1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/PPCGCodeGeneration.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslNodeBuilder.h"
19 #include "polly/CodeGen/PerfMonitor.h"
20 #include "polly/CodeGen/Utils.h"
21 #include "polly/DependenceInfo.h"
22 #include "polly/LinkAllPasses.h"
23 #include "polly/Options.h"
24 #include "polly/ScopDetection.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/SCEVValidator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/BasicAliasAnalysis.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/LegacyPassManager.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/IRReader/IRReader.h"
37 #include "llvm/Linker/Linker.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/TargetSelect.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 
44 #include "isl/union_map.h"
45 
46 extern "C" {
47 #include "ppcg/cuda.h"
48 #include "ppcg/gpu.h"
49 #include "ppcg/gpu_print.h"
50 #include "ppcg/ppcg.h"
51 #include "ppcg/schedule.h"
52 }
53 
54 #include "llvm/Support/Debug.h"
55 
56 using namespace polly;
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "polly-codegen-ppcg"
60 
61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
62                                   cl::desc("Dump the computed GPU Schedule"),
63                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
64                                   cl::cat(PollyCategory));
65 
66 static cl::opt<bool>
67     DumpCode("polly-acc-dump-code",
68              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
69              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
70 
71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
72                                   cl::desc("Dump the kernel LLVM-IR"),
73                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
74                                   cl::cat(PollyCategory));
75 
76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
77                                    cl::desc("Dump the kernel assembly code"),
78                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
79                                    cl::cat(PollyCategory));
80 
81 static cl::opt<bool> FastMath("polly-acc-fastmath",
82                               cl::desc("Allow unsafe math optimizations"),
83                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
84                               cl::cat(PollyCategory));
85 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
86                                   cl::desc("Use shared memory"), cl::Hidden,
87                                   cl::init(false), cl::ZeroOrMore,
88                                   cl::cat(PollyCategory));
89 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
90                                    cl::desc("Use private memory"), cl::Hidden,
91                                    cl::init(false), cl::ZeroOrMore,
92                                    cl::cat(PollyCategory));
93 
94 bool polly::PollyManagedMemory;
95 static cl::opt<bool, true>
96     XManagedMemory("polly-acc-codegen-managed-memory",
97                    cl::desc("Generate Host kernel code assuming"
98                             " that all memory has been"
99                             " declared as managed memory"),
100                    cl::location(PollyManagedMemory), cl::Hidden,
101                    cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
102 
103 static cl::opt<bool>
104     FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
105                               cl::desc("Fail and generate a backtrace if"
106                                        " verifyModule fails on the GPU "
107                                        " kernel module."),
108                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
109                               cl::cat(PollyCategory));
110 
111 static cl::opt<std::string> CUDALibDevice(
112     "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
113     cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
114     cl::ZeroOrMore, cl::cat(PollyCategory));
115 
116 static cl::opt<std::string>
117     CudaVersion("polly-acc-cuda-version",
118                 cl::desc("The CUDA version to compile for"), cl::Hidden,
119                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
120 
121 static cl::opt<int>
122     MinCompute("polly-acc-mincompute",
123                cl::desc("Minimal number of compute statements to run on GPU."),
124                cl::Hidden, cl::init(10 * 512 * 512));
125 
126 extern bool polly::PerfMonitoring;
127 
128 /// Return  a unique name for a Scop, which is the scop region with the
129 /// function name.
130 std::string getUniqueScopName(const Scop *S) {
131   return "Scop Region: " + S->getNameStr() +
132          " | Function: " + std::string(S->getFunction().getName());
133 }
134 
135 /// Used to store information PPCG wants for kills. This information is
136 /// used by live range reordering.
137 ///
138 /// @see computeLiveRangeReordering
139 /// @see GPUNodeBuilder::createPPCGScop
140 /// @see GPUNodeBuilder::createPPCGProg
141 struct MustKillsInfo {
142   /// Collection of all kill statements that will be sequenced at the end of
143   /// PPCGScop->schedule.
144   ///
145   /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
146   /// which merges schedules in *arbitrary* order.
147   /// (we don't care about the order of the kills anyway).
148   isl::schedule KillsSchedule;
149   /// Map from kill statement instances to scalars that need to be
150   /// killed.
151   ///
152   /// We currently derive kill information for:
153   ///  1. phi nodes. PHI nodes are not alive outside the scop and can
154   ///     consequently all be killed.
155   ///  2. Scalar arrays that are not used outside the Scop. This is
156   ///     checked by `isScalarUsesContainedInScop`.
157   /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
158   isl::union_map TaggedMustKills;
159 
160   /// Tagged must kills stripped of the tags.
161   /// [params] -> { Stmt_phantom[]  -> scalar_to_kill[] }
162   isl::union_map MustKills;
163 
164   MustKillsInfo() : KillsSchedule(nullptr) {}
165 };
166 
167 /// Check if SAI's uses are entirely contained within Scop S.
168 /// If a scalar is used only with a Scop, we are free to kill it, as no data
169 /// can flow in/out of the value any more.
170 /// @see computeMustKillsInfo
171 static bool isScalarUsesContainedInScop(const Scop &S,
172                                         const ScopArrayInfo *SAI) {
173   assert(SAI->isValueKind() && "this function only deals with scalars."
174                                " Dealing with arrays required alias analysis");
175 
176   const Region &R = S.getRegion();
177   for (User *U : SAI->getBasePtr()->users()) {
178     Instruction *I = dyn_cast<Instruction>(U);
179     assert(I && "invalid user of scop array info");
180     if (!R.contains(I))
181       return false;
182   }
183   return true;
184 }
185 
186 /// Compute must-kills needed to enable live range reordering with PPCG.
187 ///
188 /// @params S The Scop to compute live range reordering information
189 /// @returns live range reordering information that can be used to setup
190 /// PPCG.
191 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
192   const isl::space ParamSpace = S.getParamSpace();
193   MustKillsInfo Info;
194 
195   // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
196   //      1.1 phi nodes in scop.
197   //      1.2 scalars that are only used within the scop
198   SmallVector<isl::id, 4> KillMemIds;
199   for (ScopArrayInfo *SAI : S.arrays()) {
200     if (SAI->isPHIKind() ||
201         (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
202       KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
203   }
204 
205   Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
206   Info.MustKills = isl::union_map::empty(ParamSpace);
207 
208   // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
209   // schedule:
210   //     - filter: "[control] -> { }"
211   // So, we choose to not create this to keep the output a little nicer,
212   // at the cost of some code complexity.
213   Info.KillsSchedule = nullptr;
214 
215   for (isl::id &ToKillId : KillMemIds) {
216     isl::id KillStmtId = isl::id::alloc(
217         S.getIslCtx(),
218         std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
219 
220     // NOTE: construction of tagged_must_kill:
221     // 2. We need to construct a map:
222     //     [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
223     // To construct this, we use `isl_map_domain_product` on 2 maps`:
224     // 2a. StmtToScalar:
225     //         [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
226     // 2b. PhantomRefToScalar:
227     //         [param] -> { ref_phantom[] -> scalar_to_kill[] }
228     //
229     // Combining these with `isl_map_domain_product` gives us
230     // TaggedMustKill:
231     //     [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
232 
233     // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
234     isl::map StmtToScalar = isl::map::universe(ParamSpace);
235     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
236     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
237 
238     isl::id PhantomRefId = isl::id::alloc(
239         S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
240         nullptr);
241 
242     // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
243     isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
244     PhantomRefToScalar =
245         PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
246     PhantomRefToScalar =
247         PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
248 
249     // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
250     isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
251     Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
252 
253     // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
254     Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
255 
256     // 3. Create the kill schedule of the form:
257     //     "[param] -> { Stmt_phantom[] }"
258     // Then add this to Info.KillsSchedule.
259     isl::space KillStmtSpace = ParamSpace;
260     KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
261     isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
262 
263     isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
264     if (Info.KillsSchedule)
265       Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule);
266     else
267       Info.KillsSchedule = KillSchedule;
268   }
269 
270   return Info;
271 }
272 
273 /// Create the ast expressions for a ScopStmt.
274 ///
275 /// This function is a callback for to generate the ast expressions for each
276 /// of the scheduled ScopStmts.
277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
278     void *StmtT, __isl_take isl_ast_build *Build_C,
279     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
280                                        isl_id *Id, void *User),
281     void *UserIndex,
282     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
283     void *UserExpr) {
284 
285   ScopStmt *Stmt = (ScopStmt *)StmtT;
286 
287   if (!Stmt || !Build_C)
288     return NULL;
289 
290   isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C));
291   isl::ctx Ctx = Build.get_ctx();
292   isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
293 
294   Stmt->setAstBuild(Build);
295 
296   for (MemoryAccess *Acc : *Stmt) {
297     isl::map AddrFunc = Acc->getAddressFunction();
298     AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
299 
300     isl::id RefId = Acc->getId();
301     isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
302 
303     isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
304     MPA = MPA.coalesce();
305     MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
306 
307     isl::ast_expr Access = Build.access_from(MPA);
308     Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
309     RefToExpr = RefToExpr.set(RefId, Access);
310   }
311 
312   return RefToExpr.release();
313 }
314 
315 /// Given a LLVM Type, compute its size in bytes,
316 static int computeSizeInBytes(const Type *T) {
317   int bytes = T->getPrimitiveSizeInBits() / 8;
318   if (bytes == 0)
319     bytes = T->getScalarSizeInBits() / 8;
320   return bytes;
321 }
322 
323 /// Generate code for a GPU specific isl AST.
324 ///
325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
326 /// generates code for general-purpose AST nodes, with special functionality
327 /// for generating GPU specific user nodes.
328 ///
329 /// @see GPUNodeBuilder::createUser
330 class GPUNodeBuilder : public IslNodeBuilder {
331 public:
332   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
333                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
334                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
335                  gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
336       : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
337         Prog(Prog), Runtime(Runtime), Arch(Arch) {
338     getExprBuilder().setIDToSAI(&IDToSAI);
339   }
340 
341   /// Create after-run-time-check initialization code.
342   void initializeAfterRTH();
343 
344   /// Finalize the generated scop.
345   virtual void finalize();
346 
347   /// Track if the full build process was successful.
348   ///
349   /// This value is set to false, if throughout the build process an error
350   /// occurred which prevents us from generating valid GPU code.
351   bool BuildSuccessful = true;
352 
353   /// The maximal number of loops surrounding a sequential kernel.
354   unsigned DeepestSequential = 0;
355 
356   /// The maximal number of loops surrounding a parallel kernel.
357   unsigned DeepestParallel = 0;
358 
359   /// Return the name to set for the ptx_kernel.
360   std::string getKernelFuncName(int Kernel_id);
361 
362 private:
363   /// A vector of array base pointers for which a new ScopArrayInfo was created.
364   ///
365   /// This vector is used to delete the ScopArrayInfo when it is not needed any
366   /// more.
367   std::vector<Value *> LocalArrays;
368 
369   /// A map from ScopArrays to their corresponding device allocations.
370   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
371 
372   /// The current GPU context.
373   Value *GPUContext;
374 
375   /// The set of isl_ids allocated in the kernel
376   std::vector<isl_id *> KernelIds;
377 
378   /// A module containing GPU code.
379   ///
380   /// This pointer is only set in case we are currently generating GPU code.
381   std::unique_ptr<Module> GPUModule;
382 
383   /// The GPU program we generate code for.
384   gpu_prog *Prog;
385 
386   /// The GPU Runtime implementation to use (OpenCL or CUDA).
387   GPURuntime Runtime;
388 
389   /// The GPU Architecture to target.
390   GPUArch Arch;
391 
392   /// Class to free isl_ids.
393   class IslIdDeleter {
394   public:
395     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
396   };
397 
398   /// A set containing all isl_ids allocated in a GPU kernel.
399   ///
400   /// By releasing this set all isl_ids will be freed.
401   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
402 
403   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
404 
405   /// Create code for user-defined AST nodes.
406   ///
407   /// These AST nodes can be of type:
408   ///
409   ///   - ScopStmt:      A computational statement (TODO)
410   ///   - Kernel:        A GPU kernel call (TODO)
411   ///   - Data-Transfer: A GPU <-> CPU data-transfer
412   ///   - In-kernel synchronization
413   ///   - In-kernel memory copy statement
414   ///
415   /// @param UserStmt The ast node to generate code for.
416   virtual void createUser(__isl_take isl_ast_node *UserStmt);
417 
418   virtual void createFor(__isl_take isl_ast_node *Node);
419 
420   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
421 
422   /// Create code for a data transfer statement
423   ///
424   /// @param TransferStmt The data transfer statement.
425   /// @param Direction The direction in which to transfer data.
426   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
427                           enum DataDirection Direction);
428 
429   /// Find llvm::Values referenced in GPU kernel.
430   ///
431   /// @param Kernel The kernel to scan for llvm::Values
432   ///
433   /// @returns A tuple, whose:
434   ///          - First element contains the set of values referenced by the
435   ///            kernel
436   ///          - Second element contains the set of functions referenced by the
437   ///             kernel. All functions in the set satisfy
438   ///             `isValidFunctionInKernel`.
439   ///          - Third element contains loops that have induction variables
440   ///            which are used in the kernel, *and* these loops are *neither*
441   ///            in the scop, nor do they immediately surroung the Scop.
442   ///            See [Code generation of induction variables of loops outside
443   ///            Scops]
444   std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
445              isl::space>
446   getReferencesInKernel(ppcg_kernel *Kernel);
447 
448   /// Compute the sizes of the execution grid for a given kernel.
449   ///
450   /// @param Kernel The kernel to compute grid sizes for.
451   ///
452   /// @returns A tuple with grid sizes for X and Y dimension
453   std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
454 
455   /// Get the managed array pointer for sending host pointers to the device.
456   /// \note
457   /// This is to be used only with managed memory
458   Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
459 
460   /// Compute the sizes of the thread blocks for a given kernel.
461   ///
462   /// @param Kernel The kernel to compute thread block sizes for.
463   ///
464   /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
465   std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
466 
467   /// Store a specific kernel launch parameter in the array of kernel launch
468   /// parameters.
469   ///
470   /// @param Parameters The list of parameters in which to store.
471   /// @param Param      The kernel launch parameter to store.
472   /// @param Index      The index in the parameter list, at which to store the
473   ///                   parameter.
474   void insertStoreParameter(Instruction *Parameters, Instruction *Param,
475                             int Index);
476 
477   /// Create kernel launch parameters.
478   ///
479   /// @param Kernel        The kernel to create parameters for.
480   /// @param F             The kernel function that has been created.
481   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
482   ///
483   /// @returns A stack allocated array with pointers to the parameter
484   ///          values that are passed to the kernel.
485   Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
486                                 SetVector<Value *> SubtreeValues);
487 
488   /// Create declarations for kernel variable.
