1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 55 cl::desc("Dump the kernel LLVM-IR"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 /// Create the ast expressions for a ScopStmt. 60 /// 61 /// This function is a callback for to generate the ast expressions for each 62 /// of the scheduled ScopStmts. 63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 64 void *Stmt, isl_ast_build *Build, 65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 66 isl_id *Id, void *User), 67 void *UserIndex, 68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 69 void *User_expr) { 70 71 // TODO: Implement the AST expression generation. For now we just return a 72 // nullptr to ensure that we do not free uninitialized pointers. 73 74 return nullptr; 75 } 76 77 /// Generate code for a GPU specific isl AST. 78 /// 79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 80 /// generates code for general-prupose AST nodes, with special functionality 81 /// for generating GPU specific user nodes. 82 /// 83 /// @see GPUNodeBuilder::createUser 84 class GPUNodeBuilder : public IslNodeBuilder { 85 public: 86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 88 DominatorTree &DT, Scop &S, gpu_prog *Prog) 89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} 90 91 private: 92 /// A module containing GPU code. 93 /// 94 /// This pointer is only set in case we are currently generating GPU code. 95 std::unique_ptr<Module> GPUModule; 96 97 /// The GPU program we generate code for. 98 gpu_prog *Prog; 99 100 /// Class to free isl_ids. 101 class IslIdDeleter { 102 public: 103 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 104 }; 105 106 /// A set containing all isl_ids allocated in a GPU kernel. 107 /// 108 /// By releasing this set all isl_ids will be freed. 109 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 110 111 /// Create code for user-defined AST nodes. 112 /// 113 /// These AST nodes can be of type: 114 /// 115 /// - ScopStmt: A computational statement (TODO) 116 /// - Kernel: A GPU kernel call (TODO) 117 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 118 /// 119 /// @param UserStmt The ast node to generate code for. 120 virtual void createUser(__isl_take isl_ast_node *UserStmt); 121 122 /// Create GPU kernel. 123 /// 124 /// Code generate the kernel described by @p KernelStmt. 125 /// 126 /// @param KernelStmt The ast node to generate kernel code for. 127 void createKernel(__isl_take isl_ast_node *KernelStmt); 128 129 /// Create kernel function. 130 /// 131 /// Create a kernel function located in a newly created module that can serve 132 /// as target for device code generation. Set the Builder to point to the 133 /// start block of this newly created function. 134 /// 135 /// @param Kernel The kernel to generate code for. 136 void createKernelFunction(ppcg_kernel *Kernel); 137 138 /// Create the declaration of a kernel function. 139 /// 140 /// The kernel function takes as arguments: 141 /// 142 /// - One i8 pointer for each external array reference used in the kernel. 143 /// - Host iterators (TODO) 144 /// - Parameters (TODO) 145 /// - Other LLVM Value references (TODO) 146 /// 147 /// @param Kernel The kernel to generate the function declaration for. 148 /// @returns The newly declared function. 149 Function *createKernelFunctionDecl(ppcg_kernel *Kernel); 150 151 /// Insert intrinsic functions to obtain thread and block ids. 152 /// 153 /// @param The kernel to generate the intrinsic functions for. 154 void insertKernelIntrinsics(ppcg_kernel *Kernel); 155 156 /// Finalize the generation of the kernel function. 157 /// 158 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 159 /// dump its IR to stderr. 160 void finalizeKernelFunction(); 161 }; 162 163 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 164 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 165 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 166 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 167 isl_id_free(Id); 168 isl_ast_expr_free(StmtExpr); 169 170 const char *Str = isl_id_get_name(Id); 171 if (!strcmp(Str, "kernel")) { 172 createKernel(UserStmt); 173 isl_ast_expr_free(Expr); 174 return; 175 } 176 177 isl_ast_expr_free(Expr); 178 isl_ast_node_free(UserStmt); 179 return; 180 } 181 182 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 183 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 184 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 185 isl_id_free(Id); 186 isl_ast_node_free(KernelStmt); 187 188 assert(Kernel->tree && "Device AST of kernel node is empty"); 189 190 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 191 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 192 193 createKernelFunction(Kernel); 194 195 Builder.SetInsertPoint(&HostInsertPoint); 196 IDToValue = HostIDs; 197 198 finalizeKernelFunction(); 199 } 200 201 /// Compute the DataLayout string for the NVPTX backend. 