1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/Utils.h"
17 #include "polly/DependenceInfo.h"
18 #include "polly/LinkAllPasses.h"
19 #include "polly/Options.h"
20 #include "polly/ScopInfo.h"
21 #include "polly/Support/SCEVValidator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #include "llvm/IR/Verifier.h"
32 #include "llvm/Support/TargetRegistry.h"
33 #include "llvm/Support/TargetSelect.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
36 
37 #include "isl/union_map.h"
38 
39 extern "C" {
40 #include "ppcg/cuda.h"
41 #include "ppcg/gpu.h"
42 #include "ppcg/gpu_print.h"
43 #include "ppcg/ppcg.h"
44 #include "ppcg/schedule.h"
45 }
46 
47 #include "llvm/Support/Debug.h"
48 
49 using namespace polly;
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "polly-codegen-ppcg"
53 
54 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
55                                   cl::desc("Dump the computed GPU Schedule"),
56                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
57                                   cl::cat(PollyCategory));
58 
59 static cl::opt<bool>
60     DumpCode("polly-acc-dump-code",
61              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
62              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
63 
64 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
65                                   cl::desc("Dump the kernel LLVM-IR"),
66                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
67                                   cl::cat(PollyCategory));
68 
69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
70                                    cl::desc("Dump the kernel assembly code"),
71                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
72                                    cl::cat(PollyCategory));
73 
74 static cl::opt<bool> FastMath("polly-acc-fastmath",
75                               cl::desc("Allow unsafe math optimizations"),
76                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
77                               cl::cat(PollyCategory));
78 
79 static cl::opt<std::string>
80     CudaVersion("polly-acc-cuda-version",
81                 cl::desc("The CUDA version to compile for"), cl::Hidden,
82                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
83 
84 /// Create the ast expressions for a ScopStmt.
85 ///
86 /// This function is a callback for to generate the ast expressions for each
87 /// of the scheduled ScopStmts.
88 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
89     void *StmtT, isl_ast_build *Build,
90     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
91                                        isl_id *Id, void *User),
92     void *UserIndex,
93     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
94     void *UserExpr) {
95 
96   ScopStmt *Stmt = (ScopStmt *)StmtT;
97 
98   isl_ctx *Ctx;
99 
100   if (!Stmt || !Build)
101     return NULL;
102 
103   Ctx = isl_ast_build_get_ctx(Build);
104   isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0);
105 
106   for (MemoryAccess *Acc : *Stmt) {
107     isl_map *AddrFunc = Acc->getAddressFunction();
108     AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain());
109     isl_id *RefId = Acc->getId();
110     isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc);
111     isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA);
112     MPA = isl_multi_pw_aff_coalesce(MPA);
113     MPA = FunctionIndex(MPA, RefId, UserIndex);
114     isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA);
115     Access = FunctionExpr(Access, RefId, UserExpr);
116     RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access);
117   }
118 
119   return RefToExpr;
120 }
121 
122 /// Generate code for a GPU specific isl AST.
123 ///
124 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
125 /// generates code for general-prupose AST nodes, with special functionality
126 /// for generating GPU specific user nodes.
127 ///
128 /// @see GPUNodeBuilder::createUser
129 class GPUNodeBuilder : public IslNodeBuilder {
130 public:
131   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P,
132                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
133                  DominatorTree &DT, Scop &S, gpu_prog *Prog)
134       : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {
135     getExprBuilder().setIDToSAI(&IDToSAI);
136   }
137 
138   /// Create after-run-time-check initialization code.
139   void initializeAfterRTH();
140 
141   /// Finalize the generated scop.
142   virtual void finalize();
143 
144 private:
145   /// A vector of array base pointers for which a new ScopArrayInfo was created.
146   ///
147   /// This vector is used to delete the ScopArrayInfo when it is not needed any
148   /// more.
149   std::vector<Value *> LocalArrays;
150 
151   /// A map from ScopArrays to their corresponding device allocations.
152   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
153 
154   /// The current GPU context.
155   Value *GPUContext;
156 
157   /// A module containing GPU code.
158   ///
159   /// This pointer is only set in case we are currently generating GPU code.
160   std::unique_ptr<Module> GPUModule;
161 
162   /// The GPU program we generate code for.
163   gpu_prog *Prog;
164 
165   /// Class to free isl_ids.
166   class IslIdDeleter {
167   public:
168     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
169   };
170 
171   /// A set containing all isl_ids allocated in a GPU kernel.
172   ///
173   /// By releasing this set all isl_ids will be freed.
174   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
175 
176   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
177 
178   /// Create code for user-defined AST nodes.
179   ///
180   /// These AST nodes can be of type:
181   ///
182   ///   - ScopStmt:      A computational statement (TODO)
183   ///   - Kernel:        A GPU kernel call (TODO)
184   ///   - Data-Transfer: A GPU <-> CPU data-transfer
185   ///   - In-kernel synchronization
186   ///   - In-kernel memory copy statement
187   ///
188   /// @param UserStmt The ast node to generate code for.
189   virtual void createUser(__isl_take isl_ast_node *UserStmt);
190 
191   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
192 
193   /// Create code for a data transfer statement
194   ///
195   /// @param TransferStmt The data transfer statement.
196   /// @param Direction The direction in which to transfer data.
197   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
198                           enum DataDirection Direction);
199 
200   /// Find llvm::Values referenced in GPU kernel.
201   ///
202   /// @param Kernel The kernel to scan for llvm::Values
203   ///
204   /// @returns A set of values referenced by the kernel.
205   SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel);
206 
207   /// Create GPU kernel.
208   ///
209   /// Code generate the kernel described by @p KernelStmt.
210   ///
211   /// @param KernelStmt The ast node to generate kernel code for.
212   void createKernel(__isl_take isl_ast_node *KernelStmt);
213 
214   /// Generate code that computes the size of an array.
215   ///
216   /// @param Array The array for which to compute a size.
217   Value *getArraySize(gpu_array_info *Array);
218 
219   /// Create kernel function.
220   ///
221   /// Create a kernel function located in a newly created module that can serve
222   /// as target for device code generation. Set the Builder to point to the
223   /// start block of this newly created function.
224   ///
225   /// @param Kernel The kernel to generate code for.
226   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
227   void createKernelFunction(ppcg_kernel *Kernel,
228                             SetVector<Value *> &SubtreeValues);
229 
230   /// Create the declaration of a kernel function.
231   ///
232   /// The kernel function takes as arguments:
233   ///
234   ///   - One i8 pointer for each external array reference used in the kernel.
235   ///   - Host iterators
236   ///   - Parameters
237   ///   - Other LLVM Value references (TODO)
238   ///
239   /// @param Kernel The kernel to generate the function declaration for.
240   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
241   ///
242   /// @returns The newly declared function.
243   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
244                                      SetVector<Value *> &SubtreeValues);
245 
246   /// Insert intrinsic functions to obtain thread and block ids.
247   ///
248   /// @param The kernel to generate the intrinsic functions for.
