get(FN->getContext(), EmptyStrings)); 1993 FN->setMetadata("kernel_arg_base_type", 1994 MDNode::get(FN->getContext(), EmptyStrings)); 1995 } 1996 1997 switch (Arch) { 1998 case GPUArch::NVPTX64: 1999 FN->setCallingConv(CallingConv::PTX_Kernel); 2000 break; 2001 case GPUArch::SPIR32: 2002 case GPUArch::SPIR64: 2003 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2004 break; 2005 } 2006 2007 auto Arg = FN->arg_begin(); 2008 for (long i = 0; i < Kernel->n_array; i++) { 2009 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2010 continue; 2011 2012 Arg->setName(Kernel->array[i].array->name); 2013 2014 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2015 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2016 Type *EleTy = SAI->getElementType(); 2017 Value *Val = &*Arg; 2018 SmallVector<const SCEV *, 4> Sizes; 2019 isl_ast_build *Build = 2020 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2021 Sizes.push_back(nullptr); 2022 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2023 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2024 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2025 auto V = ExprBuilder.create(DimSize); 2026 Sizes.push_back(SE.getSCEV(V)); 2027 } 2028 const ScopArrayInfo *SAIRep = 2029 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2030 LocalArrays.push_back(Val); 2031 2032 isl_ast_build_free(Build); 2033 KernelIds.push_back(Id); 2034 IDToSAI[Id] = SAIRep; 2035 Arg++; 2036 } 2037 2038 for (long i = 0; i < NumHostIters; i++) { 2039 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2040 Arg->setName(isl_id_get_name(Id)); 2041 IDToValue[Id] = &*Arg; 2042 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2043 Arg++; 2044 } 2045 2046 for (long i = 0; i < NumVars; i++) { 2047 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2048 Arg->setName(isl_id_get_name(Id)); 2049 Value *Val = IDToValue[Id]; 2050 ValueMap[Val] = &*Arg; 2051 IDToValue[Id] = &*Arg; 2052 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2053 Arg++; 2054 } 2055 2056 for (auto *V : SubtreeValues) { 2057 Arg->setName(V->getName()); 2058 ValueMap[V] = &*Arg; 2059 Arg++; 2060 } 2061 2062 return FN; 2063 } 2064 2065 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2066 Intrinsic::ID IntrinsicsBID[2]; 2067 Intrinsic::ID IntrinsicsTID[3]; 2068 2069 switch (Arch) { 2070 case GPUArch::SPIR64: 2071 case GPUArch::SPIR32: 2072 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2073 case GPUArch::NVPTX64: 2074 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2075 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2076 2077 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2078 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2079 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2080 break; 2081 } 2082 2083 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2084 std::string Name = isl_id_get_name(Id); 2085 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2086 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2087 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2088 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2089 IDToValue[Id] = Val; 2090 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2091 }; 2092 2093 for (int i = 0; i < Kernel->n_grid; ++i) { 2094 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2095 addId(Id, IntrinsicsBID[i]); 2096 } 2097 2098 for (int i = 0; i < Kernel->n_block; ++i) { 2099 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2100 addId(Id, IntrinsicsTID[i]); 2101 } 2102 } 2103 2104 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2105 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2106 "__gen_ocl_get_group_id1", 2107 "__gen_ocl_get_group_id2"}; 2108 2109 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2110 "__gen_ocl_get_local_id1", 2111 "__gen_ocl_get_local_id2"}; 2112 2113 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2114 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2115 Function *FN = M->getFunction(Name); 2116 2117 // If FN is not available, declare it. 2118 if (!FN) { 2119 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2120 std::vector<Type *> Args; 2121 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2122 FN = Function::Create(Ty, Linkage, Name, M); 2123 FN->setCallingConv(CallingConv::SPIR_FUNC); 2124 } 2125 2126 Value *Val = Builder.CreateCall(FN, {}); 2127 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2128 IDToValue[Id] = Val; 2129 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2130 }; 2131 2132 for (int i = 0; i < Kernel->n_grid; ++i) 2133 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2134 2135 for (int i = 0; i < Kernel->n_block; ++i) 2136 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2137 } 2138 2139 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2140 auto Arg = FN->arg_begin(); 2141 for (long i = 0; i < Kernel->n_array; i++) { 2142 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2143 continue; 2144 2145 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2146 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2147 isl_id_free(Id); 2148 2149 if (SAI->getNumberOfDimensions() > 0) { 2150 Arg++; 2151 continue; 2152 } 2153 2154 Value *Val = &*Arg; 2155 2156 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2157 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2158 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2159 Val = Builder.CreateLoad(TypedArgPtr); 2160 } 2161 2162 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2163 Builder.CreateStore(Val, Alloca); 2164 2165 Arg++; 2166 } 2167 } 2168 2169 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2170 auto *FN = Builder.GetInsertBlock()->getParent(); 2171 auto Arg = FN->arg_begin(); 2172 2173 bool StoredScalar = false; 2174 for (long i = 0; i < Kernel->n_array; i++) { 2175 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2176 continue; 2177 2178 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2179 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2180 isl_id_free(Id); 2181 2182 if (SAI->getNumberOfDimensions() > 0) { 2183 Arg++; 2184 continue; 2185 } 2186 2187 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2188 Arg++; 2189 continue; 2190 } 2191 2192 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2193 Value *ArgPtr = &*Arg; 2194 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2195 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2196 Value *Val = Builder.CreateLoad(Alloca); 2197 Builder.CreateStore(Val, TypedArgPtr); 2198 StoredScalar = true; 2199 2200 Arg++; 2201 } 2202 2203 if (StoredScalar) { 2204 /// In case more than one thread contains scalar stores, the generated 2205 /// code might be incorrect, if we only store at the end of the kernel. 2206 /// To support this case we need to store these scalars back at each 2207 /// memory store or at least before each kernel barrier. 2208 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2209 BuildSuccessful = 0; 2210 LLVM_DEBUG( 2211 dbgs() << getUniqueScopName(&S) 2212 << " has a store to a scalar value that" 2213 " would be undefined to run in parallel. Bailing out.