202 /// 203 /// @param is64Bit Are we looking for a 64 bit architecture? 204 static std::string computeNVPTXDataLayout(bool is64Bit) { 205 std::string Ret = "e"; 206 207 if (!is64Bit) 208 Ret += "-p:32:32"; 209 210 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 211 212 return Ret; 213 } 214 215 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { 216 std::vector<Type *> Args; 217 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 218 219 for (long i = 0; i < Prog->n_array; i++) { 220 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 221 continue; 222 223 Args.push_back(Builder.getInt8PtrTy()); 224 } 225 226 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 227 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 228 GPUModule.get()); 229 FN->setCallingConv(CallingConv::PTX_Kernel); 230 231 auto Arg = FN->arg_begin(); 232 for (long i = 0; i < Kernel->n_array; i++) { 233 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 234 continue; 235 236 Arg->setName(Prog->array[i].name); 237 Arg++; 238 } 239 240 return FN; 241 } 242 243 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 244 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 245 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 246 247 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 248 Intrinsic::nvvm_read_ptx_sreg_tid_y, 249 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 250 251 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 252 std::string Name = isl_id_get_name(Id); 253 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 254 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 255 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 256 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 257 IDToValue[Id] = Val; 258 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 259 }; 260 261 for (int i = 0; i < Kernel->n_grid; ++i) { 262 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 263 addId(Id, IntrinsicsBID[i]); 264 } 265 266 for (int i = 0; i < Kernel->n_block; ++i) { 267 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 268 addId(Id, IntrinsicsTID[i]); 269 } 270 } 271 272 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { 273 274 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 275 GPUModule.reset(new Module(Identifier, Builder.getContext())); 276 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 277 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 278 279 Function *FN = createKernelFunctionDecl(Kernel); 280 281 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 282 283 Builder.SetInsertPoint(EntryBlock); 284 Builder.CreateRetVoid(); 285 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 286 287 insertKernelIntrinsics(Kernel); 288 } 289 290 void GPUNodeBuilder::finalizeKernelFunction() { 291 292 if (DumpKernelIR) 293 outs() << *GPUModule << "\n"; 294 295 GPUModule.release(); 296 KernelIDs.clear(); 297 } 298 299 namespace { 300 class PPCGCodeGeneration : public ScopPass { 301 public: 302 static char ID; 303 304 /// The scop that is currently processed. 305 Scop *S; 306 307 LoopInfo *LI; 308 DominatorTree *DT; 309 ScalarEvolution *SE; 310 const DataLayout *DL; 311 RegionInfo *RI; 312 313 PPCGCodeGeneration() : ScopPass(ID) {} 314 315 /// Construct compilation options for PPCG. 316 /// 317 /// @returns The compilation options. 