1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/DependenceInfo.h" 17 #include "polly/LinkAllPasses.h" 18 #include "polly/Options.h" 19 #include "polly/ScopInfo.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/PostDominators.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 26 #include "isl/union_map.h" 27 28 extern "C" { 29 #include "ppcg/cuda.h" 30 #include "ppcg/gpu.h" 31 #include "ppcg/gpu_print.h" 32 #include "ppcg/ppcg.h" 33 #include "ppcg/schedule.h" 34 } 35 36 #include "llvm/Support/Debug.h" 37 38 using namespace polly; 39 using namespace llvm; 40 41 #define DEBUG_TYPE "polly-codegen-ppcg" 42 43 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 44 cl::desc("Dump the computed GPU Schedule"), 45 cl::Hidden, cl::init(false), cl::ZeroOrMore, 46 cl::cat(PollyCategory)); 47 48 static cl::opt<bool> 49 DumpCode("polly-acc-dump-code", 50 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 51 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 52 53 /// Create the ast expressions for a ScopStmt. 54 /// 55 /// This function is a callback for to generate the ast expressions for each 56 /// of the scheduled ScopStmts. 57 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 58 void *Stmt, isl_ast_build *Build, 59 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 60 isl_id *Id, void *User), 61 void *UserIndex, 62 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 63 void *User_expr) { 64 65 // TODO: Implement the AST expression generation. For now we just return a 66 // nullptr to ensure that we do not free uninitialized pointers. 67 68 return nullptr; 69 } 70 71 namespace { 72 class PPCGCodeGeneration : public ScopPass { 73 public: 74 static char ID; 75 76 /// The scop that is currently processed. 77 Scop *S; 78 79 PPCGCodeGeneration() : ScopPass(ID) {} 80 81 /// Construct compilation options for PPCG. 82 /// 83 /// @returns The compilation options. 84 ppcg_options *createPPCGOptions() { 85 auto DebugOptions = 86 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 87 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 88 89 DebugOptions->dump_schedule_constraints = false; 90 DebugOptions->dump_schedule = false; 91 DebugOptions->dump_final_schedule = false; 92 DebugOptions->dump_sizes = false; 93 94 Options->debug = DebugOptions; 95 96 Options->reschedule = true; 97 Options->scale_tile_loops = false; 98 Options->wrap = false; 99 100 Options->non_negative_parameters = false; 101 Options->ctx = nullptr; 102 Options->sizes = nullptr; 103 104 Options->tile_size = 32; 105 106 Options->use_private_memory = false; 107 Options->use_shared_memory = false; 108 Options->max_shared_memory = 0; 109 110 Options->target = PPCG_TARGET_CUDA; 111 Options->openmp = false; 112 Options->linearize_device_arrays = true; 113 Options->live_range_reordering = false; 114 115 Options->opencl_compiler_options = nullptr; 116 Options->opencl_use_gpu = false; 117 Options->opencl_n_include_file = 0; 118 Options->opencl_include_files = nullptr; 119 Options->opencl_print_kernel_types = false; 120 Options->opencl_embed_kernel_code = false; 121 122 Options->save_schedule_file = nullptr; 123 Options->load_schedule_file = nullptr; 124 125 return Options; 126 } 127 128 /// Get a tagged access relation containing all accesses of type @p AccessTy. 129 /// 130 /// Instead of a normal access of the form: 131 /// 132 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 133 /// 134 /// a tagged access has the form 135 /// 136 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 137 /// 138 /// where 'id' is an additional space that references the memory access that 139 /// triggered the access. 140 /// 141 /// @param AccessTy The type of the memory accesses to collect. 142 /// 143 /// @return The relation describing all tagged memory accesses. 144 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 145 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 146 147 for (auto &Stmt : *S) 148 for (auto &Acc : Stmt) 149 if (Acc->getType() == AccessTy) { 150 isl_map *Relation = Acc->getAccessRelation(); 151 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 152 153 isl_space *Space = isl_map_get_space(Relation); 154 Space = isl_space_range(Space); 155 Space = isl_space_from_range(Space); 156 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 157 isl_map *Universe = isl_map_universe(Space); 158 Relation = isl_map_domain_product(Relation, Universe); 159 Accesses = isl_union_map_add_map(Accesses, Relation); 160 } 