1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopDetection.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/SCEVValidator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BasicAliasAnalysis.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/PostDominators.h" 28 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/TargetSelect.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 37 38 #include "isl/union_map.h" 39 40 extern "C" { 41 #include "ppcg/cuda.h" 42 #include "ppcg/gpu.h" 43 #include "ppcg/gpu_print.h" 44 #include "ppcg/ppcg.h" 45 #include "ppcg/schedule.h" 46 } 47 48 #include "llvm/Support/Debug.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen-ppcg" 54 55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 56 cl::desc("Dump the computed GPU Schedule"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, 58 cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 71 cl::desc("Dump the kernel assembly code"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> FastMath("polly-acc-fastmath", 76 cl::desc("Allow unsafe math optimizations"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 80 static cl::opt<std::string> 81 CudaVersion("polly-acc-cuda-version", 82 cl::desc("The CUDA version to compile for"), cl::Hidden, 83 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 84 85 /// Create the ast expressions for a ScopStmt. 86 /// 87 /// This function is a callback for to generate the ast expressions for each 88 /// of the scheduled ScopStmts. 89 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 90 void *StmtT, isl_ast_build *Build, 91 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 92 isl_id *Id, void *User), 93 void *UserIndex, 94 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 95 void *UserExpr) { 96 97 ScopStmt *Stmt = (ScopStmt *)StmtT; 98 99 isl_ctx *Ctx; 100 101 if (!Stmt || !Build) 102 return NULL; 103 104 Ctx = isl_ast_build_get_ctx(Build); 105 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 106 107 for (MemoryAccess *Acc : *Stmt) { 108 isl_map *AddrFunc = Acc->getAddressFunction(); 109 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 110 isl_id *RefId = Acc->getId(); 111 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 112 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 113 MPA = isl_multi_pw_aff_coalesce(MPA); 114 MPA = FunctionIndex(MPA, RefId, UserIndex); 115 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 116 Access = FunctionExpr(Access, RefId, UserExpr); 117 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 118 } 119 120 return RefToExpr; 121 } 122 123 /// Generate code for a GPU specific isl AST. 124 /// 125 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 126 /// generates code for general-prupose AST nodes, with special functionality 127 /// for generating GPU specific user nodes. 128 /// 129 /// @see GPUNodeBuilder::createUser 130 class GPUNodeBuilder : public IslNodeBuilder { 131 public: 132 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 133 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 134 DominatorTree &DT, Scop &S, gpu_prog *Prog) 135 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 136 getExprBuilder().setIDToSAI(&IDToSAI); 137 } 138 139 /// Create after-run-time-check initialization code. 140 void initializeAfterRTH(); 141 142 /// Finalize the generated scop. 143 virtual void finalize(); 144 145 private: 146 /// A vector of array base pointers for which a new ScopArrayInfo was created. 147 /// 148 /// This vector is used to delete the ScopArrayInfo when it is not needed any 149 /// more. 150 std::vector<Value *> LocalArrays; 151 152 /// A map from ScopArrays to their corresponding device allocations. 153 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 154 155 /// The current GPU context. 156 Value *GPUContext; 157 158 /// A module containing GPU code. 159 /// 160 /// This pointer is only set in case we are currently generating GPU code. 161 std::unique_ptr<Module> GPUModule; 162 163 /// The GPU program we generate code for. 164 gpu_prog *Prog; 165 166 /// Class to free isl_ids. 167 class IslIdDeleter { 168 public: 169 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 170 }; 171 172 /// A set containing all isl_ids allocated in a GPU kernel. 173 /// 174 /// By releasing this set all isl_ids will be freed. 175 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 176 177 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 178 179 /// Create code for user-defined AST nodes. 180 /// 181 /// These AST nodes can be of type: 182 /// 183 /// - ScopStmt: A computational statement (TODO) 184 /// - Kernel: A GPU kernel call (TODO) 185 /// - Data-Transfer: A GPU <-> CPU data-transfer 186 /// - In-kernel synchronization 187 /// - In-kernel memory copy statement 188 /// 189 /// @param UserStmt The ast node to generate code for. 190 virtual void createUser(__isl_take isl_ast_node *UserStmt); 191 192 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 193 194 /// Create code for a data transfer statement 195 /// 196 /// @param TransferStmt The data transfer statement. 197 /// @param Direction The direction in which to transfer data. 198 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 199 enum DataDirection Direction); 200 201 /// Find llvm::Values referenced in GPU kernel. 202 /// 203 /// @param Kernel The kernel to scan for llvm::Values 204 /// 205 /// @returns A set of values referenced by the kernel. 206 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 207 208 /// Compute the sizes of the execution grid for a given kernel. 209 /// 210 /// @param Kernel The kernel to compute grid sizes for. 211 /// 212 /// @returns A tuple with grid sizes for X and Y dimension 213 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 214 215 /// Compute the sizes of the thread blocks for a given kernel. 216 /// 217 /// @param Kernel The kernel to compute thread block sizes for. 218 /// 219 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 220 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 221 222 /// Create kernel launch parameters. 223 /// 224 /// @param Kernel The kernel to create parameters for. 225 /// @param F The kernel function that has been created. 226 /// 227 /// @returns A stack allocated array with pointers to the parameter 228 /// values that are passed to the kernel. 229 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F); 230 231 /// Create GPU kernel. 232 /// 233 /// Code generate the kernel described by @p KernelStmt. 234 /// 235 /// @param KernelStmt The ast node to generate kernel code for. 236 void createKernel(__isl_take isl_ast_node *KernelStmt); 237 238 /// Generate code that computes the size of an array. 239 /// 240 /// @param Array The array for which to compute a size. 241 Value *getArraySize(gpu_array_info *Array); 242 243 /// Create kernel function. 244 /// 245 /// Create a kernel function located in a newly created module that can serve 246 /// as target for device code generation. Set the Builder to point to the 247 /// start block of this newly created function. 248 /// 249 /// @param Kernel The kernel to generate code for. 250 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 251 void createKernelFunction(ppcg_kernel *Kernel, 252 SetVector<Value *> &SubtreeValues); 253 254 /// Create the declaration of a kernel function. 255 /// 256 /// The kernel function takes as arguments: 257 /// 258 /// - One i8 pointer for each external array reference used in the kernel. 259 /// - Host iterators 260 /// - Parameters 261 /// - Other LLVM Value references (TODO) 262 /// 263 /// @param Kernel The kernel to generate the function declaration for. 264 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 265 /// 266 /// @returns The newly declared function. 