318 ppcg_options *createPPCGOptions() { 319 auto DebugOptions = 320 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 321 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 322 323 DebugOptions->dump_schedule_constraints = false; 324 DebugOptions->dump_schedule = false; 325 DebugOptions->dump_final_schedule = false; 326 DebugOptions->dump_sizes = false; 327 328 Options->debug = DebugOptions; 329 330 Options->reschedule = true; 331 Options->scale_tile_loops = false; 332 Options->wrap = false; 333 334 Options->non_negative_parameters = false; 335 Options->ctx = nullptr; 336 Options->sizes = nullptr; 337 338 Options->tile_size = 32; 339 340 Options->use_private_memory = false; 341 Options->use_shared_memory = false; 342 Options->max_shared_memory = 0; 343 344 Options->target = PPCG_TARGET_CUDA; 345 Options->openmp = false; 346 Options->linearize_device_arrays = true; 347 Options->live_range_reordering = false; 348 349 Options->opencl_compiler_options = nullptr; 350 Options->opencl_use_gpu = false; 351 Options->opencl_n_include_file = 0; 352 Options->opencl_include_files = nullptr; 353 Options->opencl_print_kernel_types = false; 354 Options->opencl_embed_kernel_code = false; 355 356 Options->save_schedule_file = nullptr; 357 Options->load_schedule_file = nullptr; 358 359 return Options; 360 } 361 362 /// Get a tagged access relation containing all accesses of type @p AccessTy. 363 /// 364 /// Instead of a normal access of the form: 365 /// 366 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 367 /// 368 /// a tagged access has the form 369 /// 370 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 371 /// 372 /// where 'id' is an additional space that references the memory access that 373 /// triggered the access. 374 /// 375 /// @param AccessTy The type of the memory accesses to collect. 376 /// 377 /// @return The relation describing all tagged memory accesses. 378 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 379 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 380 381 for (auto &Stmt : *S) 382 for (auto &Acc : Stmt) 383 if (Acc->getType() == AccessTy) { 384 isl_map *Relation = Acc->getAccessRelation(); 385 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 386 387 isl_space *Space = isl_map_get_space(Relation); 388 Space = isl_space_range(Space); 389 Space = isl_space_from_range(Space); 390 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 391 isl_map *Universe = isl_map_universe(Space); 392 Relation = isl_map_domain_product(Relation, Universe); 393 Accesses = isl_union_map_add_map(Accesses, Relation); 394 } 395 396 return Accesses; 397 } 398 399 /// Get the set of all read accesses, tagged with the access id. 400 /// 401 /// @see getTaggedAccesses 402 isl_union_map *getTaggedReads() { 403 return getTaggedAccesses(MemoryAccess::READ); 404 } 405 406 /// Get the set of all may (and must) accesses, tagged with the access id. 407 /// 408 /// @see getTaggedAccesses 409 isl_union_map *getTaggedMayWrites() { 410 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 411 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 412 } 413 414 /// Get the set of all must accesses, tagged with the access id. 415 /// 416 /// @see getTaggedAccesses 417 isl_union_map *getTaggedMustWrites() { 418 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 419 } 420 421 /// Collect parameter and array names as isl_ids. 422 /// 423 /// To reason about the different parameters and arrays used, ppcg requires 424 /// a list of all isl_ids in use. As PPCG traditionally performs 425 /// source-to-source compilation each of these isl_ids is mapped to the 426 /// expression that represents it. As we do not have a corresponding 427 /// expression in Polly, we just map each id to a 'zero' expression to match 428 /// the data format that ppcg expects. 429 /// 430 /// @returns Retun a map from collected ids to 'zero' ast expressions. 431 __isl_give isl_id_to_ast_expr *getNames() { 432 auto *Names = isl_id_to_ast_expr_alloc( 433 S->getIslCtx(), 434 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 435 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 436 auto *Space = S->getParamSpace(); 437 438 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 439 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 440 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 441 } 442 443 for (auto &Array : S->arrays()) { 444 auto Id = Array.second->getBasePtrId(); 445 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 446 } 447 448 isl_space_free(Space); 449 isl_ast_expr_free(Zero); 450 451 return Names; 452 } 453 454 /// Create a new PPCG scop from the current scop. 455 /// 456 /// The PPCG scop is initialized with data from the current polly::Scop. From 457 /// this initial data, the data-dependences in the PPCG scop are initialized. 458 /// We do not use Polly's dependence analysis for now, to ensure we match 459 /// the PPCG default behaviour more closely. 