1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 /// Create the ast expressions for a ScopStmt. 55 /// 56 /// This function is a callback for to generate the ast expressions for each 57 /// of the scheduled ScopStmts. 58 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 59 void *Stmt, isl_ast_build *Build, 60 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 61 isl_id *Id, void *User), 62 void *UserIndex, 63 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 64 void *User_expr) { 65 66 // TODO: Implement the AST expression generation. For now we just return a 67 // nullptr to ensure that we do not free uninitialized pointers. 68 69 return nullptr; 70 } 71 72 /// Generate code for a GPU specific isl AST. 73 /// 74 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 75 /// generates code for general-prupose AST nodes, with special functionality 76 /// for generating GPU specific user nodes. 77 /// 78 /// @see GPUNodeBuilder::createUser 79 class GPUNodeBuilder : public IslNodeBuilder { 80 public: 81 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 82 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 83 DominatorTree &DT, Scop &S) 84 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S) {} 85 86 private: 87 /// Create code for user-defined AST nodes. 88 /// 89 /// These AST nodes can be of type: 90 /// 91 /// - ScopStmt: A computational statement (TODO) 92 /// - Kernel: A GPU kernel call (TODO) 93 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 94 /// 95 virtual void createUser(__isl_take isl_ast_node *User) { 96 isl_ast_node_free(User); 97 return; 98 } 99 }; 100 101 namespace { 102 class PPCGCodeGeneration : public ScopPass { 103 public: 104 static char ID; 105 106 /// The scop that is currently processed. 107 Scop *S; 108 109 LoopInfo *LI; 110 DominatorTree *DT; 111 ScalarEvolution *SE; 112 const DataLayout *DL; 113 RegionInfo *RI; 114 115 PPCGCodeGeneration() : ScopPass(ID) {} 116 117 /// Construct compilation options for PPCG. 118 /// 119 /// @returns The compilation options. 120 ppcg_options *createPPCGOptions() { 121 auto DebugOptions = 122 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 123 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 124 125 DebugOptions->dump_schedule_constraints = false; 126 DebugOptions->dump_schedule = false; 127 DebugOptions->dump_final_schedule = false; 128 DebugOptions->dump_sizes = false; 129 130 Options->debug = DebugOptions; 131 132 Options->reschedule = true; 133 Options->scale_tile_loops = false; 134 Options->wrap = false; 135 136 Options->non_negative_parameters = false; 137 Options->ctx = nullptr; 138 Options->sizes = nullptr; 139 140 Options->tile_size = 32; 141 142 Options->use_private_memory = false; 143 Options->use_shared_memory = false; 144 Options->max_shared_memory = 0; 145 146 Options->target = PPCG_TARGET_CUDA; 147 Options->openmp = false; 148 Options->linearize_device_arrays = true; 149 Options->live_range_reordering = false; 150 151 Options->opencl_compiler_options = nullptr; 152 Options->opencl_use_gpu = false; 153 Options->opencl_n_include_file = 0; 154 Options->opencl_include_files = nullptr; 155 Options->opencl_print_kernel_types = false; 156 Options->opencl_embed_kernel_code = false; 157 158 Options->save_schedule_file = nullptr; 159 Options->load_schedule_file = nullptr; 160 161 return Options; 162 } 163 164 /// Get a tagged access relation containing all accesses of type @p AccessTy. 165 /// 166 /// Instead of a normal access of the form: 167 /// 168 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 169 /// 170 /// a tagged access has the form 171 /// 172 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 173 /// 174 /// where 'id' is an additional space that references the memory access that 175 /// triggered the access. 176 /// 177 /// @param AccessTy The type of the memory accesses to collect. 178 /// 179 /// @return The relation describing all tagged memory accesses. 