489   ///
490   /// This includes shared memory declarations.
491   ///
492   /// @param Kernel        The kernel definition to create variables for.
493   /// @param FN            The function into which to generate the variables.
494   void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
495 
496   /// Add CUDA annotations to module.
497   ///
498   /// Add a set of CUDA annotations that declares the maximal block dimensions
499   /// that will be used to execute the CUDA kernel. This allows the NVIDIA
500   /// PTX compiler to bound the number of allocated registers to ensure the
501   /// resulting kernel is known to run with up to as many block dimensions
502   /// as specified here.
503   ///
504   /// @param M         The module to add the annotations to.
505   /// @param BlockDimX The size of block dimension X.
506   /// @param BlockDimY The size of block dimension Y.
507   /// @param BlockDimZ The size of block dimension Z.
508   void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
509                           Value *BlockDimZ);
510 
511   /// Create GPU kernel.
512   ///
513   /// Code generate the kernel described by @p KernelStmt.
514   ///
515   /// @param KernelStmt The ast node to generate kernel code for.
516   void createKernel(__isl_take isl_ast_node *KernelStmt);
517 
518   /// Generate code that computes the size of an array.
519   ///
520   /// @param Array The array for which to compute a size.
521   Value *getArraySize(gpu_array_info *Array);
522 
523   /// Generate code to compute the minimal offset at which an array is accessed.
524   ///
525   /// The offset of an array is the minimal array location accessed in a scop.
526   ///
527   /// Example:
528   ///
529   ///   for (long i = 0; i < 100; i++)
530   ///     A[i + 42] += ...
531   ///
532   ///   getArrayOffset(A) results in 42.
533   ///
534   /// @param Array The array for which to compute the offset.
535   /// @returns An llvm::Value that contains the offset of the array.
536   Value *getArrayOffset(gpu_array_info *Array);
537 
538   /// Prepare the kernel arguments for kernel code generation
539   ///
540   /// @param Kernel The kernel to generate code for.
541   /// @param FN     The function created for the kernel.
542   void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
543 
544   /// Create kernel function.
545   ///
546   /// Create a kernel function located in a newly created module that can serve
547   /// as target for device code generation. Set the Builder to point to the
548   /// start block of this newly created function.
549   ///
550   /// @param Kernel The kernel to generate code for.
551   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
552   /// @param SubtreeFunctions The set of llvm::Functions referenced by this
553   ///                         kernel.
554   void createKernelFunction(ppcg_kernel *Kernel,
555                             SetVector<Value *> &SubtreeValues,
556                             SetVector<Function *> &SubtreeFunctions);
557 
558   /// Create the declaration of a kernel function.
559   ///
560   /// The kernel function takes as arguments:
561   ///
562   ///   - One i8 pointer for each external array reference used in the kernel.
563   ///   - Host iterators
564   ///   - Parameters
565   ///   - Other LLVM Value references (TODO)
566   ///
567   /// @param Kernel The kernel to generate the function declaration for.
568   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
569   ///
570   /// @returns The newly declared function.
571   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
572                                      SetVector<Value *> &SubtreeValues);
573 
574   /// Insert intrinsic functions to obtain thread and block ids.
575   ///
576   /// @param The kernel to generate the intrinsic functions for.
577   void insertKernelIntrinsics(ppcg_kernel *Kernel);
578 
579   /// Insert function calls to retrieve the SPIR group/local ids.
580   ///
581   /// @param The kernel to generate the function calls for.
582   void insertKernelCallsSPIR(ppcg_kernel *Kernel);
583 
584   /// Setup the creation of functions referenced by the GPU kernel.
585   ///
586   /// 1. Create new function declarations in GPUModule which are the same as
587   /// SubtreeFunctions.
588   ///
589   /// 2. Populate IslNodeBuilder::ValueMap with mappings from
590   /// old functions (that come from the original module) to new functions
591   /// (that are created within GPUModule). That way, we generate references
592   /// to the correct function (in GPUModule) in BlockGenerator.
593   ///
594   /// @see IslNodeBuilder::ValueMap
595   /// @see BlockGenerator::GlobalMap
596   /// @see BlockGenerator::getNewValue
597   /// @see GPUNodeBuilder::getReferencesInKernel.
598   ///
599   /// @param SubtreeFunctions The set of llvm::Functions referenced by
600   ///                         this kernel.
601   void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
602 
603   /// Create a global-to-shared or shared-to-global copy statement.
604   ///
605   /// @param CopyStmt The copy statement to generate code for
606   void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
607 
608   /// Create code for a ScopStmt called in @p Expr.
609   ///
610   /// @param Expr The expression containing the call.
611   /// @param KernelStmt The kernel statement referenced in the call.
612   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
613 
614   /// Create an in-kernel synchronization call.
615   void createKernelSync();
616 
617   /// Create a PTX assembly string for the current GPU kernel.
618   ///
619   /// @returns A string containing the corresponding PTX assembly code.
620   std::string createKernelASM();
621 
622   /// Remove references from the dominator tree to the kernel function @p F.
623   ///
624   /// @param F The function to remove references to.
625   void clearDominators(Function *F);
626 
627   /// Remove references from scalar evolution to the kernel function @p F.
628   ///
629   /// @param F The function to remove references to.
630   void clearScalarEvolution(Function *F);
631 
632   /// Remove references from loop info to the kernel function @p F.
633   ///
634   /// @param F The function to remove references to.
635   void clearLoops(Function *F);
636 
637   /// Check if the scop requires to be linked with CUDA's libdevice.
638   bool requiresCUDALibDevice();
639 
640   /// Link with the NVIDIA libdevice library (if needed and available).
641   void addCUDALibDevice();
642 
643   /// Finalize the generation of the kernel function.
644   ///
645   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
646   /// dump its IR to stderr.
647   ///
648   /// @returns The Assembly string of the kernel.
649   std::string finalizeKernelFunction();
650 
651   /// Finalize the generation of the kernel arguments.
652   ///
653   /// This function ensures that not-read-only scalars used in a kernel are
654   /// stored back to the global memory location they are backed with before
655   /// the kernel terminates.
656   ///
657   /// @params Kernel The kernel to finalize kernel arguments for.
658   void finalizeKernelArguments(ppcg_kernel *Kernel);
659 
660   /// Create code that allocates memory to store arrays on device.
661   void allocateDeviceArrays();
662 
663   /// Create code to prepare the managed device pointers.
664   void prepareManagedDeviceArrays();
665 
666   /// Free all allocated device arrays.
667   void freeDeviceArrays();
668 
669   /// Create a call to initialize the GPU context.
670   ///
671   /// @returns A pointer to the newly initialized context.
672   Value *createCallInitContext();
673 
674   /// Create a call to get the device pointer for a kernel allocation.
675   ///
676   /// @param Allocation The Polly GPU allocation
677   ///
678   /// @returns The device parameter corresponding to this allocation.
679   Value *createCallGetDevicePtr(Value *Allocation);
680 
681   /// Create a call to free the GPU context.
682   ///
683   /// @param Context A pointer to an initialized GPU context.
684   void createCallFreeContext(Value *Context);
685 
686   /// Create a call to allocate memory on the device.
687   ///
688   /// @param Size The size of memory to allocate
689   ///
690   /// @returns A pointer that identifies this allocation.
691   Value *createCallAllocateMemoryForDevice(Value *Size);
692 
693   /// Create a call to free a device array.
694   ///
695   /// @param Array The device array to free.
696   void createCallFreeDeviceMemory(Value *Array);
697 
698   /// Create a call to copy data from host to device.
699   ///
700   /// @param HostPtr A pointer to the host data that should be copied.
701   /// @param DevicePtr A device pointer specifying the location to copy to.
702   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
703                                       Value *Size);
704 
705   /// Create a call to copy data from device to host.
706   ///
707   /// @param DevicePtr A pointer to the device data that should be copied.
708   /// @param HostPtr A host pointer specifying the location to copy to.
709   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
710                                       Value *Size);
711 
712   /// Create a call to synchronize Host & Device.
713   /// \note
714   /// This is to be used only with managed memory.
715   void createCallSynchronizeDevice();
716 
717   /// Create a call to get a kernel from an assembly string.
718   ///
719   /// @param Buffer The string describing the kernel.
720   /// @param Entry  The name of the kernel function to call.
721   ///
722   /// @returns A pointer to a kernel object
723   Value *createCallGetKernel(Value *Buffer, Value *Entry);
724 
725   /// Create a call to free a GPU kernel.
726   ///
727   /// @param GPUKernel THe kernel to free.
728   void createCallFreeKernel(Value *GPUKernel);
729 
730   /// Create a call to launch a GPU kernel.
731   ///
732   /// @param GPUKernel  The kernel to launch.
733   /// @param GridDimX   The size of the first grid dimension.
734   /// @param GridDimY   The size of the second grid dimension.
735   /// @param GridBlockX The size of the first block dimension.
736   /// @param GridBlockY The size of the second block dimension.
737   /// @param GridBlockZ The size of the third block dimension.
738   /// @param Parameters A pointer to an array that contains itself pointers to
739   ///                   the parameter values passed for each kernel argument.
740   void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
741                               Value *GridDimY, Value *BlockDimX,
742                               Value *BlockDimY, Value *BlockDimZ,
743                               Value *Parameters);
744 };
745 
746 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
747   return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
748          std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
749 }
750 
751 void GPUNodeBuilder::initializeAfterRTH() {
752   BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
753                                  &*Builder.GetInsertPoint(), &DT, &LI);
754   NewBB->setName("polly.acc.initialize");
755   Builder.SetInsertPoint(&NewBB->front());
756 
757   GPUContext = createCallInitContext();
758 
759   if (!PollyManagedMemory)
760     allocateDeviceArrays();
761   else
762     prepareManagedDeviceArrays();
763 }
764 
765 void GPUNodeBuilder::finalize() {
766   if (!PollyManagedMemory)
767     freeDeviceArrays();
768 
769   createCallFreeContext(GPUContext);
770   IslNodeBuilder::finalize();
771 }
772 
773 void GPUNodeBuilder::allocateDeviceArrays() {
774   assert(!PollyManagedMemory &&
775          "Managed memory will directly send host pointers "
776          "to the kernel. There is no need for device arrays");
777   isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
778 
779   for (int i = 0; i < Prog->n_array; ++i) {
780     gpu_array_info *Array = &Prog->array[i];
781     auto *ScopArray = (ScopArrayInfo *)Array->user;
782     std::string DevArrayName("p_dev_array_");
783     DevArrayName.append(Array->name);
784 
785     Value *ArraySize = getArraySize(Array);
786     Value *Offset = getArrayOffset(Array);
787     if (Offset)
788       ArraySize = Builder.CreateSub(
789           ArraySize,
790           Builder.CreateMul(Offset,
791                             Builder.getInt64(ScopArray->getElemSizeInBytes())));
792     const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
793     // It makes no sense to have an array of size 0. The CUDA API will
794     // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
795     // choose to be defensive and catch this at the compile phase. It is
796     // most likely that we are doing something wrong with size computation.
797     if (SizeSCEV->isZero()) {
798       errs() << getUniqueScopName(&S)
799              << " has computed array size 0: " << *ArraySize
800              << " | for array: " << *(ScopArray->getBasePtr())
801              << ". This is illegal, exiting.\n";
802       report_fatal_error("array size was computed to be 0");
803     }
804 
805     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
806     DevArray->setName(DevArrayName);
807     DeviceAllocations[ScopArray] = DevArray;
808   }
809 
810   isl_ast_build_free(Build);
811 }
812 
813 void GPUNodeBuilder::prepareManagedDeviceArrays() {
814   assert(PollyManagedMemory &&
815          "Device array most only be prepared in managed-memory mode");
816   for (int i = 0; i < Prog->n_array; ++i) {
817     gpu_array_info *Array = &Prog->array[i];
818     ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
819     Value *HostPtr;
820 
821     if (gpu_array_is_scalar(Array))
822       HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
823     else
824       HostPtr = ScopArray->getBasePtr();
825     HostPtr = getLatestValue(HostPtr);
826 
827     Value *Offset = getArrayOffset(Array);
828     if (Offset) {
829       HostPtr = Builder.CreatePointerCast(
830           HostPtr, ScopArray->getElementType()->getPointerTo());
831       HostPtr = Builder.CreateGEP(HostPtr, Offset);
832     }
833 
834     HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
835     DeviceAllocations[ScopArray] = HostPtr;
836   }
837 }
838 
839 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
840                                         Value *BlockDimY, Value *BlockDimZ) {
841   auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
842 
843   for (auto &F : *M) {
844     if (F.getCallingConv() != CallingConv::PTX_Kernel)
845       continue;
846 
847     Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
848 
849     Metadata *Elements[] = {
850         ValueAsMetadata::get(&F),   MDString::get(M->getContext(), "maxntidx"),
851         ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
852         ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
853         ValueAsMetadata::get(V[2]),
854     };
855     MDNode *Node = MDNode::get(M->getContext(), Elements);
856     AnnotationNode->addOperand(Node);
857   }
858 }
859 
860 void GPUNodeBuilder::freeDeviceArrays() {
861   assert(!PollyManagedMemory && "Managed memory does not use device arrays");
862   for (auto &Array : DeviceAllocations)
863     createCallFreeDeviceMemory(Array.second);
864 }
865 
866 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
867   const char *Name = "polly_getKernel";
868   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
869   Function *F = M->getFunction(Name);
870 
871   // If F is not available, declare it.
872   if (!F) {
873     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
874     std::vector<Type *> Args;
875     Args.push_back(Builder.getInt8PtrTy());
876     Args.push_back(Builder.getInt8PtrTy());
877     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
878     F = Function::Create(Ty, Linkage, Name, M);
879   }
880 
881   return Builder.CreateCall(F, {Buffer, Entry});
882 }
883 
884 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
885   const char *Name = "polly_getDevicePtr";
886   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
887   Function *F = M->getFunction(Name);
888 
889   // If F is not available, declare it.
890   if (!F) {
891     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
892     std::vector<Type *> Args;
893     Args.push_back(Builder.getInt8PtrTy());
894     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
895     F = Function::Create(Ty, Linkage, Name, M);
896   }
897 
898   return Builder.CreateCall(F, {Allocation});
899 }
900 
901 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
902                                             Value *GridDimY, Value *BlockDimX,
903                                             Value *BlockDimY, Value *BlockDimZ,
904                                             Value *Parameters) {
905   const char *Name = "polly_launchKernel";
906   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
907   Function *F = M->getFunction(Name);
908 
909   // If F is not available, declare it.