161 162 return Accesses; 163 } 164 165 /// Get the set of all read accesses, tagged with the access id. 166 /// 167 /// @see getTaggedAccesses 168 isl_union_map *getTaggedReads() { 169 return getTaggedAccesses(MemoryAccess::READ); 170 } 171 172 /// Get the set of all may (and must) accesses, tagged with the access id. 173 /// 174 /// @see getTaggedAccesses 175 isl_union_map *getTaggedMayWrites() { 176 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 177 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 178 } 179 180 /// Get the set of all must accesses, tagged with the access id. 181 /// 182 /// @see getTaggedAccesses 183 isl_union_map *getTaggedMustWrites() { 184 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 185 } 186 187 /// Collect parameter and array names as isl_ids. 188 /// 189 /// To reason about the different parameters and arrays used, ppcg requires 190 /// a list of all isl_ids in use. As PPCG traditionally performs 191 /// source-to-source compilation each of these isl_ids is mapped to the 192 /// expression that represents it. As we do not have a corresponding 193 /// expression in Polly, we just map each id to a 'zero' expression to match 194 /// the data format that ppcg expects. 195 /// 196 /// @returns Retun a map from collected ids to 'zero' ast expressions. 197 __isl_give isl_id_to_ast_expr *getNames() { 198 auto *Names = isl_id_to_ast_expr_alloc( 199 S->getIslCtx(), 200 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 201 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 202 auto *Space = S->getParamSpace(); 203 204 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 205 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 206 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 207 } 208 209 for (auto &Array : S->arrays()) { 210 auto Id = Array.second->getBasePtrId(); 211 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 212 } 213 214 isl_space_free(Space); 215 isl_ast_expr_free(Zero); 216 217 return Names; 218 } 219 220 /// Create a new PPCG scop from the current scop. 221 /// 222 /// The PPCG scop is initialized with data from the current polly::Scop. From 223 /// this initial data, the data-dependences in the PPCG scop are initialized. 224 /// We do not use Polly's dependence analysis for now, to ensure we match 225 /// the PPCG default behaviour more closely. 226 /// 227 /// @returns A new ppcg scop. 228 ppcg_scop *createPPCGScop() { 229 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 230 231 PPCGScop->options = createPPCGOptions(); 232 233 PPCGScop->start = 0; 234 PPCGScop->end = 0; 235 236 PPCGScop->context = S->getContext(); 237 PPCGScop->domain = S->getDomains(); 238 PPCGScop->call = nullptr; 239 PPCGScop->tagged_reads = getTaggedReads(); 240 PPCGScop->reads = S->getReads(); 241 PPCGScop->live_in = nullptr; 242 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 243 PPCGScop->may_writes = S->getWrites(); 244 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 245 PPCGScop->must_writes = S->getMustWrites(); 246 PPCGScop->live_out = nullptr; 247 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 248 PPCGScop->tagger = nullptr; 249 250 PPCGScop->independence = nullptr; 251 PPCGScop->dep_flow = nullptr; 252 PPCGScop->tagged_dep_flow = nullptr; 253 PPCGScop->dep_false = nullptr; 254 PPCGScop->dep_forced = nullptr; 255 PPCGScop->dep_order = nullptr; 256 PPCGScop->tagged_dep_order = nullptr; 257 258 PPCGScop->schedule = S->getScheduleTree(); 259 PPCGScop->names = getNames(); 260 261 PPCGScop->pet = nullptr; 262 263 compute_tagger(PPCGScop); 264 compute_dependences(PPCGScop); 265 266 return PPCGScop; 267 } 268 269 /// Collect the array acesses in a statement. 270 /// 271 /// @param Stmt The statement for which to collect the accesses. 272 /// 273 /// @returns A list of array accesses. 274 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 275 gpu_stmt_access *Accesses = nullptr; 276 277 for (MemoryAccess *Acc : Stmt) { 278 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 279 Access->read = Acc->isRead(); 280 Access->write = Acc->isWrite(); 281 Access->access = Acc->getAccessRelation(); 282 isl_space *Space = isl_map_get_space(Access->access); 283 Space = isl_space_range(Space); 284 Space = isl_space_from_range(Space); 285 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 286 isl_map *Universe = isl_map_universe(Space); 287 Access->tagged_access = 288 isl_map_domain_product(Acc->getAccessRelation(), Universe); 289 Access->exact_write = Acc->isWrite(); 290 Access->ref_id = Acc->getId(); 291 Access->next = Accesses; 292 Accesses = Access; 293 } 294 295 return Accesses; 296 } 297 298 /// Collect the list of GPU statements. 