1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/IRReader/IRReader.h" 36 #include "llvm/Linker/Linker.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/TargetSelect.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 43 #include "isl/union_map.h" 44 45 extern "C" { 46 #include "ppcg/cuda.h" 47 #include "ppcg/gpu.h" 48 #include "ppcg/gpu_print.h" 49 #include "ppcg/ppcg.h" 50 #include "ppcg/schedule.h" 51 } 52 53 #include "llvm/Support/Debug.h" 54 55 using namespace polly; 56 using namespace llvm; 57 58 #define DEBUG_TYPE "polly-codegen-ppcg" 59 60 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 61 cl::desc("Dump the computed GPU Schedule"), 62 cl::Hidden, cl::init(false), cl::ZeroOrMore, 63 cl::cat(PollyCategory)); 64 65 static cl::opt<bool> 66 DumpCode("polly-acc-dump-code", 67 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 71 cl::desc("Dump the kernel LLVM-IR"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 76 cl::desc("Dump the kernel assembly code"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 80 static cl::opt<bool> FastMath("polly-acc-fastmath", 81 cl::desc("Allow unsafe math optimizations"), 82 cl::Hidden, cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 85 cl::desc("Use shared memory"), cl::Hidden, 86 cl::init(false), cl::ZeroOrMore, 87 cl::cat(PollyCategory)); 88 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 89 cl::desc("Use private memory"), cl::Hidden, 90 cl::init(false), cl::ZeroOrMore, 91 cl::cat(PollyCategory)); 92 93 static cl::opt<bool> ManagedMemory("polly-acc-codegen-managed-memory", 94 cl::desc("Generate Host kernel code assuming" 95 " that all memory has been" 96 " declared as managed memory"), 97 cl::Hidden, cl::init(false), cl::ZeroOrMore, 98 cl::cat(PollyCategory)); 99 100 static cl::opt<bool> 101 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 102 cl::desc("Fail and generate a backtrace if" 103 " verifyModule fails on the GPU " 104 " kernel module."), 105 cl::Hidden, cl::init(false), cl::ZeroOrMore, 106 cl::cat(PollyCategory)); 107 108 static cl::opt<std::string> CUDALibDevice( 109 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 110 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 111 cl::ZeroOrMore, cl::cat(PollyCategory)); 112 113 static cl::opt<std::string> 114 CudaVersion("polly-acc-cuda-version", 115 cl::desc("The CUDA version to compile for"), cl::Hidden, 116 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 117 118 static cl::opt<int> 119 MinCompute("polly-acc-mincompute", 120 cl::desc("Minimal number of compute statements to run on GPU."), 121 cl::Hidden, cl::init(10 * 512 * 512)); 122 123 /// Return a unique name for a Scop, which is the scop region with the 124 /// function name. 125 std::string getUniqueScopName(const Scop *S) { 126 return "Scop Region: " + S->getNameStr() + 127 " | Function: " + std::string(S->getFunction().getName()); 128 } 129 130 /// Used to store information PPCG wants for kills. This information is 131 /// used by live range reordering. 132 /// 133 /// @see computeLiveRangeReordering 134 /// @see GPUNodeBuilder::createPPCGScop 135 /// @see GPUNodeBuilder::createPPCGProg 136 struct MustKillsInfo { 137 /// Collection of all kill statements that will be sequenced at the end of 138 /// PPCGScop->schedule. 139 /// 140 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 141 /// which merges schedules in *arbitrary* order. 142 /// (we don't care about the order of the kills anyway). 143 isl::schedule KillsSchedule; 144 /// Map from kill statement instances to scalars that need to be 145 /// killed. 146 /// 147 /// We currently derive kill information for: 148 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 149 /// consequently all be killed. 150 /// 2. Scalar arrays that are not used outside the Scop. This is 151 /// checked by `isScalarUsesContainedInScop`. 152 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 153 isl::union_map TaggedMustKills; 154 155 /// Tagged must kills stripped of the tags. 156 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 157 isl::union_map MustKills; 158 159 MustKillsInfo() : KillsSchedule(nullptr) {} 160 }; 161 162 /// Check if SAI's uses are entirely contained within Scop S. 163 /// If a scalar is used only with a Scop, we are free to kill it, as no data 164 /// can flow in/out of the value any more. 165 /// @see computeMustKillsInfo 166 static bool isScalarUsesContainedInScop(const Scop &S, 167 const ScopArrayInfo *SAI) { 168 assert(SAI->isValueKind() && "this function only deals with scalars." 169 " Dealing with arrays required alias analysis"); 170 171 const Region &R = S.getRegion(); 172 for (User *U : SAI->getBasePtr()->users()) { 173 Instruction *I = dyn_cast<Instruction>(U); 174 assert(I && "invalid user of scop array info"); 175 if (!R.contains(I)) 176 return false; 177 } 178 return true; 179 } 180 181 /// Compute must-kills needed to enable live range reordering with PPCG. 182 /// 183 /// @params S The Scop to compute live range reordering information 184 /// @returns live range reordering information that can be used to setup 185 /// PPCG. 186 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 187 const isl::space ParamSpace = S.getParamSpace(); 188 MustKillsInfo Info; 189 190 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 191 // 1.1 phi nodes in scop. 192 // 1.2 scalars that are only used within the scop 193 SmallVector<isl::id, 4> KillMemIds; 194 for (ScopArrayInfo *SAI : S.arrays()) { 195 if (SAI->isPHIKind() || 196 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 197 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 198 } 199 200 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 201 Info.MustKills = isl::union_map::empty(ParamSpace); 202 203 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 204 // schedule: 205 // - filter: "[control] -> { }" 206 // So, we choose to not create this to keep the output a little nicer, 207 // at the cost of some code complexity. 208 Info.KillsSchedule = nullptr; 209 210 for (isl::id &ToKillId : KillMemIds) { 211 isl::id KillStmtId = isl::id::alloc( 212 S.getIslCtx(), 213 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 214 215 // NOTE: construction of tagged_must_kill: 216 // 2. We need to construct a map: 217 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 218 // To construct this, we use `isl_map_domain_product` on 2 maps`: 219 // 2a. StmtToScalar: 220 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 221 // 2b. PhantomRefToScalar: 222 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 223 // 224 // Combining these with `isl_map_domain_product` gives us 225 // TaggedMustKill: 226 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 227 228 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 229 isl::map StmtToScalar = isl::map::universe(ParamSpace); 230 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 231 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 232 233 isl::id PhantomRefId = isl::id::alloc( 234 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 235 nullptr); 236 237 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 238 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 239 PhantomRefToScalar = 240 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 241 PhantomRefToScalar = 242 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 243 244 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 245 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 246 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 247 248 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 249 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 250 251 // 3. Create the kill schedule of the form: 252 // "[param] -> { Stmt_phantom[] }" 253 // Then add this to Info.KillsSchedule. 254 isl::space KillStmtSpace = ParamSpace; 255 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 256 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 257 258 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 259 if (Info.KillsSchedule) 260 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 261 else 262 Info.KillsSchedule = KillSchedule; 263 } 264 265 return Info; 266 } 267 268 /// Create the ast expressions for a ScopStmt. 269 /// 270 /// This function is a callback for to generate the ast expressions for each 271 /// of the scheduled ScopStmts. 272 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 273 void *StmtT, __isl_take isl_ast_build *Build_C, 274 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 275 isl_id *Id, void *User), 276 void *UserIndex, 277 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 278 void *UserExpr) { 279 280 ScopStmt *Stmt = (ScopStmt *)StmtT; 281 282 if (!Stmt || !Build_C) 283 return NULL; 284 285 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 286 isl::ctx Ctx = Build.get_ctx(); 287 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 288 289 for (MemoryAccess *Acc : *Stmt) { 290 isl::map AddrFunc = Acc->getAddressFunction(); 291 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 292 293 isl::id RefId = Acc->getId(); 294 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 295 296 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 297 MPA = MPA.coalesce(); 298 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 299 300 isl::ast_expr Access = Build.access_from(MPA); 301 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 302 RefToExpr = RefToExpr.set(RefId, Access); 303 } 304 305 return RefToExpr.release(); 306 } 307 308 /// Given a LLVM Type, compute its size in bytes, 309 static int computeSizeInBytes(const Type *T) { 310 int bytes = T->getPrimitiveSizeInBits() / 8; 311 if (bytes == 0) 312 bytes = T->getScalarSizeInBits() / 8; 313 return bytes; 314 } 315 316 /// Generate code for a GPU specific isl AST. 317 /// 318 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 319 /// generates code for general-purpose AST nodes, with special functionality 320 /// for generating GPU specific user nodes. 