910   if (!F) {
911     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
912     std::vector<Type *> Args;
913     Args.push_back(Builder.getInt8PtrTy());
914     Args.push_back(Builder.getInt32Ty());
915     Args.push_back(Builder.getInt32Ty());
916     Args.push_back(Builder.getInt32Ty());
917     Args.push_back(Builder.getInt32Ty());
918     Args.push_back(Builder.getInt32Ty());
919     Args.push_back(Builder.getInt8PtrTy());
920     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
921     F = Function::Create(Ty, Linkage, Name, M);
922   }
923 
924   Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
925                          BlockDimZ, Parameters});
926 }
927 
928 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
929   const char *Name = "polly_freeKernel";
930   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
931   Function *F = M->getFunction(Name);
932 
933   // If F is not available, declare it.
934   if (!F) {
935     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
936     std::vector<Type *> Args;
937     Args.push_back(Builder.getInt8PtrTy());
938     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
939     F = Function::Create(Ty, Linkage, Name, M);
940   }
941 
942   Builder.CreateCall(F, {GPUKernel});
943 }
944 
945 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
946   assert(!PollyManagedMemory &&
947          "Managed memory does not allocate or free memory "
948          "for device");
949   const char *Name = "polly_freeDeviceMemory";
950   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
951   Function *F = M->getFunction(Name);
952 
953   // If F is not available, declare it.
954   if (!F) {
955     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
956     std::vector<Type *> Args;
957     Args.push_back(Builder.getInt8PtrTy());
958     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
959     F = Function::Create(Ty, Linkage, Name, M);
960   }
961 
962   Builder.CreateCall(F, {Array});
963 }
964 
965 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
966   assert(!PollyManagedMemory &&
967          "Managed memory does not allocate or free memory "
968          "for device");
969   const char *Name = "polly_allocateMemoryForDevice";
970   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
971   Function *F = M->getFunction(Name);
972 
973   // If F is not available, declare it.
974   if (!F) {
975     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
976     std::vector<Type *> Args;
977     Args.push_back(Builder.getInt64Ty());
978     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
979     F = Function::Create(Ty, Linkage, Name, M);
980   }
981 
982   return Builder.CreateCall(F, {Size});
983 }
984 
985 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
986                                                     Value *DeviceData,
987                                                     Value *Size) {
988   assert(!PollyManagedMemory &&
989          "Managed memory does not transfer memory between "
990          "device and host");
991   const char *Name = "polly_copyFromHostToDevice";
992   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
993   Function *F = M->getFunction(Name);
994 
995   // If F is not available, declare it.
996   if (!F) {
997     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
998     std::vector<Type *> Args;
999     Args.push_back(Builder.getInt8PtrTy());
1000     Args.push_back(Builder.getInt8PtrTy());
1001     Args.push_back(Builder.getInt64Ty());
1002     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1003     F = Function::Create(Ty, Linkage, Name, M);
1004   }
1005 
1006   Builder.CreateCall(F, {HostData, DeviceData, Size});
1007 }
1008 
1009 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1010                                                     Value *HostData,
1011                                                     Value *Size) {
1012   assert(!PollyManagedMemory &&
1013          "Managed memory does not transfer memory between "
1014          "device and host");
1015   const char *Name = "polly_copyFromDeviceToHost";
1016   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1017   Function *F = M->getFunction(Name);
1018 
1019   // If F is not available, declare it.
1020   if (!F) {
1021     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1022     std::vector<Type *> Args;
1023     Args.push_back(Builder.getInt8PtrTy());
1024     Args.push_back(Builder.getInt8PtrTy());
1025     Args.push_back(Builder.getInt64Ty());
1026     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1027     F = Function::Create(Ty, Linkage, Name, M);
1028   }
1029 
1030   Builder.CreateCall(F, {DeviceData, HostData, Size});
1031 }
1032 
1033 void GPUNodeBuilder::createCallSynchronizeDevice() {
1034   assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1035                                "managed memory");
1036   const char *Name = "polly_synchronizeDevice";
1037   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1038   Function *F = M->getFunction(Name);
1039 
1040   // If F is not available, declare it.
1041   if (!F) {
1042     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1043     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1044     F = Function::Create(Ty, Linkage, Name, M);
1045   }
1046 
1047   Builder.CreateCall(F);
1048 }
1049 
1050 Value *GPUNodeBuilder::createCallInitContext() {
1051   const char *Name;
1052 
1053   switch (Runtime) {
1054   case GPURuntime::CUDA:
1055     Name = "polly_initContextCUDA";
1056     break;
1057   case GPURuntime::OpenCL:
1058     Name = "polly_initContextCL";
1059     break;
1060   }
1061 
1062   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1063   Function *F = M->getFunction(Name);
1064 
1065   // If F is not available, declare it.
1066   if (!F) {
1067     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1068     std::vector<Type *> Args;
1069     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1070     F = Function::Create(Ty, Linkage, Name, M);
1071   }
1072 
1073   return Builder.CreateCall(F, {});
1074 }
1075 
1076 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1077   const char *Name = "polly_freeContext";
1078   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1079   Function *F = M->getFunction(Name);
1080 
1081   // If F is not available, declare it.
1082   if (!F) {
1083     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1084     std::vector<Type *> Args;
1085     Args.push_back(Builder.getInt8PtrTy());
1086     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1087     F = Function::Create(Ty, Linkage, Name, M);
1088   }
1089 
1090   Builder.CreateCall(F, {Context});
1091 }
1092 
1093 /// Check if one string is a prefix of another.
1094 ///
1095 /// @param String The string in which to look for the prefix.
1096 /// @param Prefix The prefix to look for.
1097 static bool isPrefix(std::string String, std::string Prefix) {
1098   return String.find(Prefix) == 0;
1099 }
1100 
1101 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1102   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1103   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1104 
1105   if (!gpu_array_is_scalar(Array)) {
1106     isl::multi_pw_aff ArrayBound =
1107         isl::manage(isl_multi_pw_aff_copy(Array->bound));
1108 
1109     isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1110     isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1111 
1112     for (unsigned int i = 1; i < Array->n_index; i++) {
1113       isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1114       isl::ast_expr Expr = Build.expr_from(Bound_I);
1115       Res = Res.mul(Expr);
1116     }
1117 
1118     Value *NumElements = ExprBuilder.create(Res.release());
1119     if (NumElements->getType() != ArraySize->getType())
1120       NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1121     ArraySize = Builder.CreateMul(ArraySize, NumElements);
1122   }
1123   return ArraySize;
1124 }
1125 
1126 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1127   if (gpu_array_is_scalar(Array))
1128     return nullptr;
1129 
1130   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1131 
1132   isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin();
1133 
1134   isl::set ZeroSet = isl::set::universe(Min.get_space());
1135 
1136   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++)
1137     ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1138 
1139   if (Min.is_subset(ZeroSet)) {
1140     return nullptr;
1141   }
1142 
1143   isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1144 
1145   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) {
1146     if (i > 0) {
1147       isl::pw_aff Bound_I =
1148           isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1149       isl::ast_expr BExpr = Build.expr_from(Bound_I);
1150       Result = Result.mul(BExpr);
1151     }
1152     isl::pw_aff DimMin = Min.dim_min(i);
1153     isl::ast_expr MExpr = Build.expr_from(DimMin);
1154     Result = Result.add(MExpr);
1155   }
1156 
1157   return ExprBuilder.create(Result.release());
1158 }
1159 
1160 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1161                                              ScopArrayInfo *ArrayInfo) {
1162   assert(PollyManagedMemory && "Only used when you wish to get a host "
1163                                "pointer for sending data to the kernel, "
1164                                "with managed memory");
1165   std::map<ScopArrayInfo *, Value *>::iterator it;
1166   it = DeviceAllocations.find(ArrayInfo);
1167   assert(it != DeviceAllocations.end() &&
1168          "Device array expected to be available");
1169   return it->second;
1170 }
1171 
1172 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1173                                         enum DataDirection Direction) {
1174   assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1175   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1176   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1177   isl_id *Id = isl_ast_expr_get_id(Arg);
1178   auto Array = (gpu_array_info *)isl_id_get_user(Id);
1179   auto ScopArray = (ScopArrayInfo *)(Array->user);
1180 
1181   Value *Size = getArraySize(Array);
1182   Value *Offset = getArrayOffset(Array);
1183   Value *DevPtr = DeviceAllocations[ScopArray];
1184 
1185   Value *HostPtr;
1186 
1187   if (gpu_array_is_scalar(Array))
1188     HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1189   else
1190     HostPtr = ScopArray->getBasePtr();
1191   HostPtr = getLatestValue(HostPtr);
1192 
1193   if (Offset) {
1194     HostPtr = Builder.CreatePointerCast(
1195         HostPtr, ScopArray->getElementType()->getPointerTo());
1196     HostPtr = Builder.CreateGEP(HostPtr, Offset);
1197   }
1198 
1199   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1200 
1201   if (Offset) {
1202     Size = Builder.CreateSub(
1203         Size, Builder.CreateMul(
1204                   Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1205   }
1206 
1207   if (Direction == HOST_TO_DEVICE)
1208     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1209   else
1210     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1211 
1212   isl_id_free(Id);
1213   isl_ast_expr_free(Arg);
1214   isl_ast_expr_free(Expr);
1215   isl_ast_node_free(TransferStmt);
1216 }
1217 
1218 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1219   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1220   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1221   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1222   isl_id_free(Id);
1223   isl_ast_expr_free(StmtExpr);
1224 
1225   const char *Str = isl_id_get_name(Id);
1226   if (!strcmp(Str, "kernel")) {
1227     createKernel(UserStmt);
1228     if (PollyManagedMemory)
1229       createCallSynchronizeDevice();
1230     isl_ast_expr_free(Expr);
1231     return;
1232   }
1233   if (!strcmp(Str, "init_device")) {
1234     initializeAfterRTH();
1235     isl_ast_node_free(UserStmt);
1236     isl_ast_expr_free(Expr);
1237     return;
1238   }
1239   if (!strcmp(Str, "clear_device")) {
1240     finalize();
1241     isl_ast_node_free(UserStmt);
1242     isl_ast_expr_free(Expr);
1243     return;
1244   }
1245   if (isPrefix(Str, "to_device")) {
1246     if (!PollyManagedMemory)
1247       createDataTransfer(UserStmt, HOST_TO_DEVICE);
1248     else
1249       isl_ast_node_free(UserStmt);
1250 
1251     isl_ast_expr_free(Expr);
1252     return;
1253   }
1254 
1255   if (isPrefix(Str, "from_device")) {
1256     if (!PollyManagedMemory) {
1257       createDataTransfer(UserStmt, DEVICE_TO_HOST);
1258     } else {
1259       isl_ast_node_free(UserStmt);
1260     }
1261     isl_ast_expr_free(Expr);
1262     return;
1263   }
1264 
1265   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1266   struct ppcg_kernel_stmt *KernelStmt =
1267       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1268   isl_id_free(Anno);
1269 
1270   switch (KernelStmt->type) {
1271   case ppcg_kernel_domain:
1272     createScopStmt(Expr, KernelStmt);
1273     isl_ast_node_free(UserStmt);
1274     return;
1275   case ppcg_kernel_copy:
1276     createKernelCopy(KernelStmt);
1277     isl_ast_expr_free(Expr);
1278     isl_ast_node_free(UserStmt);
1279     return;
1280   case ppcg_kernel_sync:
1281     createKernelSync();
1282     isl_ast_expr_free(Expr);
1283     isl_ast_node_free(UserStmt);
1284     return;
1285   }
1286 
1287   isl_ast_expr_free(Expr);
1288   isl_ast_node_free(UserStmt);
1289   return;
1290 }
1291 
1292 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) {
1293   createForSequential(Node, false);
1294 }
1295 
1296 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1297   isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1298   LocalIndex = isl_ast_expr_address_of(LocalIndex);
1299   Value *LocalAddr = ExprBuilder.create(LocalIndex);
1300   isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1301   Index = isl_ast_expr_address_of(Index);
1302   Value *GlobalAddr = ExprBuilder.create(Index);
1303 
1304   if (KernelStmt->u.c.read) {
1305     LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1306     Builder.CreateStore(Load, LocalAddr);
1307   } else {
1308     LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1309     Builder.CreateStore(Load, GlobalAddr);
1310   }
1311 }
1312 
1313 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1314                                     ppcg_kernel_stmt *KernelStmt) {
1315   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1316   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1317 
1318   LoopToScevMapT LTS;
1319   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1320 
1321   createSubstitutions(Expr, Stmt, LTS);
1322 
1323   if (Stmt->isBlockStmt())
1324     BlockGen.copyStmt(*Stmt, LTS, Indexes);
1325   else
1326     RegionGen.copyStmt(*Stmt, LTS, Indexes);
1327 }
1328 
1329 void GPUNodeBuilder::createKernelSync() {
1330   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1331   const char *SpirName = "__gen_ocl_barrier_global";
1332 
1333   Function *Sync;
1334 
1335   switch (Arch) {
1336   case GPUArch::SPIR64:
1337   case GPUArch::SPIR32:
1338     Sync = M->getFunction(SpirName);
1339 
1340     // If Sync is not available, declare it.
1341     if (!Sync) {
1342       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1343       std::vector<Type *> Args;
1344       FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1345       Sync = Function::Create(Ty, Linkage, SpirName, M);
1346       Sync->setCallingConv(CallingConv::SPIR_FUNC);
1347     }
1348     break;
1349   case GPUArch::NVPTX64:
1350     Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1351     break;
1352   }
1353 
1354   Builder.CreateCall(Sync, {});
1355 }
1356 
1357 /// Collect llvm::Values referenced from @p Node
1358 ///
1359 /// This function only applies to isl_ast_nodes that are user_nodes referring
1360 /// to a ScopStmt. All other node types are ignore.
1361 ///
1362 /// @param Node The node to collect references for.
1363 /// @param User A user pointer used as storage for the data that is collected.
1364 ///
1365 /// @returns isl_bool_true if data could be collected successfully.
1366 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1367   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1368     return isl_bool_true;
1369 
1370   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1371   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1372   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1373   const char *Str = isl_id_get_name(Id);
1374   isl_id_free(Id);
1375   isl_ast_expr_free(StmtExpr);
1376   isl_ast_expr_free(Expr);
1377 
1378   if (!isPrefix(Str, "Stmt"))
1379     return isl_bool_true;
1380 
1381   Id = isl_ast_node_get_annotation(Node);
1382   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1383   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1384   isl_id_free(Id);
1385 
1386   addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1387 
1388   return isl_bool_true;
1389 }
1390 
1391 /// A list of functions that are available in NVIDIA's libdevice.
1392 const std::set<std::string> CUDALibDeviceFunctions = {
1393     "exp",      "expf",      "expl",      "cos", "cosf", "sqrt", "sqrtf",
1394     "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
1395 
1396 // A map from intrinsics to their corresponding libdevice functions.