299 /// 300 /// Each statement has an id, a pointer to the underlying data structure, 301 /// as well as a list with all memory accesses. 302 /// 303 /// TODO: Initialize the list of memory accesses. 304 /// 305 /// @returns A linked-list of statements. 306 gpu_stmt *getStatements() { 307 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 308 std::distance(S->begin(), S->end())); 309 310 int i = 0; 311 for (auto &Stmt : *S) { 312 gpu_stmt *GPUStmt = &Stmts[i]; 313 314 GPUStmt->id = Stmt.getDomainId(); 315 316 // We use the pet stmt pointer to keep track of the Polly statements. 317 GPUStmt->stmt = (pet_stmt *)&Stmt; 318 GPUStmt->accesses = getStmtAccesses(Stmt); 319 i++; 320 } 321 322 return Stmts; 323 } 324 325 /// Derive the extent of an array. 326 /// 327 /// The extent of an array is defined by the set of memory locations for 328 /// which a memory access in the iteration domain exists. 329 /// 330 /// @param Array The array to derive the extent for. 331 /// 332 /// @returns An isl_set describing the extent of the array. 333 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 334 isl_union_map *Accesses = S->getAccesses(); 335 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 336 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 337 isl_set *AccessSet = 338 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 339 isl_union_set_free(AccessUSet); 340 341 return AccessSet; 342 } 343 344 /// Derive the bounds of an array. 345 /// 346 /// For the first dimension we derive the bound of the array from the extent 347 /// of this dimension. For inner dimensions we obtain their size directly from 348 /// ScopArrayInfo. 349 /// 350 /// @param PPCGArray The array to compute bounds for. 351 /// @param Array The polly array from which to take the information. 352 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 353 if (PPCGArray.n_index > 0) { 354 isl_set *Dom = isl_set_copy(PPCGArray.extent); 355 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 356 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 357 isl_set_free(Dom); 358 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 359 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 360 isl_aff *One = isl_aff_zero_on_domain(LS); 361 One = isl_aff_add_constant_si(One, 1); 362 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 363 Bound = isl_pw_aff_gist(Bound, S->getContext()); 364 PPCGArray.bound[0] = Bound; 365 } 366 367 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 368 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 369 auto LS = isl_pw_aff_get_domain_space(Bound); 370 auto Aff = isl_multi_aff_zero(LS); 371 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 372 PPCGArray.bound[i] = Bound; 373 } 374 } 375 376 /// Create the arrays for @p PPCGProg. 377 /// 378 /// @param PPCGProg The program to compute the arrays for. 379 void createArrays(gpu_prog *PPCGProg) { 380 int i = 0; 381 for (auto &Element : S->arrays()) { 382 ScopArrayInfo *Array = Element.second.get(); 383 384 std::string TypeName; 385 raw_string_ostream OS(TypeName); 386 387 OS << *Array->getElementType(); 388 TypeName = OS.str(); 389 390 gpu_array_info &PPCGArray = PPCGProg->array[i]; 391 392 PPCGArray.space = Array->getSpace(); 393 PPCGArray.type = strdup(TypeName.c_str()); 394 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 395 PPCGArray.name = strdup(Array->getName().c_str()); 396 PPCGArray.extent = nullptr; 397 PPCGArray.n_index = Array->getNumberOfDimensions(); 398 PPCGArray.bound = 399 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 400 PPCGArray.extent = getExtent(Array); 401 PPCGArray.n_ref = 0; 402 PPCGArray.refs = nullptr; 403 PPCGArray.accessed = true; 404 PPCGArray.read_only_scalar = false; 405 PPCGArray.has_compound_element = false; 406 PPCGArray.local = false; 407 PPCGArray.declare_local = false; 408 PPCGArray.global = false; 409 PPCGArray.linearize = false; 410 PPCGArray.dep_order = nullptr; 411 412 setArrayBounds(PPCGArray, Array); 413 i++; 414 } 415 } 416 417 /// Create an identity map between the arrays in the scop. 418 /// 419 /// @returns An identity map between the arrays in the scop. 420 isl_union_map *getArrayIdentity() { 421 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 422 423 for (auto &Item : S->arrays()) { 424 ScopArrayInfo *Array = Item.second.get(); 425 isl_space *Space = Array->getSpace(); 426 Space = isl_space_map_from_set(Space); 427 isl_map *Identity = isl_map_identity(Space); 428 Maps = isl_union_map_add_map(Maps, Identity); 429 } 430 431 return Maps; 432 } 433 434 /// Create a default-initialized PPCG GPU program. 