1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 55 cl::desc("Dump the kernel LLVM-IR"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 /// Create the ast expressions for a ScopStmt. 60 /// 61 /// This function is a callback for to generate the ast expressions for each 62 /// of the scheduled ScopStmts. 63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 64 void *Stmt, isl_ast_build *Build, 65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 66 isl_id *Id, void *User), 67 void *UserIndex, 68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 69 void *User_expr) { 70 71 // TODO: Implement the AST expression generation. For now we just return a 72 // nullptr to ensure that we do not free uninitialized pointers. 73 74 return nullptr; 75 } 76 77 /// Generate code for a GPU specific isl AST. 78 /// 79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 80 /// generates code for general-prupose AST nodes, with special functionality 81 /// for generating GPU specific user nodes. 82 /// 83 /// @see GPUNodeBuilder::createUser 84 class GPUNodeBuilder : public IslNodeBuilder { 85 public: 86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 88 DominatorTree &DT, Scop &S, gpu_prog *Prog) 89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} 90 91 private: 92 /// A module containing GPU code. 93 /// 94 /// This pointer is only set in case we are currently generating GPU code. 95 std::unique_ptr<Module> GPUModule; 96 97 /// The GPU program we generate code for. 98 gpu_prog *Prog; 99 100 /// Class to free isl_ids. 101 class IslIdDeleter { 102 public: 103 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 104 }; 105 106 /// A set containing all isl_ids allocated in a GPU kernel. 107 /// 108 /// By releasing this set all isl_ids will be freed. 109 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 110 111 /// Create code for user-defined AST nodes. 112 /// 113 /// These AST nodes can be of type: 114 /// 115 /// - ScopStmt: A computational statement (TODO) 116 /// - Kernel: A GPU kernel call (TODO) 117 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 118 /// 119 /// @param UserStmt The ast node to generate code for. 120 virtual void createUser(__isl_take isl_ast_node *UserStmt); 121 122 /// Create GPU kernel. 123 /// 124 /// Code generate the kernel described by @p KernelStmt. 125 /// 126 /// @param KernelStmt The ast node to generate kernel code for. 127 void createKernel(__isl_take isl_ast_node *KernelStmt); 128 129 /// Create kernel function. 130 /// 131 /// Create a kernel function located in a newly created module that can serve 132 /// as target for device code generation. Set the Builder to point to the 133 /// start block of this newly created function. 134 /// 135 /// @param Kernel The kernel to generate code for. 136 void createKernelFunction(ppcg_kernel *Kernel); 137 138 /// Create the declaration of a kernel function. 139 /// 140 /// The kernel function takes as arguments: 141 /// 142 /// - One i8 pointer for each external array reference used in the kernel. 143 /// - Host iterators 144 /// - Parameters 145 /// - Other LLVM Value references (TODO) 146 /// 147 /// @param Kernel The kernel to generate the function declaration for. 148 /// @returns The newly declared function. 149 Function *createKernelFunctionDecl(ppcg_kernel *Kernel); 150 151 /// Insert intrinsic functions to obtain thread and block ids. 152 /// 153 /// @param The kernel to generate the intrinsic functions for. 154 void insertKernelIntrinsics(ppcg_kernel *Kernel); 155 156 /// Finalize the generation of the kernel function. 157 /// 158 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 159 /// dump its IR to stderr. 160 void finalizeKernelFunction(); 161 }; 162 163 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 164 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 165 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 166 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 167 isl_id_free(Id); 168 isl_ast_expr_free(StmtExpr); 169 170 const char *Str = isl_id_get_name(Id); 171 if (!strcmp(Str, "kernel")) { 172 createKernel(UserStmt); 173 isl_ast_expr_free(Expr); 174 return; 175 } 176 177 isl_ast_expr_free(Expr); 178 isl_ast_node_free(UserStmt); 179 return; 180 } 181 182 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 183 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 184 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 185 isl_id_free(Id); 186 isl_ast_node_free(KernelStmt); 187 188 assert(Kernel->tree && "Device AST of kernel node is empty"); 189 190 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 191 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 192 193 createKernelFunction(Kernel); 194 195 create(isl_ast_node_copy(Kernel->tree)); 196 197 Builder.SetInsertPoint(&HostInsertPoint); 198 IDToValue = HostIDs; 199 200 finalizeKernelFunction(); 201 } 202 203 /// Compute the DataLayout string for the NVPTX backend. 