180 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 181 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 182 183 for (auto &Stmt : *S) 184 for (auto &Acc : Stmt) 185 if (Acc->getType() == AccessTy) { 186 isl_map *Relation = Acc->getAccessRelation(); 187 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 188 189 isl_space *Space = isl_map_get_space(Relation); 190 Space = isl_space_range(Space); 191 Space = isl_space_from_range(Space); 192 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 193 isl_map *Universe = isl_map_universe(Space); 194 Relation = isl_map_domain_product(Relation, Universe); 195 Accesses = isl_union_map_add_map(Accesses, Relation); 196 } 197 198 return Accesses; 199 } 200 201 /// Get the set of all read accesses, tagged with the access id. 202 /// 203 /// @see getTaggedAccesses 204 isl_union_map *getTaggedReads() { 205 return getTaggedAccesses(MemoryAccess::READ); 206 } 207 208 /// Get the set of all may (and must) accesses, tagged with the access id. 209 /// 210 /// @see getTaggedAccesses 211 isl_union_map *getTaggedMayWrites() { 212 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 213 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 214 } 215 216 /// Get the set of all must accesses, tagged with the access id. 217 /// 218 /// @see getTaggedAccesses 219 isl_union_map *getTaggedMustWrites() { 220 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 221 } 222 223 /// Collect parameter and array names as isl_ids. 224 /// 225 /// To reason about the different parameters and arrays used, ppcg requires 226 /// a list of all isl_ids in use. As PPCG traditionally performs 227 /// source-to-source compilation each of these isl_ids is mapped to the 228 /// expression that represents it. As we do not have a corresponding 229 /// expression in Polly, we just map each id to a 'zero' expression to match 230 /// the data format that ppcg expects. 231 /// 232 /// @returns Retun a map from collected ids to 'zero' ast expressions. 233 __isl_give isl_id_to_ast_expr *getNames() { 234 auto *Names = isl_id_to_ast_expr_alloc( 235 S->getIslCtx(), 236 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 237 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 238 auto *Space = S->getParamSpace(); 239 240 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 241 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 242 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 243 } 244 245 for (auto &Array : S->arrays()) { 246 auto Id = Array.second->getBasePtrId(); 247 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 248 } 249 250 isl_space_free(Space); 251 isl_ast_expr_free(Zero); 252 253 return Names; 254 } 255 256 /// Create a new PPCG scop from the current scop. 257 /// 258 /// The PPCG scop is initialized with data from the current polly::Scop. From 259 /// this initial data, the data-dependences in the PPCG scop are initialized. 260 /// We do not use Polly's dependence analysis for now, to ensure we match 261 /// the PPCG default behaviour more closely. 262 /// 263 /// @returns A new ppcg scop. 264 ppcg_scop *createPPCGScop() { 265 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 266 267 PPCGScop->options = createPPCGOptions(); 268 269 PPCGScop->start = 0; 270 PPCGScop->end = 0; 271 272 PPCGScop->context = S->getContext(); 273 PPCGScop->domain = S->getDomains(); 274 PPCGScop->call = nullptr; 275 PPCGScop->tagged_reads = getTaggedReads(); 276 PPCGScop->reads = S->getReads(); 277 PPCGScop->live_in = nullptr; 278 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 279 PPCGScop->may_writes = S->getWrites(); 280 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 281 PPCGScop->must_writes = S->getMustWrites(); 282 PPCGScop->live_out = nullptr; 283 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 284 PPCGScop->tagger = nullptr; 285 286 PPCGScop->independence = nullptr; 287 PPCGScop->dep_flow = nullptr; 288 PPCGScop->tagged_dep_flow = nullptr; 289 PPCGScop->dep_false = nullptr; 290 PPCGScop->dep_forced = nullptr; 291 PPCGScop->dep_order = nullptr; 292 PPCGScop->tagged_dep_order = nullptr; 293 294 PPCGScop->schedule = S->getScheduleTree(); 295 PPCGScop->names = getNames(); 296 297 PPCGScop->pet = nullptr; 298 299 compute_tagger(PPCGScop); 300 compute_dependences(PPCGScop); 301 302 return PPCGScop; 303 } 304 305 /// Collect the array acesses in a statement. 