\n";); 2214 } 2215 } 2216 } 2217 2218 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2219 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2220 2221 for (int i = 0; i < Kernel->n_var; ++i) { 2222 struct ppcg_kernel_var &Var = Kernel->var[i]; 2223 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2224 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2225 2226 Type *ArrayTy = EleTy; 2227 SmallVector<const SCEV *, 4> Sizes; 2228 2229 Sizes.push_back(nullptr); 2230 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2231 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2232 long Bound = isl_val_get_num_si(Val); 2233 isl_val_free(Val); 2234 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2235 } 2236 2237 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2238 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2239 long Bound = isl_val_get_num_si(Val); 2240 isl_val_free(Val); 2241 ArrayTy = ArrayType::get(ArrayTy, Bound); 2242 } 2243 2244 const ScopArrayInfo *SAI; 2245 Value *Allocation; 2246 if (Var.type == ppcg_access_shared) { 2247 auto GlobalVar = new GlobalVariable( 2248 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2249 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2250 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2251 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2252 2253 Allocation = GlobalVar; 2254 } else if (Var.type == ppcg_access_private) { 2255 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2256 } else { 2257 llvm_unreachable("unknown variable type"); 2258 } 2259 SAI = 2260 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2261 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2262 IDToValue[Id] = Allocation; 2263 LocalArrays.push_back(Allocation); 2264 KernelIds.push_back(Id); 2265 IDToSAI[Id] = SAI; 2266 } 2267 } 2268 2269 void GPUNodeBuilder::createKernelFunction( 2270 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2271 SetVector<Function *> &SubtreeFunctions) { 2272 std::string Identifier = getKernelFuncName(Kernel->id); 2273 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2274 2275 switch (Arch) { 2276 case GPUArch::NVPTX64: 2277 if (Runtime == GPURuntime::CUDA) 2278 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2279 else if (Runtime == GPURuntime::OpenCL) 2280 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2281 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2282 break; 2283 case GPUArch::SPIR32: 2284 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2285 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2286 break; 2287 case GPUArch::SPIR64: 2288 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2289 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2290 break; 2291 } 2292 2293 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2294 2295 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2296 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2297 2298 DT.addNewBlock(EntryBlock, PrevBlock); 2299 2300 Builder.SetInsertPoint(EntryBlock); 2301 Builder.CreateRetVoid(); 2302 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2303 2304 ScopDetection::markFunctionAsInvalid(FN); 2305 2306 prepareKernelArguments(Kernel, FN); 2307 createKernelVariables(Kernel, FN); 2308 2309 switch (Arch) { 2310 case GPUArch::NVPTX64: 2311 insertKernelIntrinsics(Kernel); 2312 break; 2313 case GPUArch::SPIR32: 2314 case GPUArch::SPIR64: 2315 insertKernelCallsSPIR(Kernel); 2316 break; 2317 } 2318 } 2319 2320 std::string GPUNodeBuilder::createKernelASM() { 2321 llvm::Triple GPUTriple; 2322 2323 switch (Arch) { 2324 case GPUArch::NVPTX64: 2325 switch (Runtime) { 2326 case GPURuntime::CUDA: 2327 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2328 break; 2329 case GPURuntime::OpenCL: 2330 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2331 break; 2332 } 2333 break; 2334 case GPUArch::SPIR64: 2335 case GPUArch::SPIR32: 2336 std::string SPIRAssembly; 2337 raw_string_ostream IROstream(SPIRAssembly); 2338 IROstream << *GPUModule; 2339 IROstream.flush(); 2340 return SPIRAssembly; 2341 } 2342 2343 std::string ErrMsg; 2344 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2345 2346 if (!GPUTarget) { 2347 errs() << ErrMsg << "\n"; 2348 return ""; 2349 } 2350 2351 TargetOptions Options; 2352 Options.UnsafeFPMath = FastMath; 2353 2354 std::string subtarget; 2355 2356 switch (Arch) { 2357 case GPUArch::NVPTX64: 2358 subtarget = CudaVersion; 2359 break; 2360 case GPUArch::SPIR32: 2361 case GPUArch::SPIR64: 2362 llvm_unreachable("No subtarget for SPIR architecture"); 2363 } 2364 2365 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2366 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2367 2368 SmallString<0> ASMString; 2369 raw_svector_ostream ASMStream(ASMString); 2370 llvm::legacy::PassManager PM; 2371 2372 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2373 2374 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, 2375 TargetMachine::CGFT_AssemblyFile, 2376 true /* verify */)) { 2377 errs() << "The target does not support generation of this file type!\n"; 2378 return ""; 2379 } 2380 2381 PM.run(*GPUModule); 2382 2383 return ASMStream.str(); 2384 } 2385 2386 bool GPUNodeBuilder::requiresCUDALibDevice() { 2387 bool RequiresLibDevice = false; 2388 for (Function &F : GPUModule->functions()) { 2389 if (!F.isDeclaration()) 2390 continue; 2391 2392 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2393 if (CUDALibDeviceFunc.length() != 0) { 2394 // We need to handle the case where a module looks like this: 2395 // @expf(..) 2396 // @llvm.exp.f64(..) 2397 // Both of these functions would be renamed to `__nv_expf`. 2398 // 2399 // So, we must first check for the existence of the libdevice function. 2400 // If this exists, we replace our current function with it. 2401 // 2402 // If it does not exist, we rename the current function to the 2403 // libdevice functiono name. 2404 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2405 F.replaceAllUsesWith(Replacement); 2406 else 2407 F.setName(CUDALibDeviceFunc); 2408 RequiresLibDevice = true; 2409 } 2410 } 2411 2412 return RequiresLibDevice; 2413 } 2414 2415 void GPUNodeBuilder::addCUDALibDevice() { 2416 if (Arch != GPUArch::NVPTX64) 2417 return; 2418 2419 if (requiresCUDALibDevice()) { 2420 SMDiagnostic Error; 2421 2422 errs() << CUDALibDevice << "\n"; 2423 auto LibDeviceModule = 2424 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2425 2426 if (!LibDeviceModule) { 2427 BuildSuccessful = false; 2428 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2429 "kernel generation. Please set -polly-acc-libdevice " 2430 "accordingly.\n"); 2431 return; 2432 } 2433 2434 Linker L(*GPUModule); 2435 2436 // Set an nvptx64 target triple to avoid linker warnings. The original 2437 // triple of the libdevice files are nvptx-unknown-unknown. 