321 /// 322 /// @see GPUNodeBuilder::createUser 323 class GPUNodeBuilder : public IslNodeBuilder { 324 public: 325 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 326 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 327 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 328 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 329 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 330 Prog(Prog), Runtime(Runtime), Arch(Arch) { 331 getExprBuilder().setIDToSAI(&IDToSAI); 332 } 333 334 /// Create after-run-time-check initialization code. 335 void initializeAfterRTH(); 336 337 /// Finalize the generated scop. 338 virtual void finalize(); 339 340 /// Track if the full build process was successful. 341 /// 342 /// This value is set to false, if throughout the build process an error 343 /// occurred which prevents us from generating valid GPU code. 344 bool BuildSuccessful = true; 345 346 /// The maximal number of loops surrounding a sequential kernel. 347 unsigned DeepestSequential = 0; 348 349 /// The maximal number of loops surrounding a parallel kernel. 350 unsigned DeepestParallel = 0; 351 352 /// Return the name to set for the ptx_kernel. 353 std::string getKernelFuncName(int Kernel_id); 354 355 private: 356 /// A vector of array base pointers for which a new ScopArrayInfo was created. 357 /// 358 /// This vector is used to delete the ScopArrayInfo when it is not needed any 359 /// more. 360 std::vector<Value *> LocalArrays; 361 362 /// A map from ScopArrays to their corresponding device allocations. 363 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 364 365 /// The current GPU context. 366 Value *GPUContext; 367 368 /// The set of isl_ids allocated in the kernel 369 std::vector<isl_id *> KernelIds; 370 371 /// A module containing GPU code. 372 /// 373 /// This pointer is only set in case we are currently generating GPU code. 374 std::unique_ptr<Module> GPUModule; 375 376 /// The GPU program we generate code for. 377 gpu_prog *Prog; 378 379 /// The GPU Runtime implementation to use (OpenCL or CUDA). 380 GPURuntime Runtime; 381 382 /// The GPU Architecture to target. 383 GPUArch Arch; 384 385 /// Class to free isl_ids. 386 class IslIdDeleter { 387 public: 388 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 389 }; 390 391 /// A set containing all isl_ids allocated in a GPU kernel. 392 /// 393 /// By releasing this set all isl_ids will be freed. 394 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 395 396 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 397 398 /// Create code for user-defined AST nodes. 399 /// 400 /// These AST nodes can be of type: 401 /// 402 /// - ScopStmt: A computational statement (TODO) 403 /// - Kernel: A GPU kernel call (TODO) 404 /// - Data-Transfer: A GPU <-> CPU data-transfer 405 /// - In-kernel synchronization 406 /// - In-kernel memory copy statement 407 /// 408 /// @param UserStmt The ast node to generate code for. 409 virtual void createUser(__isl_take isl_ast_node *UserStmt); 410 411 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 412 413 /// Create code for a data transfer statement 414 /// 415 /// @param TransferStmt The data transfer statement. 416 /// @param Direction The direction in which to transfer data. 417 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 418 enum DataDirection Direction); 419 420 /// Find llvm::Values referenced in GPU kernel. 421 /// 422 /// @param Kernel The kernel to scan for llvm::Values 423 /// 424 /// @returns A tuple, whose: 425 /// - First element contains the set of values referenced by the 426 /// kernel 427 /// - Second element contains the set of functions referenced by the 428 /// kernel. All functions in the set satisfy 429 /// `isValidFunctionInKernel`. 430 /// - Third element contains loops that have induction variables 431 /// which are used in the kernel, *and* these loops are *neither* 432 /// in the scop, nor do they immediately surroung the Scop. 433 /// See [Code generation of induction variables of loops outside 434 /// Scops] 435 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 436 getReferencesInKernel(ppcg_kernel *Kernel); 437 438 /// Compute the sizes of the execution grid for a given kernel. 439 /// 440 /// @param Kernel The kernel to compute grid sizes for. 441 /// 442 /// @returns A tuple with grid sizes for X and Y dimension 443 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 444 445 /// Get the managed array pointer for sending host pointers to the device. 446 /// \note 447 /// This is to be used only with managed memory 448 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 449 450 /// Compute the sizes of the thread blocks for a given kernel. 451 /// 452 /// @param Kernel The kernel to compute thread block sizes for. 453 /// 454 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 455 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 456 457 /// Store a specific kernel launch parameter in the array of kernel launch 458 /// parameters. 459 /// 460 /// @param Parameters The list of parameters in which to store. 461 /// @param Param The kernel launch parameter to store. 462 /// @param Index The index in the parameter list, at which to store the 463 /// parameter. 464 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 465 int Index); 466 467 /// Create kernel launch parameters. 468 /// 469 /// @param Kernel The kernel to create parameters for. 470 /// @param F The kernel function that has been created. 471 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 472 /// 473 /// @returns A stack allocated array with pointers to the parameter 474 /// values that are passed to the kernel. 475 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 476 SetVector<Value *> SubtreeValues); 477 478 /// Create declarations for kernel variable. 479 /// 480 /// This includes shared memory declarations. 481 /// 482 /// @param Kernel The kernel definition to create variables for. 483 /// @param FN The function into which to generate the variables. 484 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 485 486 /// Add CUDA annotations to module. 487 /// 488 /// Add a set of CUDA annotations that declares the maximal block dimensions 489 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 490 /// PTX compiler to bound the number of allocated registers to ensure the 491 /// resulting kernel is known to run with up to as many block dimensions 492 /// as specified here. 493 /// 494 /// @param M The module to add the annotations to. 495 /// @param BlockDimX The size of block dimension X. 496 /// @param BlockDimY The size of block dimension Y. 497 /// @param BlockDimZ The size of block dimension Z. 498 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 499 Value *BlockDimZ); 500 501 /// Create GPU kernel. 502 /// 503 /// Code generate the kernel described by @p KernelStmt. 504 /// 505 /// @param KernelStmt The ast node to generate kernel code for. 506 void createKernel(__isl_take isl_ast_node *KernelStmt); 507 508 /// Generate code that computes the size of an array. 509 /// 510 /// @param Array The array for which to compute a size. 511 Value *getArraySize(gpu_array_info *Array); 512 513 /// Generate code to compute the minimal offset at which an array is accessed. 514 /// 515 /// The offset of an array is the minimal array location accessed in a scop. 516 /// 517 /// Example: 518 /// 519 /// for (long i = 0; i < 100; i++) 520 /// A[i + 42] += ... 521 /// 522 /// getArrayOffset(A) results in 42. 523 /// 524 /// @param Array The array for which to compute the offset. 525 /// @returns An llvm::Value that contains the offset of the array. 526 Value *getArrayOffset(gpu_array_info *Array); 527 528 /// Prepare the kernel arguments for kernel code generation 529 /// 530 /// @param Kernel The kernel to generate code for. 531 /// @param FN The function created for the kernel. 532 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 533 534 /// Create kernel function. 535 /// 536 /// Create a kernel function located in a newly created module that can serve 537 /// as target for device code generation. Set the Builder to point to the 538 /// start block of this newly created function. 539 /// 540 /// @param Kernel The kernel to generate code for. 541 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 542 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 543 /// kernel. 544 void createKernelFunction(ppcg_kernel *Kernel, 545 SetVector<Value *> &SubtreeValues, 546 SetVector<Function *> &SubtreeFunctions); 547 548 /// Create the declaration of a kernel function. 549 /// 550 /// The kernel function takes as arguments: 551 /// 552 /// - One i8 pointer for each external array reference used in the kernel. 553 /// - Host iterators 554 /// - Parameters 555 /// - Other LLVM Value references (TODO) 556 /// 557 /// @param Kernel The kernel to generate the function declaration for. 558 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 559 /// 560 /// @returns The newly declared function. 561 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 562 SetVector<Value *> &SubtreeValues); 563 564 /// Insert intrinsic functions to obtain thread and block ids. 565 /// 566 /// @param The kernel to generate the intrinsic functions for. 567 void insertKernelIntrinsics(ppcg_kernel *Kernel); 568 569 /// Insert function calls to retrieve the SPIR group/local ids. 570 /// 571 /// @param The kernel to generate the function calls for. 572 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 573 574 /// Setup the creation of functions referenced by the GPU kernel. 