204 /// 205 /// @param is64Bit Are we looking for a 64 bit architecture? 206 static std::string computeNVPTXDataLayout(bool is64Bit) { 207 std::string Ret = "e"; 208 209 if (!is64Bit) 210 Ret += "-p:32:32"; 211 212 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 213 214 return Ret; 215 } 216 217 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { 218 std::vector<Type *> Args; 219 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 220 221 for (long i = 0; i < Prog->n_array; i++) { 222 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 223 continue; 224 225 Args.push_back(Builder.getInt8PtrTy()); 226 } 227 228 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 229 230 for (long i = 0; i < NumHostIters; i++) 231 Args.push_back(Builder.getInt64Ty()); 232 233 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 234 235 for (long i = 0; i < NumVars; i++) 236 Args.push_back(Builder.getInt64Ty()); 237 238 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 239 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 240 GPUModule.get()); 241 FN->setCallingConv(CallingConv::PTX_Kernel); 242 243 auto Arg = FN->arg_begin(); 244 for (long i = 0; i < Kernel->n_array; i++) { 245 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 246 continue; 247 248 Arg->setName(Prog->array[i].name); 249 Arg++; 250 } 251 252 for (long i = 0; i < NumHostIters; i++) { 253 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 254 Arg->setName(isl_id_get_name(Id)); 255 IDToValue[Id] = &*Arg; 256 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 257 Arg++; 258 } 259 260 for (long i = 0; i < NumVars; i++) { 261 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 262 Arg->setName(isl_id_get_name(Id)); 263 IDToValue[Id] = &*Arg; 264 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 265 Arg++; 266 } 267 268 return FN; 269 } 270 271 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 272 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 273 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 274 275 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 276 Intrinsic::nvvm_read_ptx_sreg_tid_y, 277 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 278 279 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 280 std::string Name = isl_id_get_name(Id); 281 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 282 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 283 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 284 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 285 IDToValue[Id] = Val; 286 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 287 }; 288 289 for (int i = 0; i < Kernel->n_grid; ++i) { 290 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 291 addId(Id, IntrinsicsBID[i]); 292 } 293 294 for (int i = 0; i < Kernel->n_block; ++i) { 295 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 296 addId(Id, IntrinsicsTID[i]); 297 } 298 } 299 300 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { 301 302 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 303 GPUModule.reset(new Module(Identifier, Builder.getContext())); 304 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 305 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 306 307 Function *FN = createKernelFunctionDecl(Kernel); 308 309 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 310 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 311 312 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 313 DT.addNewBlock(EntryBlock, PrevBlock); 314 315 Builder.SetInsertPoint(EntryBlock); 316 Builder.CreateRetVoid(); 317 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 318 319 insertKernelIntrinsics(Kernel); 320 } 321 322 void GPUNodeBuilder::finalizeKernelFunction() { 323 324 if (DumpKernelIR) 325 outs() << *GPUModule << "\n"; 326 327 GPUModule.release(); 328 KernelIDs.clear(); 329 } 330 331 namespace { 332 class PPCGCodeGeneration : public ScopPass { 333 public: 334 static char ID; 335 336 /// The scop that is currently processed. 337 Scop *S; 338 339 LoopInfo *LI; 340 DominatorTree *DT; 341 ScalarEvolution *SE; 342 const DataLayout *DL; 343 RegionInfo *RI; 344 345 PPCGCodeGeneration() : ScopPass(ID) {} 346 347 /// Construct compilation options for PPCG. 348 /// 349 /// @returns The compilation options. 