2438 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2439 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2440 } 2441 } 2442 2443 std::string GPUNodeBuilder::finalizeKernelFunction() { 2444 2445 if (verifyModule(*GPUModule)) { 2446 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2447 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2448 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2449 verifyModule(*GPUModule, &dbgs());); 2450 2451 if (FailOnVerifyModuleFailure) 2452 llvm_unreachable("VerifyModule failed."); 2453 2454 BuildSuccessful = false; 2455 return ""; 2456 } 2457 2458 addCUDALibDevice(); 2459 2460 if (DumpKernelIR) 2461 outs() << *GPUModule << "\n"; 2462 2463 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2464 // Optimize module. 2465 llvm::legacy::PassManager OptPasses; 2466 PassManagerBuilder PassBuilder; 2467 PassBuilder.OptLevel = 3; 2468 PassBuilder.SizeLevel = 0; 2469 PassBuilder.populateModulePassManager(OptPasses); 2470 OptPasses.run(*GPUModule); 2471 } 2472 2473 std::string Assembly = createKernelASM(); 2474 2475 if (DumpKernelASM) 2476 outs() << Assembly << "\n"; 2477 2478 GPUModule.release(); 2479 KernelIDs.clear(); 2480 2481 return Assembly; 2482 } 2483 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2484 /// @param PwAffs The list of piecewise affine functions to create an 2485 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2486 /// all the isl_pw_aff are used up by this function. 2487 /// 2488 /// @returns The `isl_pw_aff_list`. 2489 __isl_give isl_pw_aff_list * 2490 createPwAffList(isl_ctx *Context, 2491 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2492 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2493 2494 for (unsigned i = 0; i < PwAffs.size(); i++) { 2495 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2496 } 2497 return List; 2498 } 2499 2500 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2501 /// 2502 /// We loop over all `pw_aff` and align all of their spaces together to 2503 /// create a common space for all the `pw_aff`. This common space is the 2504 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2505 /// with the given `SeedSpace`. 2506 /// @param PwAffs The list of piecewise affine functions we want to align. 2507 /// This is an rvalue reference because the entire vector is 2508 /// used up by the end of the operation. 2509 /// @param SeedSpace The space to start the alignment process with. 2510 /// @returns A std::pair, whose first element is the aligned space, 2511 /// whose second element is the vector of aligned piecewise 2512 /// affines. 2513 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2514 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2515 __isl_take isl_space *SeedSpace) { 2516 assert(SeedSpace && "Invalid seed space given."); 2517 2518 isl_space *AlignSpace = SeedSpace; 2519 for (isl_pw_aff *PwAff : PwAffs) { 2520 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2521 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2522 } 2523 std::vector<isl_pw_aff *> AdjustedPwAffs; 2524 2525 for (unsigned i = 0; i < PwAffs.size(); i++) { 2526 isl_pw_aff *Adjusted = PwAffs[i]; 2527 assert(Adjusted && "Invalid pw_aff given."); 2528 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2529 AdjustedPwAffs.push_back(Adjusted); 2530 } 2531 return std::make_pair(AlignSpace, AdjustedPwAffs); 2532 } 2533 2534 namespace { 2535 class PPCGCodeGeneration : public ScopPass { 2536 public: 2537 static char ID; 2538 2539 GPURuntime Runtime = GPURuntime::CUDA; 2540 2541 GPUArch Architecture = GPUArch::NVPTX64; 2542 2543 /// The scop that is currently processed. 2544 Scop *S; 2545 2546 LoopInfo *LI; 2547 DominatorTree *DT; 2548 ScalarEvolution *SE; 2549 const DataLayout *DL; 2550 RegionInfo *RI; 2551 2552 PPCGCodeGeneration() : ScopPass(ID) {} 2553 2554 /// Construct compilation options for PPCG. 2555 /// 2556 /// @returns The compilation options. 2557 ppcg_options *createPPCGOptions() { 2558 auto DebugOptions = 2559 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2560 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2561 2562 DebugOptions->dump_schedule_constraints = false; 2563 DebugOptions->dump_schedule = false; 2564 DebugOptions->dump_final_schedule = false; 2565 DebugOptions->dump_sizes = false; 2566 DebugOptions->verbose = false; 2567 2568 Options->debug = DebugOptions; 2569 2570 Options->group_chains = false; 2571 Options->reschedule = true; 2572 Options->scale_tile_loops = false; 2573 Options->wrap = false; 2574 2575 Options->non_negative_parameters = false; 2576 Options->ctx = nullptr; 2577 Options->sizes = nullptr; 2578 2579 Options->tile = true; 2580 Options->tile_size = 32; 2581 2582 Options->isolate_full_tiles = false; 2583 2584 Options->use_private_memory = PrivateMemory; 2585 Options->use_shared_memory = SharedMemory; 2586 Options->max_shared_memory = 48 * 1024; 2587 2588 Options->target = PPCG_TARGET_CUDA; 2589 Options->openmp = false; 2590 Options->linearize_device_arrays = true; 2591 Options->allow_gnu_extensions = false; 2592 2593 Options->unroll_copy_shared = false; 2594 Options->unroll_gpu_tile = false; 2595 Options->live_range_reordering = true; 2596 2597 Options->live_range_reordering = true; 2598 Options->hybrid = false; 2599 Options->opencl_compiler_options = nullptr; 2600 Options->opencl_use_gpu = false; 2601 Options->opencl_n_include_file = 0; 2602 Options->opencl_include_files = nullptr; 2603 Options->opencl_print_kernel_types = false; 2604 Options->opencl_embed_kernel_code = false; 2605 2606 Options->save_schedule_file = nullptr; 2607 Options->load_schedule_file = nullptr; 2608 2609 return Options; 2610 } 2611 2612 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2613 /// 2614 /// Instead of a normal access of the form: 2615 /// 2616 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2617 /// 2618 /// a tagged access has the form 2619 /// 2620 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2621 /// 2622 /// where 'id' is an additional space that references the memory access that 2623 /// triggered the access. 2624 /// 2625 /// @param AccessTy The type of the memory accesses to collect. 2626 /// 2627 /// @return The relation describing all tagged memory accesses. 2628 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2629 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2630 2631 for (auto &Stmt : *S) 2632 for (auto &Acc : Stmt) 2633 if (Acc->getType() == AccessTy) { 2634 isl_map *Relation = Acc->getAccessRelation().release(); 2635 Relation = 2636 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2637 2638 isl_space *Space = isl_map_get_space(Relation); 2639 Space = isl_space_range(Space); 2640 Space = isl_space_from_range(Space); 2641 Space = 2642 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2643 isl_map *Universe = isl_map_universe(Space); 2644 Relation = isl_map_domain_product(Relation, Universe); 2645 Accesses = isl_union_map_add_map(Accesses, Relation); 2646 } 2647 2648 return Accesses; 2649 } 2650 2651 /// Get the set of all read accesses, tagged with the access id. 2652 /// 2653 /// @see getTaggedAccesses 2654 isl_union_map *getTaggedReads() { 2655 return getTaggedAccesses(MemoryAccess::READ); 2656 } 2657 2658 /// Get the set of all may (and must) accesses, tagged with the access id. 2659 /// 2660 /// @see getTaggedAccesses 2661 isl_union_map *getTaggedMayWrites() { 2662 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2663 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2664 } 2665 2666 /// Get the set of all must accesses, tagged with the access id. 2667 /// 2668 /// @see getTaggedAccesses 2669 isl_union_map *getTaggedMustWrites() { 2670 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2671 } 2672 2673 /// Collect parameter and array names as isl_ids. 2674 /// 2675 /// To reason about the different parameters and arrays used, ppcg requires 2676 /// a list of all isl_ids in use. As PPCG traditionally performs 2677 /// source-to-source compilation each of these isl_ids is mapped to the 2678 /// expression that represents it. As we do not have a corresponding 2679 /// expression in Polly, we just map each id to a 'zero' expression to match 2680 /// the data format that ppcg expects. 