575 /// 576 /// 1. Create new function declarations in GPUModule which are the same as 577 /// SubtreeFunctions. 578 /// 579 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 580 /// old functions (that come from the original module) to new functions 581 /// (that are created within GPUModule). That way, we generate references 582 /// to the correct function (in GPUModule) in BlockGenerator. 583 /// 584 /// @see IslNodeBuilder::ValueMap 585 /// @see BlockGenerator::GlobalMap 586 /// @see BlockGenerator::getNewValue 587 /// @see GPUNodeBuilder::getReferencesInKernel. 588 /// 589 /// @param SubtreeFunctions The set of llvm::Functions referenced by 590 /// this kernel. 591 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 592 593 /// Create a global-to-shared or shared-to-global copy statement. 594 /// 595 /// @param CopyStmt The copy statement to generate code for 596 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 597 598 /// Create code for a ScopStmt called in @p Expr. 599 /// 600 /// @param Expr The expression containing the call. 601 /// @param KernelStmt The kernel statement referenced in the call. 602 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 603 604 /// Create an in-kernel synchronization call. 605 void createKernelSync(); 606 607 /// Create a PTX assembly string for the current GPU kernel. 608 /// 609 /// @returns A string containing the corresponding PTX assembly code. 610 std::string createKernelASM(); 611 612 /// Remove references from the dominator tree to the kernel function @p F. 613 /// 614 /// @param F The function to remove references to. 615 void clearDominators(Function *F); 616 617 /// Remove references from scalar evolution to the kernel function @p F. 618 /// 619 /// @param F The function to remove references to. 620 void clearScalarEvolution(Function *F); 621 622 /// Remove references from loop info to the kernel function @p F. 623 /// 624 /// @param F The function to remove references to. 625 void clearLoops(Function *F); 626 627 /// Check if the scop requires to be linked with CUDA's libdevice. 628 bool requiresCUDALibDevice(); 629 630 /// Link with the NVIDIA libdevice library (if needed and available). 631 void addCUDALibDevice(); 632 633 /// Finalize the generation of the kernel function. 634 /// 635 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 636 /// dump its IR to stderr. 637 /// 638 /// @returns The Assembly string of the kernel. 639 std::string finalizeKernelFunction(); 640 641 /// Finalize the generation of the kernel arguments. 642 /// 643 /// This function ensures that not-read-only scalars used in a kernel are 644 /// stored back to the global memory location they are backed with before 645 /// the kernel terminates. 646 /// 647 /// @params Kernel The kernel to finalize kernel arguments for. 648 void finalizeKernelArguments(ppcg_kernel *Kernel); 649 650 /// Create code that allocates memory to store arrays on device. 651 void allocateDeviceArrays(); 652 653 /// Create code to prepare the managed device pointers. 654 void prepareManagedDeviceArrays(); 655 656 /// Free all allocated device arrays. 657 void freeDeviceArrays(); 658 659 /// Create a call to initialize the GPU context. 660 /// 661 /// @returns A pointer to the newly initialized context. 662 Value *createCallInitContext(); 663 664 /// Create a call to get the device pointer for a kernel allocation. 665 /// 666 /// @param Allocation The Polly GPU allocation 667 /// 668 /// @returns The device parameter corresponding to this allocation. 669 Value *createCallGetDevicePtr(Value *Allocation); 670 671 /// Create a call to free the GPU context. 672 /// 673 /// @param Context A pointer to an initialized GPU context. 674 void createCallFreeContext(Value *Context); 675 676 /// Create a call to allocate memory on the device. 677 /// 678 /// @param Size The size of memory to allocate 679 /// 680 /// @returns A pointer that identifies this allocation. 681 Value *createCallAllocateMemoryForDevice(Value *Size); 682 683 /// Create a call to free a device array. 684 /// 685 /// @param Array The device array to free. 686 void createCallFreeDeviceMemory(Value *Array); 687 688 /// Create a call to copy data from host to device. 689 /// 690 /// @param HostPtr A pointer to the host data that should be copied. 691 /// @param DevicePtr A device pointer specifying the location to copy to. 692 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 693 Value *Size); 694 695 /// Create a call to copy data from device to host. 696 /// 697 /// @param DevicePtr A pointer to the device data that should be copied. 698 /// @param HostPtr A host pointer specifying the location to copy to. 699 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 700 Value *Size); 701 702 /// Create a call to synchronize Host & Device. 703 /// \note 704 /// This is to be used only with managed memory. 705 void createCallSynchronizeDevice(); 706 707 /// Create a call to get a kernel from an assembly string. 708 /// 709 /// @param Buffer The string describing the kernel. 710 /// @param Entry The name of the kernel function to call. 711 /// 712 /// @returns A pointer to a kernel object 713 Value *createCallGetKernel(Value *Buffer, Value *Entry); 714 715 /// Create a call to free a GPU kernel. 716 /// 717 /// @param GPUKernel THe kernel to free. 718 void createCallFreeKernel(Value *GPUKernel); 719 720 /// Create a call to launch a GPU kernel. 721 /// 722 /// @param GPUKernel The kernel to launch. 723 /// @param GridDimX The size of the first grid dimension. 724 /// @param GridDimY The size of the second grid dimension. 725 /// @param GridBlockX The size of the first block dimension. 726 /// @param GridBlockY The size of the second block dimension. 727 /// @param GridBlockZ The size of the third block dimension. 728 /// @param Parameters A pointer to an array that contains itself pointers to 729 /// the parameter values passed for each kernel argument. 730 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 731 Value *GridDimY, Value *BlockDimX, 732 Value *BlockDimY, Value *BlockDimZ, 733 Value *Parameters); 734 }; 735 736 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 737 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 738 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 739 } 740 741 void GPUNodeBuilder::initializeAfterRTH() { 742 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 743 &*Builder.GetInsertPoint(), &DT, &LI); 744 NewBB->setName("polly.acc.initialize"); 745 Builder.SetInsertPoint(&NewBB->front()); 746 747 GPUContext = createCallInitContext(); 748 749 if (!ManagedMemory) 750 allocateDeviceArrays(); 751 else 752 prepareManagedDeviceArrays(); 753 } 754 755 void GPUNodeBuilder::finalize() { 756 if (!ManagedMemory) 757 freeDeviceArrays(); 758 759 createCallFreeContext(GPUContext); 760 IslNodeBuilder::finalize(); 761 } 762 763 void GPUNodeBuilder::allocateDeviceArrays() { 764 assert(!ManagedMemory && "Managed memory will directly send host pointers " 765 "to the kernel. There is no need for device arrays"); 766 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 767 768 for (int i = 0; i < Prog->n_array; ++i) { 769 gpu_array_info *Array = &Prog->array[i]; 770 auto *ScopArray = (ScopArrayInfo *)Array->user; 771 std::string DevArrayName("p_dev_array_"); 772 DevArrayName.append(Array->name); 773 774 Value *ArraySize = getArraySize(Array); 775 Value *Offset = getArrayOffset(Array); 776 if (Offset) 777 ArraySize = Builder.CreateSub( 778 ArraySize, 779 Builder.CreateMul(Offset, 780 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 781 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 782 // It makes no sense to have an array of size 0. The CUDA API will 783 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 784 // choose to be defensive and catch this at the compile phase. It is 785 // most likely that we are doing something wrong with size computation. 786 if (SizeSCEV->isZero()) { 787 errs() << getUniqueScopName(&S) 788 << " has computed array size 0: " << *ArraySize 789 << " | for array: " << *(ScopArray->getBasePtr()) 790 << ". This is illegal, exiting.