249   void insertKernelIntrinsics(ppcg_kernel *Kernel);
250 
251   /// Create code for a ScopStmt called in @p Expr.
252   ///
253   /// @param Expr The expression containing the call.
254   /// @param KernelStmt The kernel statement referenced in the call.
255   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
256 
257   /// Create an in-kernel synchronization call.
258   void createKernelSync();
259 
260   /// Create a PTX assembly string for the current GPU kernel.
261   ///
262   /// @returns A string containing the corresponding PTX assembly code.
263   std::string createKernelASM();
264 
265   /// Remove references from the dominator tree to the kernel function @p F.
266   ///
267   /// @param F The function to remove references to.
268   void clearDominators(Function *F);
269 
270   /// Remove references from scalar evolution to the kernel function @p F.
271   ///
272   /// @param F The function to remove references to.
273   void clearScalarEvolution(Function *F);
274 
275   /// Remove references from loop info to the kernel function @p F.
276   ///
277   /// @param F The function to remove references to.
278   void clearLoops(Function *F);
279 
280   /// Finalize the generation of the kernel function.
281   ///
282   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
283   /// dump its IR to stderr.
284   ///
285   /// @returns The Assembly string of the kernel.
286   std::string finalizeKernelFunction();
287 
288   /// Create code that allocates memory to store arrays on device.
289   void allocateDeviceArrays();
290 
291   /// Free all allocated device arrays.
292   void freeDeviceArrays();
293 
294   /// Create a call to initialize the GPU context.
295   ///
296   /// @returns A pointer to the newly initialized context.
297   Value *createCallInitContext();
298 
299   /// Create a call to free the GPU context.
300   ///
301   /// @param Context A pointer to an initialized GPU context.
302   void createCallFreeContext(Value *Context);
303 
304   /// Create a call to allocate memory on the device.
305   ///
306   /// @param Size The size of memory to allocate
307   ///
308   /// @returns A pointer that identifies this allocation.
309   Value *createCallAllocateMemoryForDevice(Value *Size);
310 
311   /// Create a call to free a device array.
312   ///
313   /// @param Array The device array to free.
314   void createCallFreeDeviceMemory(Value *Array);
315 
316   /// Create a call to copy data from host to device.
317   ///
318   /// @param HostPtr A pointer to the host data that should be copied.
319   /// @param DevicePtr A device pointer specifying the location to copy to.
320   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
321                                       Value *Size);
322 
323   /// Create a call to copy data from device to host.
324   ///
325   /// @param DevicePtr A pointer to the device data that should be copied.
326   /// @param HostPtr A host pointer specifying the location to copy to.
327   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
328                                       Value *Size);
329 
330   /// Create a call to get a kernel from an assembly string.
331   ///
332   /// @param Buffer The string describing the kernel.
333   /// @param Entry  The name of the kernel function to call.
334   ///
335   /// @returns A pointer to a kernel object
336   Value *createCallGetKernel(Value *Buffer, Value *Entry);
337 
338   /// Create a call to free a GPU kernel.
339   ///
340   /// @param GPUKernel THe kernel to free.
341   void createCallFreeKernel(Value *GPUKernel);
342 };
343 
344 void GPUNodeBuilder::initializeAfterRTH() {
345   GPUContext = createCallInitContext();
346   allocateDeviceArrays();
347 }
348 
349 void GPUNodeBuilder::finalize() {
350   freeDeviceArrays();
351   createCallFreeContext(GPUContext);
352   IslNodeBuilder::finalize();
353 }
354 
355 void GPUNodeBuilder::allocateDeviceArrays() {
356   isl_ast_build *Build = isl_ast_build_from_context(S.getContext());
357 
358   for (int i = 0; i < Prog->n_array; ++i) {
359     gpu_array_info *Array = &Prog->array[i];
360     auto *ScopArray = (ScopArrayInfo *)Array->user;
361     std::string DevArrayName("p_dev_array_");
362     DevArrayName.append(Array->name);
363 
364     Value *ArraySize = getArraySize(Array);
365     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
366     DevArray->setName(DevArrayName);
367     DeviceAllocations[ScopArray] = DevArray;
368   }
369 
370   isl_ast_build_free(Build);
371 }
372 
373 void GPUNodeBuilder::freeDeviceArrays() {
374   for (auto &Array : DeviceAllocations)
375     createCallFreeDeviceMemory(Array.second);
376 }
377 
378 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
379   const char *Name = "polly_getKernel";
380   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
381   Function *F = M->getFunction(Name);
382 
383   // If F is not available, declare it.
384   if (!F) {
385     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
386     std::vector<Type *> Args;
387     Args.push_back(Builder.getInt8PtrTy());
388     Args.push_back(Builder.getInt8PtrTy());
389     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
390     F = Function::Create(Ty, Linkage, Name, M);
391   }
392 
393   return Builder.CreateCall(F, {Buffer, Entry});
394 }
395 
396 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
397   const char *Name = "polly_freeKernel";
398   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
399   Function *F = M->getFunction(Name);
400 
401   // If F is not available, declare it.
402   if (!F) {
403     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
404     std::vector<Type *> Args;
405     Args.push_back(Builder.getInt8PtrTy());
406     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
407     F = Function::Create(Ty, Linkage, Name, M);
408   }
409 
410   Builder.CreateCall(F, {GPUKernel});
411 }
412 
413 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
414   const char *Name = "polly_freeDeviceMemory";
415   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
416   Function *F = M->getFunction(Name);
417 
418   // If F is not available, declare it.
419   if (!F) {
420     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
421     std::vector<Type *> Args;
422     Args.push_back(Builder.getInt8PtrTy());
423     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
424     F = Function::Create(Ty, Linkage, Name, M);
425   }
426 
427   Builder.CreateCall(F, {Array});
428 }
429 
430 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
431   const char *Name = "polly_allocateMemoryForDevice";
432   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
433   Function *F = M->getFunction(Name);
434 
435   // If F is not available, declare it.
436   if (!F) {
437     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
438     std::vector<Type *> Args;
439     Args.push_back(Builder.getInt64Ty());
440     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
441     F = Function::Create(Ty, Linkage, Name, M);
442   }
443 
444   return Builder.CreateCall(F, {Size});
445 }
446 
447 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
448                                                     Value *DeviceData,
449                                                     Value *Size) {
450   const char *Name = "polly_copyFromHostToDevice";
451   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
452   Function *F = M->getFunction(Name);
453 
454   // If F is not available, declare it.
455   if (!F) {
456     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
457     std::vector<Type *> Args;
458     Args.push_back(Builder.getInt8PtrTy());
459     Args.push_back(Builder.getInt8PtrTy());
460     Args.push_back(Builder.getInt64Ty());
461     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
462     F = Function::Create(Ty, Linkage, Name, M);
463   }
464 
465   Builder.CreateCall(F, {HostData, DeviceData, Size});
466 }
467 
468 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
469                                                     Value *HostData,
470                                                     Value *Size) {
471   const char *Name = "polly_copyFromDeviceToHost";
472   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
473   Function *F = M->getFunction(Name);
474 
475   // If F is not available, declare it.