267 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 268 SetVector<Value *> &SubtreeValues); 269 270 /// Insert intrinsic functions to obtain thread and block ids. 271 /// 272 /// @param The kernel to generate the intrinsic functions for. 273 void insertKernelIntrinsics(ppcg_kernel *Kernel); 274 275 /// Create code for a ScopStmt called in @p Expr. 276 /// 277 /// @param Expr The expression containing the call. 278 /// @param KernelStmt The kernel statement referenced in the call. 279 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 280 281 /// Create an in-kernel synchronization call. 282 void createKernelSync(); 283 284 /// Create a PTX assembly string for the current GPU kernel. 285 /// 286 /// @returns A string containing the corresponding PTX assembly code. 287 std::string createKernelASM(); 288 289 /// Remove references from the dominator tree to the kernel function @p F. 290 /// 291 /// @param F The function to remove references to. 292 void clearDominators(Function *F); 293 294 /// Remove references from scalar evolution to the kernel function @p F. 295 /// 296 /// @param F The function to remove references to. 297 void clearScalarEvolution(Function *F); 298 299 /// Remove references from loop info to the kernel function @p F. 300 /// 301 /// @param F The function to remove references to. 302 void clearLoops(Function *F); 303 304 /// Finalize the generation of the kernel function. 305 /// 306 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 307 /// dump its IR to stderr. 308 /// 309 /// @returns The Assembly string of the kernel. 310 std::string finalizeKernelFunction(); 311 312 /// Create code that allocates memory to store arrays on device. 313 void allocateDeviceArrays(); 314 315 /// Free all allocated device arrays. 316 void freeDeviceArrays(); 317 318 /// Create a call to initialize the GPU context. 319 /// 320 /// @returns A pointer to the newly initialized context. 321 Value *createCallInitContext(); 322 323 /// Create a call to get the device pointer for a kernel allocation. 324 /// 325 /// @param Allocation The Polly GPU allocation 326 /// 327 /// @returns The device parameter corresponding to this allocation. 328 Value *createCallGetDevicePtr(Value *Allocation); 329 330 /// Create a call to free the GPU context. 331 /// 332 /// @param Context A pointer to an initialized GPU context. 333 void createCallFreeContext(Value *Context); 334 335 /// Create a call to allocate memory on the device. 336 /// 337 /// @param Size The size of memory to allocate 338 /// 339 /// @returns A pointer that identifies this allocation. 340 Value *createCallAllocateMemoryForDevice(Value *Size); 341 342 /// Create a call to free a device array. 343 /// 344 /// @param Array The device array to free. 345 void createCallFreeDeviceMemory(Value *Array); 346 347 /// Create a call to copy data from host to device. 348 /// 349 /// @param HostPtr A pointer to the host data that should be copied. 350 /// @param DevicePtr A device pointer specifying the location to copy to. 351 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 352 Value *Size); 353 354 /// Create a call to copy data from device to host. 355 /// 356 /// @param DevicePtr A pointer to the device data that should be copied. 357 /// @param HostPtr A host pointer specifying the location to copy to. 358 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 359 Value *Size); 360 361 /// Create a call to get a kernel from an assembly string. 362 /// 363 /// @param Buffer The string describing the kernel. 364 /// @param Entry The name of the kernel function to call. 365 /// 366 /// @returns A pointer to a kernel object 367 Value *createCallGetKernel(Value *Buffer, Value *Entry); 368 369 /// Create a call to free a GPU kernel. 370 /// 371 /// @param GPUKernel THe kernel to free. 372 void createCallFreeKernel(Value *GPUKernel); 373 374 /// Create a call to launch a GPU kernel. 375 /// 376 /// @param GPUKernel The kernel to launch. 377 /// @param GridDimX The size of the first grid dimension. 378 /// @param GridDimY The size of the second grid dimension. 379 /// @param GridBlockX The size of the first block dimension. 380 /// @param GridBlockY The size of the second block dimension. 381 /// @param GridBlockZ The size of the third block dimension. 382 /// @param Paramters A pointer to an array that contains itself pointers to 383 /// the parameter values passed for each kernel argument. 384 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 385 Value *GridDimY, Value *BlockDimX, 386 Value *BlockDimY, Value *BlockDimZ, 387 Value *Parameters); 388 }; 389 390 void GPUNodeBuilder::initializeAfterRTH() { 391 GPUContext = createCallInitContext(); 392 allocateDeviceArrays(); 393 } 394 395 void GPUNodeBuilder::finalize() { 396 freeDeviceArrays(); 397 createCallFreeContext(GPUContext); 398 IslNodeBuilder::finalize(); 399 } 400 401 void GPUNodeBuilder::allocateDeviceArrays() { 402 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 403 404 for (int i = 0; i < Prog->n_array; ++i) { 405 gpu_array_info *Array = &Prog->array[i]; 406 auto *ScopArray = (ScopArrayInfo *)Array->user; 407 std::string DevArrayName("p_dev_array_"); 408 DevArrayName.append(Array->name); 409 410 Value *ArraySize = getArraySize(Array); 411 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 412 DevArray->setName(DevArrayName); 413 DeviceAllocations[ScopArray] = DevArray; 414 } 415 416 isl_ast_build_free(Build); 417 } 418 419 void GPUNodeBuilder::freeDeviceArrays() { 420 for (auto &Array : DeviceAllocations) 421 createCallFreeDeviceMemory(Array.second); 422 } 423 424 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 425 const char *Name = "polly_getKernel"; 426 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 427 Function *F = M->getFunction(Name); 428 429 // If F is not available, declare it. 430 if (!F) { 431 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 432 std::vector<Type *> Args; 433 Args.push_back(Builder.getInt8PtrTy()); 434 Args.push_back(Builder.getInt8PtrTy()); 435 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 436 F = Function::Create(Ty, Linkage, Name, M); 437 } 438 439 return Builder.CreateCall(F, {Buffer, Entry}); 440 } 441 442 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 443 const char *Name = "polly_getDevicePtr"; 444 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 445 Function *F = M->getFunction(Name); 446 447 // If F is not available, declare it. 448 if (!F) { 449 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 450 std::vector<Type *> Args; 451 Args.push_back(Builder.getInt8PtrTy()); 452 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 453 F = Function::Create(Ty, Linkage, Name, M); 454 } 455 456 return Builder.CreateCall(F, {Allocation}); 457 } 458 459 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 460 Value *GridDimY, Value *BlockDimX, 461 Value *BlockDimY, Value *BlockDimZ, 462 Value *Parameters) { 463 const char *Name = "polly_launchKernel"; 464 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 465 Function *F = M->getFunction(Name); 466 467 // If F is not available, declare it. 468 if (!F) { 469 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 470 std::vector<Type *> Args; 471 Args.push_back(Builder.getInt8PtrTy()); 472 Args.push_back(Builder.getInt32Ty()); 473 Args.push_back(Builder.getInt32Ty()); 474 Args.push_back(Builder.getInt32Ty()); 475 Args.push_back(Builder.getInt32Ty()); 476 Args.push_back(Builder.getInt32Ty()); 477 Args.push_back(Builder.getInt8PtrTy()); 478 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 479 F = Function::Create(Ty, Linkage, Name, M); 480 } 481 482 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 483 BlockDimZ, Parameters}); 484 } 485 486 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 487 const char *Name = "polly_freeKernel"; 488 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 489 Function *F = M->getFunction(Name); 490 491 // If F is not available, declare it. 492 if (!F) { 493 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 494 std::vector<Type *> Args; 495 Args.push_back(Builder.getInt8PtrTy()); 496 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 