\n"; 791 report_fatal_error("array size was computed to be 0"); 792 } 793 794 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 795 DevArray->setName(DevArrayName); 796 DeviceAllocations[ScopArray] = DevArray; 797 } 798 799 isl_ast_build_free(Build); 800 } 801 802 void GPUNodeBuilder::prepareManagedDeviceArrays() { 803 assert(ManagedMemory && 804 "Device array most only be prepared in managed-memory mode"); 805 for (int i = 0; i < Prog->n_array; ++i) { 806 gpu_array_info *Array = &Prog->array[i]; 807 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 808 Value *HostPtr; 809 810 if (gpu_array_is_scalar(Array)) 811 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 812 else 813 HostPtr = ScopArray->getBasePtr(); 814 HostPtr = getLatestValue(HostPtr); 815 816 Value *Offset = getArrayOffset(Array); 817 if (Offset) { 818 HostPtr = Builder.CreatePointerCast( 819 HostPtr, ScopArray->getElementType()->getPointerTo()); 820 HostPtr = Builder.CreateGEP(HostPtr, Offset); 821 } 822 823 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 824 DeviceAllocations[ScopArray] = HostPtr; 825 } 826 } 827 828 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 829 Value *BlockDimY, Value *BlockDimZ) { 830 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 831 832 for (auto &F : *M) { 833 if (F.getCallingConv() != CallingConv::PTX_Kernel) 834 continue; 835 836 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 837 838 Metadata *Elements[] = { 839 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 840 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 841 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 842 ValueAsMetadata::get(V[2]), 843 }; 844 MDNode *Node = MDNode::get(M->getContext(), Elements); 845 AnnotationNode->addOperand(Node); 846 } 847 } 848 849 void GPUNodeBuilder::freeDeviceArrays() { 850 assert(!ManagedMemory && "Managed memory does not use device arrays"); 851 for (auto &Array : DeviceAllocations) 852 createCallFreeDeviceMemory(Array.second); 853 } 854 855 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 856 const char *Name = "polly_getKernel"; 857 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 858 Function *F = M->getFunction(Name); 859 860 // If F is not available, declare it. 861 if (!F) { 862 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 863 std::vector<Type *> Args; 864 Args.push_back(Builder.getInt8PtrTy()); 865 Args.push_back(Builder.getInt8PtrTy()); 866 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 867 F = Function::Create(Ty, Linkage, Name, M); 868 } 869 870 return Builder.CreateCall(F, {Buffer, Entry}); 871 } 872 873 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 874 const char *Name = "polly_getDevicePtr"; 875 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 876 Function *F = M->getFunction(Name); 877 878 // If F is not available, declare it. 879 if (!F) { 880 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 881 std::vector<Type *> Args; 882 Args.push_back(Builder.getInt8PtrTy()); 883 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 884 F = Function::Create(Ty, Linkage, Name, M); 885 } 886 887 return Builder.CreateCall(F, {Allocation}); 888 } 889 890 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 891 Value *GridDimY, Value *BlockDimX, 892 Value *BlockDimY, Value *BlockDimZ, 893 Value *Parameters) { 894 const char *Name = "polly_launchKernel"; 895 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 896 Function *F = M->getFunction(Name); 897 898 // If F is not available, declare it. 899 if (!F) { 900 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 901 std::vector<Type *> Args; 902 Args.push_back(Builder.getInt8PtrTy()); 903 Args.push_back(Builder.getInt32Ty()); 904 Args.push_back(Builder.getInt32Ty()); 905 Args.push_back(Builder.getInt32Ty()); 906 Args.push_back(Builder.getInt32Ty()); 907 Args.push_back(Builder.getInt32Ty()); 908 Args.push_back(Builder.getInt8PtrTy()); 909 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 910 F = Function::Create(Ty, Linkage, Name, M); 911 } 912 913 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 914 BlockDimZ, Parameters}); 915 } 916 917 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 918 const char *Name = "polly_freeKernel"; 919 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 920 Function *F = M->getFunction(Name); 921 922 // If F is not available, declare it. 923 if (!F) { 924 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 925 std::vector<Type *> Args; 926 Args.push_back(Builder.getInt8PtrTy()); 927 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 928 F = Function::Create(Ty, Linkage, Name, M); 929 } 930 931 Builder.CreateCall(F, {GPUKernel}); 932 } 933 934 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 935 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 936 "for device"); 937 const char *Name = "polly_freeDeviceMemory"; 938 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 939 Function *F = M->getFunction(Name); 940 941 // If F is not available, declare it. 942 if (!F) { 943 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 944 std::vector<Type *> Args; 945 Args.push_back(Builder.getInt8PtrTy()); 946 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 947 F = Function::Create(Ty, Linkage, Name, M); 948 } 949 950 Builder.CreateCall(F, {Array}); 951 } 952 953 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 954 assert(!ManagedMemory && "Managed memory does not allocate or free memory " 955 "for device"); 956 const char *Name = "polly_allocateMemoryForDevice"; 957 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 958 Function *F = M->getFunction(Name); 959 960 // If F is not available, declare it. 961 if (!F) { 962 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 963 std::vector<Type *> Args; 964 Args.push_back(Builder.getInt64Ty()); 965 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 966 F = Function::Create(Ty, Linkage, Name, M); 967 } 968 969 return Builder.CreateCall(F, {Size}); 970 } 971 972 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 973 Value *DeviceData, 974 Value *Size) { 975 assert(!ManagedMemory && "Managed memory does not transfer memory between " 976 "device and host"); 977 const char *Name = "polly_copyFromHostToDevice"; 978 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 979 Function *F = M->getFunction(Name); 980 981 // If F is not available, declare it. 982 if (!F) { 983 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 984 std::vector<Type *> Args; 985 Args.push_back(Builder.getInt8PtrTy()); 986 Args.push_back(Builder.getInt8PtrTy()); 987 Args.push_back(Builder.getInt64Ty()); 988 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 989 F = Function::Create(Ty, Linkage, Name, M); 990 } 991 992 Builder.CreateCall(F, {HostData, DeviceData, Size}); 993 } 994 995 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 996 Value *HostData, 997 Value *Size) { 998 assert(!ManagedMemory && "Managed memory does not transfer memory between " 999 "device and host"); 1000 const char *Name = "polly_copyFromDeviceToHost"; 1001 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1002 Function *F = M->getFunction(Name); 1003 1004 // If F is not available, declare it. 1005 if (!F) { 1006 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1007 std::vector<Type *> Args; 1008 Args.push_back(Builder.getInt8PtrTy()); 1009 Args.push_back(Builder.getInt8PtrTy()); 1010 Args.push_back(Builder.getInt64Ty()); 1011 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1012 F = Function::Create(Ty, Linkage, Name, M); 1013 } 1014 1015 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1016 } 1017 1018 void GPUNodeBuilder::createCallSynchronizeDevice() { 1019 assert(ManagedMemory && "explicit synchronization is only necessary for " 1020 "managed memory"); 1021 const char *Name = "polly_synchronizeDevice"; 1022 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1023 Function *F = M->getFunction(Name); 1024 1025 // If F is not available, declare it. 1026 if (!F) { 1027 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1028 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1029 F = Function::Create(Ty, Linkage, Name, M); 1030 } 1031 1032 Builder.CreateCall(F); 1033 } 1034 1035 Value *GPUNodeBuilder::createCallInitContext() { 1036 const char *Name; 1037 1038 switch (Runtime) { 1039 case GPURuntime::CUDA: 1040 Name = "polly_initContextCUDA"; 1041 break; 1042 case GPURuntime::OpenCL: 1043 Name = "polly_initContextCL"; 1044 break; 1045 } 1046 1047 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1048 Function *F = M->getFunction(Name); 1049 1050 // If F is not available, declare it. 1051 if (!F) { 1052 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1053 std::vector<Type *> Args; 1054 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1055 F = Function::Create(Ty, Linkage, Name, M); 1056 } 1057 1058 return Builder.CreateCall(F, {}); 1059 } 1060 1061 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1062 const char *Name = "polly_freeContext"; 1063 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1064 Function *F = M->getFunction(Name); 1065 1066 // If F is not available, declare it. 1067 if (!F) { 1068 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1069 std::vector<Type *> Args; 1070 Args.push_back(Builder.getInt8PtrTy()); 1071 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1072 F = Function::Create(Ty, Linkage, Name, M); 1073 } 1074 1075 Builder.CreateCall(F, {Context}); 1076 } 1077 1078 /// Check if one string is a prefix of another. 1079 /// 1080 /// @param String The string in which to look for the prefix. 