476   if (!F) {
477     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
478     std::vector<Type *> Args;
479     Args.push_back(Builder.getInt8PtrTy());
480     Args.push_back(Builder.getInt8PtrTy());
481     Args.push_back(Builder.getInt64Ty());
482     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
483     F = Function::Create(Ty, Linkage, Name, M);
484   }
485 
486   Builder.CreateCall(F, {DeviceData, HostData, Size});
487 }
488 
489 Value *GPUNodeBuilder::createCallInitContext() {
490   const char *Name = "polly_initContext";
491   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
492   Function *F = M->getFunction(Name);
493 
494   // If F is not available, declare it.
495   if (!F) {
496     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
497     std::vector<Type *> Args;
498     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
499     F = Function::Create(Ty, Linkage, Name, M);
500   }
501 
502   return Builder.CreateCall(F, {});
503 }
504 
505 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
506   const char *Name = "polly_freeContext";
507   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
508   Function *F = M->getFunction(Name);
509 
510   // If F is not available, declare it.
511   if (!F) {
512     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
513     std::vector<Type *> Args;
514     Args.push_back(Builder.getInt8PtrTy());
515     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
516     F = Function::Create(Ty, Linkage, Name, M);
517   }
518 
519   Builder.CreateCall(F, {Context});
520 }
521 
522 /// Check if one string is a prefix of another.
523 ///
524 /// @param String The string in which to look for the prefix.
525 /// @param Prefix The prefix to look for.
526 static bool isPrefix(std::string String, std::string Prefix) {
527   return String.find(Prefix) == 0;
528 }
529 
530 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
531   isl_ast_build *Build = isl_ast_build_from_context(S.getContext());
532   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
533 
534   if (!gpu_array_is_scalar(Array)) {
535     auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]);
536     isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero);
537 
538     for (unsigned int i = 1; i < Array->n_index; i++) {
539       isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]);
540       isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I);
541       Res = isl_ast_expr_mul(Res, Expr);
542     }
543 
544     Value *NumElements = ExprBuilder.create(Res);
545     ArraySize = Builder.CreateMul(ArraySize, NumElements);
546   }
547   isl_ast_build_free(Build);
548   return ArraySize;
549 }
550 
551 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
552                                         enum DataDirection Direction) {
553   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
554   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
555   isl_id *Id = isl_ast_expr_get_id(Arg);
556   auto Array = (gpu_array_info *)isl_id_get_user(Id);
557   auto ScopArray = (ScopArrayInfo *)(Array->user);
558 
559   Value *Size = getArraySize(Array);
560   Value *HostPtr = ScopArray->getBasePtr();
561 
562   Value *DevPtr = DeviceAllocations[ScopArray];
563 
564   if (gpu_array_is_scalar(Array)) {
565     HostPtr = Builder.CreateAlloca(ScopArray->getElementType());
566     Builder.CreateStore(ScopArray->getBasePtr(), HostPtr);
567   }
568 
569   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
570 
571   if (Direction == HOST_TO_DEVICE)
572     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
573   else
574     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
575 
576   isl_id_free(Id);
577   isl_ast_expr_free(Arg);
578   isl_ast_expr_free(Expr);
579   isl_ast_node_free(TransferStmt);
580 }
581 
582 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
583   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
584   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
585   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
586   isl_id_free(Id);
587   isl_ast_expr_free(StmtExpr);
588 
589   const char *Str = isl_id_get_name(Id);
590   if (!strcmp(Str, "kernel")) {
591     createKernel(UserStmt);
592     isl_ast_expr_free(Expr);
593     return;
594   }
595 
596   if (isPrefix(Str, "to_device")) {
597     createDataTransfer(UserStmt, HOST_TO_DEVICE);
598     isl_ast_expr_free(Expr);
599     return;
600   }
601 
602   if (isPrefix(Str, "from_device")) {
603     createDataTransfer(UserStmt, DEVICE_TO_HOST);
604     isl_ast_expr_free(Expr);
605     return;
606   }
607 
608   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
609   struct ppcg_kernel_stmt *KernelStmt =
610       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
611   isl_id_free(Anno);
612 
613   switch (KernelStmt->type) {
614   case ppcg_kernel_domain:
615     createScopStmt(Expr, KernelStmt);
616     isl_ast_node_free(UserStmt);
617     return;
618   case ppcg_kernel_copy:
619     // TODO: Create kernel copy stmt
620     isl_ast_expr_free(Expr);
621     isl_ast_node_free(UserStmt);
622     return;
623   case ppcg_kernel_sync:
624     createKernelSync();
625     isl_ast_expr_free(Expr);
626     isl_ast_node_free(UserStmt);
627     return;
628   }
629 
630   isl_ast_expr_free(Expr);
631   isl_ast_node_free(UserStmt);
632   return;
633 }
634 
635 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
636                                     ppcg_kernel_stmt *KernelStmt) {
637   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
638   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
639 
640   LoopToScevMapT LTS;
641   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
642 
643   createSubstitutions(Expr, Stmt, LTS);
644 
645   if (Stmt->isBlockStmt())
646     BlockGen.copyStmt(*Stmt, LTS, Indexes);
647   else
648     assert(0 && "Region statement not supported\n");
649 }
650 
651 void GPUNodeBuilder::createKernelSync() {
652   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
653   auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
654   Builder.CreateCall(Sync, {});
655 }
656 
657 /// Collect llvm::Values referenced from @p Node
658 ///
659 /// This function only applies to isl_ast_nodes that are user_nodes referring
660 /// to a ScopStmt. All other node types are ignore.
661 ///
662 /// @param Node The node to collect references for.
663 /// @param User A user pointer used as storage for the data that is collected.
664 ///
665 /// @returns isl_bool_true if data could be collected successfully.