497 F = Function::Create(Ty, Linkage, Name, M); 498 } 499 500 Builder.CreateCall(F, {GPUKernel}); 501 } 502 503 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 504 const char *Name = "polly_freeDeviceMemory"; 505 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 506 Function *F = M->getFunction(Name); 507 508 // If F is not available, declare it. 509 if (!F) { 510 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 511 std::vector<Type *> Args; 512 Args.push_back(Builder.getInt8PtrTy()); 513 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 514 F = Function::Create(Ty, Linkage, Name, M); 515 } 516 517 Builder.CreateCall(F, {Array}); 518 } 519 520 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 521 const char *Name = "polly_allocateMemoryForDevice"; 522 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 523 Function *F = M->getFunction(Name); 524 525 // If F is not available, declare it. 526 if (!F) { 527 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 528 std::vector<Type *> Args; 529 Args.push_back(Builder.getInt64Ty()); 530 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 531 F = Function::Create(Ty, Linkage, Name, M); 532 } 533 534 return Builder.CreateCall(F, {Size}); 535 } 536 537 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 538 Value *DeviceData, 539 Value *Size) { 540 const char *Name = "polly_copyFromHostToDevice"; 541 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 542 Function *F = M->getFunction(Name); 543 544 // If F is not available, declare it. 545 if (!F) { 546 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 547 std::vector<Type *> Args; 548 Args.push_back(Builder.getInt8PtrTy()); 549 Args.push_back(Builder.getInt8PtrTy()); 550 Args.push_back(Builder.getInt64Ty()); 551 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 552 F = Function::Create(Ty, Linkage, Name, M); 553 } 554 555 Builder.CreateCall(F, {HostData, DeviceData, Size}); 556 } 557 558 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 559 Value *HostData, 560 Value *Size) { 561 const char *Name = "polly_copyFromDeviceToHost"; 562 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 563 Function *F = M->getFunction(Name); 564 565 // If F is not available, declare it. 566 if (!F) { 567 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 568 std::vector<Type *> Args; 569 Args.push_back(Builder.getInt8PtrTy()); 570 Args.push_back(Builder.getInt8PtrTy()); 571 Args.push_back(Builder.getInt64Ty()); 572 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 573 F = Function::Create(Ty, Linkage, Name, M); 574 } 575 576 Builder.CreateCall(F, {DeviceData, HostData, Size}); 577 } 578 579 Value *GPUNodeBuilder::createCallInitContext() { 580 const char *Name = "polly_initContext"; 581 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 582 Function *F = M->getFunction(Name); 583 584 // If F is not available, declare it. 585 if (!F) { 586 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 587 std::vector<Type *> Args; 588 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 589 F = Function::Create(Ty, Linkage, Name, M); 590 } 591 592 return Builder.CreateCall(F, {}); 593 } 594 595 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 596 const char *Name = "polly_freeContext"; 597 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 598 Function *F = M->getFunction(Name); 599 600 // If F is not available, declare it. 601 if (!F) { 602 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 603 std::vector<Type *> Args; 604 Args.push_back(Builder.getInt8PtrTy()); 605 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 606 F = Function::Create(Ty, Linkage, Name, M); 607 } 608 609 Builder.CreateCall(F, {Context}); 610 } 611 612 /// Check if one string is a prefix of another. 613 /// 614 /// @param String The string in which to look for the prefix. 615 /// @param Prefix The prefix to look for. 616 static bool isPrefix(std::string String, std::string Prefix) { 617 return String.find(Prefix) == 0; 618 } 619 620 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 621 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 622 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 623 624 if (!gpu_array_is_scalar(Array)) { 625 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 626 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 627 628 for (unsigned int i = 1; i < Array->n_index; i++) { 629 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 630 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 631 Res = isl_ast_expr_mul(Res, Expr); 632 } 633 634 Value *NumElements = ExprBuilder.create(Res); 635 ArraySize = Builder.CreateMul(ArraySize, NumElements); 636 } 637 isl_ast_build_free(Build); 638 return ArraySize; 639 } 640 641 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 642 enum DataDirection Direction) { 643 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 644 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 645 isl_id *Id = isl_ast_expr_get_id(Arg); 646 auto Array = (gpu_array_info *)isl_id_get_user(Id); 647 auto ScopArray = (ScopArrayInfo *)(Array->user); 648 649 Value *Size = getArraySize(Array); 650 Value *HostPtr = ScopArray->getBasePtr(); 651 652 Value *DevPtr = DeviceAllocations[ScopArray]; 653 654 if (gpu_array_is_scalar(Array)) { 655 HostPtr = Builder.CreateAlloca(ScopArray->getElementType()); 656 Builder.CreateStore(ScopArray->getBasePtr(), HostPtr); 657 } 658 659 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 660 661 if (Direction == HOST_TO_DEVICE) 662 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 663 else 664 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 665 666 isl_id_free(Id); 667 isl_ast_expr_free(Arg); 668 isl_ast_expr_free(Expr); 669 isl_ast_node_free(TransferStmt); 670 } 671 672 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 673 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 674 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 675 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 676 isl_id_free(Id); 677 isl_ast_expr_free(StmtExpr); 678 679 const char *Str = isl_id_get_name(Id); 680 if (!strcmp(Str, "kernel")) { 681 createKernel(UserStmt); 682 isl_ast_expr_free(Expr); 683 return; 684 } 685 686 if (isPrefix(Str, "to_device")) { 687 createDataTransfer(UserStmt, HOST_TO_DEVICE); 688 isl_ast_expr_free(Expr); 689 return; 690 } 691 692 if (isPrefix(Str, "from_device")) { 693 createDataTransfer(UserStmt, DEVICE_TO_HOST); 694 isl_ast_expr_free(Expr); 695 return; 696 } 697 698 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 699 struct ppcg_kernel_stmt *KernelStmt = 700 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 701 isl_id_free(Anno); 702 703 switch (KernelStmt->type) { 704 case ppcg_kernel_domain: 705 createScopStmt(Expr, KernelStmt); 706 isl_ast_node_free(UserStmt); 707 return; 708 case ppcg_kernel_copy: 709 // TODO: Create kernel copy stmt 710 isl_ast_expr_free(Expr); 711 isl_ast_node_free(UserStmt); 712 return; 713 case ppcg_kernel_sync: 714 createKernelSync(); 715 isl_ast_expr_free(Expr); 716 isl_ast_node_free(UserStmt); 717 return; 718 } 719 720 isl_ast_expr_free(Expr); 721 isl_ast_node_free(UserStmt); 722 return; 723 } 724 725 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 726 ppcg_kernel_stmt *KernelStmt) { 727 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 728 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 729 730 LoopToScevMapT LTS; 731 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 732 733 createSubstitutions(Expr, Stmt, LTS); 734 735 if (Stmt->isBlockStmt()) 736 BlockGen.copyStmt(*Stmt, LTS, Indexes); 737 else 738 assert(0 && "Region statement not supported\n"); 739 } 740 741 void GPUNodeBuilder::createKernelSync() { 742 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 743 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 744 Builder.CreateCall(Sync, {}); 745 } 746 747 /// Collect llvm::Values referenced from @p Node 748 /// 749 /// This function only applies to isl_ast_nodes that are user_nodes referring 750 /// to a ScopStmt. All other node types are ignore. 