350 ppcg_options *createPPCGOptions() { 351 auto DebugOptions = 352 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 353 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 354 355 DebugOptions->dump_schedule_constraints = false; 356 DebugOptions->dump_schedule = false; 357 DebugOptions->dump_final_schedule = false; 358 DebugOptions->dump_sizes = false; 359 360 Options->debug = DebugOptions; 361 362 Options->reschedule = true; 363 Options->scale_tile_loops = false; 364 Options->wrap = false; 365 366 Options->non_negative_parameters = false; 367 Options->ctx = nullptr; 368 Options->sizes = nullptr; 369 370 Options->tile_size = 32; 371 372 Options->use_private_memory = false; 373 Options->use_shared_memory = false; 374 Options->max_shared_memory = 0; 375 376 Options->target = PPCG_TARGET_CUDA; 377 Options->openmp = false; 378 Options->linearize_device_arrays = true; 379 Options->live_range_reordering = false; 380 381 Options->opencl_compiler_options = nullptr; 382 Options->opencl_use_gpu = false; 383 Options->opencl_n_include_file = 0; 384 Options->opencl_include_files = nullptr; 385 Options->opencl_print_kernel_types = false; 386 Options->opencl_embed_kernel_code = false; 387 388 Options->save_schedule_file = nullptr; 389 Options->load_schedule_file = nullptr; 390 391 return Options; 392 } 393 394 /// Get a tagged access relation containing all accesses of type @p AccessTy. 395 /// 396 /// Instead of a normal access of the form: 397 /// 398 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 399 /// 400 /// a tagged access has the form 401 /// 402 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 403 /// 404 /// where 'id' is an additional space that references the memory access that 405 /// triggered the access. 406 /// 407 /// @param AccessTy The type of the memory accesses to collect. 408 /// 409 /// @return The relation describing all tagged memory accesses. 410 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 411 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 412 413 for (auto &Stmt : *S) 414 for (auto &Acc : Stmt) 415 if (Acc->getType() == AccessTy) { 416 isl_map *Relation = Acc->getAccessRelation(); 417 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 418 419 isl_space *Space = isl_map_get_space(Relation); 420 Space = isl_space_range(Space); 421 Space = isl_space_from_range(Space); 422 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 423 isl_map *Universe = isl_map_universe(Space); 424 Relation = isl_map_domain_product(Relation, Universe); 425 Accesses = isl_union_map_add_map(Accesses, Relation); 426 } 427 428 return Accesses; 429 } 430 431 /// Get the set of all read accesses, tagged with the access id. 432 /// 433 /// @see getTaggedAccesses 434 isl_union_map *getTaggedReads() { 435 return getTaggedAccesses(MemoryAccess::READ); 436 } 437 438 /// Get the set of all may (and must) accesses, tagged with the access id. 439 /// 440 /// @see getTaggedAccesses 441 isl_union_map *getTaggedMayWrites() { 442 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 443 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 444 } 445 446 /// Get the set of all must accesses, tagged with the access id. 447 /// 448 /// @see getTaggedAccesses 449 isl_union_map *getTaggedMustWrites() { 450 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 451 } 452 453 /// Collect parameter and array names as isl_ids. 454 /// 455 /// To reason about the different parameters and arrays used, ppcg requires 456 /// a list of all isl_ids in use. As PPCG traditionally performs 457 /// source-to-source compilation each of these isl_ids is mapped to the 458 /// expression that represents it. As we do not have a corresponding 459 /// expression in Polly, we just map each id to a 'zero' expression to match 460 /// the data format that ppcg expects. 461 /// 462 /// @returns Retun a map from collected ids to 'zero' ast expressions. 463 __isl_give isl_id_to_ast_expr *getNames() { 464 auto *Names = isl_id_to_ast_expr_alloc( 465 S->getIslCtx(), 466 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 467 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 468 auto *Space = S->getParamSpace(); 469 470 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 471 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 472 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 473 } 474 475 for (auto &Array : S->arrays()) { 476 auto Id = Array.second->getBasePtrId(); 477 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 478 } 479 480 isl_space_free(Space); 481 isl_ast_expr_free(Zero); 482 483 return Names; 484 } 485 486 /// Create a new PPCG scop from the current scop. 487 /// 488 /// The PPCG scop is initialized with data from the current polly::Scop. From 489 /// this initial data, the data-dependences in the PPCG scop are initialized. 