1397 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
1398     {"llvm.exp.f64", "exp"},
1399     {"llvm.exp.f32", "expf"},
1400     {"llvm.powi.f64", "powi"},
1401     {"llvm.powi.f32", "powif"}};
1402 
1403 /// Return the corresponding CUDA libdevice function name for @p F.
1404 /// Note that this function will try to convert instrinsics in the list
1405 /// IntrinsicToLibdeviceFunc into libdevice functions.
1406 /// This is because some intrinsics such as `exp`
1407 /// are not supported by the NVPTX backend.
1408 /// If this restriction of the backend is lifted, we should refactor our code
1409 /// so that we use intrinsics whenever possible.
1410 ///
1411 /// Return "" if we are not compiling for CUDA.
1412 std::string getCUDALibDeviceFuntion(Function *F) {
1413   const std::string FnName = [&] {
1414     auto It = IntrinsicToLibdeviceFunc.find(F->getName());
1415     if (It != IntrinsicToLibdeviceFunc.end())
1416       return It->second;
1417 
1418     return std::string(F->getName());
1419   }();
1420 
1421   if (CUDALibDeviceFunctions.count(FnName))
1422     return "__nv_" + FnName;
1423 
1424   return "";
1425 }
1426 
1427 /// Check if F is a function that we can code-generate in a GPU kernel.
1428 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1429   assert(F && "F is an invalid pointer");
1430   // We string compare against the name of the function to allow
1431   // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1432   // "llvm.copysign".
1433   const StringRef Name = F->getName();
1434 
1435   if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0)
1436     return true;
1437 
1438   return F->isIntrinsic() &&
1439          (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1440           Name.startswith("llvm.copysign"));
1441 }
1442 
1443 /// Do not take `Function` as a subtree value.
1444 ///
1445 /// We try to take the reference of all subtree values and pass them along
1446 /// to the kernel from the host. Taking an address of any function and
1447 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1448 /// `Function`s.
1449 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1450 
1451 /// Return `Function`s from `RawSubtreeValues`.
1452 static SetVector<Function *>
1453 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1454                                  bool AllowCUDALibDevice) {
1455   SetVector<Function *> SubtreeFunctions;
1456   for (Value *It : RawSubtreeValues) {
1457     Function *F = dyn_cast<Function>(It);
1458     if (F) {
1459       assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1460              "Code should have bailed out by "
1461              "this point if an invalid function "
1462              "were present in a kernel.");
1463       SubtreeFunctions.insert(F);
1464     }
1465   }
1466   return SubtreeFunctions;
1467 }
1468 
1469 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1470            isl::space>
1471 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1472   SetVector<Value *> SubtreeValues;
1473   SetVector<const SCEV *> SCEVs;
1474   SetVector<const Loop *> Loops;
1475   isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1476   SubtreeReferences References = {
1477       LI,         SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1478       &ParamSpace};
1479 
1480   for (const auto &I : IDToValue)
1481     SubtreeValues.insert(I.second);
1482 
1483   // NOTE: this is populated in IslNodeBuilder::addParameters
1484   // See [Code generation of induction variables of loops outside Scops].
1485   for (const auto &I : OutsideLoopIterations)
1486     SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1487 
1488   isl_ast_node_foreach_descendant_top_down(
1489       Kernel->tree, collectReferencesInGPUStmt, &References);
1490 
1491   for (const SCEV *Expr : SCEVs) {
1492     findValues(Expr, SE, SubtreeValues);
1493     findLoops(Expr, Loops);
1494   }
1495 
1496   Loops.remove_if([this](const Loop *L) {
1497     return S.contains(L) || L->contains(S.getEntry());
1498   });
1499 
1500   for (auto &SAI : S.arrays())
1501     SubtreeValues.remove(SAI->getBasePtr());
1502 
1503   isl_space *Space = S.getParamSpace().release();
1504   for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
1505     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1506     assert(IDToValue.count(Id));
1507     Value *Val = IDToValue[Id];
1508     SubtreeValues.remove(Val);
1509     isl_id_free(Id);
1510   }
1511   isl_space_free(Space);
1512 
1513   for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
1514     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1515     assert(IDToValue.count(Id));
1516     Value *Val = IDToValue[Id];
1517     SubtreeValues.remove(Val);
1518     isl_id_free(Id);
1519   }
1520 
1521   // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1522   // SubtreeValues. This is important, because we should not lose any
1523   // SubtreeValues in the process of constructing the
1524   // "ValidSubtree{Values, Functions} sets. Nor should the set
1525   // ValidSubtree{Values, Functions} have any common element.
1526   auto ValidSubtreeValuesIt =
1527       make_filter_range(SubtreeValues, isValidSubtreeValue);
1528   SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1529                                         ValidSubtreeValuesIt.end());
1530 
1531   bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1532 
1533   SetVector<Function *> ValidSubtreeFunctions(
1534       getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1535 
1536   // @see IslNodeBuilder::getReferencesInSubtree
1537   SetVector<Value *> ReplacedValues;
1538   for (Value *V : ValidSubtreeValues) {
1539     auto It = ValueMap.find(V);
1540     if (It == ValueMap.end())
1541       ReplacedValues.insert(V);
1542     else
1543       ReplacedValues.insert(It->second);
1544   }
1545   return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1546                          ParamSpace);
1547 }
1548 
1549 void GPUNodeBuilder::clearDominators(Function *F) {
1550   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1551   std::vector<BasicBlock *> Nodes;
1552   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1553     Nodes.push_back(I->getBlock());
1554 
1555   for (BasicBlock *BB : Nodes)
1556     DT.eraseNode(BB);
1557 }
1558 
1559 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1560   for (BasicBlock &BB : *F) {
1561     Loop *L = LI.getLoopFor(&BB);
1562     if (L)
1563       SE.forgetLoop(L);
1564   }
1565 }
1566 
1567 void GPUNodeBuilder::clearLoops(Function *F) {
1568   for (BasicBlock &BB : *F) {
1569     Loop *L = LI.getLoopFor(&BB);
1570     if (L)
1571       SE.forgetLoop(L);
1572     LI.removeBlock(&BB);
1573   }
1574 }
1575 
1576 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1577   std::vector<Value *> Sizes;
1578   isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1579 
1580   isl::multi_pw_aff GridSizePwAffs =
1581       isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size));
1582   for (long i = 0; i < Kernel->n_grid; i++) {
1583     isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1584     isl::ast_expr GridSize = Context.expr_from(Size);
1585     Value *Res = ExprBuilder.create(GridSize.release());
1586     Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1587     Sizes.push_back(Res);
1588   }
1589 
1590   for (long i = Kernel->n_grid; i < 3; i++)
1591     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1592 
1593   return std::make_tuple(Sizes[0], Sizes[1]);
1594 }
1595 
1596 std::tuple<Value *, Value *, Value *>
1597 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1598   std::vector<Value *> Sizes;
1599 
1600   for (long i = 0; i < Kernel->n_block; i++) {
1601     Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1602     Sizes.push_back(Res);
1603   }
1604 
1605   for (long i = Kernel->n_block; i < 3; i++)
1606     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1607 
1608   return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1609 }
1610 
1611 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1612                                           Instruction *Param, int Index) {
1613   Value *Slot = Builder.CreateGEP(
1614       Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1615   Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1616   Builder.CreateStore(ParamTyped, Slot);
1617 }
1618 
1619 Value *
1620 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1621                                        SetVector<Value *> SubtreeValues) {
1622   const int NumArgs = F->arg_size();
1623   std::vector<int> ArgSizes(NumArgs);
1624 
1625   // If we are using the OpenCL Runtime, we need to add the kernel argument
1626   // sizes to the end of the launch-parameter list, so OpenCL can determine
1627   // how big the respective kernel arguments are.
1628   // Here we need to reserve adequate space for that.
1629   Type *ArrayTy;
1630   if (Runtime == GPURuntime::OpenCL)
1631     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1632   else
1633     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1634 
1635   BasicBlock *EntryBlock =
1636       &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1637   auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1638   std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1639   Instruction *Parameters = new AllocaInst(
1640       ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1641 
1642   int Index = 0;
1643   for (long i = 0; i < Prog->n_array; i++) {
1644     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1645       continue;
1646 
1647     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1648     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1649 
1650     if (Runtime == GPURuntime::OpenCL)
1651       ArgSizes[Index] = SAI->getElemSizeInBytes();
1652 
1653     Value *DevArray = nullptr;
1654     if (PollyManagedMemory) {
1655       DevArray = getManagedDeviceArray(&Prog->array[i],
1656                                        const_cast<ScopArrayInfo *>(SAI));
1657     } else {
1658       DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1659       DevArray = createCallGetDevicePtr(DevArray);
1660     }
1661     assert(DevArray != nullptr && "Array to be offloaded to device not "
1662                                   "initialized");
1663     Value *Offset = getArrayOffset(&Prog->array[i]);
1664 
1665     if (Offset) {
1666       DevArray = Builder.CreatePointerCast(
1667           DevArray, SAI->getElementType()->getPointerTo());
1668       DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1669       DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1670     }
1671     Value *Slot = Builder.CreateGEP(
1672         Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1673 
1674     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1675       Value *ValPtr = nullptr;
1676       if (PollyManagedMemory)
1677         ValPtr = DevArray;
1678       else
1679         ValPtr = BlockGen.getOrCreateAlloca(SAI);
1680 
1681       assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1682                                   " to be stored into Parameters");
1683       Value *ValPtrCast =
1684           Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1685       Builder.CreateStore(ValPtrCast, Slot);
1686     } else {
1687       Instruction *Param =
1688           new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1689                          Launch + "_param_" + std::to_string(Index),
1690                          EntryBlock->getTerminator());
1691       Builder.CreateStore(DevArray, Param);
1692       Value *ParamTyped =
1693           Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1694       Builder.CreateStore(ParamTyped, Slot);
1695     }
1696     Index++;
1697   }
1698 
1699   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1700 
1701   for (long i = 0; i < NumHostIters; i++) {
1702     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1703     Value *Val = IDToValue[Id];
1704     isl_id_free(Id);
1705 
1706     if (Runtime == GPURuntime::OpenCL)
1707       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1708 
1709     Instruction *Param =
1710         new AllocaInst(Val->getType(), AddressSpace,
1711                        Launch + "_param_" + std::to_string(Index),
1712                        EntryBlock->getTerminator());
1713     Builder.CreateStore(Val, Param);
1714     insertStoreParameter(Parameters, Param, Index);
1715     Index++;
1716   }
1717 
1718   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1719 
1720   for (long i = 0; i < NumVars; i++) {
1721     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1722     Value *Val = IDToValue[Id];
1723     if (ValueMap.count(Val))
1724       Val = ValueMap[Val];
1725     isl_id_free(Id);
1726 
1727     if (Runtime == GPURuntime::OpenCL)
1728       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1729 
1730     Instruction *Param =
1731         new AllocaInst(Val->getType(), AddressSpace,
1732                        Launch + "_param_" + std::to_string(Index),
1733                        EntryBlock->getTerminator());
1734     Builder.CreateStore(Val, Param);
1735     insertStoreParameter(Parameters, Param, Index);
1736     Index++;
1737   }
1738 
1739   for (auto Val : SubtreeValues) {
1740     if (Runtime == GPURuntime::OpenCL)
1741       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1742 
1743     Instruction *Param =
1744         new AllocaInst(Val->getType(), AddressSpace,
1745                        Launch + "_param_" + std::to_string(Index),
1746                        EntryBlock->getTerminator());
1747     Builder.CreateStore(Val, Param);
1748     insertStoreParameter(Parameters, Param, Index);
1749     Index++;
1750   }
1751 
1752   if (Runtime == GPURuntime::OpenCL) {
1753     for (int i = 0; i < NumArgs; i++) {
1754       Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1755       Instruction *Param =
1756           new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1757                          Launch + "_param_size_" + std::to_string(i),
1758                          EntryBlock->getTerminator());
1759       Builder.CreateStore(Val, Param);
1760       insertStoreParameter(Parameters, Param, Index);
1761       Index++;
1762     }
1763   }
1764 
1765   auto Location = EntryBlock->getTerminator();
1766   return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1767                          Launch + "_params_i8ptr", Location);
1768 }
1769 
1770 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1771     SetVector<Function *> SubtreeFunctions) {
1772   for (auto Fn : SubtreeFunctions) {
1773     const std::string ClonedFnName = Fn->getName();
1774     Function *Clone = GPUModule->getFunction(ClonedFnName);
1775     if (!Clone)
1776       Clone =
1777           Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1778                            ClonedFnName, GPUModule.get());
1779     assert(Clone && "Expected cloned function to be initialized.");
1780     assert(ValueMap.find(Fn) == ValueMap.end() &&
1781            "Fn already present in ValueMap");
1782     ValueMap[Fn] = Clone;
1783   }
1784 }
1785 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1786   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1787   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1788   isl_id_free(Id);
1789   isl_ast_node_free(KernelStmt);
1790 
1791   if (Kernel->n_grid > 1)
1792     DeepestParallel =
1793         std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1794   else
1795     DeepestSequential =
1796         std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1797 
1798   Value *BlockDimX, *BlockDimY, *BlockDimZ;
1799   std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1800 
1801   SetVector<Value *> SubtreeValues;
1802   SetVector<Function *> SubtreeFunctions;
1803   SetVector<const Loop *> Loops;
1804   isl::space ParamSpace;
1805   std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1806       getReferencesInKernel(Kernel);
1807 
1808   // Add parameters that appear only in the access function to the kernel
1809   // space. This is important to make sure that all isl_ids are passed as
1810   // parameters to the kernel, even though we may not have all parameters
1811   // in the context to improve compile time.
1812   Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1813 
1814   assert(Kernel->tree && "Device AST of kernel node is empty");
1815 
1816   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1817   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1818   ValueMapT HostValueMap = ValueMap;
1819   BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1820   ScalarMap.clear();
1821   BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap;
1822   EscapeMap.clear();
1823 
1824   // Create for all loops we depend on values that contain the current loop
1825   // iteration. These values are necessary to generate code for SCEVs that
1826   // depend on such loops. As a result we need to pass them to the subfunction.