460 /// 461 /// @returns A new ppcg scop. 462 ppcg_scop *createPPCGScop() { 463 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 464 465 PPCGScop->options = createPPCGOptions(); 466 467 PPCGScop->start = 0; 468 PPCGScop->end = 0; 469 470 PPCGScop->context = S->getContext(); 471 PPCGScop->domain = S->getDomains(); 472 PPCGScop->call = nullptr; 473 PPCGScop->tagged_reads = getTaggedReads(); 474 PPCGScop->reads = S->getReads(); 475 PPCGScop->live_in = nullptr; 476 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 477 PPCGScop->may_writes = S->getWrites(); 478 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 479 PPCGScop->must_writes = S->getMustWrites(); 480 PPCGScop->live_out = nullptr; 481 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 482 PPCGScop->tagger = nullptr; 483 484 PPCGScop->independence = nullptr; 485 PPCGScop->dep_flow = nullptr; 486 PPCGScop->tagged_dep_flow = nullptr; 487 PPCGScop->dep_false = nullptr; 488 PPCGScop->dep_forced = nullptr; 489 PPCGScop->dep_order = nullptr; 490 PPCGScop->tagged_dep_order = nullptr; 491 492 PPCGScop->schedule = S->getScheduleTree(); 493 PPCGScop->names = getNames(); 494 495 PPCGScop->pet = nullptr; 496 497 compute_tagger(PPCGScop); 498 compute_dependences(PPCGScop); 499 500 return PPCGScop; 501 } 502 503 /// Collect the array acesses in a statement. 504 /// 505 /// @param Stmt The statement for which to collect the accesses. 506 /// 507 /// @returns A list of array accesses. 508 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 509 gpu_stmt_access *Accesses = nullptr; 510 511 for (MemoryAccess *Acc : Stmt) { 512 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 513 Access->read = Acc->isRead(); 514 Access->write = Acc->isWrite(); 515 Access->access = Acc->getAccessRelation(); 516 isl_space *Space = isl_map_get_space(Access->access); 517 Space = isl_space_range(Space); 518 Space = isl_space_from_range(Space); 519 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 520 isl_map *Universe = isl_map_universe(Space); 521 Access->tagged_access = 522 isl_map_domain_product(Acc->getAccessRelation(), Universe); 523 Access->exact_write = Acc->isWrite(); 524 Access->ref_id = Acc->getId(); 525 Access->next = Accesses; 526 Accesses = Access; 527 } 528 529 return Accesses; 530 } 531 532 /// Collect the list of GPU statements. 533 /// 534 /// Each statement has an id, a pointer to the underlying data structure, 535 /// as well as a list with all memory accesses. 536 /// 537 /// TODO: Initialize the list of memory accesses. 538 /// 539 /// @returns A linked-list of statements. 540 gpu_stmt *getStatements() { 541 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 542 std::distance(S->begin(), S->end())); 543 544 int i = 0; 545 for (auto &Stmt : *S) { 546 gpu_stmt *GPUStmt = &Stmts[i]; 547 548 GPUStmt->id = Stmt.getDomainId(); 549 550 // We use the pet stmt pointer to keep track of the Polly statements. 551 GPUStmt->stmt = (pet_stmt *)&Stmt; 552 GPUStmt->accesses = getStmtAccesses(Stmt); 553 i++; 554 } 555 556 return Stmts; 557 } 558 559 /// Derive the extent of an array. 560 /// 561 /// The extent of an array is defined by the set of memory locations for 562 /// which a memory access in the iteration domain exists. 563 /// 564 /// @param Array The array to derive the extent for. 565 /// 566 /// @returns An isl_set describing the extent of the array. 567 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 568 isl_union_map *Accesses = S->getAccesses(); 569 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 570 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 571 isl_set *AccessSet = 572 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 573 isl_union_set_free(AccessUSet); 574 575 return AccessSet; 576 } 577 578 /// Derive the bounds of an array. 579 /// 580 /// For the first dimension we derive the bound of the array from the extent 581 /// of this dimension. For inner dimensions we obtain their size directly from 582 /// ScopArrayInfo. 583 /// 584 /// @param PPCGArray The array to compute bounds for. 585 /// @param Array The polly array from which to take the information. 