490 /// We do not use Polly's dependence analysis for now, to ensure we match 491 /// the PPCG default behaviour more closely. 492 /// 493 /// @returns A new ppcg scop. 494 ppcg_scop *createPPCGScop() { 495 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 496 497 PPCGScop->options = createPPCGOptions(); 498 499 PPCGScop->start = 0; 500 PPCGScop->end = 0; 501 502 PPCGScop->context = S->getContext(); 503 PPCGScop->domain = S->getDomains(); 504 PPCGScop->call = nullptr; 505 PPCGScop->tagged_reads = getTaggedReads(); 506 PPCGScop->reads = S->getReads(); 507 PPCGScop->live_in = nullptr; 508 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 509 PPCGScop->may_writes = S->getWrites(); 510 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 511 PPCGScop->must_writes = S->getMustWrites(); 512 PPCGScop->live_out = nullptr; 513 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 514 PPCGScop->tagger = nullptr; 515 516 PPCGScop->independence = nullptr; 517 PPCGScop->dep_flow = nullptr; 518 PPCGScop->tagged_dep_flow = nullptr; 519 PPCGScop->dep_false = nullptr; 520 PPCGScop->dep_forced = nullptr; 521 PPCGScop->dep_order = nullptr; 522 PPCGScop->tagged_dep_order = nullptr; 523 524 PPCGScop->schedule = S->getScheduleTree(); 525 PPCGScop->names = getNames(); 526 527 PPCGScop->pet = nullptr; 528 529 compute_tagger(PPCGScop); 530 compute_dependences(PPCGScop); 531 532 return PPCGScop; 533 } 534 535 /// Collect the array acesses in a statement. 536 /// 537 /// @param Stmt The statement for which to collect the accesses. 538 /// 539 /// @returns A list of array accesses. 540 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 541 gpu_stmt_access *Accesses = nullptr; 542 543 for (MemoryAccess *Acc : Stmt) { 544 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 545 Access->read = Acc->isRead(); 546 Access->write = Acc->isWrite(); 547 Access->access = Acc->getAccessRelation(); 548 isl_space *Space = isl_map_get_space(Access->access); 549 Space = isl_space_range(Space); 550 Space = isl_space_from_range(Space); 551 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 552 isl_map *Universe = isl_map_universe(Space); 553 Access->tagged_access = 554 isl_map_domain_product(Acc->getAccessRelation(), Universe); 555 Access->exact_write = Acc->isWrite(); 556 Access->ref_id = Acc->getId(); 557 Access->next = Accesses; 558 Accesses = Access; 559 } 560 561 return Accesses; 562 } 563 564 /// Collect the list of GPU statements. 565 /// 566 /// Each statement has an id, a pointer to the underlying data structure, 567 /// as well as a list with all memory accesses. 568 /// 569 /// TODO: Initialize the list of memory accesses. 570 /// 571 /// @returns A linked-list of statements. 572 gpu_stmt *getStatements() { 573 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 574 std::distance(S->begin(), S->end())); 575 576 int i = 0; 577 for (auto &Stmt : *S) { 578 gpu_stmt *GPUStmt = &Stmts[i]; 579 580 GPUStmt->id = Stmt.getDomainId(); 581 582 // We use the pet stmt pointer to keep track of the Polly statements. 583 GPUStmt->stmt = (pet_stmt *)&Stmt; 584 GPUStmt->accesses = getStmtAccesses(Stmt); 585 i++; 586 } 587 588 return Stmts; 589 } 590 591 /// Derive the extent of an array. 592 /// 593 /// The extent of an array is defined by the set of memory locations for 594 /// which a memory access in the iteration domain exists. 595 /// 596 /// @param Array The array to derive the extent for. 597 /// 598 /// @returns An isl_set describing the extent of the array. 599 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 600 isl_union_map *Accesses = S->getAccesses(); 601 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 602 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 603 isl_set *AccessSet = 604 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 605 isl_union_set_free(AccessUSet); 606 607 return AccessSet; 608 } 609 610 /// Derive the bounds of an array. 611 /// 612 /// For the first dimension we derive the bound of the array from the extent 613 /// of this dimension. For inner dimensions we obtain their size directly from 614 /// ScopArrayInfo. 615 /// 616 /// @param PPCGArray The array to compute bounds for. 617 /// @param Array The polly array from which to take the information. 