1081 /// @param Prefix The prefix to look for. 1082 static bool isPrefix(std::string String, std::string Prefix) { 1083 return String.find(Prefix) == 0; 1084 } 1085 1086 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1087 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1088 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1089 1090 if (!gpu_array_is_scalar(Array)) { 1091 isl::multi_pw_aff ArrayBound = 1092 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1093 1094 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1095 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1096 1097 for (unsigned int i = 1; i < Array->n_index; i++) { 1098 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1099 isl::ast_expr Expr = Build.expr_from(Bound_I); 1100 Res = Res.mul(Expr); 1101 } 1102 1103 Value *NumElements = ExprBuilder.create(Res.release()); 1104 if (NumElements->getType() != ArraySize->getType()) 1105 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1106 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1107 } 1108 return ArraySize; 1109 } 1110 1111 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1112 if (gpu_array_is_scalar(Array)) 1113 return nullptr; 1114 1115 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1116 1117 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1118 1119 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1120 1121 for (long i = 0; i < Min.dim(isl::dim::set); i++) 1122 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1123 1124 if (Min.is_subset(ZeroSet)) { 1125 return nullptr; 1126 } 1127 1128 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1129 1130 for (long i = 0; i < Min.dim(isl::dim::set); i++) { 1131 if (i > 0) { 1132 isl::pw_aff Bound_I = 1133 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1134 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1135 Result = Result.mul(BExpr); 1136 } 1137 isl::pw_aff DimMin = Min.dim_min(i); 1138 isl::ast_expr MExpr = Build.expr_from(DimMin); 1139 Result = Result.add(MExpr); 1140 } 1141 1142 return ExprBuilder.create(Result.release()); 1143 } 1144 1145 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1146 ScopArrayInfo *ArrayInfo) { 1147 assert(ManagedMemory && "Only used when you wish to get a host " 1148 "pointer for sending data to the kernel, " 1149 "with managed memory"); 1150 std::map<ScopArrayInfo *, Value *>::iterator it; 1151 it = DeviceAllocations.find(ArrayInfo); 1152 assert(it != DeviceAllocations.end() && 1153 "Device array expected to be available"); 1154 return it->second; 1155 } 1156 1157 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1158 enum DataDirection Direction) { 1159 assert(!ManagedMemory && "Managed memory needs no data transfers"); 1160 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1161 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1162 isl_id *Id = isl_ast_expr_get_id(Arg); 1163 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1164 auto ScopArray = (ScopArrayInfo *)(Array->user); 1165 1166 Value *Size = getArraySize(Array); 1167 Value *Offset = getArrayOffset(Array); 1168 Value *DevPtr = DeviceAllocations[ScopArray]; 1169 1170 Value *HostPtr; 1171 1172 if (gpu_array_is_scalar(Array)) 1173 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1174 else 1175 HostPtr = ScopArray->getBasePtr(); 1176 HostPtr = getLatestValue(HostPtr); 1177 1178 if (Offset) { 1179 HostPtr = Builder.CreatePointerCast( 1180 HostPtr, ScopArray->getElementType()->getPointerTo()); 1181 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1182 } 1183 1184 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1185 1186 if (Offset) { 1187 Size = Builder.CreateSub( 1188 Size, Builder.CreateMul( 1189 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1190 } 1191 1192 if (Direction == HOST_TO_DEVICE) 1193 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1194 else 1195 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1196 1197 isl_id_free(Id); 1198 isl_ast_expr_free(Arg); 1199 isl_ast_expr_free(Expr); 1200 isl_ast_node_free(TransferStmt); 1201 } 1202 1203 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1204 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1205 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1206 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1207 isl_id_free(Id); 1208 isl_ast_expr_free(StmtExpr); 1209 1210 const char *Str = isl_id_get_name(Id); 1211 if (!strcmp(Str, "kernel")) { 1212 createKernel(UserStmt); 1213 isl_ast_expr_free(Expr); 1214 return; 1215 } 1216 if (!strcmp(Str, "init_device")) { 1217 initializeAfterRTH(); 1218 isl_ast_node_free(UserStmt); 1219 isl_ast_expr_free(Expr); 1220 return; 1221 } 1222 if (!strcmp(Str, "clear_device")) { 1223 finalize(); 1224 isl_ast_node_free(UserStmt); 1225 isl_ast_expr_free(Expr); 1226 return; 1227 } 1228 if (isPrefix(Str, "to_device")) { 1229 if (!ManagedMemory) 1230 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1231 else 1232 isl_ast_node_free(UserStmt); 1233 1234 isl_ast_expr_free(Expr); 1235 return; 1236 } 1237 1238 if (isPrefix(Str, "from_device")) { 1239 if (!ManagedMemory) { 1240 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1241 } else { 1242 createCallSynchronizeDevice(); 1243 isl_ast_node_free(UserStmt); 1244 } 1245 isl_ast_expr_free(Expr); 1246 return; 1247 } 1248 1249 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1250 struct ppcg_kernel_stmt *KernelStmt = 1251 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1252 isl_id_free(Anno); 1253 1254 switch (KernelStmt->type) { 1255 case ppcg_kernel_domain: 1256 createScopStmt(Expr, KernelStmt); 1257 isl_ast_node_free(UserStmt); 1258 return; 1259 case ppcg_kernel_copy: 1260 createKernelCopy(KernelStmt); 1261 isl_ast_expr_free(Expr); 1262 isl_ast_node_free(UserStmt); 1263 return; 1264 case ppcg_kernel_sync: 1265 createKernelSync(); 1266 isl_ast_expr_free(Expr); 1267 isl_ast_node_free(UserStmt); 1268 return; 1269 } 1270 1271 isl_ast_expr_free(Expr); 1272 isl_ast_node_free(UserStmt); 1273 return; 1274 } 1275 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1276 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1277 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1278 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1279 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1280 Index = isl_ast_expr_address_of(Index); 1281 Value *GlobalAddr = ExprBuilder.create(Index); 1282 1283 if (KernelStmt->u.c.read) { 1284 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1285 Builder.CreateStore(Load, LocalAddr); 1286 } else { 1287 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1288 Builder.CreateStore(Load, GlobalAddr); 1289 } 1290 } 1291 1292 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1293 ppcg_kernel_stmt *KernelStmt) { 1294 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1295 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1296 1297 LoopToScevMapT LTS; 1298 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1299 1300 createSubstitutions(Expr, Stmt, LTS); 1301 1302 if (Stmt->isBlockStmt()) 1303 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1304 else 1305 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1306 } 1307 1308 void GPUNodeBuilder::createKernelSync() { 1309 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1310 const char *SpirName = "__gen_ocl_barrier_global"; 1311 1312 Function *Sync; 1313 1314 switch (Arch) { 1315 case GPUArch::SPIR64: 1316 case GPUArch::SPIR32: 1317 Sync = M->getFunction(SpirName); 1318 1319 // If Sync is not available, declare it. 1320 if (!Sync) { 1321 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1322 std::vector<Type *> Args; 1323 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1324 Sync = Function::Create(Ty, Linkage, SpirName, M); 1325 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1326 } 1327 break; 1328 case GPUArch::NVPTX64: 1329 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1330 break; 1331 } 1332 1333 Builder.CreateCall(Sync, {}); 1334 } 1335 1336 /// Collect llvm::Values referenced from @p Node 1337 /// 1338 /// This function only applies to isl_ast_nodes that are user_nodes referring 1339 /// to a ScopStmt. All other node types are ignore. 1340 /// 1341 /// @param Node The node to collect references for. 1342 /// @param User A user pointer used as storage for the data that is collected. 1343 /// 1344 /// @returns isl_bool_true if data could be collected successfully. 1345 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1346 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1347 return isl_bool_true; 1348 1349 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1350 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1351 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1352 const char *Str = isl_id_get_name(Id); 1353 isl_id_free(Id); 1354 isl_ast_expr_free(StmtExpr); 1355 isl_ast_expr_free(Expr); 1356 1357 if (!isPrefix(Str, "Stmt")) 1358 return isl_bool_true; 1359 1360 Id = isl_ast_node_get_annotation(Node); 1361 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1362 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1363 isl_id_free(Id); 1364 1365 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1366 1367 return isl_bool_true; 1368 } 1369 1370 /// A list of functions that are available in NVIDIA's libdevice. 1371 const std::set<std::string> CUDALibDeviceFunctions = { 1372 "exp", "expf", "expl", "cos", "cosf", 1373 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"}; 1374 1375 /// Return the corresponding CUDA libdevice function name for @p F. 1376 /// 1377 /// Return "" if we are not compiling for CUDA. 1378 std::string getCUDALibDeviceFuntion(Function *F) { 1379 if (CUDALibDeviceFunctions.count(F->getName())) 1380 return std::string("__nv_") + std::string(F->getName()); 1381 1382 return ""; 1383 } 1384 1385 /// Check if F is a function that we can code-generate in a GPU kernel. 1386 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1387 assert(F && "F is an invalid pointer"); 1388 // We string compare against the name of the function to allow 1389 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1390 // "llvm.copysign". 1391 const StringRef Name = F->getName(); 1392 1393 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1394 return true; 1395 1396 return F->isIntrinsic() && 1397 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1398 Name.startswith("llvm.copysign")); 1399 } 1400 1401 /// Do not take `Function` as a subtree value. 1402 /// 1403 /// We try to take the reference of all subtree values and pass them along 1404 /// to the kernel from the host. Taking an address of any function and 1405 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1406 /// `Function`s. 1407 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1408 1409 /// Return `Function`s from `RawSubtreeValues`. 