306 /// 307 /// @param Stmt The statement for which to collect the accesses. 308 /// 309 /// @returns A list of array accesses. 310 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 311 gpu_stmt_access *Accesses = nullptr; 312 313 for (MemoryAccess *Acc : Stmt) { 314 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 315 Access->read = Acc->isRead(); 316 Access->write = Acc->isWrite(); 317 Access->access = Acc->getAccessRelation(); 318 isl_space *Space = isl_map_get_space(Access->access); 319 Space = isl_space_range(Space); 320 Space = isl_space_from_range(Space); 321 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 322 isl_map *Universe = isl_map_universe(Space); 323 Access->tagged_access = 324 isl_map_domain_product(Acc->getAccessRelation(), Universe); 325 Access->exact_write = Acc->isWrite(); 326 Access->ref_id = Acc->getId(); 327 Access->next = Accesses; 328 Accesses = Access; 329 } 330 331 return Accesses; 332 } 333 334 /// Collect the list of GPU statements. 335 /// 336 /// Each statement has an id, a pointer to the underlying data structure, 337 /// as well as a list with all memory accesses. 338 /// 339 /// TODO: Initialize the list of memory accesses. 340 /// 341 /// @returns A linked-list of statements. 342 gpu_stmt *getStatements() { 343 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 344 std::distance(S->begin(), S->end())); 345 346 int i = 0; 347 for (auto &Stmt : *S) { 348 gpu_stmt *GPUStmt = &Stmts[i]; 349 350 GPUStmt->id = Stmt.getDomainId(); 351 352 // We use the pet stmt pointer to keep track of the Polly statements. 353 GPUStmt->stmt = (pet_stmt *)&Stmt; 354 GPUStmt->accesses = getStmtAccesses(Stmt); 355 i++; 356 } 357 358 return Stmts; 359 } 360 361 /// Derive the extent of an array. 362 /// 363 /// The extent of an array is defined by the set of memory locations for 364 /// which a memory access in the iteration domain exists. 365 /// 366 /// @param Array The array to derive the extent for. 367 /// 368 /// @returns An isl_set describing the extent of the array. 369 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 370 isl_union_map *Accesses = S->getAccesses(); 371 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 372 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 373 isl_set *AccessSet = 374 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 375 isl_union_set_free(AccessUSet); 376 377 return AccessSet; 378 } 379 380 /// Derive the bounds of an array. 381 /// 382 /// For the first dimension we derive the bound of the array from the extent 383 /// of this dimension. For inner dimensions we obtain their size directly from 384 /// ScopArrayInfo. 385 /// 386 /// @param PPCGArray The array to compute bounds for. 387 /// @param Array The polly array from which to take the information. 388 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 389 if (PPCGArray.n_index > 0) { 390 isl_set *Dom = isl_set_copy(PPCGArray.extent); 391 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 392 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 393 isl_set_free(Dom); 394 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 395 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 396 isl_aff *One = isl_aff_zero_on_domain(LS); 397 One = isl_aff_add_constant_si(One, 1); 398 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 399 Bound = isl_pw_aff_gist(Bound, S->getContext()); 400 PPCGArray.bound[0] = Bound; 401 } 402 403 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 404 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 405 auto LS = isl_pw_aff_get_domain_space(Bound); 406 auto Aff = isl_multi_aff_zero(LS); 407 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 408 PPCGArray.bound[i] = Bound; 409 } 410 } 411 412 /// Create the arrays for @p PPCGProg. 