1827   for (const Loop *L : Loops) {
1828     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1829                                             SE.getUnknown(Builder.getInt64(1)),
1830                                             L, SCEV::FlagAnyWrap);
1831     Value *V = generateSCEV(OuterLIV);
1832     OutsideLoopIterations[L] = SE.getUnknown(V);
1833     SubtreeValues.insert(V);
1834   }
1835 
1836   createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1837   setupKernelSubtreeFunctions(SubtreeFunctions);
1838 
1839   create(isl_ast_node_copy(Kernel->tree));
1840 
1841   finalizeKernelArguments(Kernel);
1842   Function *F = Builder.GetInsertBlock()->getParent();
1843   if (Arch == GPUArch::NVPTX64)
1844     addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1845   clearDominators(F);
1846   clearScalarEvolution(F);
1847   clearLoops(F);
1848 
1849   IDToValue = HostIDs;
1850 
1851   ValueMap = std::move(HostValueMap);
1852   ScalarMap = std::move(HostScalarMap);
1853   EscapeMap = std::move(HostEscapeMap);
1854   IDToSAI.clear();
1855   Annotator.resetAlternativeAliasBases();
1856   for (auto &BasePtr : LocalArrays)
1857     S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1858   LocalArrays.clear();
1859 
1860   std::string ASMString = finalizeKernelFunction();
1861   Builder.SetInsertPoint(&HostInsertPoint);
1862   Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1863 
1864   std::string Name = getKernelFuncName(Kernel->id);
1865   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1866   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1867   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1868 
1869   Value *GridDimX, *GridDimY;
1870   std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1871 
1872   createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1873                          BlockDimZ, Parameters);
1874   createCallFreeKernel(GPUKernel);
1875 
1876   for (auto Id : KernelIds)
1877     isl_id_free(Id);
1878 
1879   KernelIds.clear();
1880 }
1881 
1882 /// Compute the DataLayout string for the NVPTX backend.
1883 ///
1884 /// @param is64Bit Are we looking for a 64 bit architecture?
1885 static std::string computeNVPTXDataLayout(bool is64Bit) {
1886   std::string Ret = "";
1887 
1888   if (!is64Bit) {
1889     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1890            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1891            "64-v128:128:128-n16:32:64";
1892   } else {
1893     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1894            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1895            "64-v128:128:128-n16:32:64";
1896   }
1897 
1898   return Ret;
1899 }
1900 
1901 /// Compute the DataLayout string for a SPIR kernel.
1902 ///
1903 /// @param is64Bit Are we looking for a 64 bit architecture?
1904 static std::string computeSPIRDataLayout(bool is64Bit) {
1905   std::string Ret = "";
1906 
1907   if (!is64Bit) {
1908     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1909            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1910            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1911            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1912   } else {
1913     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1914            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1915            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1916            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1917   }
1918 
1919   return Ret;
1920 }
1921 
1922 Function *
1923 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1924                                          SetVector<Value *> &SubtreeValues) {
1925   std::vector<Type *> Args;
1926   std::string Identifier = getKernelFuncName(Kernel->id);
1927 
1928   std::vector<Metadata *> MemoryType;
1929 
1930   for (long i = 0; i < Prog->n_array; i++) {
1931     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1932       continue;
1933 
1934     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1935       isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1936       const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1937       Args.push_back(SAI->getElementType());
1938       MemoryType.push_back(
1939           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1940     } else {
1941       static const int UseGlobalMemory = 1;
1942       Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1943       MemoryType.push_back(
1944           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1945     }
1946   }
1947 
1948   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1949 
1950   for (long i = 0; i < NumHostIters; i++) {
1951     Args.push_back(Builder.getInt64Ty());
1952     MemoryType.push_back(
1953         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1954   }
1955 
1956   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1957 
1958   for (long i = 0; i < NumVars; i++) {
1959     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1960     Value *Val = IDToValue[Id];
1961     isl_id_free(Id);
1962     Args.push_back(Val->getType());
1963     MemoryType.push_back(
1964         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1965   }
1966 
1967   for (auto *V : SubtreeValues) {
1968     Args.push_back(V->getType());
1969     MemoryType.push_back(
1970         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1971   }
1972 
1973   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1974   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1975                               GPUModule.get());
1976 
1977   std::vector<Metadata *> EmptyStrings;
1978 
1979   for (unsigned int i = 0; i < MemoryType.size(); i++) {
1980     EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1981   }
1982 
1983   if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1984     FN->setMetadata("kernel_arg_addr_space",
1985                     MDNode::get(FN->getContext(), MemoryType));
1986     FN->setMetadata("kernel_arg_name",
1987                     MDNode::get(FN->getContext(), EmptyStrings));
1988     FN->setMetadata("kernel_arg_access_qual",
1989                     MDNode::get(FN->getContext(), EmptyStrings));
1990     FN->setMetadata("kernel_arg_type",
1991                     MDNode::get(FN->getContext(), EmptyStrings));
1992     FN->setMetadata("kernel_arg_type_qual",
1993                     MDNode::get(FN->getContext(), EmptyStrings));
1994     FN->setMetadata("kernel_arg_base_type",
1995                     MDNode::get(FN->getContext(), EmptyStrings));
1996   }
1997 
1998   switch (Arch) {
1999   case GPUArch::NVPTX64:
2000     FN->setCallingConv(CallingConv::PTX_Kernel);
2001     break;
2002   case GPUArch::SPIR32:
2003   case GPUArch::SPIR64:
2004     FN->setCallingConv(CallingConv::SPIR_KERNEL);
2005     break;
2006   }
2007 
2008   auto Arg = FN->arg_begin();
2009   for (long i = 0; i < Kernel->n_array; i++) {
2010     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2011       continue;
2012 
2013     Arg->setName(Kernel->array[i].array->name);
2014 
2015     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2016     const ScopArrayInfo *SAI =
2017         ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2018     Type *EleTy = SAI->getElementType();
2019     Value *Val = &*Arg;
2020     SmallVector<const SCEV *, 4> Sizes;
2021     isl_ast_build *Build =
2022         isl_ast_build_from_context(isl_set_copy(Prog->context));
2023     Sizes.push_back(nullptr);
2024     for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
2025       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
2026           Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
2027       auto V = ExprBuilder.create(DimSize);
2028       Sizes.push_back(SE.getSCEV(V));
2029     }
2030     const ScopArrayInfo *SAIRep =
2031         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
2032     LocalArrays.push_back(Val);
2033 
2034     isl_ast_build_free(Build);
2035     KernelIds.push_back(Id);
2036     IDToSAI[Id] = SAIRep;
2037     Arg++;
2038   }
2039 
2040   for (long i = 0; i < NumHostIters; i++) {
2041     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2042     Arg->setName(isl_id_get_name(Id));
2043     IDToValue[Id] = &*Arg;
2044     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2045     Arg++;
2046   }
2047 
2048   for (long i = 0; i < NumVars; i++) {
2049     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2050     Arg->setName(isl_id_get_name(Id));
2051     Value *Val = IDToValue[Id];
2052     ValueMap[Val] = &*Arg;
2053     IDToValue[Id] = &*Arg;
2054     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2055     Arg++;
2056   }
2057 
2058   for (auto *V : SubtreeValues) {
2059     Arg->setName(V->getName());
2060     ValueMap[V] = &*Arg;
2061     Arg++;
2062   }
2063 
2064   return FN;
2065 }
2066 
2067 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2068   Intrinsic::ID IntrinsicsBID[2];
2069   Intrinsic::ID IntrinsicsTID[3];
2070 
2071   switch (Arch) {
2072   case GPUArch::SPIR64:
2073   case GPUArch::SPIR32:
2074     llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2075   case GPUArch::NVPTX64:
2076     IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2077     IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2078 
2079     IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2080     IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2081     IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2082     break;
2083   }
2084 
2085   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2086     std::string Name = isl_id_get_name(Id);
2087     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2088     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2089     Value *Val = Builder.CreateCall(IntrinsicFn, {});
2090     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2091     IDToValue[Id] = Val;
2092     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2093   };
2094 
2095   for (int i = 0; i < Kernel->n_grid; ++i) {
2096     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2097     addId(Id, IntrinsicsBID[i]);
2098   }
2099 
2100   for (int i = 0; i < Kernel->n_block; ++i) {
2101     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2102     addId(Id, IntrinsicsTID[i]);
2103   }
2104 }
2105 
2106 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) {
2107   const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2108                               "__gen_ocl_get_group_id1",
2109                               "__gen_ocl_get_group_id2"};
2110 
2111   const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2112                               "__gen_ocl_get_local_id1",
2113                               "__gen_ocl_get_local_id2"};
2114 
2115   auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable {
2116     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2117     Function *FN = M->getFunction(Name);
2118 
2119     // If FN is not available, declare it.
2120     if (!FN) {
2121       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2122       std::vector<Type *> Args;
2123       FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false);
2124       FN = Function::Create(Ty, Linkage, Name, M);
2125       FN->setCallingConv(CallingConv::SPIR_FUNC);
2126     }
2127 
2128     Value *Val = Builder.CreateCall(FN, {});
2129     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2130     IDToValue[Id] = Val;
2131     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2132   };
2133 
2134   for (int i = 0; i < Kernel->n_grid; ++i)
2135     createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i));
2136 
2137   for (int i = 0; i < Kernel->n_block; ++i)
2138     createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i));
2139 }
2140 
2141 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2142   auto Arg = FN->arg_begin();
2143   for (long i = 0; i < Kernel->n_array; i++) {
2144     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2145       continue;
2146 
2147     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2148     const ScopArrayInfo *SAI =
2149         ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2150     isl_id_free(Id);
2151 
2152     if (SAI->getNumberOfDimensions() > 0) {
2153       Arg++;
2154       continue;
2155     }
2156 
2157     Value *Val = &*Arg;
2158 
2159     if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2160       Type *TypePtr = SAI->getElementType()->getPointerTo();
2161       Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2162       Val = Builder.CreateLoad(TypedArgPtr);
2163     }
2164 
2165     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2166     Builder.CreateStore(Val, Alloca);
2167 
2168     Arg++;
2169   }
2170 }
2171 
2172 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2173   auto *FN = Builder.GetInsertBlock()->getParent();
2174   auto Arg = FN->arg_begin();
2175 
2176   bool StoredScalar = false;
2177   for (long i = 0; i < Kernel->n_array; i++) {
2178     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2179       continue;
2180 
2181     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2182     const ScopArrayInfo *SAI =
2183         ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2184     isl_id_free(Id);
2185 
2186     if (SAI->getNumberOfDimensions() > 0) {
2187       Arg++;
2188       continue;
2189     }
2190 
2191     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2192       Arg++;
2193       continue;
2194     }
2195 
2196     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2197     Value *ArgPtr = &*Arg;
2198     Type *TypePtr = SAI->getElementType()->getPointerTo();
2199     Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2200     Value *Val = Builder.CreateLoad(Alloca);
2201     Builder.CreateStore(Val, TypedArgPtr);
2202     StoredScalar = true;
2203 
2204     Arg++;
2205   }
2206 
2207   if (StoredScalar) {
2208     /// In case more than one thread contains scalar stores, the generated
2209     /// code might be incorrect, if we only store at the end of the kernel.
2210     /// To support this case we need to store these scalars back at each
2211     /// memory store or at least before each kernel barrier.
2212     if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2213       BuildSuccessful = 0;
2214       DEBUG(
2215           dbgs() << getUniqueScopName(&S)
2216                  << " has a store to a scalar value that"
2217                     " would be undefined to run in parallel. Bailing out.\n";);
2218     }
2219   }
2220 }
2221 
2222 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2223   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2224 
2225   for (int i = 0; i < Kernel->n_var; ++i) {
2226     struct ppcg_kernel_var &Var = Kernel->var[i];
2227     isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2228     Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2229 
2230     Type *ArrayTy = EleTy;
2231     SmallVector<const SCEV *, 4> Sizes;
2232 
2233     Sizes.push_back(nullptr);
2234     for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2235       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2236       long Bound = isl_val_get_num_si(Val);
2237       isl_val_free(Val);
2238       Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2239     }
2240 
2241     for (int j = Var.array->n_index - 1; j >= 0; --j) {
2242       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2243       long Bound = isl_val_get_num_si(Val);
2244       isl_val_free(Val);
2245       ArrayTy = ArrayType::get(ArrayTy, Bound);
2246     }
2247 
2248     const ScopArrayInfo *SAI;
2249     Value *Allocation;
2250     if (Var.type == ppcg_access_shared) {
2251       auto GlobalVar = new GlobalVariable(
2252           *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2253           nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2254       GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8);
2255       GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2256 
2257       Allocation = GlobalVar;
2258     } else if (Var.type == ppcg_access_private) {
2259       Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2260     } else {
2261       llvm_unreachable("unknown variable type");
2262     }
2263     SAI =
2264         S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2265     Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr);
2266     IDToValue[Id] = Allocation;
2267     LocalArrays.push_back(Allocation);
2268     KernelIds.push_back(Id);
2269     IDToSAI[Id] = SAI;
2270   }
2271 }
2272 
2273 void GPUNodeBuilder::createKernelFunction(
2274     ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2275     SetVector<Function *> &SubtreeFunctions) {
2276   std::string Identifier = getKernelFuncName(Kernel->id);
2277   GPUModule.reset(new Module(Identifier, Builder.getContext()));
2278 
2279   switch (Arch) {
2280   case GPUArch::NVPTX64:
2281     if (Runtime == GPURuntime::CUDA)
2282       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2283     else if (Runtime == GPURuntime::OpenCL)
2284       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2285     GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2286     break;
2287   case GPUArch::SPIR32:
2288     GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2289     GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2290     break;
2291   case GPUArch::SPIR64:
2292     GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2293     GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2294     break;
2295   }
2296 
2297   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2298 
2299   BasicBlock *PrevBlock = Builder.GetInsertBlock();
2300   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2301 
2302   DT.addNewBlock(EntryBlock, PrevBlock);
2303 
2304   Builder.SetInsertPoint(EntryBlock);
2305   Builder.CreateRetVoid();
2306   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2307 
2308   ScopDetection::markFunctionAsInvalid(FN);
2309 
2310   prepareKernelArguments(Kernel, FN);
2311   createKernelVariables(Kernel, FN);
2312 
2313   switch (Arch) {
2314   case GPUArch::NVPTX64:
2315     insertKernelIntrinsics(Kernel);
2316     break;
2317   case GPUArch::SPIR32:
2318   case GPUArch::SPIR64:
2319     insertKernelCallsSPIR(Kernel);
2320     break;
2321   }
2322 }
2323 
2324 std::string GPUNodeBuilder::createKernelASM() {
2325   llvm::Triple GPUTriple;
2326 
2327   switch (Arch) {
2328   case GPUArch::NVPTX64:
2329     switch (Runtime) {
2330     case GPURuntime::CUDA:
2331       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2332       break;
2333     case GPURuntime::OpenCL:
2334       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2335       break;
2336     }
2337     break;
2338   case GPUArch::SPIR64:
2339   case GPUArch::SPIR32:
2340     std::string SPIRAssembly;
2341     raw_string_ostream IROstream(SPIRAssembly);
2342     IROstream << *GPUModule;
2343     IROstream.flush();
2344     return SPIRAssembly;
2345   }
2346 
2347   std::string ErrMsg;
2348   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2349 
2350   if (!GPUTarget) {
2351     errs() << ErrMsg << "\n";
2352     return "";
2353   }
2354 
2355   TargetOptions Options;
2356   Options.UnsafeFPMath = FastMath;
2357 
2358   std::string subtarget;
2359 
2360   switch (Arch) {
2361   case GPUArch::NVPTX64:
2362     subtarget = CudaVersion;
2363     break;
2364   case GPUArch::SPIR32:
2365   case GPUArch::SPIR64:
2366     llvm_unreachable("No subtarget for SPIR architecture");
2367   }
2368 
2369   std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2370       GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2371 
2372   SmallString<0> ASMString;
2373   raw_svector_ostream ASMStream(ASMString);
2374   llvm::legacy::PassManager PM;
2375 
2376   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2377 
2378   if (TargetM->addPassesToEmitFile(
2379           PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) {
2380     errs() << "The target does not support generation of this file type!\n";
2381     return "";
2382   }
2383 
2384   PM.run(*GPUModule);
2385 
2386   return ASMStream.str();
2387 }
2388 
2389 bool GPUNodeBuilder::requiresCUDALibDevice() {
2390   bool RequiresLibDevice = false;
2391   for (Function &F : GPUModule->functions()) {
2392     if (!F.isDeclaration())
2393       continue;
2394 
2395     const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F);
2396     if (CUDALibDeviceFunc.length() != 0) {
2397       // We need to handle the case where a module looks like this:
2398       // @expf(..)