666 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
667   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
668     return isl_bool_true;
669 
670   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
671   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
672   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
673   const char *Str = isl_id_get_name(Id);
674   isl_id_free(Id);
675   isl_ast_expr_free(StmtExpr);
676   isl_ast_expr_free(Expr);
677 
678   if (!isPrefix(Str, "Stmt"))
679     return isl_bool_true;
680 
681   Id = isl_ast_node_get_annotation(Node);
682   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
683   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
684   isl_id_free(Id);
685 
686   addReferencesFromStmt(Stmt, User);
687 
688   return isl_bool_true;
689 }
690 
691 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
692   SetVector<Value *> SubtreeValues;
693   SetVector<const SCEV *> SCEVs;
694   SetVector<const Loop *> Loops;
695   SubtreeReferences References = {
696       LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()};
697 
698   for (const auto &I : IDToValue)
699     SubtreeValues.insert(I.second);
700 
701   isl_ast_node_foreach_descendant_top_down(
702       Kernel->tree, collectReferencesInGPUStmt, &References);
703 
704   for (const SCEV *Expr : SCEVs)
705     findValues(Expr, SE, SubtreeValues);
706 
707   for (auto &SAI : S.arrays())
708     SubtreeValues.remove(SAI.second->getBasePtr());
709 
710   isl_space *Space = S.getParamSpace();
711   for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
712     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
713     assert(IDToValue.count(Id));
714     Value *Val = IDToValue[Id];
715     SubtreeValues.remove(Val);
716     isl_id_free(Id);
717   }
718   isl_space_free(Space);
719 
720   for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) {
721     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
722     assert(IDToValue.count(Id));
723     Value *Val = IDToValue[Id];
724     SubtreeValues.remove(Val);
725     isl_id_free(Id);
726   }
727 
728   return SubtreeValues;
729 }
730 
731 void GPUNodeBuilder::clearDominators(Function *F) {
732   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
733   std::vector<BasicBlock *> Nodes;
734   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
735     Nodes.push_back(I->getBlock());
736 
737   for (BasicBlock *BB : Nodes)
738     DT.eraseNode(BB);
739 }
740 
741 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
742   for (BasicBlock &BB : *F) {
743     Loop *L = LI.getLoopFor(&BB);
744     if (L)
745       SE.forgetLoop(L);
746   }
747 }
748 
749 void GPUNodeBuilder::clearLoops(Function *F) {
750   for (BasicBlock &BB : *F) {
751     Loop *L = LI.getLoopFor(&BB);
752     if (L)
753       SE.forgetLoop(L);
754     LI.removeBlock(&BB);
755   }
756 }
757 
758 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
759   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
760   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
761   isl_id_free(Id);
762   isl_ast_node_free(KernelStmt);
763 
764   SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel);
765 
766   assert(Kernel->tree && "Device AST of kernel node is empty");
767 
768   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
769   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
770   ValueMapT HostValueMap = ValueMap;
771 
772   SetVector<const Loop *> Loops;
773 
774   // Create for all loops we depend on values that contain the current loop
775   // iteration. These values are necessary to generate code for SCEVs that
776   // depend on such loops. As a result we need to pass them to the subfunction.
777   for (const Loop *L : Loops) {
778     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
779                                             SE.getUnknown(Builder.getInt64(1)),
780                                             L, SCEV::FlagAnyWrap);
781     Value *V = generateSCEV(OuterLIV);
782     OutsideLoopIterations[L] = SE.getUnknown(V);
783     SubtreeValues.insert(V);
784   }
785 
786   createKernelFunction(Kernel, SubtreeValues);
787 
788   create(isl_ast_node_copy(Kernel->tree));
789 
790   Function *F = Builder.GetInsertBlock()->getParent();
791   clearDominators(F);
792   clearScalarEvolution(F);
793   clearLoops(F);
794 
795   Builder.SetInsertPoint(&HostInsertPoint);
796   IDToValue = HostIDs;
797 
798   ValueMap = HostValueMap;
799   ScalarMap.clear();
800   PHIOpMap.clear();
801   EscapeMap.clear();
802   IDToSAI.clear();
803   Annotator.resetAlternativeAliasBases();
804   for (auto &BasePtr : LocalArrays)
805     S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array);
806   LocalArrays.clear();
807 
808   std::string ASMString = finalizeKernelFunction();
809   std::string Name = "kernel_" + std::to_string(Kernel->id);
810   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
811   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
812   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
813   createCallFreeKernel(GPUKernel);
814 }
815 
816 /// Compute the DataLayout string for the NVPTX backend.
817 ///
818 /// @param is64Bit Are we looking for a 64 bit architecture?
819 static std::string computeNVPTXDataLayout(bool is64Bit) {
820   std::string Ret = "e";
821 
822   if (!is64Bit)
823     Ret += "-p:32:32";
824 
825   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
826 
827   return Ret;
828 }
829 
830 Function *
831 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
832                                          SetVector<Value *> &SubtreeValues) {
833   std::vector<Type *> Args;
834   std::string Identifier = "kernel_" + std::to_string(Kernel->id);
835 
836   for (long i = 0; i < Prog->n_array; i++) {
837     if (!ppcg_kernel_requires_array_argument(Kernel, i))
838       continue;
839 
840     Args.push_back(Builder.getInt8PtrTy());
841   }
842 
843   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
844 
845   for (long i = 0; i < NumHostIters; i++)
846     Args.push_back(Builder.getInt64Ty());
847 
848   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
849 
850   for (long i = 0; i < NumVars; i++)
851     Args.push_back(Builder.getInt64Ty());
852 
853   for (auto *V : SubtreeValues)
854     Args.push_back(V->getType());
855 
856   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
857   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
858                               GPUModule.get());
859   FN->setCallingConv(CallingConv::PTX_Kernel);
860 
861   auto Arg = FN->arg_begin();
862   for (long i = 0; i < Kernel->n_array; i++) {
863     if (!ppcg_kernel_requires_array_argument(Kernel, i))
864       continue;
865 
866     Arg->setName(Kernel->array[i].array->name);
867 
868     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
869     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id));
870     Type *EleTy = SAI->getElementType();
871     Value *Val = &*Arg;
872     SmallVector<const SCEV *, 4> Sizes;
873     isl_ast_build *Build =
874         isl_ast_build_from_context(isl_set_copy(Prog->context));
875     for (long j = 1; j < Kernel->array[i].array->n_index; j++) {
876       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
877           Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j]));
878       auto V = ExprBuilder.create(DimSize);
879       Sizes.push_back(SE.getSCEV(V));
880     }
881     const ScopArrayInfo *SAIRep =
882         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array);
883     LocalArrays.push_back(Val);
884 
885     isl_ast_build_free(Build);
886     isl_id_free(Id);
887     IDToSAI[Id] = SAIRep;
888     Arg++;
889   }
890 
891   for (long i = 0; i < NumHostIters; i++) {
892     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
893     Arg->setName(isl_id_get_name(Id));
894     IDToValue[Id] = &*Arg;
895     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
896     Arg++;
897   }
898 
899   for (long i = 0; i < NumVars; i++) {
900     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
901     Arg->setName(isl_id_get_name(Id));
902     IDToValue[Id] = &*Arg;
903     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
904     Arg++;
905   }
906 
907   for (auto *V : SubtreeValues) {
908     Arg->setName(V->getName());
909     ValueMap[V] = &*Arg;
910     Arg++;
911   }
912 
913   return FN;
914 }
915 
916 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
917   Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x,
918                                    Intrinsic::nvvm_read_ptx_sreg_ctaid_y};
919 
920   Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x,
921                                    Intrinsic::nvvm_read_ptx_sreg_tid_y,
922                                    Intrinsic::nvvm_read_ptx_sreg_tid_z};
923 
924   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
925     std::string Name = isl_id_get_name(Id);
926     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
927     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
928     Value *Val = Builder.CreateCall(IntrinsicFn, {});
929     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
930     IDToValue[Id] = Val;
931     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
932   };
933 
934   for (int i = 0; i < Kernel->n_grid; ++i) {
935     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
936     addId(Id, IntrinsicsBID[i]);
937   }
938 
939   for (int i = 0; i < Kernel->n_block; ++i) {
940     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
941     addId(Id, IntrinsicsTID[i]);
942   }
943 }
944 
945 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel,
946                                           SetVector<Value *> &SubtreeValues) {
947 
948   std::string Identifier = "kernel_" + std::to_string(Kernel->id);
949   GPUModule.reset(new Module(Identifier, Builder.getContext()));
950   GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
951   GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
952 
953   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
954 
955   BasicBlock *PrevBlock = Builder.GetInsertBlock();
956   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
957 
958   DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
959   DT.addNewBlock(EntryBlock, PrevBlock);
960 
961   Builder.SetInsertPoint(EntryBlock);
962   Builder.CreateRetVoid();
963   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
964 
965   insertKernelIntrinsics(Kernel);
966 }
967 
968 std::string GPUNodeBuilder::createKernelASM() {
969   llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda"));
970   std::string ErrMsg;
971   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
972 
973   if (!GPUTarget) {
974     errs() << ErrMsg << "\n";
975     return "";
976   }
977 
978   TargetOptions Options;
979   Options.UnsafeFPMath = FastMath;
980   std::unique_ptr<TargetMachine> TargetM(
981       GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "",
982                                      Options, Optional<Reloc::Model>()));
983 
984   SmallString<0> ASMString;
985   raw_svector_ostream ASMStream(ASMString);
986   llvm::legacy::PassManager PM;
987 
988   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
989 
990   if (TargetM->addPassesToEmitFile(
991           PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) {
992     errs() << "The target does not support generation of this file type!\n";
993     return "";
994   }
995 
996   PM.run(*GPUModule);
997 
998   return ASMStream.str();
999 }
1000 
1001 std::string GPUNodeBuilder::finalizeKernelFunction() {
1002   // Verify module.