413 /// 414 /// @param PPCGProg The program to compute the arrays for. 415 void createArrays(gpu_prog *PPCGProg) { 416 int i = 0; 417 for (auto &Element : S->arrays()) { 418 ScopArrayInfo *Array = Element.second.get(); 419 420 std::string TypeName; 421 raw_string_ostream OS(TypeName); 422 423 OS << *Array->getElementType(); 424 TypeName = OS.str(); 425 426 gpu_array_info &PPCGArray = PPCGProg->array[i]; 427 428 PPCGArray.space = Array->getSpace(); 429 PPCGArray.type = strdup(TypeName.c_str()); 430 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 431 PPCGArray.name = strdup(Array->getName().c_str()); 432 PPCGArray.extent = nullptr; 433 PPCGArray.n_index = Array->getNumberOfDimensions(); 434 PPCGArray.bound = 435 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 436 PPCGArray.extent = getExtent(Array); 437 PPCGArray.n_ref = 0; 438 PPCGArray.refs = nullptr; 439 PPCGArray.accessed = true; 440 PPCGArray.read_only_scalar = false; 441 PPCGArray.has_compound_element = false; 442 PPCGArray.local = false; 443 PPCGArray.declare_local = false; 444 PPCGArray.global = false; 445 PPCGArray.linearize = false; 446 PPCGArray.dep_order = nullptr; 447 448 setArrayBounds(PPCGArray, Array); 449 i++; 450 } 451 } 452 453 /// Create an identity map between the arrays in the scop. 454 /// 455 /// @returns An identity map between the arrays in the scop. 456 isl_union_map *getArrayIdentity() { 457 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 458 459 for (auto &Item : S->arrays()) { 460 ScopArrayInfo *Array = Item.second.get(); 461 isl_space *Space = Array->getSpace(); 462 Space = isl_space_map_from_set(Space); 463 isl_map *Identity = isl_map_identity(Space); 464 Maps = isl_union_map_add_map(Maps, Identity); 465 } 466 467 return Maps; 468 } 469 470 /// Create a default-initialized PPCG GPU program. 471 /// 472 /// @returns A new gpu grogram description. 473 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 474 475 if (!PPCGScop) 476 return nullptr; 477 478 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 479 480 PPCGProg->ctx = S->getIslCtx(); 481 PPCGProg->scop = PPCGScop; 482 PPCGProg->context = isl_set_copy(PPCGScop->context); 483 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 484 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 485 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 486 PPCGProg->tagged_must_kill = 487 isl_union_map_copy(PPCGScop->tagged_must_kills); 488 PPCGProg->to_inner = getArrayIdentity(); 489 PPCGProg->to_outer = getArrayIdentity(); 490 PPCGProg->may_persist = compute_may_persist(PPCGProg); 491 PPCGProg->any_to_outer = nullptr; 492 PPCGProg->array_order = nullptr; 493 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 494 PPCGProg->stmts = getStatements(); 495 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 496 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 497 PPCGProg->n_array); 498 499 createArrays(PPCGProg); 500 501 return PPCGProg; 502 } 503 504 struct PrintGPUUserData { 505 struct cuda_info *CudaInfo; 506 struct gpu_prog *PPCGProg; 507 std::vector<ppcg_kernel *> Kernels; 508 }; 509 510 /// Print a user statement node in the host code. 511 /// 512 /// We use ppcg's printing facilities to print the actual statement and 513 /// additionally build up a list of all kernels that are encountered in the 514 /// host ast. 515 /// 516 /// @param P The printer to print to 517 /// @param Options The printing options to use 518 /// @param Node The node to print 519 /// @param User A user pointer to carry additional data. This pointer is 520 /// expected to be of type PrintGPUUserData. 521 /// 522 /// @returns A printer to which the output has been printed. 523 static __isl_give isl_printer * 524 printHostUser(__isl_take isl_printer *P, 525 __isl_take isl_ast_print_options *Options, 526 __isl_take isl_ast_node *Node, void *User) { 527 auto Data = (struct PrintGPUUserData *)User; 528 auto Id = isl_ast_node_get_annotation(Node); 529 530 if (Id) { 531 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 532 533 // If this is a user statement, format it ourselves as ppcg would 534 // otherwise try to call pet functionality that is not available in 535 // Polly. 536 if (IsUser) { 537 P = isl_printer_start_line(P); 538 P = isl_printer_print_ast_node(P, Node); 539 P = isl_printer_end_line(P); 540 isl_id_free(Id); 541 isl_ast_print_options_free(Options); 542 return P; 543 } 544 545 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 546 isl_id_free(Id); 547 Data->Kernels.push_back(Kernel); 548 } 549 550 return print_host_user(P, Options, Node, User); 551 } 552 553 /// Print C code corresponding to the control flow in @p Kernel. 