751 /// 752 /// @param Node The node to collect references for. 753 /// @param User A user pointer used as storage for the data that is collected. 754 /// 755 /// @returns isl_bool_true if data could be collected successfully. 756 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 757 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 758 return isl_bool_true; 759 760 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 761 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 762 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 763 const char *Str = isl_id_get_name(Id); 764 isl_id_free(Id); 765 isl_ast_expr_free(StmtExpr); 766 isl_ast_expr_free(Expr); 767 768 if (!isPrefix(Str, "Stmt")) 769 return isl_bool_true; 770 771 Id = isl_ast_node_get_annotation(Node); 772 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 773 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 774 isl_id_free(Id); 775 776 addReferencesFromStmt(Stmt, User); 777 778 return isl_bool_true; 779 } 780 781 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 782 SetVector<Value *> SubtreeValues; 783 SetVector<const SCEV *> SCEVs; 784 SetVector<const Loop *> Loops; 785 SubtreeReferences References = { 786 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 787 788 for (const auto &I : IDToValue) 789 SubtreeValues.insert(I.second); 790 791 isl_ast_node_foreach_descendant_top_down( 792 Kernel->tree, collectReferencesInGPUStmt, &References); 793 794 for (const SCEV *Expr : SCEVs) 795 findValues(Expr, SE, SubtreeValues); 796 797 for (auto &SAI : S.arrays()) 798 SubtreeValues.remove(SAI->getBasePtr()); 799 800 isl_space *Space = S.getParamSpace(); 801 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 802 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 803 assert(IDToValue.count(Id)); 804 Value *Val = IDToValue[Id]; 805 SubtreeValues.remove(Val); 806 isl_id_free(Id); 807 } 808 isl_space_free(Space); 809 810 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 811 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 812 assert(IDToValue.count(Id)); 813 Value *Val = IDToValue[Id]; 814 SubtreeValues.remove(Val); 815 isl_id_free(Id); 816 } 817 818 return SubtreeValues; 819 } 820 821 void GPUNodeBuilder::clearDominators(Function *F) { 822 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 823 std::vector<BasicBlock *> Nodes; 824 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 825 Nodes.push_back(I->getBlock()); 826 827 for (BasicBlock *BB : Nodes) 828 DT.eraseNode(BB); 829 } 830 831 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 832 for (BasicBlock &BB : *F) { 833 Loop *L = LI.getLoopFor(&BB); 834 if (L) 835 SE.forgetLoop(L); 836 } 837 } 838 839 void GPUNodeBuilder::clearLoops(Function *F) { 840 for (BasicBlock &BB : *F) { 841 Loop *L = LI.getLoopFor(&BB); 842 if (L) 843 SE.forgetLoop(L); 844 LI.removeBlock(&BB); 845 } 846 } 847 848 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 849 std::vector<Value *> Sizes; 850 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 851 852 for (long i = 0; i < Kernel->n_grid; i++) { 853 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 854 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 855 Value *Res = ExprBuilder.create(GridSize); 856 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 857 Sizes.push_back(Res); 858 } 859 isl_ast_build_free(Context); 860 861 for (long i = Kernel->n_grid; i < 3; i++) 862 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 863 864 return std::make_tuple(Sizes[0], Sizes[1]); 865 } 866 867 std::tuple<Value *, Value *, Value *> 868 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 869 std::vector<Value *> Sizes; 870 871 for (long i = 0; i < Kernel->n_block; i++) { 872 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 873 Sizes.push_back(Res); 874 } 875 876 for (long i = Kernel->n_block; i < 3; i++) 877 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 878 879 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 880 } 881 882 Value *GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, 883 Function *F) { 884 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 885 std::distance(F->arg_begin(), F->arg_end())); 886 887 BasicBlock *EntryBlock = 888 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 889 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 890 Instruction *Parameters = 891 new AllocaInst(ArrayTy, Launch + "_params", EntryBlock->getTerminator()); 892 893 int Index = 0; 894 for (long i = 0; i < Prog->n_array; i++) { 895 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 896 continue; 897 898 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 899 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 900 901 Value *DevArray = DeviceAllocations[(ScopArrayInfo *)SAI]; 902 DevArray = createCallGetDevicePtr(DevArray); 903 Instruction *Param = new AllocaInst( 904 Builder.getInt8PtrTy(), Launch + "_param_" + std::to_string(Index), 905 EntryBlock->getTerminator()); 906 Builder.CreateStore(DevArray, Param); 907 Value *Slot = Builder.CreateGEP( 908 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 909 Value *ParamTyped = 910 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 911 Builder.CreateStore(ParamTyped, Slot); 912 Index++; 913 } 914 915 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 916 917 for (long i = 0; i < NumHostIters; i++) { 918 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 919 Value *Val = IDToValue[Id]; 920 isl_id_free(Id); 921 Instruction *Param = new AllocaInst( 922 Val->getType(), Launch + "_param_" + std::to_string(Index), 923 EntryBlock->getTerminator()); 924 Builder.CreateStore(Val, Param); 925 Value *Slot = Builder.CreateGEP( 926 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 927 Value *ParamTyped = 928 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 929 Builder.CreateStore(ParamTyped, Slot); 930 Index++; 931 } 932 933 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 934 935 for (long i = 0; i < NumVars; i++) { 936 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 937 Value *Val = IDToValue[Id]; 938 isl_id_free(Id); 939 Instruction *Param = new AllocaInst( 940 Val->getType(), Launch + "_param_" + std::to_string(Index), 941 EntryBlock->getTerminator()); 942 Builder.CreateStore(Val, Param); 943 Value *Slot = Builder.CreateGEP( 944 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 945 Value *ParamTyped = 946 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 947 Builder.CreateStore(ParamTyped, Slot); 948 Index++; 949 } 950 951 auto Location = EntryBlock->getTerminator(); 952 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 953 Launch + "_params_i8ptr", Location); 954 } 955 956 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 957 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 958 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 959 isl_id_free(Id); 960 isl_ast_node_free(KernelStmt); 961 962 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 963 964 assert(Kernel->tree && "Device AST of kernel node is empty"); 965 966 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 967 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 968 ValueMapT HostValueMap = ValueMap; 969 970 SetVector<const Loop *> Loops; 971 972 // Create for all loops we depend on values that contain the current loop 973 // iteration. These values are necessary to generate code for SCEVs that 974 // depend on such loops. As a result we need to pass them to the subfunction. 