586 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 587 if (PPCGArray.n_index > 0) { 588 isl_set *Dom = isl_set_copy(PPCGArray.extent); 589 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 590 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 591 isl_set_free(Dom); 592 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 593 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 594 isl_aff *One = isl_aff_zero_on_domain(LS); 595 One = isl_aff_add_constant_si(One, 1); 596 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 597 Bound = isl_pw_aff_gist(Bound, S->getContext()); 598 PPCGArray.bound[0] = Bound; 599 } 600 601 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 602 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 603 auto LS = isl_pw_aff_get_domain_space(Bound); 604 auto Aff = isl_multi_aff_zero(LS); 605 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 606 PPCGArray.bound[i] = Bound; 607 } 608 } 609 610 /// Create the arrays for @p PPCGProg. 611 /// 612 /// @param PPCGProg The program to compute the arrays for. 613 void createArrays(gpu_prog *PPCGProg) { 614 int i = 0; 615 for (auto &Element : S->arrays()) { 616 ScopArrayInfo *Array = Element.second.get(); 617 618 std::string TypeName; 619 raw_string_ostream OS(TypeName); 620 621 OS << *Array->getElementType(); 622 TypeName = OS.str(); 623 624 gpu_array_info &PPCGArray = PPCGProg->array[i]; 625 626 PPCGArray.space = Array->getSpace(); 627 PPCGArray.type = strdup(TypeName.c_str()); 628 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 629 PPCGArray.name = strdup(Array->getName().c_str()); 630 PPCGArray.extent = nullptr; 631 PPCGArray.n_index = Array->getNumberOfDimensions(); 632 PPCGArray.bound = 633 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 634 PPCGArray.extent = getExtent(Array); 635 PPCGArray.n_ref = 0; 636 PPCGArray.refs = nullptr; 637 PPCGArray.accessed = true; 638 PPCGArray.read_only_scalar = false; 639 PPCGArray.has_compound_element = false; 640 PPCGArray.local = false; 641 PPCGArray.declare_local = false; 642 PPCGArray.global = false; 643 PPCGArray.linearize = false; 644 PPCGArray.dep_order = nullptr; 645 646 setArrayBounds(PPCGArray, Array); 647 i++; 648 649 collect_references(PPCGProg, &PPCGArray); 650 } 651 } 652 653 /// Create an identity map between the arrays in the scop. 654 /// 655 /// @returns An identity map between the arrays in the scop. 656 isl_union_map *getArrayIdentity() { 657 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 658 659 for (auto &Item : S->arrays()) { 660 ScopArrayInfo *Array = Item.second.get(); 661 isl_space *Space = Array->getSpace(); 662 Space = isl_space_map_from_set(Space); 663 isl_map *Identity = isl_map_identity(Space); 664 Maps = isl_union_map_add_map(Maps, Identity); 665 } 666 667 return Maps; 668 } 669 670 /// Create a default-initialized PPCG GPU program. 671 /// 672 /// @returns A new gpu grogram description. 673 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 674 675 if (!PPCGScop) 676 return nullptr; 677 678 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 679 680 PPCGProg->ctx = S->getIslCtx(); 681 PPCGProg->scop = PPCGScop; 682 PPCGProg->context = isl_set_copy(PPCGScop->context); 683 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 684 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 685 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 686 PPCGProg->tagged_must_kill = 687 isl_union_map_copy(PPCGScop->tagged_must_kills); 688 PPCGProg->to_inner = getArrayIdentity(); 689 PPCGProg->to_outer = getArrayIdentity(); 690 PPCGProg->may_persist = compute_may_persist(PPCGProg); 691 PPCGProg->any_to_outer = nullptr; 692 PPCGProg->array_order = nullptr; 693 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 694 PPCGProg->stmts = getStatements(); 695 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 696 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 697 PPCGProg->n_array); 698 699 createArrays(PPCGProg); 700 701 return PPCGProg; 702 } 703 704 struct PrintGPUUserData { 705 struct cuda_info *CudaInfo; 706 struct gpu_prog *PPCGProg; 707 std::vector<ppcg_kernel *> Kernels; 708 }; 709 710 /// Print a user statement node in the host code. 711 /// 712 /// We use ppcg's printing facilities to print the actual statement and 713 /// additionally build up a list of all kernels that are encountered in the 714 /// host ast. 715 /// 716 /// @param P The printer to print to 717 /// @param Options The printing options to use 718 /// @param Node The node to print 719 /// @param User A user pointer to carry additional data. This pointer is 720 /// expected to be of type PrintGPUUserData. 721 /// 722 /// @returns A printer to which the output has been printed. 