435 /// 436 /// @returns A new gpu grogram description. 437 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 438 439 if (!PPCGScop) 440 return nullptr; 441 442 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 443 444 PPCGProg->ctx = S->getIslCtx(); 445 PPCGProg->scop = PPCGScop; 446 PPCGProg->context = isl_set_copy(PPCGScop->context); 447 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 448 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 449 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 450 PPCGProg->tagged_must_kill = 451 isl_union_map_copy(PPCGScop->tagged_must_kills); 452 PPCGProg->to_inner = getArrayIdentity(); 453 PPCGProg->to_outer = getArrayIdentity(); 454 PPCGProg->may_persist = compute_may_persist(PPCGProg); 455 PPCGProg->any_to_outer = nullptr; 456 PPCGProg->array_order = nullptr; 457 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 458 PPCGProg->stmts = getStatements(); 459 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 460 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 461 PPCGProg->n_array); 462 463 createArrays(PPCGProg); 464 465 return PPCGProg; 466 } 467 468 struct PrintGPUUserData { 469 struct cuda_info *CudaInfo; 470 struct gpu_prog *PPCGProg; 471 std::vector<ppcg_kernel *> Kernels; 472 }; 473 474 /// Print a user statement node in the host code. 475 /// 476 /// We use ppcg's printing facilities to print the actual statement and 477 /// additionally build up a list of all kernels that are encountered in the 478 /// host ast. 479 /// 480 /// @param P The printer to print to 481 /// @param Options The printing options to use 482 /// @param Node The node to print 483 /// @param User A user pointer to carry additional data. This pointer is 484 /// expected to be of type PrintGPUUserData. 485 /// 486 /// @returns A printer to which the output has been printed. 487 static __isl_give isl_printer * 488 printHostUser(__isl_take isl_printer *P, 489 __isl_take isl_ast_print_options *Options, 490 __isl_take isl_ast_node *Node, void *User) { 491 auto Data = (struct PrintGPUUserData *)User; 492 auto Id = isl_ast_node_get_annotation(Node); 493 494 if (Id) { 495 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 496 isl_id_free(Id); 497 Data->Kernels.push_back(Kernel); 498 } 499 500 return print_host_user(P, Options, Node, User); 501 } 502 503 /// Print C code corresponding to the control flow in @p Kernel. 504 /// 505 /// @param Kernel The kernel to print 506 void printKernel(ppcg_kernel *Kernel) { 507 auto *P = isl_printer_to_str(S->getIslCtx()); 508 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 509 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 510 P = isl_ast_node_print(Kernel->tree, P, Options); 511 char *String = isl_printer_get_str(P); 512 printf("%s\n", String); 513 free(String); 514 isl_printer_free(P); 515 } 516 517 /// Print C code corresponding to the GPU code described by @p Tree. 518 /// 519 /// @param Tree An AST describing GPU code 520 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 521 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 522 auto *P = isl_printer_to_str(S->getIslCtx()); 523 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 524 525 PrintGPUUserData Data; 526 Data.PPCGProg = PPCGProg; 527 528 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 529 Options = 530 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 531 P = isl_ast_node_print(Tree, P, Options); 532 char *String = isl_printer_get_str(P); 533 printf("# host\n"); 534 printf("%s\n", String); 535 free(String); 536 isl_printer_free(P); 537 538 for (auto Kernel : Data.Kernels) { 539 printf("# kernel%d\n", Kernel->id); 540 printKernel(Kernel); 541 } 542 } 543 544 // Generate a GPU program using PPCG. 545 // 546 // GPU mapping consists of multiple steps: 547 // 548 // 1) Compute new schedule for the program. 