1003   llvm::legacy::PassManager Passes;
1004   Passes.add(createVerifierPass());
1005   Passes.run(*GPUModule);
1006 
1007   if (DumpKernelIR)
1008     outs() << *GPUModule << "\n";
1009 
1010   // Optimize module.
1011   llvm::legacy::PassManager OptPasses;
1012   PassManagerBuilder PassBuilder;
1013   PassBuilder.OptLevel = 3;
1014   PassBuilder.SizeLevel = 0;
1015   PassBuilder.populateModulePassManager(OptPasses);
1016   OptPasses.run(*GPUModule);
1017 
1018   std::string Assembly = createKernelASM();
1019 
1020   if (DumpKernelASM)
1021     outs() << Assembly << "\n";
1022 
1023   GPUModule.release();
1024   KernelIDs.clear();
1025 
1026   return Assembly;
1027 }
1028 
1029 namespace {
1030 class PPCGCodeGeneration : public ScopPass {
1031 public:
1032   static char ID;
1033 
1034   /// The scop that is currently processed.
1035   Scop *S;
1036 
1037   LoopInfo *LI;
1038   DominatorTree *DT;
1039   ScalarEvolution *SE;
1040   const DataLayout *DL;
1041   RegionInfo *RI;
1042 
1043   PPCGCodeGeneration() : ScopPass(ID) {}
1044 
1045   /// Construct compilation options for PPCG.
1046   ///
1047   /// @returns The compilation options.
1048   ppcg_options *createPPCGOptions() {
1049     auto DebugOptions =
1050         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
1051     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
1052 
1053     DebugOptions->dump_schedule_constraints = false;
1054     DebugOptions->dump_schedule = false;
1055     DebugOptions->dump_final_schedule = false;
1056     DebugOptions->dump_sizes = false;
1057 
1058     Options->debug = DebugOptions;
1059 
1060     Options->reschedule = true;
1061     Options->scale_tile_loops = false;
1062     Options->wrap = false;
1063 
1064     Options->non_negative_parameters = false;
1065     Options->ctx = nullptr;
1066     Options->sizes = nullptr;
1067 
1068     Options->tile_size = 32;
1069 
1070     Options->use_private_memory = false;
1071     Options->use_shared_memory = false;
1072     Options->max_shared_memory = 0;
1073 
1074     Options->target = PPCG_TARGET_CUDA;
1075     Options->openmp = false;
1076     Options->linearize_device_arrays = true;
1077     Options->live_range_reordering = false;
1078 
1079     Options->opencl_compiler_options = nullptr;
1080     Options->opencl_use_gpu = false;
1081     Options->opencl_n_include_file = 0;
1082     Options->opencl_include_files = nullptr;
1083     Options->opencl_print_kernel_types = false;
1084     Options->opencl_embed_kernel_code = false;
1085 
1086     Options->save_schedule_file = nullptr;
1087     Options->load_schedule_file = nullptr;
1088 
1089     return Options;
1090   }
1091 
1092   /// Get a tagged access relation containing all accesses of type @p AccessTy.
1093   ///
1094   /// Instead of a normal access of the form:
1095   ///
1096   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
1097   ///
1098   /// a tagged access has the form
1099   ///
1100   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
1101   ///
1102   /// where 'id' is an additional space that references the memory access that
1103   /// triggered the access.
1104   ///
1105   /// @param AccessTy The type of the memory accesses to collect.
1106   ///
1107   /// @return The relation describing all tagged memory accesses.
1108   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
1109     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace());
1110 
1111     for (auto &Stmt : *S)
1112       for (auto &Acc : Stmt)
1113         if (Acc->getType() == AccessTy) {
1114           isl_map *Relation = Acc->getAccessRelation();
1115           Relation = isl_map_intersect_domain(Relation, Stmt.getDomain());
1116 
1117           isl_space *Space = isl_map_get_space(Relation);
1118           Space = isl_space_range(Space);
1119           Space = isl_space_from_range(Space);
1120           Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
1121           isl_map *Universe = isl_map_universe(Space);
1122           Relation = isl_map_domain_product(Relation, Universe);
1123           Accesses = isl_union_map_add_map(Accesses, Relation);
1124         }
1125 
1126     return Accesses;
1127   }
1128 
1129   /// Get the set of all read accesses, tagged with the access id.
1130   ///
1131   /// @see getTaggedAccesses
1132   isl_union_map *getTaggedReads() {
1133     return getTaggedAccesses(MemoryAccess::READ);
1134   }
1135 
1136   /// Get the set of all may (and must) accesses, tagged with the access id.
1137   ///
1138   /// @see getTaggedAccesses
1139   isl_union_map *getTaggedMayWrites() {
1140     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
1141                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
1142   }
1143 
1144   /// Get the set of all must accesses, tagged with the access id.
1145   ///
1146   /// @see getTaggedAccesses
1147   isl_union_map *getTaggedMustWrites() {
1148     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
1149   }
1150 
1151   /// Collect parameter and array names as isl_ids.
1152   ///
1153   /// To reason about the different parameters and arrays used, ppcg requires
1154   /// a list of all isl_ids in use. As PPCG traditionally performs
1155   /// source-to-source compilation each of these isl_ids is mapped to the
1156   /// expression that represents it. As we do not have a corresponding
1157   /// expression in Polly, we just map each id to a 'zero' expression to match
1158   /// the data format that ppcg expects.