2681 /// 2682 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2683 __isl_give isl_id_to_ast_expr *getNames() { 2684 auto *Names = isl_id_to_ast_expr_alloc( 2685 S->getIslCtx().get(), 2686 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2687 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2688 2689 for (const SCEV *P : S->parameters()) { 2690 isl_id *Id = S->getIdForParam(P).release(); 2691 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2692 } 2693 2694 for (auto &Array : S->arrays()) { 2695 auto Id = Array->getBasePtrId().release(); 2696 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2697 } 2698 2699 isl_ast_expr_free(Zero); 2700 2701 return Names; 2702 } 2703 2704 /// Create a new PPCG scop from the current scop. 2705 /// 2706 /// The PPCG scop is initialized with data from the current polly::Scop. From 2707 /// this initial data, the data-dependences in the PPCG scop are initialized. 2708 /// We do not use Polly's dependence analysis for now, to ensure we match 2709 /// the PPCG default behaviour more closely. 2710 /// 2711 /// @returns A new ppcg scop. 2712 ppcg_scop *createPPCGScop() { 2713 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2714 2715 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2716 2717 PPCGScop->options = createPPCGOptions(); 2718 // enable live range reordering 2719 PPCGScop->options->live_range_reordering = 1; 2720 2721 PPCGScop->start = 0; 2722 PPCGScop->end = 0; 2723 2724 PPCGScop->context = S->getContext().release(); 2725 PPCGScop->domain = S->getDomains().release(); 2726 // TODO: investigate this further. PPCG calls collect_call_domains. 2727 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2728 PPCGScop->tagged_reads = getTaggedReads(); 2729 PPCGScop->reads = S->getReads().release(); 2730 PPCGScop->live_in = nullptr; 2731 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2732 PPCGScop->may_writes = S->getWrites().release(); 2733 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2734 PPCGScop->must_writes = S->getMustWrites().release(); 2735 PPCGScop->live_out = nullptr; 2736 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2737 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2738 2739 PPCGScop->tagger = nullptr; 2740 PPCGScop->independence = 2741 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2742 PPCGScop->dep_flow = nullptr; 2743 PPCGScop->tagged_dep_flow = nullptr; 2744 PPCGScop->dep_false = nullptr; 2745 PPCGScop->dep_forced = nullptr; 2746 PPCGScop->dep_order = nullptr; 2747 PPCGScop->tagged_dep_order = nullptr; 2748 2749 PPCGScop->schedule = S->getScheduleTree().release(); 2750 // If we have something non-trivial to kill, add it to the schedule 2751 if (KillsInfo.KillsSchedule.get()) 2752 PPCGScop->schedule = isl_schedule_sequence( 2753 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2754 2755 PPCGScop->names = getNames(); 2756 PPCGScop->pet = nullptr; 2757 2758 compute_tagger(PPCGScop); 2759 compute_dependences(PPCGScop); 2760 eliminate_dead_code(PPCGScop); 2761 2762 return PPCGScop; 2763 } 2764 2765 /// Collect the array accesses in a statement. 2766 /// 2767 /// @param Stmt The statement for which to collect the accesses. 2768 /// 2769 /// @returns A list of array accesses. 2770 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2771 gpu_stmt_access *Accesses = nullptr; 2772 2773 for (MemoryAccess *Acc : Stmt) { 2774 auto Access = 2775 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2776 Access->read = Acc->isRead(); 2777 Access->write = Acc->isWrite(); 2778 Access->access = Acc->getAccessRelation().release(); 2779 isl_space *Space = isl_map_get_space(Access->access); 2780 Space = isl_space_range(Space); 2781 Space = isl_space_from_range(Space); 2782 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2783 isl_map *Universe = isl_map_universe(Space); 2784 Access->tagged_access = 2785 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2786 Access->exact_write = !Acc->isMayWrite(); 2787 Access->ref_id = Acc->getId().release(); 2788 Access->next = Accesses; 2789 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2790 // TODO: Also mark one-element accesses to arrays as fixed-element. 2791 Access->fixed_element = 2792 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2793 Accesses = Access; 2794 } 2795 2796 return Accesses; 2797 } 2798 2799 /// Collect the list of GPU statements. 2800 /// 2801 /// Each statement has an id, a pointer to the underlying data structure, 2802 /// as well as a list with all memory accesses. 2803 /// 2804 /// TODO: Initialize the list of memory accesses. 2805 /// 2806 /// @returns A linked-list of statements. 2807 gpu_stmt *getStatements() { 2808 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2809 std::distance(S->begin(), S->end())); 2810 2811 int i = 0; 2812 for (auto &Stmt : *S) { 2813 gpu_stmt *GPUStmt = &Stmts[i]; 2814 2815 GPUStmt->id = Stmt.getDomainId().release(); 2816 2817 // We use the pet stmt pointer to keep track of the Polly statements. 2818 GPUStmt->stmt = (pet_stmt *)&Stmt; 2819 GPUStmt->accesses = getStmtAccesses(Stmt); 2820 i++; 2821 } 2822 2823 return Stmts; 2824 } 2825 2826 /// Derive the extent of an array. 2827 /// 2828 /// The extent of an array is the set of elements that are within the 2829 /// accessed array. For the inner dimensions, the extent constraints are 2830 /// 0 and the size of the corresponding array dimension. For the first 2831 /// (outermost) dimension, the extent constraints are the minimal and maximal 2832 /// subscript value for the first dimension. 2833 /// 2834 /// @param Array The array to derive the extent for. 2835 /// 2836 /// @returns An isl_set describing the extent of the array. 