975 for (const Loop *L : Loops) { 976 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 977 SE.getUnknown(Builder.getInt64(1)), 978 L, SCEV::FlagAnyWrap); 979 Value *V = generateSCEV(OuterLIV); 980 OutsideLoopIterations[L] = SE.getUnknown(V); 981 SubtreeValues.insert(V); 982 } 983 984 createKernelFunction(Kernel, SubtreeValues); 985 986 create(isl_ast_node_copy(Kernel->tree)); 987 988 Function *F = Builder.GetInsertBlock()->getParent(); 989 clearDominators(F); 990 clearScalarEvolution(F); 991 clearLoops(F); 992 993 Builder.SetInsertPoint(&HostInsertPoint); 994 IDToValue = HostIDs; 995 996 ValueMap = HostValueMap; 997 ScalarMap.clear(); 998 PHIOpMap.clear(); 999 EscapeMap.clear(); 1000 IDToSAI.clear(); 1001 Annotator.resetAlternativeAliasBases(); 1002 for (auto &BasePtr : LocalArrays) 1003 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 1004 LocalArrays.clear(); 1005 1006 Value *Parameters = createLaunchParameters(Kernel, F); 1007 1008 std::string ASMString = finalizeKernelFunction(); 1009 std::string Name = "kernel_" + std::to_string(Kernel->id); 1010 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1011 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1012 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1013 1014 Value *GridDimX, *GridDimY; 1015 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1016 1017 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1018 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1019 1020 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1021 BlockDimZ, Parameters); 1022 createCallFreeKernel(GPUKernel); 1023 } 1024 1025 /// Compute the DataLayout string for the NVPTX backend. 1026 /// 1027 /// @param is64Bit Are we looking for a 64 bit architecture? 1028 static std::string computeNVPTXDataLayout(bool is64Bit) { 1029 std::string Ret = "e"; 1030 1031 if (!is64Bit) 1032 Ret += "-p:32:32"; 1033 1034 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 1035 1036 return Ret; 1037 } 1038 1039 Function * 1040 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1041 SetVector<Value *> &SubtreeValues) { 1042 std::vector<Type *> Args; 1043 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1044 1045 for (long i = 0; i < Prog->n_array; i++) { 1046 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1047 continue; 1048 1049 Args.push_back(Builder.getInt8PtrTy()); 1050 } 1051 1052 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1053 1054 for (long i = 0; i < NumHostIters; i++) 1055 Args.push_back(Builder.getInt64Ty()); 1056 1057 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1058 1059 for (long i = 0; i < NumVars; i++) 1060 Args.push_back(Builder.getInt64Ty()); 1061 1062 for (auto *V : SubtreeValues) 1063 Args.push_back(V->getType()); 1064 1065 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1066 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1067 GPUModule.get()); 1068 FN->setCallingConv(CallingConv::PTX_Kernel); 1069 1070 auto Arg = FN->arg_begin(); 1071 for (long i = 0; i < Kernel->n_array; i++) { 1072 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1073 continue; 1074 1075 Arg->setName(Kernel->array[i].array->name); 1076 1077 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1078 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1079 Type *EleTy = SAI->getElementType(); 1080 Value *Val = &*Arg; 1081 SmallVector<const SCEV *, 4> Sizes; 1082 isl_ast_build *Build = 1083 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1084 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1085 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1086 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1087 auto V = ExprBuilder.create(DimSize); 1088 Sizes.push_back(SE.getSCEV(V)); 1089 } 1090 const ScopArrayInfo *SAIRep = 1091 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 1092 LocalArrays.push_back(Val); 1093 1094 isl_ast_build_free(Build); 1095 isl_id_free(Id); 1096 IDToSAI[Id] = SAIRep; 1097 Arg++; 1098 } 1099 1100 for (long i = 0; i < NumHostIters; i++) { 1101 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1102 Arg->setName(isl_id_get_name(Id)); 1103 IDToValue[Id] = &*Arg; 1104 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1105 Arg++; 1106 } 1107 1108 for (long i = 0; i < NumVars; i++) { 1109 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1110 Arg->setName(isl_id_get_name(Id)); 1111 IDToValue[Id] = &*Arg; 1112 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1113 Arg++; 1114 } 1115 1116 for (auto *V : SubtreeValues) { 1117 Arg->setName(V->getName()); 1118 ValueMap[V] = &*Arg; 1119 Arg++; 1120 } 1121 1122 return FN; 1123 } 1124 1125 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1126 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 1127 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 1128 1129 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 1130 Intrinsic::nvvm_read_ptx_sreg_tid_y, 1131 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 1132 1133 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1134 std::string Name = isl_id_get_name(Id); 1135 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1136 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1137 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1138 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1139 IDToValue[Id] = Val; 1140 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1141 }; 1142 1143 for (int i = 0; i < Kernel->n_grid; ++i) { 1144 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1145 addId(Id, IntrinsicsBID[i]); 1146 } 1147 1148 for (int i = 0; i < Kernel->n_block; ++i) { 1149 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1150 addId(Id, IntrinsicsTID[i]); 1151 } 1152 } 1153 1154 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1155 SetVector<Value *> &SubtreeValues) { 1156 1157 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1158 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1159 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1160 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1161 1162 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1163 1164 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1165 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1166 1167 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1168 DT.addNewBlock(EntryBlock, PrevBlock); 1169 1170 Builder.SetInsertPoint(EntryBlock); 1171 Builder.CreateRetVoid(); 1172 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1173 1174 ScopDetection::markFunctionAsInvalid(FN); 1175 1176 insertKernelIntrinsics(Kernel); 1177 } 1178 1179 std::string GPUNodeBuilder::createKernelASM() { 1180 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1181 std::string ErrMsg; 1182 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1183 1184 if (!GPUTarget) { 1185 errs() << ErrMsg << "\n"; 1186 return ""; 1187 } 1188 1189 TargetOptions Options; 1190 Options.UnsafeFPMath = FastMath; 1191 std::unique_ptr<TargetMachine> TargetM( 1192 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 1193 Options, Optional<Reloc::Model>())); 1194 1195 SmallString<0> ASMString; 1196 raw_svector_ostream ASMStream(ASMString); 1197 llvm::legacy::PassManager PM; 1198 1199 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1200 1201 if (TargetM->addPassesToEmitFile( 1202 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1203 errs() << "The target does not support generation of this file type!\n"; 1204 return ""; 1205 } 1206 1207 PM.run(*GPUModule); 1208 1209 return ASMStream.str(); 1210 } 1211 1212 std::string GPUNodeBuilder::finalizeKernelFunction() { 1213 // Verify module. 1214 llvm::legacy::PassManager Passes; 1215 Passes.add(createVerifierPass()); 1216 Passes.run(*GPUModule); 1217 1218 if (DumpKernelIR) 1219 outs() << *GPUModule << "\n"; 1220 1221 // Optimize module. 1222 llvm::legacy::PassManager OptPasses; 1223 PassManagerBuilder PassBuilder; 1224 PassBuilder.OptLevel = 3; 1225 PassBuilder.SizeLevel = 0; 1226 PassBuilder.populateModulePassManager(OptPasses); 1227 OptPasses.run(*GPUModule); 1228 1229 std::string Assembly = createKernelASM(); 1230 1231 if (DumpKernelASM) 1232 outs() << Assembly << "\n"; 1233 1234 GPUModule.release(); 1235 KernelIDs.clear(); 1236 1237 return Assembly; 1238 } 1239 1240 namespace { 1241 class PPCGCodeGeneration : public ScopPass { 1242 public: 1243 static char ID; 1244 1245 /// The scop that is currently processed. 