1159   ///
1160   /// @returns Retun a map from collected ids to 'zero' ast expressions.
1161   __isl_give isl_id_to_ast_expr *getNames() {
1162     auto *Names = isl_id_to_ast_expr_alloc(
1163         S->getIslCtx(),
1164         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
1165     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
1166     auto *Space = S->getParamSpace();
1167 
1168     for (int I = 0, E = S->getNumParams(); I < E; ++I) {
1169       isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I);
1170       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
1171     }
1172 
1173     for (auto &Array : S->arrays()) {
1174       auto Id = Array.second->getBasePtrId();
1175       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
1176     }
1177 
1178     isl_space_free(Space);
1179     isl_ast_expr_free(Zero);
1180 
1181     return Names;
1182   }
1183 
1184   /// Create a new PPCG scop from the current scop.
1185   ///
1186   /// The PPCG scop is initialized with data from the current polly::Scop. From
1187   /// this initial data, the data-dependences in the PPCG scop are initialized.
1188   /// We do not use Polly's dependence analysis for now, to ensure we match
1189   /// the PPCG default behaviour more closely.
1190   ///
1191   /// @returns A new ppcg scop.
1192   ppcg_scop *createPPCGScop() {
1193     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
1194 
1195     PPCGScop->options = createPPCGOptions();
1196 
1197     PPCGScop->start = 0;
1198     PPCGScop->end = 0;
1199 
1200     PPCGScop->context = S->getContext();
1201     PPCGScop->domain = S->getDomains();
1202     PPCGScop->call = nullptr;
1203     PPCGScop->tagged_reads = getTaggedReads();
1204     PPCGScop->reads = S->getReads();
1205     PPCGScop->live_in = nullptr;
1206     PPCGScop->tagged_may_writes = getTaggedMayWrites();
1207     PPCGScop->may_writes = S->getWrites();
1208     PPCGScop->tagged_must_writes = getTaggedMustWrites();
1209     PPCGScop->must_writes = S->getMustWrites();
1210     PPCGScop->live_out = nullptr;
1211     PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace());
1212     PPCGScop->tagger = nullptr;
1213 
1214     PPCGScop->independence = nullptr;
1215     PPCGScop->dep_flow = nullptr;
1216     PPCGScop->tagged_dep_flow = nullptr;
1217     PPCGScop->dep_false = nullptr;
1218     PPCGScop->dep_forced = nullptr;
1219     PPCGScop->dep_order = nullptr;
1220     PPCGScop->tagged_dep_order = nullptr;
1221 
1222     PPCGScop->schedule = S->getScheduleTree();
1223     PPCGScop->names = getNames();
1224 
1225     PPCGScop->pet = nullptr;
1226 
1227     compute_tagger(PPCGScop);
1228     compute_dependences(PPCGScop);
1229 
1230     return PPCGScop;
1231   }
1232 
1233   /// Collect the array acesses in a statement.
1234   ///
1235   /// @param Stmt The statement for which to collect the accesses.
1236   ///
1237   /// @returns A list of array accesses.
1238   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
1239     gpu_stmt_access *Accesses = nullptr;
1240 
1241     for (MemoryAccess *Acc : Stmt) {
1242       auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
1243       Access->read = Acc->isRead();
1244       Access->write = Acc->isWrite();
1245       Access->access = Acc->getAccessRelation();
1246       isl_space *Space = isl_map_get_space(Access->access);
1247       Space = isl_space_range(Space);
1248       Space = isl_space_from_range(Space);
1249       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
1250       isl_map *Universe = isl_map_universe(Space);
1251       Access->tagged_access =
1252           isl_map_domain_product(Acc->getAccessRelation(), Universe);
1253       Access->exact_write = Acc->isWrite();
1254       Access->ref_id = Acc->getId();
1255       Access->next = Accesses;
1256       Accesses = Access;
1257     }
1258 
1259     return Accesses;
1260   }
1261 
1262   /// Collect the list of GPU statements.
1263   ///
1264   /// Each statement has an id, a pointer to the underlying data structure,
1265   /// as well as a list with all memory accesses.
1266   ///
1267   /// TODO: Initialize the list of memory accesses.
1268   ///
1269   /// @returns A linked-list of statements.
1270   gpu_stmt *getStatements() {
1271     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
1272                                        std::distance(S->begin(), S->end()));
1273 
1274     int i = 0;
1275     for (auto &Stmt : *S) {
1276       gpu_stmt *GPUStmt = &Stmts[i];
1277 
1278       GPUStmt->id = Stmt.getDomainId();
1279 
1280       // We use the pet stmt pointer to keep track of the Polly statements.
1281       GPUStmt->stmt = (pet_stmt *)&Stmt;
1282       GPUStmt->accesses = getStmtAccesses(Stmt);
1283       i++;
1284     }
1285 
1286     return Stmts;
1287   }
1288 
1289   /// Derive the extent of an array.
1290   ///
1291   /// The extent of an array is defined by the set of memory locations for
1292   /// which a memory access in the iteration domain exists.
1293   ///
1294   /// @param Array The array to derive the extent for.
1295   ///
1296   /// @returns An isl_set describing the extent of the array.
1297   __isl_give isl_set *getExtent(ScopArrayInfo *Array) {
1298     isl_union_map *Accesses = S->getAccesses();
1299     Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains());
1300     isl_union_set *AccessUSet = isl_union_map_range(Accesses);
1301     isl_set *AccessSet =
1302         isl_union_set_extract_set(AccessUSet, Array->getSpace());
1303     isl_union_set_free(AccessUSet);
1304 
1305     return AccessSet;
1306   }
1307 
1308   /// Derive the bounds of an array.
1309   ///
1310   /// For the first dimension we derive the bound of the array from the extent
1311   /// of this dimension. For inner dimensions we obtain their size directly from
1312   /// ScopArrayInfo.
1313   ///
1314   /// @param PPCGArray The array to compute bounds for.
1315   /// @param Array The polly array from which to take the information.
1316   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
1317     if (PPCGArray.n_index > 0) {
1318       isl_set *Dom = isl_set_copy(PPCGArray.extent);
1319       Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
1320       isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
1321       isl_set_free(Dom);
1322       Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
1323       isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom));
1324       isl_aff *One = isl_aff_zero_on_domain(LS);
1325       One = isl_aff_add_constant_si(One, 1);
1326       Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
1327       Bound = isl_pw_aff_gist(Bound, S->getContext());
1328       PPCGArray.bound[0] = Bound;
1329     }
1330 
1331     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
1332       isl_pw_aff *Bound = Array->getDimensionSizePw(i);
1333       auto LS = isl_pw_aff_get_domain_space(Bound);
1334       auto Aff = isl_multi_aff_zero(LS);
1335       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
1336       PPCGArray.bound[i] = Bound;
1337     }
1338   }
1339 
1340   /// Create the arrays for @p PPCGProg.