2837 isl::set getExtent(ScopArrayInfo *Array) { 2838 unsigned NumDims = Array->getNumberOfDimensions(); 2839 2840 if (Array->getNumberOfDimensions() == 0) 2841 return isl::set::universe(Array->getSpace()); 2842 2843 isl::union_map Accesses = S->getAccesses(Array); 2844 isl::union_set AccessUSet = Accesses.range(); 2845 AccessUSet = AccessUSet.coalesce(); 2846 AccessUSet = AccessUSet.detect_equalities(); 2847 AccessUSet = AccessUSet.coalesce(); 2848 2849 if (AccessUSet.is_empty()) 2850 return isl::set::empty(Array->getSpace()); 2851 2852 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2853 2854 isl::local_space LS = isl::local_space(Array->getSpace()); 2855 2856 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2857 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2858 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2859 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2860 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2861 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2862 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2863 2864 isl::set Extent = isl::set::universe(Array->getSpace()); 2865 2866 Extent = Extent.intersect(OuterMin.le_set(Val)); 2867 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2868 2869 for (unsigned i = 1; i < NumDims; ++i) 2870 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2871 2872 for (unsigned i = 0; i < NumDims; ++i) { 2873 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2874 2875 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2876 // Fortran array will we have a legitimate dimension. 2877 if (PwAff.is_null()) { 2878 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2879 continue; 2880 } 2881 2882 isl::pw_aff Val = isl::aff::var_on_domain( 2883 isl::local_space(Array->getSpace()), isl::dim::set, i); 2884 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2885 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2886 isl::set Set = PwAff.gt_set(Val); 2887 Extent = Set.intersect(Extent); 2888 } 2889 2890 return Extent; 2891 } 2892 2893 /// Derive the bounds of an array. 2894 /// 2895 /// For the first dimension we derive the bound of the array from the extent 2896 /// of this dimension. For inner dimensions we obtain their size directly from 2897 /// ScopArrayInfo. 2898 /// 2899 /// @param PPCGArray The array to compute bounds for. 2900 /// @param Array The polly array from which to take the information. 2901 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2902 std::vector<isl_pw_aff *> Bounds; 2903 2904 if (PPCGArray.n_index > 0) { 2905 if (isl_set_is_empty(PPCGArray.extent)) { 2906 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2907 isl_local_space *LS = isl_local_space_from_space( 2908 isl_space_params(isl_set_get_space(Dom))); 2909 isl_set_free(Dom); 2910 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2911 Bounds.push_back(Zero); 2912 } else { 2913 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2914 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2915 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2916 isl_set_free(Dom); 2917 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2918 isl_local_space *LS = 2919 isl_local_space_from_space(isl_set_get_space(Dom)); 2920 isl_aff *One = isl_aff_zero_on_domain(LS); 2921 One = isl_aff_add_constant_si(One, 1); 2922 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2923 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2924 Bounds.push_back(Bound); 2925 } 2926 } 2927 2928 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2929 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2930 auto LS = isl_pw_aff_get_domain_space(Bound); 2931 auto Aff = isl_multi_aff_zero(LS); 2932 2933 // We need types to work out, which is why we perform this weird dance 2934 // with `Aff` and `Bound`. Consider this example: 2935 2936 // LS: [p] -> { [] } 2937 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2938 // This `~` is used to denote a "null space" (which is different from 2939 // a *zero dimensional* space), which is something that ISL does not 2940 // show you when pretty printing. 2941 2942 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2943 // space, not a "null space" which does not exist at all. 2944 2945 // When we pullback (precompose) `Bound` with `Zero`, we get: 2946 // Bound . Zero = 2947 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2948 // [p] -> { ~ -> [(10p)] } = 2949 // [p] -> [(10p)] (as ISL pretty prints it) 2950 // Bound Pullback: [p] -> { [(10p)] } 2951 2952 // We want this kind of an expression for Bound, without a 2953 // zero dimensional input, but with a "null space" input for the types 2954 // to work out later on, as far as I (Siddharth Bhat) understand. 2955 // I was unable to find a reference to this in the ISL manual. 2956 // References: Tobias Grosser. 2957 2958 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2959 Bounds.push_back(Bound); 2960 } 2961 2962 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2963 /// to have the same parameter dimensions. So, we need to align them to an 2964 /// appropriate space. 2965 /// Scop::Context is _not_ an appropriate space, because when we have 2966 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2967 /// contain all parameter dimensions. 2968 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2969 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2970 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2971 2972 isl_space *AlignSpace = nullptr; 2973 std::vector<isl_pw_aff *> AlignedBounds; 2974 std::tie(AlignSpace, AlignedBounds) = 2975 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2976 2977 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2978 2979 isl_pw_aff_list *BoundsList = 2980 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 2981 2982 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2983 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2984 2985 assert(BoundsSpace && "Unable to access space of array."); 2986 assert(BoundsList && "Unable to access list of bounds."); 2987 2988 PPCGArray.bound = 2989 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2990 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2991 } 2992 2993 /// Create the arrays for @p PPCGProg. 2994 /// 2995 /// @param PPCGProg The program to compute the arrays for. 2996 void createArrays(gpu_prog *PPCGProg, 2997 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2998 int i = 0; 2999 for (auto &Array : ValidSAIs) { 3000 std::string TypeName; 3001 raw_string_ostream OS(TypeName); 3002 3003 OS << *Array->getElementType(); 3004 TypeName = OS.str(); 3005 3006 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3007 3008 PPCGArray.space = Array->getSpace().release(); 3009 PPCGArray.type = strdup(TypeName.c_str()); 3010 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3011 PPCGArray.name = strdup(Array->getName().c_str()); 3012 PPCGArray.extent = nullptr; 3013 PPCGArray.n_index = Array->getNumberOfDimensions(); 3014 PPCGArray.extent = getExtent(Array).release(); 3015 PPCGArray.n_ref = 0; 3016 PPCGArray.refs = nullptr; 3017 PPCGArray.accessed = true; 3018 PPCGArray.read_only_scalar = 3019 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3020 PPCGArray.has_compound_element = false; 3021 PPCGArray.local = false; 3022 PPCGArray.declare_local = false; 3023 PPCGArray.global = false; 3024 PPCGArray.linearize = false; 3025 PPCGArray.dep_order = nullptr; 3026 PPCGArray.user = Array; 3027 3028 PPCGArray.bound = nullptr; 3029 setArrayBounds(PPCGArray, Array); 3030 i++; 3031 3032 collect_references(PPCGProg, &PPCGArray); 3033 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3034 } 3035 } 3036 3037 /// Create an identity map between the arrays in the scop. 3038 /// 3039 /// @returns An identity map between the arrays in the scop. 3040 isl_union_map *getArrayIdentity() { 3041 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3042 3043 for (auto &Array : S->arrays()) { 3044 isl_space *Space = Array->getSpace().release(); 3045 Space = isl_space_map_from_set(Space); 3046 isl_map *Identity = isl_map_identity(Space); 3047 Maps = isl_union_map_add_map(Maps, Identity); 3048 } 3049 3050 return Maps; 3051 } 3052 3053 /// Create a default-initialized PPCG GPU program. 