1246 Scop *S; 1247 1248 LoopInfo *LI; 1249 DominatorTree *DT; 1250 ScalarEvolution *SE; 1251 const DataLayout *DL; 1252 RegionInfo *RI; 1253 1254 PPCGCodeGeneration() : ScopPass(ID) {} 1255 1256 /// Construct compilation options for PPCG. 1257 /// 1258 /// @returns The compilation options. 1259 ppcg_options *createPPCGOptions() { 1260 auto DebugOptions = 1261 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1262 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1263 1264 DebugOptions->dump_schedule_constraints = false; 1265 DebugOptions->dump_schedule = false; 1266 DebugOptions->dump_final_schedule = false; 1267 DebugOptions->dump_sizes = false; 1268 1269 Options->debug = DebugOptions; 1270 1271 Options->reschedule = true; 1272 Options->scale_tile_loops = false; 1273 Options->wrap = false; 1274 1275 Options->non_negative_parameters = false; 1276 Options->ctx = nullptr; 1277 Options->sizes = nullptr; 1278 1279 Options->tile_size = 32; 1280 1281 Options->use_private_memory = false; 1282 Options->use_shared_memory = false; 1283 Options->max_shared_memory = 0; 1284 1285 Options->target = PPCG_TARGET_CUDA; 1286 Options->openmp = false; 1287 Options->linearize_device_arrays = true; 1288 Options->live_range_reordering = false; 1289 1290 Options->opencl_compiler_options = nullptr; 1291 Options->opencl_use_gpu = false; 1292 Options->opencl_n_include_file = 0; 1293 Options->opencl_include_files = nullptr; 1294 Options->opencl_print_kernel_types = false; 1295 Options->opencl_embed_kernel_code = false; 1296 1297 Options->save_schedule_file = nullptr; 1298 Options->load_schedule_file = nullptr; 1299 1300 return Options; 1301 } 1302 1303 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1304 /// 1305 /// Instead of a normal access of the form: 1306 /// 1307 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1308 /// 1309 /// a tagged access has the form 1310 /// 1311 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1312 /// 1313 /// where 'id' is an additional space that references the memory access that 1314 /// triggered the access. 1315 /// 1316 /// @param AccessTy The type of the memory accesses to collect. 1317 /// 1318 /// @return The relation describing all tagged memory accesses. 1319 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1320 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1321 1322 for (auto &Stmt : *S) 1323 for (auto &Acc : Stmt) 1324 if (Acc->getType() == AccessTy) { 1325 isl_map *Relation = Acc->getAccessRelation(); 1326 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1327 1328 isl_space *Space = isl_map_get_space(Relation); 1329 Space = isl_space_range(Space); 1330 Space = isl_space_from_range(Space); 1331 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1332 isl_map *Universe = isl_map_universe(Space); 1333 Relation = isl_map_domain_product(Relation, Universe); 1334 Accesses = isl_union_map_add_map(Accesses, Relation); 1335 } 1336 1337 return Accesses; 1338 } 1339 1340 /// Get the set of all read accesses, tagged with the access id. 1341 /// 1342 /// @see getTaggedAccesses 1343 isl_union_map *getTaggedReads() { 1344 return getTaggedAccesses(MemoryAccess::READ); 1345 } 1346 1347 /// Get the set of all may (and must) accesses, tagged with the access id. 1348 /// 1349 /// @see getTaggedAccesses 1350 isl_union_map *getTaggedMayWrites() { 1351 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1352 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1353 } 1354 1355 /// Get the set of all must accesses, tagged with the access id. 1356 /// 1357 /// @see getTaggedAccesses 1358 isl_union_map *getTaggedMustWrites() { 1359 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1360 } 1361 1362 /// Collect parameter and array names as isl_ids. 1363 /// 1364 /// To reason about the different parameters and arrays used, ppcg requires 1365 /// a list of all isl_ids in use. As PPCG traditionally performs 1366 /// source-to-source compilation each of these isl_ids is mapped to the 1367 /// expression that represents it. As we do not have a corresponding 1368 /// expression in Polly, we just map each id to a 'zero' expression to match 1369 /// the data format that ppcg expects. 1370 /// 1371 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1372 __isl_give isl_id_to_ast_expr *getNames() { 1373 auto *Names = isl_id_to_ast_expr_alloc( 1374 S->getIslCtx(), 1375 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1376 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1377 auto *Space = S->getParamSpace(); 1378 1379 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1380 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1381 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1382 } 1383 1384 for (auto &Array : S->arrays()) { 1385 auto Id = Array->getBasePtrId(); 1386 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1387 } 1388 1389 isl_space_free(Space); 1390 isl_ast_expr_free(Zero); 1391 1392 return Names; 1393 } 1394 1395 /// Create a new PPCG scop from the current scop. 1396 /// 1397 /// The PPCG scop is initialized with data from the current polly::Scop. From 1398 /// this initial data, the data-dependences in the PPCG scop are initialized. 1399 /// We do not use Polly's dependence analysis for now, to ensure we match 1400 /// the PPCG default behaviour more closely. 1401 /// 1402 /// @returns A new ppcg scop. 1403 ppcg_scop *createPPCGScop() { 1404 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1405 1406 PPCGScop->options = createPPCGOptions(); 1407 1408 PPCGScop->start = 0; 1409 PPCGScop->end = 0; 1410 1411 PPCGScop->context = S->getContext(); 1412 PPCGScop->domain = S->getDomains(); 1413 PPCGScop->call = nullptr; 1414 PPCGScop->tagged_reads = getTaggedReads(); 1415 PPCGScop->reads = S->getReads(); 1416 PPCGScop->live_in = nullptr; 1417 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1418 PPCGScop->may_writes = S->getWrites(); 1419 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1420 PPCGScop->must_writes = S->getMustWrites(); 1421 PPCGScop->live_out = nullptr; 1422 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1423 PPCGScop->tagger = nullptr; 1424 1425 PPCGScop->independence = nullptr; 1426 PPCGScop->dep_flow = nullptr; 1427 PPCGScop->tagged_dep_flow = nullptr; 1428 PPCGScop->dep_false = nullptr; 1429 PPCGScop->dep_forced = nullptr; 1430 PPCGScop->dep_order = nullptr; 1431 PPCGScop->tagged_dep_order = nullptr; 1432 1433 PPCGScop->schedule = S->getScheduleTree(); 1434 PPCGScop->names = getNames(); 1435 1436 PPCGScop->pet = nullptr; 1437 1438 compute_tagger(PPCGScop); 1439 compute_dependences(PPCGScop); 1440 1441 return PPCGScop; 1442 } 1443 1444 /// Collect the array acesses in a statement. 1445 /// 1446 /// @param Stmt The statement for which to collect the accesses. 1447 /// 1448 /// @returns A list of array accesses. 1449 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1450 gpu_stmt_access *Accesses = nullptr; 1451 1452 for (MemoryAccess *Acc : Stmt) { 1453 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1454 Access->read = Acc->isRead(); 1455 Access->write = Acc->isWrite(); 1456 Access->access = Acc->getAccessRelation(); 1457 isl_space *Space = isl_map_get_space(Access->access); 1458 Space = isl_space_range(Space); 1459 Space = isl_space_from_range(Space); 1460 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1461 isl_map *Universe = isl_map_universe(Space); 1462 Access->tagged_access = 1463 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1464 Access->exact_write = Acc->isWrite(); 1465 Access->ref_id = Acc->getId(); 1466 Access->next = Accesses; 1467 Accesses = Access; 1468 } 1469 1470 return Accesses; 1471 } 1472 1473 /// Collect the list of GPU statements. 1474 /// 1475 /// Each statement has an id, a pointer to the underlying data structure, 1476 /// as well as a list with all memory accesses. 