1341   ///
1342   /// @param PPCGProg The program to compute the arrays for.
1343   void createArrays(gpu_prog *PPCGProg) {
1344     int i = 0;
1345     for (auto &Element : S->arrays()) {
1346       ScopArrayInfo *Array = Element.second.get();
1347 
1348       std::string TypeName;
1349       raw_string_ostream OS(TypeName);
1350 
1351       OS << *Array->getElementType();
1352       TypeName = OS.str();
1353 
1354       gpu_array_info &PPCGArray = PPCGProg->array[i];
1355 
1356       PPCGArray.space = Array->getSpace();
1357       PPCGArray.type = strdup(TypeName.c_str());
1358       PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8;
1359       PPCGArray.name = strdup(Array->getName().c_str());
1360       PPCGArray.extent = nullptr;
1361       PPCGArray.n_index = Array->getNumberOfDimensions();
1362       PPCGArray.bound =
1363           isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index);
1364       PPCGArray.extent = getExtent(Array);
1365       PPCGArray.n_ref = 0;
1366       PPCGArray.refs = nullptr;
1367       PPCGArray.accessed = true;
1368       PPCGArray.read_only_scalar = false;
1369       PPCGArray.has_compound_element = false;
1370       PPCGArray.local = false;
1371       PPCGArray.declare_local = false;
1372       PPCGArray.global = false;
1373       PPCGArray.linearize = false;
1374       PPCGArray.dep_order = nullptr;
1375       PPCGArray.user = Array;
1376 
1377       setArrayBounds(PPCGArray, Array);
1378       i++;
1379 
1380       collect_references(PPCGProg, &PPCGArray);
1381     }
1382   }
1383 
1384   /// Create an identity map between the arrays in the scop.
1385   ///
1386   /// @returns An identity map between the arrays in the scop.
1387   isl_union_map *getArrayIdentity() {
1388     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace());
1389 
1390     for (auto &Item : S->arrays()) {
1391       ScopArrayInfo *Array = Item.second.get();
1392       isl_space *Space = Array->getSpace();
1393       Space = isl_space_map_from_set(Space);
1394       isl_map *Identity = isl_map_identity(Space);
1395       Maps = isl_union_map_add_map(Maps, Identity);
1396     }
1397 
1398     return Maps;
1399   }
1400 
1401   /// Create a default-initialized PPCG GPU program.
1402   ///
1403   /// @returns A new gpu grogram description.
1404   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
1405 
1406     if (!PPCGScop)
1407       return nullptr;
1408 
1409     auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
1410 
1411     PPCGProg->ctx = S->getIslCtx();
1412     PPCGProg->scop = PPCGScop;
1413     PPCGProg->context = isl_set_copy(PPCGScop->context);
1414     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
1415     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
1416     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
1417     PPCGProg->tagged_must_kill =
1418         isl_union_map_copy(PPCGScop->tagged_must_kills);
1419     PPCGProg->to_inner = getArrayIdentity();
1420     PPCGProg->to_outer = getArrayIdentity();
1421     PPCGProg->may_persist = compute_may_persist(PPCGProg);
1422     PPCGProg->any_to_outer = nullptr;
1423     PPCGProg->array_order = nullptr;
1424     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
1425     PPCGProg->stmts = getStatements();
1426     PPCGProg->n_array = std::distance(S->array_begin(), S->array_end());
1427     PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
1428                                        PPCGProg->n_array);
1429 
1430     createArrays(PPCGProg);
1431 
1432     return PPCGProg;
1433   }
1434 
1435   struct PrintGPUUserData {
1436     struct cuda_info *CudaInfo;
1437     struct gpu_prog *PPCGProg;
1438     std::vector<ppcg_kernel *> Kernels;
1439   };
1440 
1441   /// Print a user statement node in the host code.
1442   ///
1443   /// We use ppcg's printing facilities to print the actual statement and
1444   /// additionally build up a list of all kernels that are encountered in the
1445   /// host ast.
1446   ///
1447   /// @param P The printer to print to
1448   /// @param Options The printing options to use
1449   /// @param Node The node to print
1450   /// @param User A user pointer to carry additional data. This pointer is
1451   ///             expected to be of type PrintGPUUserData.
1452   ///
1453   /// @returns A printer to which the output has been printed.
1454   static __isl_give isl_printer *
1455   printHostUser(__isl_take isl_printer *P,
1456                 __isl_take isl_ast_print_options *Options,
1457                 __isl_take isl_ast_node *Node, void *User) {
1458     auto Data = (struct PrintGPUUserData *)User;
1459     auto Id = isl_ast_node_get_annotation(Node);
1460 
1461     if (Id) {
1462       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
1463 
1464       // If this is a user statement, format it ourselves as ppcg would
1465       // otherwise try to call pet functionality that is not available in
1466       // Polly.
1467       if (IsUser) {
1468         P = isl_printer_start_line(P);
1469         P = isl_printer_print_ast_node(P, Node);
1470         P = isl_printer_end_line(P);
1471         isl_id_free(Id);
1472         isl_ast_print_options_free(Options);
1473         return P;
1474       }
1475 
1476       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
1477       isl_id_free(Id);
1478       Data->Kernels.push_back(Kernel);
1479     }
1480 
1481     return print_host_user(P, Options, Node, User);
1482   }
1483 
1484   /// Print C code corresponding to the control flow in @p Kernel.
1485   ///
1486   /// @param Kernel The kernel to print
1487   void printKernel(ppcg_kernel *Kernel) {
1488     auto *P = isl_printer_to_str(S->getIslCtx());
1489     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
1490     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
1491     P = isl_ast_node_print(Kernel->tree, P, Options);
1492     char *String = isl_printer_get_str(P);
1493     printf("%s\n", String);
1494     free(String);
1495     isl_printer_free(P);
1496   }
1497 
1498   /// Print C code corresponding to the GPU code described by @p Tree.
1499   ///
1500   /// @param Tree An AST describing GPU code
1501   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
1502   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
1503     auto *P = isl_printer_to_str(S->getIslCtx());
1504     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
1505 
1506     PrintGPUUserData Data;
1507     Data.PPCGProg = PPCGProg;
1508 
1509     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
1510     Options =
1511         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
1512     P = isl_ast_node_print(Tree, P, Options);
1513     char *String = isl_printer_get_str(P);
1514     printf("# host\n");
1515     printf("%s\n", String);
1516     free(String);
1517     isl_printer_free(P);
1518 
1519     for (auto Kernel : Data.Kernels) {
1520       printf("# kernel%d\n", Kernel->id);
1521       printKernel(Kernel);
1522     }
1523   }
1524 
1525   // Generate a GPU program using PPCG.
1526   //
1527   // GPU mapping consists of multiple steps:
1528   //
1529   //  1) Compute new schedule for the program.
1530   //  2) Map schedule to GPU (TODO)
1531   //  3) Generate code for new schedule (TODO)
1532   //
1533   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
1534   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
1535   // strategy directly from this pass.