3054 /// 3055 /// @returns A new gpu program description. 3056 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3057 3058 if (!PPCGScop) 3059 return nullptr; 3060 3061 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3062 3063 PPCGProg->ctx = S->getIslCtx().get(); 3064 PPCGProg->scop = PPCGScop; 3065 PPCGProg->context = isl_set_copy(PPCGScop->context); 3066 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3067 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3068 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3069 PPCGProg->tagged_must_kill = 3070 isl_union_map_copy(PPCGScop->tagged_must_kills); 3071 PPCGProg->to_inner = getArrayIdentity(); 3072 PPCGProg->to_outer = getArrayIdentity(); 3073 // TODO: verify that this assignment is correct. 3074 PPCGProg->any_to_outer = nullptr; 3075 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3076 PPCGProg->stmts = getStatements(); 3077 3078 // Only consider arrays that have a non-empty extent. 3079 // Otherwise, this will cause us to consider the following kinds of 3080 // empty arrays: 3081 // 1. Invariant loads that are represented by SAI objects. 3082 // 2. Arrays with statically known zero size. 3083 auto ValidSAIsRange = 3084 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3085 return !getExtent(SAI).is_empty(); 3086 }); 3087 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3088 ValidSAIsRange.end()); 3089 3090 PPCGProg->n_array = 3091 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3092 PPCGProg->array = isl_calloc_array( 3093 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3094 3095 createArrays(PPCGProg, ValidSAIs); 3096 3097 PPCGProg->array_order = nullptr; 3098 collect_order_dependences(PPCGProg); 3099 3100 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3101 return PPCGProg; 3102 } 3103 3104 struct PrintGPUUserData { 3105 struct cuda_info *CudaInfo; 3106 struct gpu_prog *PPCGProg; 3107 std::vector<ppcg_kernel *> Kernels; 3108 }; 3109 3110 /// Print a user statement node in the host code. 3111 /// 3112 /// We use ppcg's printing facilities to print the actual statement and 3113 /// additionally build up a list of all kernels that are encountered in the 3114 /// host ast. 3115 /// 3116 /// @param P The printer to print to 3117 /// @param Options The printing options to use 3118 /// @param Node The node to print 3119 /// @param User A user pointer to carry additional data. This pointer is 3120 /// expected to be of type PrintGPUUserData. 3121 /// 3122 /// @returns A printer to which the output has been printed. 3123 static __isl_give isl_printer * 3124 printHostUser(__isl_take isl_printer *P, 3125 __isl_take isl_ast_print_options *Options, 3126 __isl_take isl_ast_node *Node, void *User) { 3127 auto Data = (struct PrintGPUUserData *)User; 3128 auto Id = isl_ast_node_get_annotation(Node); 3129 3130 if (Id) { 3131 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3132 3133 // If this is a user statement, format it ourselves as ppcg would 3134 // otherwise try to call pet functionality that is not available in 3135 // Polly. 3136 if (IsUser) { 3137 P = isl_printer_start_line(P); 3138 P = isl_printer_print_ast_node(P, Node); 3139 P = isl_printer_end_line(P); 3140 isl_id_free(Id); 3141 isl_ast_print_options_free(Options); 3142 return P; 3143 } 3144 3145 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3146 isl_id_free(Id); 3147 Data->Kernels.push_back(Kernel); 3148 } 3149 3150 return print_host_user(P, Options, Node, User); 3151 } 3152 3153 /// Print C code corresponding to the control flow in @p Kernel. 3154 /// 3155 /// @param Kernel The kernel to print 3156 void printKernel(ppcg_kernel *Kernel) { 3157 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3158 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3159 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3160 P = isl_ast_node_print(Kernel->tree, P, Options); 3161 char *String = isl_printer_get_str(P); 3162 printf("%s\n", String); 3163 free(String); 3164 isl_printer_free(P); 3165 } 3166 3167 /// Print C code corresponding to the GPU code described by @p Tree. 3168 /// 3169 /// @param Tree An AST describing GPU code 3170 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3171 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3172 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3173 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3174 3175 PrintGPUUserData Data; 3176 Data.PPCGProg = PPCGProg; 3177 3178 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3179 Options = 3180 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3181 P = isl_ast_node_print(Tree, P, Options); 3182 char *String = isl_printer_get_str(P); 3183 printf("# host\n"); 3184 printf("%s\n", String); 3185 free(String); 3186 isl_printer_free(P); 3187 3188 for (auto Kernel : Data.Kernels) { 3189 printf("# kernel%d\n", Kernel->id); 3190 printKernel(Kernel); 3191 } 3192 } 3193 3194 // Generate a GPU program using PPCG. 3195 // 3196 // GPU mapping consists of multiple steps: 3197 // 3198 // 1) Compute new schedule for the program. 3199 // 2) Map schedule to GPU (TODO) 3200 // 3) Generate code for new schedule (TODO) 3201 // 3202 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3203 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3204 // strategy directly from this pass. 3205 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3206 3207 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3208 3209 PPCGGen->ctx = S->getIslCtx().get(); 3210 PPCGGen->options = PPCGScop->options; 3211 PPCGGen->print = nullptr; 3212 PPCGGen->print_user = nullptr; 3213 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3214 PPCGGen->prog = PPCGProg; 3215 PPCGGen->tree = nullptr; 3216 PPCGGen->types.n = 0; 3217 PPCGGen->types.name = nullptr; 3218 PPCGGen->sizes = nullptr; 3219 PPCGGen->used_sizes = nullptr; 3220 PPCGGen->kernel_id = 0; 3221 3222 // Set scheduling strategy to same strategy PPCG is using. 3223 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3224 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3225 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3226 3227 isl_schedule *Schedule = get_schedule(PPCGGen); 3228 3229 int has_permutable = has_any_permutable_node(Schedule); 3230 3231 Schedule = 3232 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3233 3234 if (!has_permutable || has_permutable < 0) { 3235 Schedule = isl_schedule_free(Schedule); 3236 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3237 << " does not have permutable bands. Bailing out\n";); 3238 } else { 3239 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3240 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3241 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3242 } 3243 3244 if (DumpSchedule) { 3245 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3246 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3247 P = isl_printer_print_str(P, "Schedule\n"); 3248 P = isl_printer_print_str(P, "========\n"); 3249 if (Schedule) 3250 P = isl_printer_print_schedule(P, Schedule); 3251 else 3252 P = isl_printer_print_str(P, "No schedule found\n"); 3253 3254 printf("%s\n", isl_printer_get_str(P)); 3255 isl_printer_free(P); 3256 } 3257 3258 if (DumpCode) { 3259 printf("Code\n"); 3260 printf("====\n"); 3261 if (PPCGGen->tree) 3262 printGPUTree(PPCGGen->tree, PPCGProg); 3263 else 3264 printf("No code generated\n"); 3265 } 3266 3267 isl_schedule_free(Schedule); 3268 3269 return PPCGGen; 3270 } 3271 3272 /// Free gpu_gen structure. 