1410 static SetVector<Function *> 1411 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1412 bool AllowCUDALibDevice) { 1413 SetVector<Function *> SubtreeFunctions; 1414 for (Value *It : RawSubtreeValues) { 1415 Function *F = dyn_cast<Function>(It); 1416 if (F) { 1417 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1418 "Code should have bailed out by " 1419 "this point if an invalid function " 1420 "were present in a kernel."); 1421 SubtreeFunctions.insert(F); 1422 } 1423 } 1424 return SubtreeFunctions; 1425 } 1426 1427 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>> 1428 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1429 SetVector<Value *> SubtreeValues; 1430 SetVector<const SCEV *> SCEVs; 1431 SetVector<const Loop *> Loops; 1432 SubtreeReferences References = { 1433 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 1434 1435 for (const auto &I : IDToValue) 1436 SubtreeValues.insert(I.second); 1437 1438 // NOTE: this is populated in IslNodeBuilder::addParameters 1439 // See [Code generation of induction variables of loops outside Scops]. 1440 for (const auto &I : OutsideLoopIterations) 1441 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1442 1443 isl_ast_node_foreach_descendant_top_down( 1444 Kernel->tree, collectReferencesInGPUStmt, &References); 1445 1446 for (const SCEV *Expr : SCEVs) { 1447 findValues(Expr, SE, SubtreeValues); 1448 findLoops(Expr, Loops); 1449 } 1450 1451 Loops.remove_if([this](const Loop *L) { 1452 return S.contains(L) || L->contains(S.getEntry()); 1453 }); 1454 1455 for (auto &SAI : S.arrays()) 1456 SubtreeValues.remove(SAI->getBasePtr()); 1457 1458 isl_space *Space = S.getParamSpace().release(); 1459 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 1460 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1461 assert(IDToValue.count(Id)); 1462 Value *Val = IDToValue[Id]; 1463 SubtreeValues.remove(Val); 1464 isl_id_free(Id); 1465 } 1466 isl_space_free(Space); 1467 1468 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 1469 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1470 assert(IDToValue.count(Id)); 1471 Value *Val = IDToValue[Id]; 1472 SubtreeValues.remove(Val); 1473 isl_id_free(Id); 1474 } 1475 1476 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1477 // SubtreeValues. This is important, because we should not lose any 1478 // SubtreeValues in the process of constructing the 1479 // "ValidSubtree{Values, Functions} sets. Nor should the set 1480 // ValidSubtree{Values, Functions} have any common element. 1481 auto ValidSubtreeValuesIt = 1482 make_filter_range(SubtreeValues, isValidSubtreeValue); 1483 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1484 ValidSubtreeValuesIt.end()); 1485 1486 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1487 1488 SetVector<Function *> ValidSubtreeFunctions( 1489 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1490 1491 // @see IslNodeBuilder::getReferencesInSubtree 1492 SetVector<Value *> ReplacedValues; 1493 for (Value *V : ValidSubtreeValues) { 1494 auto It = ValueMap.find(V); 1495 if (It == ValueMap.end()) 1496 ReplacedValues.insert(V); 1497 else 1498 ReplacedValues.insert(It->second); 1499 } 1500 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops); 1501 } 1502 1503 void GPUNodeBuilder::clearDominators(Function *F) { 1504 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1505 std::vector<BasicBlock *> Nodes; 1506 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1507 Nodes.push_back(I->getBlock()); 1508 1509 for (BasicBlock *BB : Nodes) 1510 DT.eraseNode(BB); 1511 } 1512 1513 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1514 for (BasicBlock &BB : *F) { 1515 Loop *L = LI.getLoopFor(&BB); 1516 if (L) 1517 SE.forgetLoop(L); 1518 } 1519 } 1520 1521 void GPUNodeBuilder::clearLoops(Function *F) { 1522 for (BasicBlock &BB : *F) { 1523 Loop *L = LI.getLoopFor(&BB); 1524 if (L) 1525 SE.forgetLoop(L); 1526 LI.removeBlock(&BB); 1527 } 1528 } 1529 1530 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1531 std::vector<Value *> Sizes; 1532 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1533 1534 isl::multi_pw_aff GridSizePwAffs = 1535 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1536 for (long i = 0; i < Kernel->n_grid; i++) { 1537 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1538 isl::ast_expr GridSize = Context.expr_from(Size); 1539 Value *Res = ExprBuilder.create(GridSize.release()); 1540 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1541 Sizes.push_back(Res); 1542 } 1543 1544 for (long i = Kernel->n_grid; i < 3; i++) 1545 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1546 1547 return std::make_tuple(Sizes[0], Sizes[1]); 1548 } 1549 1550 std::tuple<Value *, Value *, Value *> 1551 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1552 std::vector<Value *> Sizes; 1553 1554 for (long i = 0; i < Kernel->n_block; i++) { 1555 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1556 Sizes.push_back(Res); 1557 } 1558 1559 for (long i = Kernel->n_block; i < 3; i++) 1560 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1561 1562 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1563 } 1564 1565 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1566 Instruction *Param, int Index) { 1567 Value *Slot = Builder.CreateGEP( 1568 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1569 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1570 Builder.CreateStore(ParamTyped, Slot); 1571 } 1572 1573 Value * 1574 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1575 SetVector<Value *> SubtreeValues) { 1576 const int NumArgs = F->arg_size(); 1577 std::vector<int> ArgSizes(NumArgs); 1578 1579 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1580 1581 BasicBlock *EntryBlock = 1582 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1583 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1584 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1585 Instruction *Parameters = new AllocaInst( 1586 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1587 1588 int Index = 0; 1589 for (long i = 0; i < Prog->n_array; i++) { 1590 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1591 continue; 1592 1593 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1594 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1595 1596 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1597 1598 Value *DevArray = nullptr; 1599 if (ManagedMemory) { 1600 DevArray = getManagedDeviceArray(&Prog->array[i], 1601 const_cast<ScopArrayInfo *>(SAI)); 1602 } else { 1603 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1604 DevArray = createCallGetDevicePtr(DevArray); 1605 } 1606 assert(DevArray != nullptr && "Array to be offloaded to device not " 1607 "initialized"); 1608 Value *Offset = getArrayOffset(&Prog->array[i]); 1609 1610 if (Offset) { 1611 DevArray = Builder.CreatePointerCast( 1612 DevArray, SAI->getElementType()->getPointerTo()); 1613 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1614 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1615 } 1616 Value *Slot = Builder.CreateGEP( 1617 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1618 1619 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1620 Value *ValPtr = nullptr; 1621 if (ManagedMemory) 1622 ValPtr = DevArray; 1623 else 1624 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1625 1626 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1627 " to be stored into Parameters"); 1628 Value *ValPtrCast = 1629 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1630 Builder.CreateStore(ValPtrCast, Slot); 1631 } else { 1632 Instruction *Param = 1633 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1634 Launch + "_param_" + std::to_string(Index), 1635 EntryBlock->getTerminator()); 1636 Builder.CreateStore(DevArray, Param); 1637 Value *ParamTyped = 1638 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1639 Builder.CreateStore(ParamTyped, Slot); 1640 } 1641 Index++; 1642 } 1643 1644 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1645 1646 for (long i = 0; i < NumHostIters; i++) { 1647 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1648 Value *Val = IDToValue[Id]; 1649 isl_id_free(Id); 1650 1651 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1652 1653 Instruction *Param = 1654 new AllocaInst(Val->getType(), AddressSpace, 1655 Launch + "_param_" + std::to_string(Index), 1656 EntryBlock->getTerminator()); 1657 Builder.CreateStore(Val, Param); 1658 insertStoreParameter(Parameters, Param, Index); 1659 Index++; 1660 } 1661 1662 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1663 1664 for (long i = 0; i < NumVars; i++) { 1665 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1666 Value *Val = IDToValue[Id]; 1667 if (ValueMap.count(Val)) 1668 Val = ValueMap[Val]; 1669 isl_id_free(Id); 1670 1671 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1672 1673 Instruction *Param = 1674 new AllocaInst(Val->getType(), AddressSpace, 1675 Launch + "_param_" + std::to_string(Index), 1676 EntryBlock->getTerminator()); 1677 Builder.CreateStore(Val, Param); 1678 insertStoreParameter(Parameters, Param, Index); 1679 Index++; 1680 } 1681 1682 for (auto Val : SubtreeValues) { 1683 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1684 1685 Instruction *Param = 1686 new AllocaInst(Val->getType(), AddressSpace, 1687 Launch + "_param_" + std::to_string(Index), 1688 EntryBlock->getTerminator()); 1689 Builder.CreateStore(Val, Param); 1690 insertStoreParameter(Parameters, Param, Index); 1691 Index++; 1692 } 1693 1694 for (int i = 0; i < NumArgs; i++) { 1695 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1696 Instruction *Param = 1697 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1698 Launch + "_param_size_" + std::to_string(i), 1699 EntryBlock->getTerminator()); 1700 Builder.CreateStore(Val, Param); 1701 insertStoreParameter(Parameters, Param, Index); 1702 Index++; 1703 } 1704 1705 