723 static __isl_give isl_printer * 724 printHostUser(__isl_take isl_printer *P, 725 __isl_take isl_ast_print_options *Options, 726 __isl_take isl_ast_node *Node, void *User) { 727 auto Data = (struct PrintGPUUserData *)User; 728 auto Id = isl_ast_node_get_annotation(Node); 729 730 if (Id) { 731 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 732 733 // If this is a user statement, format it ourselves as ppcg would 734 // otherwise try to call pet functionality that is not available in 735 // Polly. 736 if (IsUser) { 737 P = isl_printer_start_line(P); 738 P = isl_printer_print_ast_node(P, Node); 739 P = isl_printer_end_line(P); 740 isl_id_free(Id); 741 isl_ast_print_options_free(Options); 742 return P; 743 } 744 745 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 746 isl_id_free(Id); 747 Data->Kernels.push_back(Kernel); 748 } 749 750 return print_host_user(P, Options, Node, User); 751 } 752 753 /// Print C code corresponding to the control flow in @p Kernel. 754 /// 755 /// @param Kernel The kernel to print 756 void printKernel(ppcg_kernel *Kernel) { 757 auto *P = isl_printer_to_str(S->getIslCtx()); 758 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 759 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 760 P = isl_ast_node_print(Kernel->tree, P, Options); 761 char *String = isl_printer_get_str(P); 762 printf("%s\n", String); 763 free(String); 764 isl_printer_free(P); 765 } 766 767 /// Print C code corresponding to the GPU code described by @p Tree. 768 /// 769 /// @param Tree An AST describing GPU code 770 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 771 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 772 auto *P = isl_printer_to_str(S->getIslCtx()); 773 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 774 775 PrintGPUUserData Data; 776 Data.PPCGProg = PPCGProg; 777 778 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 779 Options = 780 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 781 P = isl_ast_node_print(Tree, P, Options); 782 char *String = isl_printer_get_str(P); 783 printf("# host\n"); 784 printf("%s\n", String); 785 free(String); 786 isl_printer_free(P); 787 788 for (auto Kernel : Data.Kernels) { 789 printf("# kernel%d\n", Kernel->id); 790 printKernel(Kernel); 791 } 792 } 793 794 // Generate a GPU program using PPCG. 795 // 796 // GPU mapping consists of multiple steps: 797 // 798 // 1) Compute new schedule for the program. 799 // 2) Map schedule to GPU (TODO) 800 // 3) Generate code for new schedule (TODO) 801 // 802 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 803 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 804 // strategy directly from this pass. 805 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 806 807 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 808 809 PPCGGen->ctx = S->getIslCtx(); 810 PPCGGen->options = PPCGScop->options; 811 PPCGGen->print = nullptr; 812 PPCGGen->print_user = nullptr; 813 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 814 PPCGGen->prog = PPCGProg; 815 PPCGGen->tree = nullptr; 816 PPCGGen->types.n = 0; 817 PPCGGen->types.name = nullptr; 818 PPCGGen->sizes = nullptr; 819 PPCGGen->used_sizes = nullptr; 820 PPCGGen->kernel_id = 0; 821 822 // Set scheduling strategy to same strategy PPCG is using. 823 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 824 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 825 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 826 827 isl_schedule *Schedule = get_schedule(PPCGGen); 828 829 int has_permutable = has_any_permutable_node(Schedule); 830 831 if (!has_permutable || has_permutable < 0) { 832 Schedule = isl_schedule_free(Schedule); 833 } else { 834 Schedule = map_to_device(PPCGGen, Schedule); 835 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 836 } 837 838 if (DumpSchedule) { 839 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 840 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 841 P = isl_printer_print_str(P, "Schedule\n"); 842 P = isl_printer_print_str(P, "========\n"); 843 if (Schedule) 844 P = isl_printer_print_schedule(P, Schedule); 845 else 846 P = isl_printer_print_str(P, "No schedule found\n"); 847 848 printf("%s\n", isl_printer_get_str(P)); 849 isl_printer_free(P); 850 } 851 852 if (DumpCode) { 853 printf("Code\n"); 854 printf("====\n"); 855 if (PPCGGen->tree) 856 printGPUTree(PPCGGen->tree, PPCGProg); 857 else 858 printf("No code generated\n"); 859 } 860 861 isl_schedule_free(Schedule); 862 863 return PPCGGen; 864 } 865 866 /// Free gpu_gen structure. 