2399       // @llvm.exp.f64(..)
2400       // Both of these functions would be renamed to `__nv_expf`.
2401       //
2402       // So, we must first check for the existence of the libdevice function.
2403       // If this exists, we replace our current function with it.
2404       //
2405       // If it does not exist, we rename the current function to the
2406       // libdevice functiono name.
2407       if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
2408         F.replaceAllUsesWith(Replacement);
2409       else
2410         F.setName(CUDALibDeviceFunc);
2411       RequiresLibDevice = true;
2412     }
2413   }
2414 
2415   return RequiresLibDevice;
2416 }
2417 
2418 void GPUNodeBuilder::addCUDALibDevice() {
2419   if (Arch != GPUArch::NVPTX64)
2420     return;
2421 
2422   if (requiresCUDALibDevice()) {
2423     SMDiagnostic Error;
2424 
2425     errs() << CUDALibDevice << "\n";
2426     auto LibDeviceModule =
2427         parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2428 
2429     if (!LibDeviceModule) {
2430       BuildSuccessful = false;
2431       report_fatal_error("Could not find or load libdevice. Skipping GPU "
2432                          "kernel generation. Please set -polly-acc-libdevice "
2433                          "accordingly.\n");
2434       return;
2435     }
2436 
2437     Linker L(*GPUModule);
2438 
2439     // Set an nvptx64 target triple to avoid linker warnings. The original
2440     // triple of the libdevice files are nvptx-unknown-unknown.
2441     LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2442     L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2443   }
2444 }
2445 
2446 std::string GPUNodeBuilder::finalizeKernelFunction() {
2447 
2448   if (verifyModule(*GPUModule)) {
2449     DEBUG(dbgs() << "verifyModule failed on module:\n";
2450           GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2451     DEBUG(dbgs() << "verifyModule Error:\n";
2452           verifyModule(*GPUModule, &dbgs()););
2453 
2454     if (FailOnVerifyModuleFailure)
2455       llvm_unreachable("VerifyModule failed.");
2456 
2457     BuildSuccessful = false;
2458     return "";
2459   }
2460 
2461   addCUDALibDevice();
2462 
2463   if (DumpKernelIR)
2464     outs() << *GPUModule << "\n";
2465 
2466   if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2467     // Optimize module.
2468     llvm::legacy::PassManager OptPasses;
2469     PassManagerBuilder PassBuilder;
2470     PassBuilder.OptLevel = 3;
2471     PassBuilder.SizeLevel = 0;
2472     PassBuilder.populateModulePassManager(OptPasses);
2473     OptPasses.run(*GPUModule);
2474   }
2475 
2476   std::string Assembly = createKernelASM();
2477 
2478   if (DumpKernelASM)
2479     outs() << Assembly << "\n";
2480 
2481   GPUModule.release();
2482   KernelIDs.clear();
2483 
2484   return Assembly;
2485 }
2486 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2487 /// @param PwAffs The list of piecewise affine functions to create an
2488 ///               `isl_pw_aff_list` from. We expect an rvalue ref because
2489 ///               all the isl_pw_aff are used up by this function.
2490 ///
2491 /// @returns  The `isl_pw_aff_list`.
2492 __isl_give isl_pw_aff_list *
2493 createPwAffList(isl_ctx *Context,
2494                 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2495   isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2496 
2497   for (unsigned i = 0; i < PwAffs.size(); i++) {
2498     List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2499   }
2500   return List;
2501 }
2502 
2503 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2504 ///
2505 /// We loop over all `pw_aff` and align all of their spaces together to
2506 /// create a common space for all the `pw_aff`. This common space is the
2507 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2508 /// with the given `SeedSpace`.
2509 /// @param PwAffs    The list of piecewise affine functions we want to align.
2510 ///                  This is an rvalue reference because the entire vector is
2511 ///                  used up by the end of the operation.
2512 /// @param SeedSpace The space to start the alignment process with.
2513 /// @returns         A std::pair, whose first element is the aligned space,
2514 ///                  whose second element is the vector of aligned piecewise
2515 ///                  affines.
2516 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
2517 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2518             __isl_take isl_space *SeedSpace) {
2519   assert(SeedSpace && "Invalid seed space given.");
2520 
2521   isl_space *AlignSpace = SeedSpace;
2522   for (isl_pw_aff *PwAff : PwAffs) {
2523     isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2524     AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2525   }
2526   std::vector<isl_pw_aff *> AdjustedPwAffs;
2527 
2528   for (unsigned i = 0; i < PwAffs.size(); i++) {
2529     isl_pw_aff *Adjusted = PwAffs[i];
2530     assert(Adjusted && "Invalid pw_aff given.");
2531     Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2532     AdjustedPwAffs.push_back(Adjusted);
2533   }
2534   return std::make_pair(AlignSpace, AdjustedPwAffs);
2535 }
2536 
2537 namespace {
2538 class PPCGCodeGeneration : public ScopPass {
2539 public:
2540   static char ID;
2541 
2542   GPURuntime Runtime = GPURuntime::CUDA;
2543 
2544   GPUArch Architecture = GPUArch::NVPTX64;
2545 
2546   /// The scop that is currently processed.
2547   Scop *S;
2548 
2549   LoopInfo *LI;
2550   DominatorTree *DT;
2551   ScalarEvolution *SE;
2552   const DataLayout *DL;
2553   RegionInfo *RI;
2554 
2555   PPCGCodeGeneration() : ScopPass(ID) {}
2556 
2557   /// Construct compilation options for PPCG.
2558   ///
2559   /// @returns The compilation options.
2560   ppcg_options *createPPCGOptions() {
2561     auto DebugOptions =
2562         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2563     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2564 
2565     DebugOptions->dump_schedule_constraints = false;
2566     DebugOptions->dump_schedule = false;
2567     DebugOptions->dump_final_schedule = false;
2568     DebugOptions->dump_sizes = false;
2569     DebugOptions->verbose = false;
2570 
2571     Options->debug = DebugOptions;
2572 
2573     Options->group_chains = false;
2574     Options->reschedule = true;
2575     Options->scale_tile_loops = false;
2576     Options->wrap = false;
2577 
2578     Options->non_negative_parameters = false;
2579     Options->ctx = nullptr;
2580     Options->sizes = nullptr;
2581 
2582     Options->tile = true;
2583     Options->tile_size = 32;
2584 
2585     Options->isolate_full_tiles = false;
2586 
2587     Options->use_private_memory = PrivateMemory;
2588     Options->use_shared_memory = SharedMemory;
2589     Options->max_shared_memory = 48 * 1024;
2590 
2591     Options->target = PPCG_TARGET_CUDA;
2592     Options->openmp = false;
2593     Options->linearize_device_arrays = true;
2594     Options->allow_gnu_extensions = false;
2595 
2596     Options->unroll_copy_shared = false;
2597     Options->unroll_gpu_tile = false;
2598     Options->live_range_reordering = true;
2599 
2600     Options->live_range_reordering = true;
2601     Options->hybrid = false;
2602     Options->opencl_compiler_options = nullptr;
2603     Options->opencl_use_gpu = false;
2604     Options->opencl_n_include_file = 0;
2605     Options->opencl_include_files = nullptr;
2606     Options->opencl_print_kernel_types = false;
2607     Options->opencl_embed_kernel_code = false;
2608 
2609     Options->save_schedule_file = nullptr;
2610     Options->load_schedule_file = nullptr;
2611 
2612     return Options;
2613   }
2614 
2615   /// Get a tagged access relation containing all accesses of type @p AccessTy.
2616   ///
2617   /// Instead of a normal access of the form:
2618   ///
2619   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2620   ///
2621   /// a tagged access has the form
2622   ///
2623   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2624   ///
2625   /// where 'id' is an additional space that references the memory access that
2626   /// triggered the access.
2627   ///
2628   /// @param AccessTy The type of the memory accesses to collect.
2629   ///
2630   /// @return The relation describing all tagged memory accesses.
2631   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2632     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2633 
2634     for (auto &Stmt : *S)
2635       for (auto &Acc : Stmt)
2636         if (Acc->getType() == AccessTy) {
2637           isl_map *Relation = Acc->getAccessRelation().release();
2638           Relation =
2639               isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2640 
2641           isl_space *Space = isl_map_get_space(Relation);
2642           Space = isl_space_range(Space);
2643           Space = isl_space_from_range(Space);
2644           Space =
2645               isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2646           isl_map *Universe = isl_map_universe(Space);
2647           Relation = isl_map_domain_product(Relation, Universe);
2648           Accesses = isl_union_map_add_map(Accesses, Relation);
2649         }
2650 
2651     return Accesses;
2652   }
2653 
2654   /// Get the set of all read accesses, tagged with the access id.
2655   ///
2656   /// @see getTaggedAccesses
2657   isl_union_map *getTaggedReads() {
2658     return getTaggedAccesses(MemoryAccess::READ);
2659   }
2660 
2661   /// Get the set of all may (and must) accesses, tagged with the access id.
2662   ///
2663   /// @see getTaggedAccesses
2664   isl_union_map *getTaggedMayWrites() {
2665     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2666                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
2667   }
2668 
2669   /// Get the set of all must accesses, tagged with the access id.
2670   ///
2671   /// @see getTaggedAccesses
2672   isl_union_map *getTaggedMustWrites() {
2673     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2674   }
2675 
2676   /// Collect parameter and array names as isl_ids.
2677   ///
2678   /// To reason about the different parameters and arrays used, ppcg requires
2679   /// a list of all isl_ids in use. As PPCG traditionally performs
2680   /// source-to-source compilation each of these isl_ids is mapped to the
2681   /// expression that represents it. As we do not have a corresponding
2682   /// expression in Polly, we just map each id to a 'zero' expression to match
2683   /// the data format that ppcg expects.
2684   ///
2685   /// @returns Retun a map from collected ids to 'zero' ast expressions.
2686   __isl_give isl_id_to_ast_expr *getNames() {
2687     auto *Names = isl_id_to_ast_expr_alloc(
2688         S->getIslCtx(),
2689         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2690     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
2691 
2692     for (const SCEV *P : S->parameters()) {
2693       isl_id *Id = S->getIdForParam(P).release();
2694       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2695     }
2696 
2697     for (auto &Array : S->arrays()) {
2698       auto Id = Array->getBasePtrId().release();
2699       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2700     }
2701 
2702     isl_ast_expr_free(Zero);
2703 
2704     return Names;
2705   }
2706 
2707   /// Create a new PPCG scop from the current scop.
2708   ///
2709   /// The PPCG scop is initialized with data from the current polly::Scop. From
2710   /// this initial data, the data-dependences in the PPCG scop are initialized.
2711   /// We do not use Polly's dependence analysis for now, to ensure we match
2712   /// the PPCG default behaviour more closely.
2713   ///
2714   /// @returns A new ppcg scop.
2715   ppcg_scop *createPPCGScop() {
2716     MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2717 
2718     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2719 
2720     PPCGScop->options = createPPCGOptions();
2721     // enable live range reordering
2722     PPCGScop->options->live_range_reordering = 1;
2723 
2724     PPCGScop->start = 0;
2725     PPCGScop->end = 0;
2726 
2727     PPCGScop->context = S->getContext().release();
2728     PPCGScop->domain = S->getDomains().release();
2729     // TODO: investigate this further. PPCG calls collect_call_domains.
2730     PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2731     PPCGScop->tagged_reads = getTaggedReads();
2732     PPCGScop->reads = S->getReads().release();
2733     PPCGScop->live_in = nullptr;
2734     PPCGScop->tagged_may_writes = getTaggedMayWrites();
2735     PPCGScop->may_writes = S->getWrites().release();
2736     PPCGScop->tagged_must_writes = getTaggedMustWrites();
2737     PPCGScop->must_writes = S->getMustWrites().release();
2738     PPCGScop->live_out = nullptr;
2739     PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take();
2740     PPCGScop->must_kills = KillsInfo.MustKills.take();
2741 
2742     PPCGScop->tagger = nullptr;
2743     PPCGScop->independence =
2744         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2745     PPCGScop->dep_flow = nullptr;
2746     PPCGScop->tagged_dep_flow = nullptr;
2747     PPCGScop->dep_false = nullptr;
2748     PPCGScop->dep_forced = nullptr;
2749     PPCGScop->dep_order = nullptr;
2750     PPCGScop->tagged_dep_order = nullptr;
2751 
2752     PPCGScop->schedule = S->getScheduleTree().release();
2753     // If we have something non-trivial to kill, add it to the schedule
2754     if (KillsInfo.KillsSchedule.get())
2755       PPCGScop->schedule = isl_schedule_sequence(
2756           PPCGScop->schedule, KillsInfo.KillsSchedule.take());
2757 
2758     PPCGScop->names = getNames();
2759     PPCGScop->pet = nullptr;
2760 
2761     compute_tagger(PPCGScop);
2762     compute_dependences(PPCGScop);
2763     eliminate_dead_code(PPCGScop);
2764 
2765     return PPCGScop;
2766   }
2767 
2768   /// Collect the array accesses in a statement.
2769   ///
2770   /// @param Stmt The statement for which to collect the accesses.
2771   ///
2772   /// @returns A list of array accesses.