auto Location = EntryBlock->getTerminator(); 1706 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1707 Launch + "_params_i8ptr", Location); 1708 } 1709 1710 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1711 SetVector<Function *> SubtreeFunctions) { 1712 for (auto Fn : SubtreeFunctions) { 1713 const std::string ClonedFnName = Fn->getName(); 1714 Function *Clone = GPUModule->getFunction(ClonedFnName); 1715 if (!Clone) 1716 Clone = 1717 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1718 ClonedFnName, GPUModule.get()); 1719 assert(Clone && "Expected cloned function to be initialized."); 1720 assert(ValueMap.find(Fn) == ValueMap.end() && 1721 "Fn already present in ValueMap"); 1722 ValueMap[Fn] = Clone; 1723 } 1724 } 1725 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1726 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1727 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1728 isl_id_free(Id); 1729 isl_ast_node_free(KernelStmt); 1730 1731 if (Kernel->n_grid > 1) 1732 DeepestParallel = 1733 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1734 else 1735 DeepestSequential = 1736 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1737 1738 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1739 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1740 1741 SetVector<Value *> SubtreeValues; 1742 SetVector<Function *> SubtreeFunctions; 1743 SetVector<const Loop *> Loops; 1744 std::tie(SubtreeValues, SubtreeFunctions, Loops) = 1745 getReferencesInKernel(Kernel); 1746 1747 assert(Kernel->tree && "Device AST of kernel node is empty"); 1748 1749 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1750 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1751 ValueMapT HostValueMap = ValueMap; 1752 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1753 ScalarMap.clear(); 1754 1755 // Create for all loops we depend on values that contain the current loop 1756 // iteration. These values are necessary to generate code for SCEVs that 1757 // depend on such loops. As a result we need to pass them to the subfunction. 1758 for (const Loop *L : Loops) { 1759 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1760 SE.getUnknown(Builder.getInt64(1)), 1761 L, SCEV::FlagAnyWrap); 1762 Value *V = generateSCEV(OuterLIV); 1763 OutsideLoopIterations[L] = SE.getUnknown(V); 1764 SubtreeValues.insert(V); 1765 } 1766 1767 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1768 setupKernelSubtreeFunctions(SubtreeFunctions); 1769 1770 create(isl_ast_node_copy(Kernel->tree)); 1771 1772 finalizeKernelArguments(Kernel); 1773 Function *F = Builder.GetInsertBlock()->getParent(); 1774 if (Arch == GPUArch::NVPTX64) 1775 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1776 clearDominators(F); 1777 clearScalarEvolution(F); 1778 clearLoops(F); 1779 1780 IDToValue = HostIDs; 1781 1782 ValueMap = std::move(HostValueMap); 1783 ScalarMap = std::move(HostScalarMap); 1784 EscapeMap.clear(); 1785 IDToSAI.clear(); 1786 Annotator.resetAlternativeAliasBases(); 1787 for (auto &BasePtr : LocalArrays) 1788 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1789 LocalArrays.clear(); 1790 1791 std::string ASMString = finalizeKernelFunction(); 1792 Builder.SetInsertPoint(&HostInsertPoint); 1793 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1794 1795 std::string Name = getKernelFuncName(Kernel->id); 1796 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1797 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1798 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1799 1800 Value *GridDimX, *GridDimY; 1801 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1802 1803 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1804 BlockDimZ, Parameters); 1805 createCallFreeKernel(GPUKernel); 1806 1807 for (auto Id : KernelIds) 1808 isl_id_free(Id); 1809 1810 KernelIds.clear(); 1811 } 1812 1813 /// Compute the DataLayout string for the NVPTX backend. 1814 /// 1815 /// @param is64Bit Are we looking for a 64 bit architecture? 1816 static std::string computeNVPTXDataLayout(bool is64Bit) { 1817 std::string Ret = ""; 1818 1819 if (!is64Bit) { 1820 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1821 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1822 "64-v128:128:128-n16:32:64"; 1823 } else { 1824 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1825 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1826 "64-v128:128:128-n16:32:64"; 1827 } 1828 1829 return Ret; 1830 } 1831 1832 /// Compute the DataLayout string for a SPIR kernel. 1833 /// 1834 /// @param is64Bit Are we looking for a 64 bit architecture? 1835 static std::string computeSPIRDataLayout(bool is64Bit) { 1836 std::string Ret = ""; 1837 1838 if (!is64Bit) { 1839 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1840 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1841 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1842 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1843 } else { 1844 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1845 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1846 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1847 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1848 } 1849 1850 return Ret; 1851 } 1852 1853 Function * 1854 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1855 SetVector<Value *> &SubtreeValues) { 1856 std::vector<Type *> Args; 1857 std::string Identifier = getKernelFuncName(Kernel->id); 1858 1859 std::vector<Metadata *> MemoryType; 1860 1861 for (long i = 0; i < Prog->n_array; i++) { 1862 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1863 continue; 1864 1865 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1866 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1867 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1868 Args.push_back(SAI->getElementType()); 1869 MemoryType.push_back( 1870 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1871 } else { 1872 static const int UseGlobalMemory = 1; 1873 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1874 MemoryType.push_back( 1875 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1876 } 1877 } 1878 1879 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1880 1881 for (long i = 0; i < NumHostIters; i++) { 1882 Args.push_back(Builder.getInt64Ty()); 1883 MemoryType.push_back( 1884 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1885 } 1886 1887 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1888 1889 for (long i = 0; i < NumVars; i++) { 1890 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1891 Value *Val = IDToValue[Id]; 1892 isl_id_free(Id); 1893 Args.push_back(Val->getType()); 1894 MemoryType.push_back( 1895 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1896 } 1897 1898 for (auto *V : SubtreeValues) { 1899 Args.push_back(V->getType()); 1900 MemoryType.push_back( 1901 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1902 } 1903 1904 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1905 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1906 GPUModule.get()); 1907 1908 std::vector<Metadata *> EmptyStrings; 1909 1910 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1911 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1912 } 1913 1914 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1915 FN->setMetadata("kernel_arg_addr_space", 1916 MDNode::get(FN->getContext(), MemoryType)); 1917 FN->setMetadata("kernel_arg_name", 1918 MDNode::get(FN->getContext(), EmptyStrings)); 1919 FN->setMetadata("kernel_arg_access_qual", 1920 MDNode::get(FN->getContext(), EmptyStrings)); 1921 FN->setMetadata("kernel_arg_type", 1922 MDNode::get(FN->getContext(), EmptyStrings)); 1923 FN->setMetadata("kernel_arg_type_qual", 1924 MDNode::get(FN->getContext(), EmptyStrings)); 1925 FN->setMetadata("kernel_arg_base_type", 1926 MDNode::get(FN->getContext(), EmptyStrings)); 1927 } 1928 1929 switch (Arch) { 1930 case GPUArch::NVPTX64: 1931 FN->setCallingConv(CallingConv::PTX_Kernel); 1932 break; 1933 case GPUArch::SPIR32: 1934 case GPUArch::SPIR64: 1935 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1936 break; 1937 } 1938 1939 auto Arg = FN->arg_begin(); 1940 for (long i = 0; i < Kernel->n_array; i++) { 1941 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1942 continue; 1943 1944 Arg->setName(Kernel->array[i].array->name); 1945 1946 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1947 const ScopArrayInfo *SAI = 1948 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 1949 Type *EleTy = SAI->getElementType(); 1950 Value *Val = &*Arg; 1951 SmallVector<const SCEV *, 4> Sizes; 1952 isl_ast_build *Build = 1953 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1954 Sizes.push_back(nullptr); 1955 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1956 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1957 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 1958 auto V = ExprBuilder.create(DimSize); 1959 Sizes.push_back(SE.getSCEV(V)); 1960 } 1961 const ScopArrayInfo *SAIRep = 1962 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 1963 LocalArrays.push_back(Val); 1964 1965 isl_ast_build_free(Build); 1966 KernelIds.push_back(Id); 1967 IDToSAI[Id] = SAIRep; 1968 Arg++; 1969 } 1970 1971 for (long i = 0; i < NumHostIters; i++) { 1972 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1973 Arg->setName(isl_id_get_name(Id)); 1974 IDToValue[Id] = &*Arg; 1975 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1976 Arg++; 1977 } 1978 1979 for (long i = 0; i < NumVars; i++) { 1980 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1981 Arg->setName(isl_id_get_name(Id)); 1982 Value *Val = IDToValue[Id]; 1983 ValueMap[Val] = &*Arg; 1984 