554 /// 555 /// @param Kernel The kernel to print 556 void printKernel(ppcg_kernel *Kernel) { 557 auto *P = isl_printer_to_str(S->getIslCtx()); 558 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 559 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 560 P = isl_ast_node_print(Kernel->tree, P, Options); 561 char *String = isl_printer_get_str(P); 562 printf("%s\n", String); 563 free(String); 564 isl_printer_free(P); 565 } 566 567 /// Print C code corresponding to the GPU code described by @p Tree. 568 /// 569 /// @param Tree An AST describing GPU code 570 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 571 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 572 auto *P = isl_printer_to_str(S->getIslCtx()); 573 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 574 575 PrintGPUUserData Data; 576 Data.PPCGProg = PPCGProg; 577 578 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 579 Options = 580 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 581 P = isl_ast_node_print(Tree, P, Options); 582 char *String = isl_printer_get_str(P); 583 printf("# host\n"); 584 printf("%s\n", String); 585 free(String); 586 isl_printer_free(P); 587 588 for (auto Kernel : Data.Kernels) { 589 printf("# kernel%d\n", Kernel->id); 590 printKernel(Kernel); 591 } 592 } 593 594 // Generate a GPU program using PPCG. 595 // 596 // GPU mapping consists of multiple steps: 597 // 598 // 1) Compute new schedule for the program. 599 // 2) Map schedule to GPU (TODO) 600 // 3) Generate code for new schedule (TODO) 601 // 602 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 603 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 604 // strategy directly from this pass. 605 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 606 607 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 608 609 PPCGGen->ctx = S->getIslCtx(); 610 PPCGGen->options = PPCGScop->options; 611 PPCGGen->print = nullptr; 612 PPCGGen->print_user = nullptr; 613 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 614 PPCGGen->prog = PPCGProg; 615 PPCGGen->tree = nullptr; 616 PPCGGen->types.n = 0; 617 PPCGGen->types.name = nullptr; 618 PPCGGen->sizes = nullptr; 619 PPCGGen->used_sizes = nullptr; 620 PPCGGen->kernel_id = 0; 621 622 // Set scheduling strategy to same strategy PPCG is using. 623 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 624 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 625 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 626 627 isl_schedule *Schedule = get_schedule(PPCGGen); 628 629 int has_permutable = has_any_permutable_node(Schedule); 630 631 if (!has_permutable || has_permutable < 0) { 632 Schedule = isl_schedule_free(Schedule); 633 } else { 634 Schedule = map_to_device(PPCGGen, Schedule); 635 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 636 } 637 638 if (DumpSchedule) { 639 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 640 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 641 P = isl_printer_print_str(P, "Schedule\n"); 642 P = isl_printer_print_str(P, "========\n"); 643 if (Schedule) 644 P = isl_printer_print_schedule(P, Schedule); 645 else 646 P = isl_printer_print_str(P, "No schedule found\n"); 647 648 printf("%s\n", isl_printer_get_str(P)); 649 isl_printer_free(P); 650 } 651 652 if (DumpCode) { 653 printf("Code\n"); 654 printf("====\n"); 655 if (PPCGGen->tree) 656 printGPUTree(PPCGGen->tree, PPCGProg); 657 else 658 printf("No code generated\n"); 659 } 660 661 isl_schedule_free(Schedule); 662 663 return PPCGGen; 664 } 665 666 /// Free gpu_gen structure. 667 /// 668 /// @param PPCGGen The ppcg_gen object to free. 669 void freePPCGGen(gpu_gen *PPCGGen) { 670 isl_ast_node_free(PPCGGen->tree); 671 isl_union_map_free(PPCGGen->sizes); 672 isl_union_map_free(PPCGGen->used_sizes); 673 free(PPCGGen); 674 } 675 676 /// Free the options in the ppcg scop structure. 