2773   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2774     gpu_stmt_access *Accesses = nullptr;
2775 
2776     for (MemoryAccess *Acc : Stmt) {
2777       auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
2778       Access->read = Acc->isRead();
2779       Access->write = Acc->isWrite();
2780       Access->access = Acc->getAccessRelation().release();
2781       isl_space *Space = isl_map_get_space(Access->access);
2782       Space = isl_space_range(Space);
2783       Space = isl_space_from_range(Space);
2784       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2785       isl_map *Universe = isl_map_universe(Space);
2786       Access->tagged_access =
2787           isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2788       Access->exact_write = !Acc->isMayWrite();
2789       Access->ref_id = Acc->getId().release();
2790       Access->next = Accesses;
2791       Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2792       // TODO: Also mark one-element accesses to arrays as fixed-element.
2793       Access->fixed_element =
2794           Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2795       Accesses = Access;
2796     }
2797 
2798     return Accesses;
2799   }
2800 
2801   /// Collect the list of GPU statements.
2802   ///
2803   /// Each statement has an id, a pointer to the underlying data structure,
2804   /// as well as a list with all memory accesses.
2805   ///
2806   /// TODO: Initialize the list of memory accesses.
2807   ///
2808   /// @returns A linked-list of statements.
2809   gpu_stmt *getStatements() {
2810     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
2811                                        std::distance(S->begin(), S->end()));
2812 
2813     int i = 0;
2814     for (auto &Stmt : *S) {
2815       gpu_stmt *GPUStmt = &Stmts[i];
2816 
2817       GPUStmt->id = Stmt.getDomainId().release();
2818 
2819       // We use the pet stmt pointer to keep track of the Polly statements.
2820       GPUStmt->stmt = (pet_stmt *)&Stmt;
2821       GPUStmt->accesses = getStmtAccesses(Stmt);
2822       i++;
2823     }
2824 
2825     return Stmts;
2826   }
2827 
2828   /// Derive the extent of an array.
2829   ///
2830   /// The extent of an array is the set of elements that are within the
2831   /// accessed array. For the inner dimensions, the extent constraints are
2832   /// 0 and the size of the corresponding array dimension. For the first
2833   /// (outermost) dimension, the extent constraints are the minimal and maximal
2834   /// subscript value for the first dimension.
2835   ///
2836   /// @param Array The array to derive the extent for.
2837   ///
2838   /// @returns An isl_set describing the extent of the array.
2839   isl::set getExtent(ScopArrayInfo *Array) {
2840     unsigned NumDims = Array->getNumberOfDimensions();
2841 
2842     if (Array->getNumberOfDimensions() == 0)
2843       return isl::set::universe(Array->getSpace());
2844 
2845     isl::union_map Accesses = S->getAccesses(Array);
2846     isl::union_set AccessUSet = Accesses.range();
2847     AccessUSet = AccessUSet.coalesce();
2848     AccessUSet = AccessUSet.detect_equalities();
2849     AccessUSet = AccessUSet.coalesce();
2850 
2851     if (AccessUSet.is_empty())
2852       return isl::set::empty(Array->getSpace());
2853 
2854     isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2855 
2856     isl::local_space LS = isl::local_space(Array->getSpace());
2857 
2858     isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2859     isl::pw_aff OuterMin = AccessSet.dim_min(0);
2860     isl::pw_aff OuterMax = AccessSet.dim_max(0);
2861     OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2862     OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2863     OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2864     OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2865 
2866     isl::set Extent = isl::set::universe(Array->getSpace());
2867 
2868     Extent = Extent.intersect(OuterMin.le_set(Val));
2869     Extent = Extent.intersect(OuterMax.ge_set(Val));
2870 
2871     for (unsigned i = 1; i < NumDims; ++i)
2872       Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2873 
2874     for (unsigned i = 0; i < NumDims; ++i) {
2875       isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2876 
2877       // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2878       // Fortran array will we have a legitimate dimension.
2879       if (PwAff.is_null()) {
2880         assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2881         continue;
2882       }
2883 
2884       isl::pw_aff Val = isl::aff::var_on_domain(
2885           isl::local_space(Array->getSpace()), isl::dim::set, i);
2886       PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2887       PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2888       isl::set Set = PwAff.gt_set(Val);
2889       Extent = Set.intersect(Extent);
2890     }
2891 
2892     return Extent;
2893   }
2894 
2895   /// Derive the bounds of an array.
2896   ///
2897   /// For the first dimension we derive the bound of the array from the extent
2898   /// of this dimension. For inner dimensions we obtain their size directly from
2899   /// ScopArrayInfo.
2900   ///
2901   /// @param PPCGArray The array to compute bounds for.
2902   /// @param Array The polly array from which to take the information.
2903   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2904     std::vector<isl_pw_aff *> Bounds;
2905 
2906     if (PPCGArray.n_index > 0) {
2907       if (isl_set_is_empty(PPCGArray.extent)) {
2908         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2909         isl_local_space *LS = isl_local_space_from_space(
2910             isl_space_params(isl_set_get_space(Dom)));
2911         isl_set_free(Dom);
2912         isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2913         Bounds.push_back(Zero);
2914       } else {
2915         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2916         Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2917         isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2918         isl_set_free(Dom);
2919         Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2920         isl_local_space *LS =
2921             isl_local_space_from_space(isl_set_get_space(Dom));
2922         isl_aff *One = isl_aff_zero_on_domain(LS);
2923         One = isl_aff_add_constant_si(One, 1);
2924         Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2925         Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2926         Bounds.push_back(Bound);
2927       }
2928     }
2929 
2930     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2931       isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2932       auto LS = isl_pw_aff_get_domain_space(Bound);
2933       auto Aff = isl_multi_aff_zero(LS);
2934 
2935       // We need types to work out, which is why we perform this weird dance
2936       // with `Aff` and `Bound`. Consider this example:
2937 
2938       // LS: [p] -> { [] }
2939       // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }.
2940       // This `~` is used to denote a "null space" (which is different from
2941       // a *zero dimensional* space), which is something that ISL does not
2942       // show you when pretty printing.
2943 
2944       // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional*
2945       // space, not a "null space" which does not exist at all.
2946 
2947       // When we pullback (precompose) `Bound` with `Zero`, we get:
2948       // Bound . Zero =
2949       //     ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) =
2950       //     [p] -> { ~ -> [(10p)] } =
2951       //     [p] -> [(10p)] (as ISL pretty prints it)
2952       // Bound Pullback: [p] -> { [(10p)] }
2953 
2954       // We want this kind of an expression for Bound, without a
2955       // zero dimensional input, but with a "null space" input for the types
2956       // to work out later on, as far as I (Siddharth Bhat) understand.
2957       // I was unable to find a reference to this in the ISL manual.
2958       // References: Tobias Grosser.
2959 
2960       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2961       Bounds.push_back(Bound);
2962     }
2963 
2964     /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2965     /// to have the same parameter dimensions. So, we need to align them to an
2966     /// appropriate space.
2967     /// Scop::Context is _not_ an appropriate space, because when we have
2968     /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2969     /// contain all parameter dimensions.
2970     /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2971     isl_space *SeedAlignSpace = S->getParamSpace().release();
2972     SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2973 
2974     isl_space *AlignSpace = nullptr;
2975     std::vector<isl_pw_aff *> AlignedBounds;
2976     std::tie(AlignSpace, AlignedBounds) =
2977         alignPwAffs(std::move(Bounds), SeedAlignSpace);
2978 
2979     assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2980 
2981     isl_pw_aff_list *BoundsList =
2982         createPwAffList(S->getIslCtx(), std::move(AlignedBounds));
2983 
2984     isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2985     BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2986 
2987     assert(BoundsSpace && "Unable to access space of array.");
2988     assert(BoundsList && "Unable to access list of bounds.");
2989 
2990     PPCGArray.bound =
2991         isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2992     assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2993   }
2994 
2995   /// Create the arrays for @p PPCGProg.
2996   ///
2997   /// @param PPCGProg The program to compute the arrays for.
2998   void createArrays(gpu_prog *PPCGProg,
2999                     const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
3000     int i = 0;
3001     for (auto &Array : ValidSAIs) {
3002       std::string TypeName;
3003       raw_string_ostream OS(TypeName);
3004 
3005       OS << *Array->getElementType();
3006       TypeName = OS.str();
3007 
3008       gpu_array_info &PPCGArray = PPCGProg->array[i];
3009 
3010       PPCGArray.space = Array->getSpace().release();
3011       PPCGArray.type = strdup(TypeName.c_str());
3012       PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
3013       PPCGArray.name = strdup(Array->getName().c_str());
3014       PPCGArray.extent = nullptr;
3015       PPCGArray.n_index = Array->getNumberOfDimensions();
3016       PPCGArray.extent = getExtent(Array).release();
3017       PPCGArray.n_ref = 0;
3018       PPCGArray.refs = nullptr;
3019       PPCGArray.accessed = true;
3020       PPCGArray.read_only_scalar =
3021           Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
3022       PPCGArray.has_compound_element = false;
3023       PPCGArray.local = false;
3024       PPCGArray.declare_local = false;
3025       PPCGArray.global = false;
3026       PPCGArray.linearize = false;
3027       PPCGArray.dep_order = nullptr;
3028       PPCGArray.user = Array;
3029 
3030       PPCGArray.bound = nullptr;
3031       setArrayBounds(PPCGArray, Array);
3032       i++;
3033 
3034       collect_references(PPCGProg, &PPCGArray);
3035       PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
3036     }
3037   }
3038 
3039   /// Create an identity map between the arrays in the scop.
3040   ///
3041   /// @returns An identity map between the arrays in the scop.
3042   isl_union_map *getArrayIdentity() {
3043     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
3044 
3045     for (auto &Array : S->arrays()) {
3046       isl_space *Space = Array->getSpace().release();
3047       Space = isl_space_map_from_set(Space);
3048       isl_map *Identity = isl_map_identity(Space);
3049       Maps = isl_union_map_add_map(Maps, Identity);
3050     }
3051 
3052     return Maps;
3053   }
3054 
3055   /// Create a default-initialized PPCG GPU program.
3056   ///
3057   /// @returns A new gpu program description.
3058   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
3059 
3060     if (!PPCGScop)
3061       return nullptr;
3062 
3063     auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
3064 
3065     PPCGProg->ctx = S->getIslCtx();
3066     PPCGProg->scop = PPCGScop;
3067     PPCGProg->context = isl_set_copy(PPCGScop->context);
3068     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
3069     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
3070     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
3071     PPCGProg->tagged_must_kill =
3072         isl_union_map_copy(PPCGScop->tagged_must_kills);
3073     PPCGProg->to_inner = getArrayIdentity();
3074     PPCGProg->to_outer = getArrayIdentity();
3075     // TODO: verify that this assignment is correct.
3076     PPCGProg->any_to_outer = nullptr;
3077     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3078     PPCGProg->stmts = getStatements();
3079 
3080     // Only consider arrays that have a non-empty extent.
3081     // Otherwise, this will cause us to consider the following kinds of
3082     // empty arrays:
3083     //     1. Invariant loads that are represented by SAI objects.
3084     //     2. Arrays with statically known zero size.
3085     auto ValidSAIsRange =
3086         make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3087           return !getExtent(SAI).is_empty();
3088         });
3089     SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3090                                               ValidSAIsRange.end());
3091 
3092     PPCGProg->n_array =
3093         ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3094     PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
3095                                        PPCGProg->n_array);
3096 
3097     createArrays(PPCGProg, ValidSAIs);
3098 
3099     PPCGProg->array_order = nullptr;
3100     collect_order_dependences(PPCGProg);
3101 
3102     PPCGProg->may_persist = compute_may_persist(PPCGProg);
3103     return PPCGProg;
3104   }
3105 
3106   struct PrintGPUUserData {
3107     struct cuda_info *CudaInfo;
3108     struct gpu_prog *PPCGProg;
3109     std::vector<ppcg_kernel *> Kernels;
3110   };
3111 
3112   /// Print a user statement node in the host code.
3113   ///
3114   /// We use ppcg's printing facilities to print the actual statement and
3115   /// additionally build up a list of all kernels that are encountered in the
3116   /// host ast.
3117   ///
3118   /// @param P The printer to print to
3119   /// @param Options The printing options to use
3120   /// @param Node The node to print
3121   /// @param User A user pointer to carry additional data. This pointer is
3122   ///             expected to be of type PrintGPUUserData.
3123   ///
3124   /// @returns A printer to which the output has been printed.
3125   static __isl_give isl_printer *
3126   printHostUser(__isl_take isl_printer *P,
3127                 __isl_take isl_ast_print_options *Options,
3128                 __isl_take isl_ast_node *Node, void *User) {
3129     auto Data = (struct PrintGPUUserData *)User;
3130     auto Id = isl_ast_node_get_annotation(Node);
3131 
3132     if (Id) {
3133       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3134 
3135       // If this is a user statement, format it ourselves as ppcg would
3136       // otherwise try to call pet functionality that is not available in
3137       // Polly.
3138       if (IsUser) {
3139         P = isl_printer_start_line(P);
3140         P = isl_printer_print_ast_node(P, Node);
3141         P = isl_printer_end_line(P);
3142         isl_id_free(Id);
3143         isl_ast_print_options_free(Options);
3144         return P;
3145       }
3146 
3147       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3148       isl_id_free(Id);
3149       Data->Kernels.push_back(Kernel);
3150     }
3151 
3152     return print_host_user(P, Options, Node, User);
3153   }
3154 
3155   /// Print C code corresponding to the control flow in @p Kernel.
3156   ///
3157   /// @param Kernel The kernel to print
3158   void printKernel(ppcg_kernel *Kernel) {
3159     auto *P = isl_printer_to_str(S->getIslCtx());
3160     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3161     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3162     P = isl_ast_node_print(Kernel->tree, P, Options);
3163     char *String = isl_printer_get_str(P);
3164     printf("%s\n", String);
3165     free(String);
3166     isl_printer_free(P);
3167   }
3168 
3169   /// Print C code corresponding to the GPU code described by @p Tree.
3170   ///
3171   /// @param Tree An AST describing GPU code
3172   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
3173   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3174     auto *P = isl_printer_to_str(S->getIslCtx());
3175     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3176 
3177     PrintGPUUserData Data;
3178     Data.PPCGProg = PPCGProg;
3179 
3180     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3181     Options =
3182         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3183     P = isl_ast_node_print(Tree, P, Options);
3184     char *String = isl_printer_get_str(P);
3185     printf("# host\n");
3186     printf("%s\n", String);
3187     free(String);
3188     isl_printer_free(P);
3189 
3190     for (auto Kernel : Data.Kernels) {
3191       printf("# kernel%d\n", Kernel->id);
3192       printKernel(Kernel);
3193     }
3194   }
3195 
3196   // Generate a GPU program using PPCG.