549 // 2) Map schedule to GPU (TODO) 550 // 3) Generate code for new schedule (TODO) 551 // 552 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 553 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 554 // strategy directly from this pass. 555 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 556 557 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 558 559 PPCGGen->ctx = S->getIslCtx(); 560 PPCGGen->options = PPCGScop->options; 561 PPCGGen->print = nullptr; 562 PPCGGen->print_user = nullptr; 563 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 564 PPCGGen->prog = PPCGProg; 565 PPCGGen->tree = nullptr; 566 PPCGGen->types.n = 0; 567 PPCGGen->types.name = nullptr; 568 PPCGGen->sizes = nullptr; 569 PPCGGen->used_sizes = nullptr; 570 PPCGGen->kernel_id = 0; 571 572 // Set scheduling strategy to same strategy PPCG is using. 573 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 574 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 575 576 isl_schedule *Schedule = get_schedule(PPCGGen); 577 578 int has_permutable = has_any_permutable_node(Schedule); 579 580 if (!has_permutable || has_permutable < 0) { 581 Schedule = isl_schedule_free(Schedule); 582 } else { 583 Schedule = map_to_device(PPCGGen, Schedule); 584 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 585 } 586 587 if (DumpSchedule) { 588 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 589 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 590 P = isl_printer_print_str(P, "Schedule\n"); 591 P = isl_printer_print_str(P, "========\n"); 592 if (Schedule) 593 P = isl_printer_print_schedule(P, Schedule); 594 else 595 P = isl_printer_print_str(P, "No schedule found\n"); 596 597 printf("%s\n", isl_printer_get_str(P)); 598 isl_printer_free(P); 599 } 600 601 if (DumpCode) { 602 printf("Code\n"); 603 printf("====\n"); 604 if (PPCGGen->tree) 605 printGPUTree(PPCGGen->tree, PPCGProg); 606 else 607 printf("No code generated\n"); 608 } 609 610 isl_schedule_free(Schedule); 611 612 return PPCGGen; 613 } 614 615 /// Free gpu_gen structure. 616 /// 617 /// @param PPCGGen The ppcg_gen object to free. 618 void freePPCGGen(gpu_gen *PPCGGen) { 619 isl_ast_node_free(PPCGGen->tree); 620 isl_union_map_free(PPCGGen->sizes); 621 isl_union_map_free(PPCGGen->used_sizes); 622 free(PPCGGen); 623 } 624 625 /// Free the options in the ppcg scop structure. 626 /// 627 /// ppcg is not freeing these options for us. To avoid leaks we do this 628 /// ourselves. 629 /// 630 /// @param PPCGScop The scop referencing the options to free. 631 void freeOptions(ppcg_scop *PPCGScop) { 632 free(PPCGScop->options->debug); 633 PPCGScop->options->debug = nullptr; 634 free(PPCGScop->options); 635 PPCGScop->options = nullptr; 636 } 637 638 bool runOnScop(Scop &CurrentScop) override { 639 S = &CurrentScop; 640 641 auto PPCGScop = createPPCGScop(); 642 auto PPCGProg = createPPCGProg(PPCGScop); 643 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 644 freeOptions(PPCGScop); 645 freePPCGGen(PPCGGen); 646 gpu_prog_free(PPCGProg); 647 ppcg_scop_free(PPCGScop); 648 649 return true; 650 } 651 652 void printScop(raw_ostream &, Scop &) const override {} 653 654 void getAnalysisUsage(AnalysisUsage &AU) const override { 655 AU.addRequired<DominatorTreeWrapperPass>(); 656 AU.addRequired<RegionInfoPass>(); 657 AU.addRequired<ScalarEvolutionWrapperPass>(); 658 AU.addRequired<ScopDetection>(); 659 AU.addRequired<ScopInfoRegionPass>(); 660 AU.addRequired<LoopInfoWrapperPass>(); 661 662 AU.addPreserved<AAResultsWrapperPass>(); 663 AU.addPreserved<BasicAAWrapperPass>(); 664 AU.addPreserved<LoopInfoWrapperPass>(); 665 AU.addPreserved<DominatorTreeWrapperPass>(); 666 AU.addPreserved<GlobalsAAWrapperPass>(); 667 AU.addPreserved<PostDominatorTreeWrapperPass>(); 668 AU.addPreserved<ScopDetection>(); 669 AU.addPreserved<ScalarEvolutionWrapperPass>(); 670 AU.addPreserved<SCEVAAWrapperPass>(); 671 672 // FIXME: We do not yet add regions for the newly generated code to the 673 // region tree. 674 AU.addPreserved<RegionInfoPass>(); 675 AU.addPreserved<ScopInfoRegionPass>(); 676 } 677 }; 678 } 679 680 char PPCGCodeGeneration::ID = 1; 681 682 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 683 684 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 685 "Polly - Apply PPCG translation to SCOP", false, false) 686 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 687 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 688 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 689 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 690 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 691 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 692 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 693 "Polly - Apply PPCG translation to SCOP", false, false) 694