1536   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
1537 
1538     auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
1539 
1540     PPCGGen->ctx = S->getIslCtx();
1541     PPCGGen->options = PPCGScop->options;
1542     PPCGGen->print = nullptr;
1543     PPCGGen->print_user = nullptr;
1544     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
1545     PPCGGen->prog = PPCGProg;
1546     PPCGGen->tree = nullptr;
1547     PPCGGen->types.n = 0;
1548     PPCGGen->types.name = nullptr;
1549     PPCGGen->sizes = nullptr;
1550     PPCGGen->used_sizes = nullptr;
1551     PPCGGen->kernel_id = 0;
1552 
1553     // Set scheduling strategy to same strategy PPCG is using.
1554     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
1555     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
1556     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
1557 
1558     isl_schedule *Schedule = get_schedule(PPCGGen);
1559 
1560     int has_permutable = has_any_permutable_node(Schedule);
1561 
1562     if (!has_permutable || has_permutable < 0) {
1563       Schedule = isl_schedule_free(Schedule);
1564     } else {
1565       Schedule = map_to_device(PPCGGen, Schedule);
1566       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
1567     }
1568 
1569     if (DumpSchedule) {
1570       isl_printer *P = isl_printer_to_str(S->getIslCtx());
1571       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
1572       P = isl_printer_print_str(P, "Schedule\n");
1573       P = isl_printer_print_str(P, "========\n");
1574       if (Schedule)
1575         P = isl_printer_print_schedule(P, Schedule);
1576       else
1577         P = isl_printer_print_str(P, "No schedule found\n");
1578 
1579       printf("%s\n", isl_printer_get_str(P));
1580       isl_printer_free(P);
1581     }
1582 
1583     if (DumpCode) {
1584       printf("Code\n");
1585       printf("====\n");
1586       if (PPCGGen->tree)
1587         printGPUTree(PPCGGen->tree, PPCGProg);
1588       else
1589         printf("No code generated\n");
1590     }
1591 
1592     isl_schedule_free(Schedule);
1593 
1594     return PPCGGen;
1595   }
1596 
1597   /// Free gpu_gen structure.
1598   ///
1599   /// @param PPCGGen The ppcg_gen object to free.
1600   void freePPCGGen(gpu_gen *PPCGGen) {
1601     isl_ast_node_free(PPCGGen->tree);
1602     isl_union_map_free(PPCGGen->sizes);
1603     isl_union_map_free(PPCGGen->used_sizes);
1604     free(PPCGGen);
1605   }
1606 
1607   /// Free the options in the ppcg scop structure.
1608   ///
1609   /// ppcg is not freeing these options for us. To avoid leaks we do this
1610   /// ourselves.
1611   ///
1612   /// @param PPCGScop The scop referencing the options to free.
1613   void freeOptions(ppcg_scop *PPCGScop) {
1614     free(PPCGScop->options->debug);
1615     PPCGScop->options->debug = nullptr;
1616     free(PPCGScop->options);
1617     PPCGScop->options = nullptr;
1618   }
1619 
1620   /// Generate code for a given GPU AST described by @p Root.
1621   ///
1622   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
1623   /// @param Prog The GPU Program to generate code for.
1624   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
1625     ScopAnnotator Annotator;
1626     Annotator.buildAliasScopes(*S);
1627 
1628     Region *R = &S->getRegion();
1629 
1630     simplifyRegion(R, DT, LI, RI);
1631 
1632     BasicBlock *EnteringBB = R->getEnteringBlock();
1633 
1634     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
1635 
1636     GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S,
1637                                Prog);
1638 
1639     // Only build the run-time condition and parameters _after_ having
1640     // introduced the conditional branch. This is important as the conditional
1641     // branch will guard the original scop from new induction variables that
1642     // the SCEVExpander may introduce while code generating the parameters and
1643     // which may introduce scalar dependences that prevent us from correctly
1644     // code generating this scop.
1645     BasicBlock *StartBlock =
1646         executeScopConditionally(*S, this, Builder.getTrue());
1647 
1648     // TODO: Handle LICM
1649     // TODO: Verify run-time checks
1650     auto SplitBlock = StartBlock->getSinglePredecessor();
1651     Builder.SetInsertPoint(SplitBlock->getTerminator());
1652     NodeBuilder.addParameters(S->getContext());
1653     Builder.SetInsertPoint(&*StartBlock->begin());
1654 
1655     NodeBuilder.initializeAfterRTH();
1656     NodeBuilder.create(Root);
1657     NodeBuilder.finalize();
1658   }
1659 
1660   bool runOnScop(Scop &CurrentScop) override {
1661     S = &CurrentScop;
1662     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1663     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1664     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1665     DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout();
1666     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
1667 
1668     // We currently do not support scops with invariant loads.
1669     if (S->hasInvariantAccesses())
1670       return false;
1671 
1672     auto PPCGScop = createPPCGScop();
1673     auto PPCGProg = createPPCGProg(PPCGScop);
1674     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
1675 
1676     if (PPCGGen->tree)
1677       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
1678 
1679     freeOptions(PPCGScop);
1680     freePPCGGen(PPCGGen);
1681     gpu_prog_free(PPCGProg);
1682     ppcg_scop_free(PPCGScop);
1683 
1684     return true;
1685   }
1686 
1687   void printScop(raw_ostream &, Scop &) const override {}
1688 
1689   void getAnalysisUsage(AnalysisUsage &AU) const override {
1690     AU.addRequired<DominatorTreeWrapperPass>();
1691     AU.addRequired<RegionInfoPass>();
1692     AU.addRequired<ScalarEvolutionWrapperPass>();
1693     AU.addRequired<ScopDetection>();
1694     AU.addRequired<ScopInfoRegionPass>();
1695     AU.addRequired<LoopInfoWrapperPass>();
1696 
1697     AU.addPreserved<AAResultsWrapperPass>();
1698     AU.addPreserved<BasicAAWrapperPass>();
1699     AU.addPreserved<LoopInfoWrapperPass>();
1700     AU.addPreserved<DominatorTreeWrapperPass>();
1701     AU.addPreserved<GlobalsAAWrapperPass>();
1702     AU.addPreserved<PostDominatorTreeWrapperPass>();
1703     AU.addPreserved<ScopDetection>();
1704     AU.addPreserved<ScalarEvolutionWrapperPass>();
1705     AU.addPreserved<SCEVAAWrapperPass>();
1706 
1707     // FIXME: We do not yet add regions for the newly generated code to the
1708     //        region tree.
1709     AU.addPreserved<RegionInfoPass>();
1710     AU.addPreserved<ScopInfoRegionPass>();
1711   }
1712 };
1713 }
1714 
1715 char PPCGCodeGeneration::ID = 1;
1716 
1717 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); }
1718 
1719 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
1720                       "Polly - Apply PPCG translation to SCOP", false, false)
1721 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
1722 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1723 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1724 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1725 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1726 INITIALIZE_PASS_DEPENDENCY(ScopDetection);
1727 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
1728                     "Polly - Apply PPCG translation to SCOP", false, false)
1729