618 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 619 if (PPCGArray.n_index > 0) { 620 isl_set *Dom = isl_set_copy(PPCGArray.extent); 621 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 622 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 623 isl_set_free(Dom); 624 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 625 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 626 isl_aff *One = isl_aff_zero_on_domain(LS); 627 One = isl_aff_add_constant_si(One, 1); 628 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 629 Bound = isl_pw_aff_gist(Bound, S->getContext()); 630 PPCGArray.bound[0] = Bound; 631 } 632 633 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 634 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 635 auto LS = isl_pw_aff_get_domain_space(Bound); 636 auto Aff = isl_multi_aff_zero(LS); 637 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 638 PPCGArray.bound[i] = Bound; 639 } 640 } 641 642 /// Create the arrays for @p PPCGProg. 643 /// 644 /// @param PPCGProg The program to compute the arrays for. 645 void createArrays(gpu_prog *PPCGProg) { 646 int i = 0; 647 for (auto &Element : S->arrays()) { 648 ScopArrayInfo *Array = Element.second.get(); 649 650 std::string TypeName; 651 raw_string_ostream OS(TypeName); 652 653 OS << *Array->getElementType(); 654 TypeName = OS.str(); 655 656 gpu_array_info &PPCGArray = PPCGProg->array[i]; 657 658 PPCGArray.space = Array->getSpace(); 659 PPCGArray.type = strdup(TypeName.c_str()); 660 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 661 PPCGArray.name = strdup(Array->getName().c_str()); 662 PPCGArray.extent = nullptr; 663 PPCGArray.n_index = Array->getNumberOfDimensions(); 664 PPCGArray.bound = 665 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 666 PPCGArray.extent = getExtent(Array); 667 PPCGArray.n_ref = 0; 668 PPCGArray.refs = nullptr; 669 PPCGArray.accessed = true; 670 PPCGArray.read_only_scalar = false; 671 PPCGArray.has_compound_element = false; 672 PPCGArray.local = false; 673 PPCGArray.declare_local = false; 674 PPCGArray.global = false; 675 PPCGArray.linearize = false; 676 PPCGArray.dep_order = nullptr; 677 678 setArrayBounds(PPCGArray, Array); 679 i++; 680 681 collect_references(PPCGProg, &PPCGArray); 682 } 683 } 684 685 /// Create an identity map between the arrays in the scop. 686 /// 687 /// @returns An identity map between the arrays in the scop. 688 isl_union_map *getArrayIdentity() { 689 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 690 691 for (auto &Item : S->arrays()) { 692 ScopArrayInfo *Array = Item.second.get(); 693 isl_space *Space = Array->getSpace(); 694 Space = isl_space_map_from_set(Space); 695 isl_map *Identity = isl_map_identity(Space); 696 Maps = isl_union_map_add_map(Maps, Identity); 697 } 698 699 return Maps; 700 } 701 702 /// Create a default-initialized PPCG GPU program. 703 /// 704 /// @returns A new gpu grogram description. 705 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 706 707 if (!PPCGScop) 708 return nullptr; 709 710 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 711 712 PPCGProg->ctx = S->getIslCtx(); 713 PPCGProg->scop = PPCGScop; 714 PPCGProg->context = isl_set_copy(PPCGScop->context); 715 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 716 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 717 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 718 PPCGProg->tagged_must_kill = 719 isl_union_map_copy(PPCGScop->tagged_must_kills); 720 PPCGProg->to_inner = getArrayIdentity(); 721 PPCGProg->to_outer = getArrayIdentity(); 722 PPCGProg->may_persist = compute_may_persist(PPCGProg); 723 PPCGProg->any_to_outer = nullptr; 724 PPCGProg->array_order = nullptr; 725 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 726 PPCGProg->stmts = getStatements(); 727 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 728 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 729 PPCGProg->n_array); 730 731 createArrays(PPCGProg); 732 733 return PPCGProg; 734 } 735 736 struct PrintGPUUserData { 737 struct cuda_info *CudaInfo; 738 struct gpu_prog *PPCGProg; 739 std::vector<ppcg_kernel *> Kernels; 740 }; 741 742 /// Print a user statement node in the host code. 743 /// 744 /// We use ppcg's printing facilities to print the actual statement and 745 /// additionally build up a list of all kernels that are encountered in the 746 /// host ast. 747 /// 748 /// @param P The printer to print to 749 /// @param Options The printing options to use 750 /// @param Node The node to print 751 /// @param User A user pointer to carry additional data. This pointer is 752 /// expected to be of type PrintGPUUserData. 