3197   //
3198   // GPU mapping consists of multiple steps:
3199   //
3200   //  1) Compute new schedule for the program.
3201   //  2) Map schedule to GPU (TODO)
3202   //  3) Generate code for new schedule (TODO)
3203   //
3204   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3205   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3206   // strategy directly from this pass.
3207   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3208 
3209     auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
3210 
3211     PPCGGen->ctx = S->getIslCtx();
3212     PPCGGen->options = PPCGScop->options;
3213     PPCGGen->print = nullptr;
3214     PPCGGen->print_user = nullptr;
3215     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3216     PPCGGen->prog = PPCGProg;
3217     PPCGGen->tree = nullptr;
3218     PPCGGen->types.n = 0;
3219     PPCGGen->types.name = nullptr;
3220     PPCGGen->sizes = nullptr;
3221     PPCGGen->used_sizes = nullptr;
3222     PPCGGen->kernel_id = 0;
3223 
3224     // Set scheduling strategy to same strategy PPCG is using.
3225     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3226     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3227     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3228 
3229     isl_schedule *Schedule = get_schedule(PPCGGen);
3230 
3231     int has_permutable = has_any_permutable_node(Schedule);
3232 
3233     Schedule =
3234         isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3235 
3236     if (!has_permutable || has_permutable < 0) {
3237       Schedule = isl_schedule_free(Schedule);
3238       DEBUG(dbgs() << getUniqueScopName(S)
3239                    << " does not have permutable bands. Bailing out\n";);
3240     } else {
3241       const bool CreateTransferToFromDevice = !PollyManagedMemory;
3242       Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3243       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3244     }
3245 
3246     if (DumpSchedule) {
3247       isl_printer *P = isl_printer_to_str(S->getIslCtx());
3248       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3249       P = isl_printer_print_str(P, "Schedule\n");
3250       P = isl_printer_print_str(P, "========\n");
3251       if (Schedule)
3252         P = isl_printer_print_schedule(P, Schedule);
3253       else
3254         P = isl_printer_print_str(P, "No schedule found\n");
3255 
3256       printf("%s\n", isl_printer_get_str(P));
3257       isl_printer_free(P);
3258     }
3259 
3260     if (DumpCode) {
3261       printf("Code\n");
3262       printf("====\n");
3263       if (PPCGGen->tree)
3264         printGPUTree(PPCGGen->tree, PPCGProg);
3265       else
3266         printf("No code generated\n");
3267     }
3268 
3269     isl_schedule_free(Schedule);
3270 
3271     return PPCGGen;
3272   }
3273 
3274   /// Free gpu_gen structure.
3275   ///
3276   /// @param PPCGGen The ppcg_gen object to free.
3277   void freePPCGGen(gpu_gen *PPCGGen) {
3278     isl_ast_node_free(PPCGGen->tree);
3279     isl_union_map_free(PPCGGen->sizes);
3280     isl_union_map_free(PPCGGen->used_sizes);
3281     free(PPCGGen);
3282   }
3283 
3284   /// Free the options in the ppcg scop structure.
3285   ///
3286   /// ppcg is not freeing these options for us. To avoid leaks we do this
3287   /// ourselves.
3288   ///
3289   /// @param PPCGScop The scop referencing the options to free.
3290   void freeOptions(ppcg_scop *PPCGScop) {
3291     free(PPCGScop->options->debug);
3292     PPCGScop->options->debug = nullptr;
3293     free(PPCGScop->options);
3294     PPCGScop->options = nullptr;
3295   }
3296 
3297   /// Approximate the number of points in the set.
3298   ///
3299   /// This function returns an ast expression that overapproximates the number
3300   /// of points in an isl set through the rectangular hull surrounding this set.
3301   ///
3302   /// @param Set   The set to count.
3303   /// @param Build The isl ast build object to use for creating the ast
3304   ///              expression.
3305   ///
3306   /// @returns An approximation of the number of points in the set.
3307   __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3308                                              __isl_keep isl_ast_build *Build) {
3309 
3310     isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3311     auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3312 
3313     isl_space *Space = isl_set_get_space(Set);
3314     Space = isl_space_params(Space);
3315     auto *Univ = isl_set_universe(Space);
3316     isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3317 
3318     for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
3319       isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3320       isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3321       isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3322       DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3323       auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3324       Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3325     }
3326 
3327     isl_set_free(Set);
3328     isl_pw_aff_free(OneAff);
3329 
3330     return Expr;
3331   }
3332 
3333   /// Approximate a number of dynamic instructions executed by a given
3334   /// statement.
3335   ///
3336   /// @param Stmt  The statement for which to compute the number of dynamic
3337   ///              instructions.
3338   /// @param Build The isl ast build object to use for creating the ast
3339   ///              expression.
3340   /// @returns An approximation of the number of dynamic instructions executed
3341   ///          by @p Stmt.
3342   __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3343                                              __isl_keep isl_ast_build *Build) {
3344     auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3345 
3346     long InstCount = 0;
3347 
3348     if (Stmt.isBlockStmt()) {
3349       auto *BB = Stmt.getBasicBlock();
3350       InstCount = std::distance(BB->begin(), BB->end());
3351     } else {
3352       auto *R = Stmt.getRegion();
3353 
3354       for (auto *BB : R->blocks()) {
3355         InstCount += std::distance(BB->begin(), BB->end());
3356       }
3357     }
3358 
3359     isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount);
3360     auto *InstExpr = isl_ast_expr_from_val(InstVal);
3361     return isl_ast_expr_mul(InstExpr, Iterations);
3362   }
3363 
3364   /// Approximate dynamic instructions executed in scop.
3365   ///
3366   /// @param S     The scop for which to approximate dynamic instructions.
3367   /// @param Build The isl ast build object to use for creating the ast
3368   ///              expression.
3369   /// @returns An approximation of the number of dynamic instructions executed
3370   ///          in @p S.
3371   __isl_give isl_ast_expr *
3372   getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3373     isl_ast_expr *Instructions;
3374 
3375     isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0);
3376     Instructions = isl_ast_expr_from_val(Zero);
3377 
3378     for (ScopStmt &Stmt : S) {
3379       isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3380       Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3381     }
3382     return Instructions;
3383   }
3384 
3385   /// Create a check that ensures sufficient compute in scop.
3386   ///
3387   /// @param S     The scop for which to ensure sufficient compute.
3388   /// @param Build The isl ast build object to use for creating the ast
3389   ///              expression.
3390   /// @returns An expression that evaluates to TRUE in case of sufficient
3391   ///          compute and to FALSE, otherwise.
3392   __isl_give isl_ast_expr *
3393   createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3394     auto Iterations = getNumberOfIterations(S, Build);
3395     auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute);
3396     auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3397     return isl_ast_expr_ge(Iterations, MinComputeExpr);
3398   }
3399 
3400   /// Check if the basic block contains a function we cannot codegen for GPU
3401   /// kernels.
3402   ///
3403   /// If this basic block does something with a `Function` other than calling
3404   /// a function that we support in a kernel, return true.
3405   bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3406                                             bool AllowCUDALibDevice) {
3407     for (const Instruction &Inst : *BB) {
3408       const CallInst *Call = dyn_cast<CallInst>(&Inst);
3409       if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3410                                           AllowCUDALibDevice))
3411         continue;
3412 
3413       for (Value *Op : Inst.operands())
3414         // Look for (<func-type>*) among operands of Inst
3415         if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) {
3416           if (isa<FunctionType>(PtrTy->getElementType())) {
3417             DEBUG(dbgs() << Inst
3418                          << " has illegal use of function in kernel.\n");
3419             return true;
3420           }
3421         }
3422     }
3423     return false;
3424   }
3425 
3426   /// Return whether the Scop S uses functions in a way that we do not support.
3427   bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3428     for (auto &Stmt : S) {
3429       if (Stmt.isBlockStmt()) {
3430         if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3431                                                  AllowCUDALibDevice))
3432           return true;
3433       } else {
3434         assert(Stmt.isRegionStmt() &&
3435                "Stmt was neither block nor region statement");
3436         for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3437           if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3438             return true;
3439       }
3440     }
3441     return false;
3442   }
3443 
3444   /// Generate code for a given GPU AST described by @p Root.
3445   ///
3446   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3447   /// @param Prog The GPU Program to generate code for.
3448   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3449     ScopAnnotator Annotator;
3450     Annotator.buildAliasScopes(*S);
3451 
3452     Region *R = &S->getRegion();
3453 
3454     simplifyRegion(R, DT, LI, RI);
3455 
3456     BasicBlock *EnteringBB = R->getEnteringBlock();
3457 
3458     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3459 
3460     // Only build the run-time condition and parameters _after_ having
3461     // introduced the conditional branch. This is important as the conditional
3462     // branch will guard the original scop from new induction variables that
3463     // the SCEVExpander may introduce while code generating the parameters and
3464     // which may introduce scalar dependences that prevent us from correctly
3465     // code generating this scop.
3466     BBPair StartExitBlocks;
3467     BranchInst *CondBr = nullptr;
3468     std::tie(StartExitBlocks, CondBr) =
3469         executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3470     BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3471 
3472     assert(CondBr && "CondBr not initialized by executeScopConditionally");
3473 
3474     GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3475                                StartBlock, Prog, Runtime, Architecture);
3476 
3477     // TODO: Handle LICM
3478     auto SplitBlock = StartBlock->getSinglePredecessor();
3479     Builder.SetInsertPoint(SplitBlock->getTerminator());
3480 
3481     isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx());
3482     isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3483     isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3484     Condition = isl_ast_expr_and(Condition, SufficientCompute);
3485     isl_ast_build_free(Build);
3486 
3487     // preload invariant loads. Note: This should happen before the RTC
3488     // because the RTC may depend on values that are invariant load hoisted.
3489     if (!NodeBuilder.preloadInvariantLoads()) {
3490       // Patch the introduced branch condition to ensure that we always execute
3491       // the original SCoP.
3492       auto *FalseI1 = Builder.getFalse();
3493       auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
3494       SplitBBTerm->setOperand(0, FalseI1);
3495 
3496       DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3497                           S->getFunction().getName() +
3498                           " | Scop Region: " + S->getNameStr());
3499       // adjust the dominator tree accordingly.
3500       auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3501       assert(ExitingBlock);
3502       auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3503       assert(MergeBlock);
3504       polly::markBlockUnreachable(*StartBlock, Builder);
3505       polly::markBlockUnreachable(*ExitingBlock, Builder);
3506       auto *ExitingBB = S->getExitingBlock();
3507       assert(ExitingBB);
3508 
3509       DT->changeImmediateDominator(MergeBlock, ExitingBB);
3510       DT->eraseNode(ExitingBlock);
3511       isl_ast_expr_free(Condition);
3512       isl_ast_node_free(Root);
3513     } else {
3514 
3515       if (polly::PerfMonitoring) {
3516         PerfMonitor P(*S, EnteringBB->getParent()->getParent());
3517         P.initialize();
3518         P.insertRegionStart(SplitBlock->getTerminator());
3519 
3520         // TODO: actually think if this is the correct exiting block to place
3521         // the `end` performance marker. Invariant load hoisting changes
3522         // the CFG in a way that I do not precisely understand, so I
3523         // (Siddharth<[email protected]>) should come back to this and
3524         // think about which exiting block to use.
3525         auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3526         assert(ExitingBlock);
3527         BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
3528         P.insertRegionEnd(MergeBlock->getTerminator());
3529       }
3530 
3531       NodeBuilder.addParameters(S->getContext().release());
3532       Value *RTC = NodeBuilder.createRTC(Condition);
3533       Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3534 
3535       Builder.SetInsertPoint(&*StartBlock->begin());
3536 
3537       NodeBuilder.create(Root);
3538     }
3539 
3540     /// In case a sequential kernel has more surrounding loops as any parallel
3541     /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3542     /// point in running it on a GPU.
3543     if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3544       CondBr->setOperand(0, Builder.getFalse());
3545 
3546     if (!NodeBuilder.BuildSuccessful)
3547       CondBr->setOperand(0, Builder.getFalse());
3548   }
3549 
3550   bool runOnScop(Scop &CurrentScop) override {
3551     S = &CurrentScop;
3552     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3553     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3554     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3555     DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3556     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3557 
3558     DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3559                  << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3560 
3561     // We currently do not support functions other than intrinsics inside
3562     // kernels, as code generation will need to offload function calls to the
3563     // kernel. This may lead to a kernel trying to call a function on the host.
3564     // This also allows us to prevent codegen from trying to take the
3565     // address of an intrinsic function to send to the kernel.
3566     if (containsInvalidKernelFunction(CurrentScop,
3567                                       Architecture == GPUArch::NVPTX64)) {
3568       DEBUG(
3569           dbgs() << getUniqueScopName(S)
3570                  << " contains function which cannot be materialised in a GPU "
3571                     "kernel. Bailing out.\n";);
3572       return false;
3573     }
3574 
3575     auto PPCGScop = createPPCGScop();
3576     auto PPCGProg = createPPCGProg(PPCGScop);
3577     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3578 
3579     if (PPCGGen->tree) {
3580       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3581       CurrentScop.markAsToBeSkipped();
3582     } else {
3583       DEBUG(dbgs() << getUniqueScopName(S)
3584                    << " has empty PPCGGen->tree. Bailing out.\n");
3585     }
3586 
3587     freeOptions(PPCGScop);
3588     freePPCGGen(PPCGGen);
3589     gpu_prog_free(PPCGProg);
3590     ppcg_scop_free(PPCGScop);
3591 
3592     return true;
3593   }
3594 
3595   void printScop(raw_ostream &, Scop &) const override {}
3596 
3597   void getAnalysisUsage(AnalysisUsage &AU) const override {
3598     ScopPass::getAnalysisUsage(AU);
3599 
3600     AU.addRequired<DominatorTreeWrapperPass>();
3601     AU.addRequired<RegionInfoPass>();
3602     AU.addRequired<ScalarEvolutionWrapperPass>();
3603     AU.addRequired<ScopDetectionWrapperPass>();
3604     AU.addRequired<ScopInfoRegionPass>();
3605     AU.addRequired<LoopInfoWrapperPass>();
3606 
3607     // FIXME: We do not yet add regions for the newly generated code to the
3608     //        region tree.
3609   }
3610 };
3611 } // namespace
3612 
3613 char PPCGCodeGeneration::ID = 1;
3614 
3615 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3616   PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3617   generator->Runtime = Runtime;
3618   generator->Architecture = Arch;
3619   return generator;
3620 }
3621 
3622 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3623                       "Polly - Apply PPCG translation to SCOP", false, false)
3624 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3625 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3626 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3627 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3628 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3629 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3630 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3631                     "Polly - Apply PPCG translation to SCOP", false, false)
3632