677 /// 678 /// ppcg is not freeing these options for us. To avoid leaks we do this 679 /// ourselves. 680 /// 681 /// @param PPCGScop The scop referencing the options to free. 682 void freeOptions(ppcg_scop *PPCGScop) { 683 free(PPCGScop->options->debug); 684 PPCGScop->options->debug = nullptr; 685 free(PPCGScop->options); 686 PPCGScop->options = nullptr; 687 } 688 689 /// Generate code for a given GPU AST described by @p Root. 690 /// 691 /// @param An isl_ast_node pointing to the root of the GPU AST. 692 void generateCode(__isl_take isl_ast_node *Root) { 693 ScopAnnotator Annotator; 694 Annotator.buildAliasScopes(*S); 695 696 Region *R = &S->getRegion(); 697 698 simplifyRegion(R, DT, LI, RI); 699 700 BasicBlock *EnteringBB = R->getEnteringBlock(); 701 702 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 703 704 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, 705 *S); 706 707 // Only build the run-time condition and parameters _after_ having 708 // introduced the conditional branch. This is important as the conditional 709 // branch will guard the original scop from new induction variables that 710 // the SCEVExpander may introduce while code generating the parameters and 711 // which may introduce scalar dependences that prevent us from correctly 712 // code generating this scop. 713 BasicBlock *StartBlock = 714 executeScopConditionally(*S, this, Builder.getTrue()); 715 716 // TODO: Handle LICM 717 // TODO: Verify run-time checks 718 auto SplitBlock = StartBlock->getSinglePredecessor(); 719 Builder.SetInsertPoint(SplitBlock->getTerminator()); 720 NodeBuilder.addParameters(S->getContext()); 721 Builder.SetInsertPoint(&*StartBlock->begin()); 722 NodeBuilder.create(Root); 723 NodeBuilder.finalizeSCoP(*S); 724 } 725 726 bool runOnScop(Scop &CurrentScop) override { 727 S = &CurrentScop; 728 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 729 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 730 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 731 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 732 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 733 734 auto PPCGScop = createPPCGScop(); 735 auto PPCGProg = createPPCGProg(PPCGScop); 736 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 737 738 if (PPCGGen->tree) 739 generateCode(isl_ast_node_copy(PPCGGen->tree)); 740 741 freeOptions(PPCGScop); 742 freePPCGGen(PPCGGen); 743 gpu_prog_free(PPCGProg); 744 ppcg_scop_free(PPCGScop); 745 746 return true; 747 } 748 749 void printScop(raw_ostream &, Scop &) const override {} 750 751 void getAnalysisUsage(AnalysisUsage &AU) const override { 752 AU.addRequired<DominatorTreeWrapperPass>(); 753 AU.addRequired<RegionInfoPass>(); 754 AU.addRequired<ScalarEvolutionWrapperPass>(); 755 AU.addRequired<ScopDetection>(); 756 AU.addRequired<ScopInfoRegionPass>(); 757 AU.addRequired<LoopInfoWrapperPass>(); 758 759 AU.addPreserved<AAResultsWrapperPass>(); 760 AU.addPreserved<BasicAAWrapperPass>(); 761 AU.addPreserved<LoopInfoWrapperPass>(); 762 AU.addPreserved<DominatorTreeWrapperPass>(); 763 AU.addPreserved<GlobalsAAWrapperPass>(); 764 AU.addPreserved<PostDominatorTreeWrapperPass>(); 765 AU.addPreserved<ScopDetection>(); 766 AU.addPreserved<ScalarEvolutionWrapperPass>(); 767 AU.addPreserved<SCEVAAWrapperPass>(); 768 769 // FIXME: We do not yet add regions for the newly generated code to the 770 // region tree. 771 AU.addPreserved<RegionInfoPass>(); 772 AU.addPreserved<ScopInfoRegionPass>(); 773 } 774 }; 775 } 776 777 char PPCGCodeGeneration::ID = 1; 778 779 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 780 781 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 782 "Polly - Apply PPCG translation to SCOP", false, false) 783 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 784 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 785 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 786 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 787 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 788 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 789 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 790 "Polly - Apply PPCG translation to SCOP", false, false) 791