1477 /// 1478 /// TODO: Initialize the list of memory accesses. 1479 /// 1480 /// @returns A linked-list of statements. 1481 gpu_stmt *getStatements() { 1482 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1483 std::distance(S->begin(), S->end())); 1484 1485 int i = 0; 1486 for (auto &Stmt : *S) { 1487 gpu_stmt *GPUStmt = &Stmts[i]; 1488 1489 GPUStmt->id = Stmt.getDomainId(); 1490 1491 // We use the pet stmt pointer to keep track of the Polly statements. 1492 GPUStmt->stmt = (pet_stmt *)&Stmt; 1493 GPUStmt->accesses = getStmtAccesses(Stmt); 1494 i++; 1495 } 1496 1497 return Stmts; 1498 } 1499 1500 /// Derive the extent of an array. 1501 /// 1502 /// The extent of an array is defined by the set of memory locations for 1503 /// which a memory access in the iteration domain exists. 1504 /// 1505 /// @param Array The array to derive the extent for. 1506 /// 1507 /// @returns An isl_set describing the extent of the array. 1508 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1509 isl_union_map *Accesses = S->getAccesses(); 1510 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1511 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1512 isl_set *AccessSet = 1513 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1514 isl_union_set_free(AccessUSet); 1515 1516 return AccessSet; 1517 } 1518 1519 /// Derive the bounds of an array. 1520 /// 1521 /// For the first dimension we derive the bound of the array from the extent 1522 /// of this dimension. For inner dimensions we obtain their size directly from 1523 /// ScopArrayInfo. 1524 /// 1525 /// @param PPCGArray The array to compute bounds for. 1526 /// @param Array The polly array from which to take the information. 1527 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1528 if (PPCGArray.n_index > 0) { 1529 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1530 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1531 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1532 isl_set_free(Dom); 1533 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1534 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 1535 isl_aff *One = isl_aff_zero_on_domain(LS); 1536 One = isl_aff_add_constant_si(One, 1); 1537 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1538 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1539 PPCGArray.bound[0] = Bound; 1540 } 1541 1542 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1543 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1544 auto LS = isl_pw_aff_get_domain_space(Bound); 1545 auto Aff = isl_multi_aff_zero(LS); 1546 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1547 PPCGArray.bound[i] = Bound; 1548 } 1549 } 1550 1551 /// Create the arrays for @p PPCGProg. 1552 /// 1553 /// @param PPCGProg The program to compute the arrays for. 1554 void createArrays(gpu_prog *PPCGProg) { 1555 int i = 0; 1556 for (auto &Array : S->arrays()) { 1557 std::string TypeName; 1558 raw_string_ostream OS(TypeName); 1559 1560 OS << *Array->getElementType(); 1561 TypeName = OS.str(); 1562 1563 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1564 1565 PPCGArray.space = Array->getSpace(); 1566 PPCGArray.type = strdup(TypeName.c_str()); 1567 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1568 PPCGArray.name = strdup(Array->getName().c_str()); 1569 PPCGArray.extent = nullptr; 1570 PPCGArray.n_index = Array->getNumberOfDimensions(); 1571 PPCGArray.bound = 1572 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1573 PPCGArray.extent = getExtent(Array); 1574 PPCGArray.n_ref = 0; 1575 PPCGArray.refs = nullptr; 1576 PPCGArray.accessed = true; 1577 PPCGArray.read_only_scalar = false; 1578 PPCGArray.has_compound_element = false; 1579 PPCGArray.local = false; 1580 PPCGArray.declare_local = false; 1581 PPCGArray.global = false; 1582 PPCGArray.linearize = false; 1583 PPCGArray.dep_order = nullptr; 1584 PPCGArray.user = Array; 1585 1586 setArrayBounds(PPCGArray, Array); 1587 i++; 1588 1589 collect_references(PPCGProg, &PPCGArray); 1590 } 1591 } 1592 1593 /// Create an identity map between the arrays in the scop. 1594 /// 1595 /// @returns An identity map between the arrays in the scop. 1596 isl_union_map *getArrayIdentity() { 1597 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1598 1599 for (auto &Array : S->arrays()) { 1600 isl_space *Space = Array->getSpace(); 1601 Space = isl_space_map_from_set(Space); 1602 isl_map *Identity = isl_map_identity(Space); 1603 Maps = isl_union_map_add_map(Maps, Identity); 1604 } 1605 1606 return Maps; 1607 } 1608 1609 /// Create a default-initialized PPCG GPU program. 1610 /// 1611 /// @returns A new gpu grogram description. 1612 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1613 1614 if (!PPCGScop) 1615 return nullptr; 1616 1617 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1618 1619 PPCGProg->ctx = S->getIslCtx(); 1620 PPCGProg->scop = PPCGScop; 1621 PPCGProg->context = isl_set_copy(PPCGScop->context); 1622 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1623 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1624 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1625 PPCGProg->tagged_must_kill = 1626 isl_union_map_copy(PPCGScop->tagged_must_kills); 1627 PPCGProg->to_inner = getArrayIdentity(); 1628 PPCGProg->to_outer = getArrayIdentity(); 1629 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1630 PPCGProg->any_to_outer = nullptr; 1631 PPCGProg->array_order = nullptr; 1632 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1633 PPCGProg->stmts = getStatements(); 1634 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1635 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1636 PPCGProg->n_array); 1637 1638 createArrays(PPCGProg); 1639 1640 return PPCGProg; 1641 } 1642 1643 struct PrintGPUUserData { 1644 struct cuda_info *CudaInfo; 1645 struct gpu_prog *PPCGProg; 1646 std::vector<ppcg_kernel *> Kernels; 1647 }; 1648 1649 /// Print a user statement node in the host code. 1650 /// 1651 /// We use ppcg's printing facilities to print the actual statement and 1652 /// additionally build up a list of all kernels that are encountered in the 1653 /// host ast. 1654 /// 1655 /// @param P The printer to print to 1656 /// @param Options The printing options to use 1657 /// @param Node The node to print 1658 /// @param User A user pointer to carry additional data. This pointer is 1659 /// expected to be of type PrintGPUUserData. 1660 /// 1661 /// @returns A printer to which the output has been printed. 1662 static __isl_give isl_printer * 1663 printHostUser(__isl_take isl_printer *P, 1664 __isl_take isl_ast_print_options *Options, 1665 __isl_take isl_ast_node *Node, void *User) { 1666 auto Data = (struct PrintGPUUserData *)User; 1667 auto Id = isl_ast_node_get_annotation(Node); 1668 1669 if (Id) { 1670 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1671 1672 // If this is a user statement, format it ourselves as ppcg would 1673 // otherwise try to call pet functionality that is not available in 1674 // Polly. 1675 if (IsUser) { 1676 P = isl_printer_start_line(P); 1677 P = isl_printer_print_ast_node(P, Node); 1678 P = isl_printer_end_line(P); 1679 isl_id_free(Id); 1680 isl_ast_print_options_free(Options); 1681 return P; 1682 } 1683 1684 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1685 isl_id_free(Id); 1686 Data->Kernels.push_back(Kernel); 1687 } 1688 1689 return print_host_user(P, Options, Node, User); 1690 } 1691 1692 /// Print C code corresponding to the control flow in @p Kernel. 