3273 /// 3274 /// @param PPCGGen The ppcg_gen object to free. 3275 void freePPCGGen(gpu_gen *PPCGGen) { 3276 isl_ast_node_free(PPCGGen->tree); 3277 isl_union_map_free(PPCGGen->sizes); 3278 isl_union_map_free(PPCGGen->used_sizes); 3279 free(PPCGGen); 3280 } 3281 3282 /// Free the options in the ppcg scop structure. 3283 /// 3284 /// ppcg is not freeing these options for us. To avoid leaks we do this 3285 /// ourselves. 3286 /// 3287 /// @param PPCGScop The scop referencing the options to free. 3288 void freeOptions(ppcg_scop *PPCGScop) { 3289 free(PPCGScop->options->debug); 3290 PPCGScop->options->debug = nullptr; 3291 free(PPCGScop->options); 3292 PPCGScop->options = nullptr; 3293 } 3294 3295 /// Approximate the number of points in the set. 3296 /// 3297 /// This function returns an ast expression that overapproximates the number 3298 /// of points in an isl set through the rectangular hull surrounding this set. 3299 /// 3300 /// @param Set The set to count. 3301 /// @param Build The isl ast build object to use for creating the ast 3302 /// expression. 3303 /// 3304 /// @returns An approximation of the number of points in the set. 3305 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3306 __isl_keep isl_ast_build *Build) { 3307 3308 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3309 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3310 3311 isl_space *Space = isl_set_get_space(Set); 3312 Space = isl_space_params(Space); 3313 auto *Univ = isl_set_universe(Space); 3314 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3315 3316 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3317 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3318 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3319 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3320 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3321 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3322 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3323 } 3324 3325 isl_set_free(Set); 3326 isl_pw_aff_free(OneAff); 3327 3328 return Expr; 3329 } 3330 3331 /// Approximate a number of dynamic instructions executed by a given 3332 /// statement. 3333 /// 3334 /// @param Stmt The statement for which to compute the number of dynamic 3335 /// instructions. 3336 /// @param Build The isl ast build object to use for creating the ast 3337 /// expression. 3338 /// @returns An approximation of the number of dynamic instructions executed 3339 /// by @p Stmt. 3340 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3341 __isl_keep isl_ast_build *Build) { 3342 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3343 3344 long InstCount = 0; 3345 3346 if (Stmt.isBlockStmt()) { 3347 auto *BB = Stmt.getBasicBlock(); 3348 InstCount = std::distance(BB->begin(), BB->end()); 3349 } else { 3350 auto *R = Stmt.getRegion(); 3351 3352 for (auto *BB : R->blocks()) { 3353 InstCount += std::distance(BB->begin(), BB->end()); 3354 } 3355 } 3356 3357 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3358 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3359 return isl_ast_expr_mul(InstExpr, Iterations); 3360 } 3361 3362 /// Approximate dynamic instructions executed in scop. 3363 /// 3364 /// @param S The scop for which to approximate dynamic instructions. 3365 /// @param Build The isl ast build object to use for creating the ast 3366 /// expression. 3367 /// @returns An approximation of the number of dynamic instructions executed 3368 /// in @p S. 3369 __isl_give isl_ast_expr * 3370 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3371 isl_ast_expr *Instructions; 3372 3373 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3374 Instructions = isl_ast_expr_from_val(Zero); 3375 3376 for (ScopStmt &Stmt : S) { 3377 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3378 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3379 } 3380 return Instructions; 3381 } 3382 3383 /// Create a check that ensures sufficient compute in scop. 3384 /// 3385 /// @param S The scop for which to ensure sufficient compute. 3386 /// @param Build The isl ast build object to use for creating the ast 3387 /// expression. 3388 /// @returns An expression that evaluates to TRUE in case of sufficient 3389 /// compute and to FALSE, otherwise. 3390 __isl_give isl_ast_expr * 3391 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3392 auto Iterations = getNumberOfIterations(S, Build); 3393 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3394 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3395 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3396 } 3397 3398 /// Check if the basic block contains a function we cannot codegen for GPU 3399 /// kernels. 3400 /// 3401 /// If this basic block does something with a `Function` other than calling 3402 /// a function that we support in a kernel, return true. 3403 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3404 bool AllowCUDALibDevice) { 3405 for (const Instruction &Inst : *BB) { 3406 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3407 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3408 AllowCUDALibDevice)) 3409 continue; 3410 3411 for (Value *Op : Inst.operands()) 3412 // Look for (<func-type>*) among operands of Inst 3413 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3414 if (isa<FunctionType>(PtrTy->getElementType())) { 3415 LLVM_DEBUG(dbgs() 3416 << Inst << " has illegal use of function in kernel.\n"); 3417 return true; 3418 } 3419 } 3420 } 3421 return false; 3422 } 3423 3424 /// Return whether the Scop S uses functions in a way that we do not support. 