753 /// 754 /// @returns A printer to which the output has been printed. 755 static __isl_give isl_printer * 756 printHostUser(__isl_take isl_printer *P, 757 __isl_take isl_ast_print_options *Options, 758 __isl_take isl_ast_node *Node, void *User) { 759 auto Data = (struct PrintGPUUserData *)User; 760 auto Id = isl_ast_node_get_annotation(Node); 761 762 if (Id) { 763 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 764 765 // If this is a user statement, format it ourselves as ppcg would 766 // otherwise try to call pet functionality that is not available in 767 // Polly. 768 if (IsUser) { 769 P = isl_printer_start_line(P); 770 P = isl_printer_print_ast_node(P, Node); 771 P = isl_printer_end_line(P); 772 isl_id_free(Id); 773 isl_ast_print_options_free(Options); 774 return P; 775 } 776 777 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 778 isl_id_free(Id); 779 Data->Kernels.push_back(Kernel); 780 } 781 782 return print_host_user(P, Options, Node, User); 783 } 784 785 /// Print C code corresponding to the control flow in @p Kernel. 786 /// 787 /// @param Kernel The kernel to print 788 void printKernel(ppcg_kernel *Kernel) { 789 auto *P = isl_printer_to_str(S->getIslCtx()); 790 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 791 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 792 P = isl_ast_node_print(Kernel->tree, P, Options); 793 char *String = isl_printer_get_str(P); 794 printf("%s\n", String); 795 free(String); 796 isl_printer_free(P); 797 } 798 799 /// Print C code corresponding to the GPU code described by @p Tree. 800 /// 801 /// @param Tree An AST describing GPU code 802 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 803 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 804 auto *P = isl_printer_to_str(S->getIslCtx()); 805 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 806 807 PrintGPUUserData Data; 808 Data.PPCGProg = PPCGProg; 809 810 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 811 Options = 812 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 813 P = isl_ast_node_print(Tree, P, Options); 814 char *String = isl_printer_get_str(P); 815 printf("# host\n"); 816 printf("%s\n", String); 817 free(String); 818 isl_printer_free(P); 819 820 for (auto Kernel : Data.Kernels) { 821 printf("# kernel%d\n", Kernel->id); 822 printKernel(Kernel); 823 } 824 } 825 826 // Generate a GPU program using PPCG. 827 // 828 // GPU mapping consists of multiple steps: 829 // 830 // 1) Compute new schedule for the program. 831 // 2) Map schedule to GPU (TODO) 832 // 3) Generate code for new schedule (TODO) 833 // 834 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 835 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 836 // strategy directly from this pass. 837 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 838 839 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 840 841 PPCGGen->ctx = S->getIslCtx(); 842 PPCGGen->options = PPCGScop->options; 843 PPCGGen->print = nullptr; 844 PPCGGen->print_user = nullptr; 845 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 846 PPCGGen->prog = PPCGProg; 847 PPCGGen->tree = nullptr; 848 PPCGGen->types.n = 0; 849 PPCGGen->types.name = nullptr; 850 PPCGGen->sizes = nullptr; 851 PPCGGen->used_sizes = nullptr; 852 PPCGGen->kernel_id = 0; 853 854 // Set scheduling strategy to same strategy PPCG is using. 855 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 856 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 857 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 858 859 isl_schedule *Schedule = get_schedule(PPCGGen); 860 861 int has_permutable = has_any_permutable_node(Schedule); 862 863 if (!has_permutable || has_permutable < 0) { 864 Schedule = isl_schedule_free(Schedule); 865 } else { 866 Schedule = map_to_device(PPCGGen, Schedule); 867 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 868 } 869 870 if (DumpSchedule) { 871 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 872 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 873 P = isl_printer_print_str(P, "Schedule\n"); 874 P = isl_printer_print_str(P, "========\n"); 875 if (Schedule) 876 P = isl_printer_print_schedule(P, Schedule); 877 else 878 P = isl_printer_print_str(P, "No schedule found\n"); 879 880 printf("%s\n", isl_printer_get_str(P)); 881 isl_printer_free(P); 882 } 883 884 if (DumpCode) { 885 printf("Code\n"); 886 printf("====\n"); 887 if (PPCGGen->tree) 888 printGPUTree(PPCGGen->tree, PPCGProg); 889 else 890 printf("No code generated\n"); 891 } 892 893 isl_schedule_free(Schedule); 894 895 return PPCGGen; 896 } 897 898 /// Free gpu_gen structure. 