1693 /// 1694 /// @param Kernel The kernel to print 1695 void printKernel(ppcg_kernel *Kernel) { 1696 auto *P = isl_printer_to_str(S->getIslCtx()); 1697 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1698 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1699 P = isl_ast_node_print(Kernel->tree, P, Options); 1700 char *String = isl_printer_get_str(P); 1701 printf("%s\n", String); 1702 free(String); 1703 isl_printer_free(P); 1704 } 1705 1706 /// Print C code corresponding to the GPU code described by @p Tree. 1707 /// 1708 /// @param Tree An AST describing GPU code 1709 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1710 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1711 auto *P = isl_printer_to_str(S->getIslCtx()); 1712 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1713 1714 PrintGPUUserData Data; 1715 Data.PPCGProg = PPCGProg; 1716 1717 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1718 Options = 1719 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1720 P = isl_ast_node_print(Tree, P, Options); 1721 char *String = isl_printer_get_str(P); 1722 printf("# host\n"); 1723 printf("%s\n", String); 1724 free(String); 1725 isl_printer_free(P); 1726 1727 for (auto Kernel : Data.Kernels) { 1728 printf("# kernel%d\n", Kernel->id); 1729 printKernel(Kernel); 1730 } 1731 } 1732 1733 // Generate a GPU program using PPCG. 1734 // 1735 // GPU mapping consists of multiple steps: 1736 // 1737 // 1) Compute new schedule for the program. 1738 // 2) Map schedule to GPU (TODO) 1739 // 3) Generate code for new schedule (TODO) 1740 // 1741 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1742 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1743 // strategy directly from this pass. 1744 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1745 1746 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1747 1748 PPCGGen->ctx = S->getIslCtx(); 1749 PPCGGen->options = PPCGScop->options; 1750 PPCGGen->print = nullptr; 1751 PPCGGen->print_user = nullptr; 1752 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1753 PPCGGen->prog = PPCGProg; 1754 PPCGGen->tree = nullptr; 1755 PPCGGen->types.n = 0; 1756 PPCGGen->types.name = nullptr; 1757 PPCGGen->sizes = nullptr; 1758 PPCGGen->used_sizes = nullptr; 1759 PPCGGen->kernel_id = 0; 1760 1761 // Set scheduling strategy to same strategy PPCG is using. 1762 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1763 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1764 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1765 1766 isl_schedule *Schedule = get_schedule(PPCGGen); 1767 1768 int has_permutable = has_any_permutable_node(Schedule); 1769 1770 if (!has_permutable || has_permutable < 0) { 1771 Schedule = isl_schedule_free(Schedule); 1772 } else { 1773 Schedule = map_to_device(PPCGGen, Schedule); 1774 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1775 } 1776 1777 if (DumpSchedule) { 1778 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1779 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1780 P = isl_printer_print_str(P, "Schedule\n"); 1781 P = isl_printer_print_str(P, "========\n"); 1782 if (Schedule) 1783 P = isl_printer_print_schedule(P, Schedule); 1784 else 1785 P = isl_printer_print_str(P, "No schedule found\n"); 1786 1787 printf("%s\n", isl_printer_get_str(P)); 1788 isl_printer_free(P); 1789 } 1790 1791 if (DumpCode) { 1792 printf("Code\n"); 1793 printf("====\n"); 1794 if (PPCGGen->tree) 1795 printGPUTree(PPCGGen->tree, PPCGProg); 1796 else 1797 printf("No code generated\n"); 1798 } 1799 1800 isl_schedule_free(Schedule); 1801 1802 return PPCGGen; 1803 } 1804 1805 /// Free gpu_gen structure. 1806 /// 1807 /// @param PPCGGen The ppcg_gen object to free. 1808 void freePPCGGen(gpu_gen *PPCGGen) { 1809 isl_ast_node_free(PPCGGen->tree); 1810 isl_union_map_free(PPCGGen->sizes); 1811 isl_union_map_free(PPCGGen->used_sizes); 1812 free(PPCGGen); 1813 } 1814 1815 /// Free the options in the ppcg scop structure. 1816 /// 1817 /// ppcg is not freeing these options for us. To avoid leaks we do this 1818 /// ourselves. 1819 /// 1820 /// @param PPCGScop The scop referencing the options to free. 1821 void freeOptions(ppcg_scop *PPCGScop) { 1822 free(PPCGScop->options->debug); 1823 PPCGScop->options->debug = nullptr; 1824 free(PPCGScop->options); 1825 PPCGScop->options = nullptr; 1826 } 1827 1828 /// Generate code for a given GPU AST described by @p Root. 1829 /// 1830 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1831 /// @param Prog The GPU Program to generate code for. 1832 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1833 ScopAnnotator Annotator; 1834 Annotator.buildAliasScopes(*S); 1835 1836 Region *R = &S->getRegion(); 1837 1838 simplifyRegion(R, DT, LI, RI); 1839 1840 BasicBlock *EnteringBB = R->getEnteringBlock(); 1841 1842 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1843 1844 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1845 Prog); 1846 1847 // Only build the run-time condition and parameters _after_ having 1848 // introduced the conditional branch. This is important as the conditional 1849 // branch will guard the original scop from new induction variables that 1850 // the SCEVExpander may introduce while code generating the parameters and 1851 // which may introduce scalar dependences that prevent us from correctly 1852 // code generating this scop. 1853 BasicBlock *StartBlock = 1854 executeScopConditionally(*S, this, Builder.getTrue()); 1855 1856 // TODO: Handle LICM 1857 // TODO: Verify run-time checks 1858 auto SplitBlock = StartBlock->getSinglePredecessor(); 1859 Builder.SetInsertPoint(SplitBlock->getTerminator()); 1860 NodeBuilder.addParameters(S->getContext()); 1861 Builder.SetInsertPoint(&*StartBlock->begin()); 1862 1863 NodeBuilder.initializeAfterRTH(); 1864 NodeBuilder.create(Root); 1865 NodeBuilder.finalize(); 1866 } 1867 1868 bool runOnScop(Scop &CurrentScop) override { 1869 S = &CurrentScop; 1870 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1871 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1872 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1873 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 1874 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 1875 1876 // We currently do not support scops with invariant loads. 1877 if (S->hasInvariantAccesses()) 1878 return false; 1879 1880 auto PPCGScop = createPPCGScop(); 1881 auto PPCGProg = createPPCGProg(PPCGScop); 1882 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 1883 1884 if (PPCGGen->tree) 1885 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 1886 1887 freeOptions(PPCGScop); 1888 freePPCGGen(PPCGGen); 1889 gpu_prog_free(PPCGProg); 1890 ppcg_scop_free(PPCGScop); 1891 1892 return true; 1893 } 1894 1895 void printScop(raw_ostream &, Scop &) const override {} 1896 1897 void getAnalysisUsage(AnalysisUsage &AU) const override { 1898 AU.addRequired<DominatorTreeWrapperPass>(); 1899 AU.addRequired<RegionInfoPass>(); 1900 AU.addRequired<ScalarEvolutionWrapperPass>(); 1901 AU.addRequired<ScopDetection>(); 1902 AU.addRequired<ScopInfoRegionPass>(); 1903 AU.addRequired<LoopInfoWrapperPass>(); 1904 1905 AU.addPreserved<AAResultsWrapperPass>(); 1906 AU.addPreserved<BasicAAWrapperPass>(); 1907 AU.addPreserved<LoopInfoWrapperPass>(); 1908 AU.addPreserved<DominatorTreeWrapperPass>(); 1909 AU.addPreserved<GlobalsAAWrapperPass>(); 1910 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1911 AU.addPreserved<ScopDetection>(); 1912 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1913 AU.addPreserved<SCEVAAWrapperPass>(); 1914 1915 // FIXME: We do not yet add regions for the newly generated code to the 1916 // region tree. 1917 AU.addPreserved<RegionInfoPass>(); 1918 AU.addPreserved<ScopInfoRegionPass>(); 1919 } 1920 }; 1921 } 1922 1923 char PPCGCodeGeneration::ID = 1; 1924 1925 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1926 1927 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1928 "Polly - Apply PPCG translation to SCOP", false, false) 1929 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1930 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1931 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1932 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1933 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1934 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1935 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1936 "Polly - Apply PPCG translation to SCOP", false, false) 1937