867 /// 868 /// @param PPCGGen The ppcg_gen object to free. 869 void freePPCGGen(gpu_gen *PPCGGen) { 870 isl_ast_node_free(PPCGGen->tree); 871 isl_union_map_free(PPCGGen->sizes); 872 isl_union_map_free(PPCGGen->used_sizes); 873 free(PPCGGen); 874 } 875 876 /// Free the options in the ppcg scop structure. 877 /// 878 /// ppcg is not freeing these options for us. To avoid leaks we do this 879 /// ourselves. 880 /// 881 /// @param PPCGScop The scop referencing the options to free. 882 void freeOptions(ppcg_scop *PPCGScop) { 883 free(PPCGScop->options->debug); 884 PPCGScop->options->debug = nullptr; 885 free(PPCGScop->options); 886 PPCGScop->options = nullptr; 887 } 888 889 /// Generate code for a given GPU AST described by @p Root. 890 /// 891 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 892 /// @param Prog The GPU Program to generate code for. 893 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 894 ScopAnnotator Annotator; 895 Annotator.buildAliasScopes(*S); 896 897 Region *R = &S->getRegion(); 898 899 simplifyRegion(R, DT, LI, RI); 900 901 BasicBlock *EnteringBB = R->getEnteringBlock(); 902 903 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 904 905 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 906 Prog); 907 908 // Only build the run-time condition and parameters _after_ having 909 // introduced the conditional branch. This is important as the conditional 910 // branch will guard the original scop from new induction variables that 911 // the SCEVExpander may introduce while code generating the parameters and 912 // which may introduce scalar dependences that prevent us from correctly 913 // code generating this scop. 914 BasicBlock *StartBlock = 915 executeScopConditionally(*S, this, Builder.getTrue()); 916 917 // TODO: Handle LICM 918 // TODO: Verify run-time checks 919 auto SplitBlock = StartBlock->getSinglePredecessor(); 920 Builder.SetInsertPoint(SplitBlock->getTerminator()); 921 NodeBuilder.addParameters(S->getContext()); 922 Builder.SetInsertPoint(&*StartBlock->begin()); 923 NodeBuilder.create(Root); 924 NodeBuilder.finalizeSCoP(*S); 925 } 926 927 bool runOnScop(Scop &CurrentScop) override { 928 S = &CurrentScop; 929 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 930 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 931 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 932 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 933 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 934 935 auto PPCGScop = createPPCGScop(); 936 auto PPCGProg = createPPCGProg(PPCGScop); 937 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 938 939 if (PPCGGen->tree) 940 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 941 942 freeOptions(PPCGScop); 943 freePPCGGen(PPCGGen); 944 gpu_prog_free(PPCGProg); 945 ppcg_scop_free(PPCGScop); 946 947 return true; 948 } 949 950 void printScop(raw_ostream &, Scop &) const override {} 951 952 void getAnalysisUsage(AnalysisUsage &AU) const override { 953 AU.addRequired<DominatorTreeWrapperPass>(); 954 AU.addRequired<RegionInfoPass>(); 955 AU.addRequired<ScalarEvolutionWrapperPass>(); 956 AU.addRequired<ScopDetection>(); 957 AU.addRequired<ScopInfoRegionPass>(); 958 AU.addRequired<LoopInfoWrapperPass>(); 959 960 AU.addPreserved<AAResultsWrapperPass>(); 961 AU.addPreserved<BasicAAWrapperPass>(); 962 AU.addPreserved<LoopInfoWrapperPass>(); 963 AU.addPreserved<DominatorTreeWrapperPass>(); 964 AU.addPreserved<GlobalsAAWrapperPass>(); 965 AU.addPreserved<PostDominatorTreeWrapperPass>(); 966 AU.addPreserved<ScopDetection>(); 967 AU.addPreserved<ScalarEvolutionWrapperPass>(); 968 AU.addPreserved<SCEVAAWrapperPass>(); 969 970 // FIXME: We do not yet add regions for the newly generated code to the 971 // region tree. 972 AU.addPreserved<RegionInfoPass>(); 973 AU.addPreserved<ScopInfoRegionPass>(); 974 } 975 }; 976 } 977 978 char PPCGCodeGeneration::ID = 1; 979 980 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 981 982 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 983 "Polly - Apply PPCG translation to SCOP", false, false) 984 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 985 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 986 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 987 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 988 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 989 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 990 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 991 "Polly - Apply PPCG translation to SCOP", false, false) 992