3425 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3426 for (auto &Stmt : S) { 3427 if (Stmt.isBlockStmt()) { 3428 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3429 AllowCUDALibDevice)) 3430 return true; 3431 } else { 3432 assert(Stmt.isRegionStmt() && 3433 "Stmt was neither block nor region statement"); 3434 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3435 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3436 return true; 3437 } 3438 } 3439 return false; 3440 } 3441 3442 /// Generate code for a given GPU AST described by @p Root. 3443 /// 3444 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3445 /// @param Prog The GPU Program to generate code for. 3446 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3447 ScopAnnotator Annotator; 3448 Annotator.buildAliasScopes(*S); 3449 3450 Region *R = &S->getRegion(); 3451 3452 simplifyRegion(R, DT, LI, RI); 3453 3454 BasicBlock *EnteringBB = R->getEnteringBlock(); 3455 3456 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3457 3458 // Only build the run-time condition and parameters _after_ having 3459 // introduced the conditional branch. This is important as the conditional 3460 // branch will guard the original scop from new induction variables that 3461 // the SCEVExpander may introduce while code generating the parameters and 3462 // which may introduce scalar dependences that prevent us from correctly 3463 // code generating this scop. 3464 BBPair StartExitBlocks; 3465 BranchInst *CondBr = nullptr; 3466 std::tie(StartExitBlocks, CondBr) = 3467 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3468 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3469 3470 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3471 3472 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3473 StartBlock, Prog, Runtime, Architecture); 3474 3475 // TODO: Handle LICM 3476 auto SplitBlock = StartBlock->getSinglePredecessor(); 3477 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3478 3479 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3480 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3481 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3482 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3483 isl_ast_build_free(Build); 3484 3485 // preload invariant loads. Note: This should happen before the RTC 3486 // because the RTC may depend on values that are invariant load hoisted. 3487 if (!NodeBuilder.preloadInvariantLoads()) { 3488 // Patch the introduced branch condition to ensure that we always execute 3489 // the original SCoP. 3490 auto *FalseI1 = Builder.getFalse(); 3491 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3492 SplitBBTerm->setOperand(0, FalseI1); 3493 3494 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3495 S->getFunction().getName() + 3496 " | Scop Region: " + S->getNameStr()); 3497 // adjust the dominator tree accordingly. 3498 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3499 assert(ExitingBlock); 3500 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3501 assert(MergeBlock); 3502 polly::markBlockUnreachable(*StartBlock, Builder); 3503 polly::markBlockUnreachable(*ExitingBlock, Builder); 3504 auto *ExitingBB = S->getExitingBlock(); 3505 assert(ExitingBB); 3506 3507 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3508 DT->eraseNode(ExitingBlock); 3509 isl_ast_expr_free(Condition); 3510 isl_ast_node_free(Root); 3511 } else { 3512 3513 if (polly::PerfMonitoring) { 3514 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3515 P.initialize(); 3516 P.insertRegionStart(SplitBlock->getTerminator()); 3517 3518 // TODO: actually think if this is the correct exiting block to place 3519 // the `end` performance marker. Invariant load hoisting changes 3520 // the CFG in a way that I do not precisely understand, so I 3521 // (Siddharth<[email protected]>) should come back to this and 3522 // think about which exiting block to use. 3523 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3524 assert(ExitingBlock); 3525 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3526 P.insertRegionEnd(MergeBlock->getTerminator()); 3527 } 3528 3529 NodeBuilder.addParameters(S->getContext().release()); 3530 Value *RTC = NodeBuilder.createRTC(Condition); 3531 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3532 3533 Builder.SetInsertPoint(&*StartBlock->begin()); 3534 3535 NodeBuilder.create(Root); 3536 } 3537 3538 /// In case a sequential kernel has more surrounding loops as any parallel 3539 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3540 /// point in running it on a GPU. 3541 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3542 CondBr->setOperand(0, Builder.getFalse()); 3543 3544 if (!NodeBuilder.BuildSuccessful) 3545 CondBr->setOperand(0, Builder.getFalse()); 3546 } 3547 3548 bool runOnScop(Scop &CurrentScop) override { 3549 S = &CurrentScop; 3550 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3551 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3552 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3553 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3554 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3555 3556 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3557 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3558 3559 // We currently do not support functions other than intrinsics inside 3560 // kernels, as code generation will need to offload function calls to the 3561 // kernel. This may lead to a kernel trying to call a function on the host. 3562 // This also allows us to prevent codegen from trying to take the 3563 // address of an intrinsic function to send to the kernel. 3564 if (containsInvalidKernelFunction(CurrentScop, 3565 Architecture == GPUArch::NVPTX64)) { 3566 LLVM_DEBUG( 3567 dbgs() << getUniqueScopName(S) 3568 << " contains function which cannot be materialised in a GPU " 3569 "kernel. Bailing out.\n";); 3570 return false; 3571 } 3572 3573 auto PPCGScop = createPPCGScop(); 3574 auto PPCGProg = createPPCGProg(PPCGScop); 3575 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3576 3577 if (PPCGGen->tree) { 3578 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3579 CurrentScop.markAsToBeSkipped(); 3580 } else { 3581 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3582 << " has empty PPCGGen->tree. Bailing out.\n"); 3583 } 3584 3585 freeOptions(PPCGScop); 3586 freePPCGGen(PPCGGen); 3587 gpu_prog_free(PPCGProg); 3588 ppcg_scop_free(PPCGScop); 3589 3590 return true; 3591 } 3592 3593 void printScop(raw_ostream &, Scop &) const override {} 3594 3595 void getAnalysisUsage(AnalysisUsage &AU) const override { 3596 ScopPass::getAnalysisUsage(AU); 3597 3598 AU.addRequired<DominatorTreeWrapperPass>(); 3599 AU.addRequired<RegionInfoPass>(); 3600 AU.addRequired<ScalarEvolutionWrapperPass>(); 3601 AU.addRequired<ScopDetectionWrapperPass>(); 3602 AU.addRequired<ScopInfoRegionPass>(); 3603 AU.addRequired<LoopInfoWrapperPass>(); 3604 3605 // FIXME: We do not yet add regions for the newly generated code to the 3606 // region tree. 3607 } 3608 }; 3609 } // namespace 3610 3611 char PPCGCodeGeneration::ID = 1; 3612 3613 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3614 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3615 generator->Runtime = Runtime; 3616 generator->Architecture = Arch; 3617 return generator; 3618 } 3619 3620 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3621 "Polly - Apply PPCG translation to SCOP", false, false) 3622 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3623 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3624 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3625 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3626 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3627 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3628 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3629 "Polly - Apply PPCG translation to SCOP", false, false) 3630