899 /// 900 /// @param PPCGGen The ppcg_gen object to free. 901 void freePPCGGen(gpu_gen *PPCGGen) { 902 isl_ast_node_free(PPCGGen->tree); 903 isl_union_map_free(PPCGGen->sizes); 904 isl_union_map_free(PPCGGen->used_sizes); 905 free(PPCGGen); 906 } 907 908 /// Free the options in the ppcg scop structure. 909 /// 910 /// ppcg is not freeing these options for us. To avoid leaks we do this 911 /// ourselves. 912 /// 913 /// @param PPCGScop The scop referencing the options to free. 914 void freeOptions(ppcg_scop *PPCGScop) { 915 free(PPCGScop->options->debug); 916 PPCGScop->options->debug = nullptr; 917 free(PPCGScop->options); 918 PPCGScop->options = nullptr; 919 } 920 921 /// Generate code for a given GPU AST described by @p Root. 922 /// 923 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 924 /// @param Prog The GPU Program to generate code for. 925 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 926 ScopAnnotator Annotator; 927 Annotator.buildAliasScopes(*S); 928 929 Region *R = &S->getRegion(); 930 931 simplifyRegion(R, DT, LI, RI); 932 933 BasicBlock *EnteringBB = R->getEnteringBlock(); 934 935 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 936 937 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 938 Prog); 939 940 // Only build the run-time condition and parameters _after_ having 941 // introduced the conditional branch. This is important as the conditional 942 // branch will guard the original scop from new induction variables that 943 // the SCEVExpander may introduce while code generating the parameters and 944 // which may introduce scalar dependences that prevent us from correctly 945 // code generating this scop. 946 BasicBlock *StartBlock = 947 executeScopConditionally(*S, this, Builder.getTrue()); 948 949 // TODO: Handle LICM 950 // TODO: Verify run-time checks 951 auto SplitBlock = StartBlock->getSinglePredecessor(); 952 Builder.SetInsertPoint(SplitBlock->getTerminator()); 953 NodeBuilder.addParameters(S->getContext()); 954 Builder.SetInsertPoint(&*StartBlock->begin()); 955 NodeBuilder.create(Root); 956 NodeBuilder.finalizeSCoP(*S); 957 } 958 959 bool runOnScop(Scop &CurrentScop) override { 960 S = &CurrentScop; 961 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 962 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 963 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 964 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 965 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 966 967 auto PPCGScop = createPPCGScop(); 968 auto PPCGProg = createPPCGProg(PPCGScop); 969 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 970 971 if (PPCGGen->tree) 972 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 973 974 freeOptions(PPCGScop); 975 freePPCGGen(PPCGGen); 976 gpu_prog_free(PPCGProg); 977 ppcg_scop_free(PPCGScop); 978 979 return true; 980 } 981 982 void printScop(raw_ostream &, Scop &) const override {} 983 984 void getAnalysisUsage(AnalysisUsage &AU) const override { 985 AU.addRequired<DominatorTreeWrapperPass>(); 986 AU.addRequired<RegionInfoPass>(); 987 AU.addRequired<ScalarEvolutionWrapperPass>(); 988 AU.addRequired<ScopDetection>(); 989 AU.addRequired<ScopInfoRegionPass>(); 990 AU.addRequired<LoopInfoWrapperPass>(); 991 992 AU.addPreserved<AAResultsWrapperPass>(); 993 AU.addPreserved<BasicAAWrapperPass>(); 994 AU.addPreserved<LoopInfoWrapperPass>(); 995 AU.addPreserved<DominatorTreeWrapperPass>(); 996 AU.addPreserved<GlobalsAAWrapperPass>(); 997 AU.addPreserved<PostDominatorTreeWrapperPass>(); 998 AU.addPreserved<ScopDetection>(); 999 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1000 AU.addPreserved<SCEVAAWrapperPass>(); 1001 1002 // FIXME: We do not yet add regions for the newly generated code to the 1003 // region tree. 1004 AU.addPreserved<RegionInfoPass>(); 1005 AU.addPreserved<ScopInfoRegionPass>(); 1006 } 1007 }; 1008 } 1009 1010 char PPCGCodeGeneration::ID = 1; 1011 1012 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1013 1014 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1015 "Polly - Apply PPCG translation to SCOP", false, false) 1016 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1017 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1018 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1019 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1020 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1021 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1022 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1023 "Polly - Apply PPCG translation to SCOP", false, false) 1024