IDToValue[Id] = &*Arg; 1985 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1986 Arg++; 1987 } 1988 1989 for (auto *V : SubtreeValues) { 1990 Arg->setName(V->getName()); 1991 ValueMap[V] = &*Arg; 1992 Arg++; 1993 } 1994 1995 return FN; 1996 } 1997 1998 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1999 Intrinsic::ID IntrinsicsBID[2]; 2000 Intrinsic::ID IntrinsicsTID[3]; 2001 2002 switch (Arch) { 2003 case GPUArch::SPIR64: 2004 case GPUArch::SPIR32: 2005 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2006 case GPUArch::NVPTX64: 2007 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2008 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2009 2010 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2011 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2012 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2013 break; 2014 } 2015 2016 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2017 std::string Name = isl_id_get_name(Id); 2018 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2019 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2020 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2021 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2022 IDToValue[Id] = Val; 2023 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2024 }; 2025 2026 for (int i = 0; i < Kernel->n_grid; ++i) { 2027 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2028 addId(Id, IntrinsicsBID[i]); 2029 } 2030 2031 for (int i = 0; i < Kernel->n_block; ++i) { 2032 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2033 addId(Id, IntrinsicsTID[i]); 2034 } 2035 } 2036 2037 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2038 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2039 "__gen_ocl_get_group_id1", 2040 "__gen_ocl_get_group_id2"}; 2041 2042 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2043 "__gen_ocl_get_local_id1", 2044 "__gen_ocl_get_local_id2"}; 2045 2046 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2047 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2048 Function *FN = M->getFunction(Name); 2049 2050 // If FN is not available, declare it. 2051 if (!FN) { 2052 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2053 std::vector<Type *> Args; 2054 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2055 FN = Function::Create(Ty, Linkage, Name, M); 2056 FN->setCallingConv(CallingConv::SPIR_FUNC); 2057 } 2058 2059 Value *Val = Builder.CreateCall(FN, {}); 2060 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2061 IDToValue[Id] = Val; 2062 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2063 }; 2064 2065 for (int i = 0; i < Kernel->n_grid; ++i) 2066 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2067 2068 for (int i = 0; i < Kernel->n_block; ++i) 2069 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2070 } 2071 2072 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2073 auto Arg = FN->arg_begin(); 2074 for (long i = 0; i < Kernel->n_array; i++) { 2075 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2076 continue; 2077 2078 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2079 const ScopArrayInfo *SAI = 2080 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2081 isl_id_free(Id); 2082 2083 if (SAI->getNumberOfDimensions() > 0) { 2084 Arg++; 2085 continue; 2086 } 2087 2088 Value *Val = &*Arg; 2089 2090 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2091 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2092 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2093 Val = Builder.CreateLoad(TypedArgPtr); 2094 } 2095 2096 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2097 Builder.CreateStore(Val, Alloca); 2098 2099 Arg++; 2100 } 2101 } 2102 2103 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2104 auto *FN = Builder.GetInsertBlock()->getParent(); 2105 auto Arg = FN->arg_begin(); 2106 2107 bool StoredScalar = false; 2108 for (long i = 0; i < Kernel->n_array; i++) { 2109 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2110 continue; 2111 2112 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2113 const ScopArrayInfo *SAI = 2114 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2115 isl_id_free(Id); 2116 2117 if (SAI->getNumberOfDimensions() > 0) { 2118 Arg++; 2119 continue; 2120 } 2121 2122 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2123 Arg++; 2124 continue; 2125 } 2126 2127 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2128 Value *ArgPtr = &*Arg; 2129 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2130 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2131 Value *Val = Builder.CreateLoad(Alloca); 2132 Builder.CreateStore(Val, TypedArgPtr); 2133 StoredScalar = true; 2134 2135 Arg++; 2136 } 2137 2138 if (StoredScalar) { 2139 /// In case more than one thread contains scalar stores, the generated 2140 /// code might be incorrect, if we only store at the end of the kernel. 2141 /// To support this case we need to store these scalars back at each 2142 /// memory store or at least before each kernel barrier. 2143 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2144 BuildSuccessful = 0; 2145 DEBUG( 2146 dbgs() << getUniqueScopName(&S) 2147 << " has a store to a scalar value that" 2148 " would be undefined to run in parallel. Bailing out.\n";); 2149 } 2150 } 2151 } 2152 2153 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2154 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2155 2156 for (int i = 0; i < Kernel->n_var; ++i) { 2157 struct ppcg_kernel_var &Var = Kernel->var[i]; 2158 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2159 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2160 2161 Type *ArrayTy = EleTy; 2162 SmallVector<const SCEV *, 4> Sizes; 2163 2164 Sizes.push_back(nullptr); 2165 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2166 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2167 long Bound = isl_val_get_num_si(Val); 2168 isl_val_free(Val); 2169 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2170 } 2171 2172 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2173 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2174 long Bound = isl_val_get_num_si(Val); 2175 isl_val_free(Val); 2176 ArrayTy = ArrayType::get(ArrayTy, Bound); 2177 } 2178 2179 const ScopArrayInfo *SAI; 2180 Value *Allocation; 2181 if (Var.type == ppcg_access_shared) { 2182 auto GlobalVar = new GlobalVariable( 2183 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2184 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2185 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2186 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2187 2188 Allocation = GlobalVar; 2189 } else if (Var.type == ppcg_access_private) { 2190 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2191 } else { 2192 llvm_unreachable("unknown variable type"); 2193 } 2194 SAI = 2195 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2196 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2197 IDToValue[Id] = Allocation; 2198 LocalArrays.push_back(Allocation); 2199 KernelIds.push_back(Id); 2200 IDToSAI[Id] = SAI; 2201 } 2202 } 2203 2204 void GPUNodeBuilder::createKernelFunction( 2205 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2206 SetVector<Function *> &SubtreeFunctions) { 2207 std::string Identifier = getKernelFuncName(Kernel->id); 2208 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2209 2210 switch (Arch) { 2211 case GPUArch::NVPTX64: 2212 if (Runtime == GPURuntime::CUDA) 2213 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2214 else if (Runtime == GPURuntime::OpenCL) 2215 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2216 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2217 break; 2218 case GPUArch::SPIR32: 2219 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2220 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2221 break; 2222 case GPUArch::SPIR64: 2223 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2224 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2225 break; 2226 } 2227 2228 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2229 2230 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2231 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2232 2233 DT.addNewBlock(EntryBlock, PrevBlock); 2234 2235 Builder.SetInsertPoint(EntryBlock); 2236 Builder.CreateRetVoid(); 2237 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2238 2239 ScopDetection::markFunctionAsInvalid(FN); 2240 2241 prepareKernelArguments(Kernel, FN); 2242 createKernelVariables(Kernel, FN); 2243 2244 switch (Arch) { 2245 case GPUArch::NVPTX64: 2246 insertKernelIntrinsics(Kernel); 2247 break; 2248 case GPUArch::SPIR32: 2249 case GPUArch::SPIR64: 2250 insertKernelCallsSPIR(Kernel); 2251 break; 2252 } 2253 } 2254 2255 std::string GPUNodeBuilder::createKernelASM() { 2256 llvm::Triple GPUTriple; 2257 2258 switch (Arch) { 2259 case GPUArch::NVPTX64: 2260 switch (Runtime) { 2261 case GPURuntime::CUDA: 2262 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2263 break; 2264 case GPURuntime::OpenCL: 2265 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2266 break; 2267 } 2268 break; 2269 case GPUArch::SPIR64: 2270 case GPUArch::SPIR32: 2271 std::string SPIRAssembly; 2272 raw_string_ostream IROstream(SPIRAssembly); 2273 IROstream << *GPUModule; 2274 IROstream.flush(); 2275 return SPIRAssembly; 2276 } 2277 2278 std::string ErrMsg; 2279 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2280 2281 if (!GPUTarget) { 2282 errs() << ErrMsg << "\n"; 2283 return ""; 2284 } 2285 2286 TargetOptions Options; 2287 Options.UnsafeFPMath = FastMath; 2288 2289 std::string subtarget; 2290 2291 switch (Arch) { 2292 case GPUArch::NVPTX64: 2293 subtarget = CudaVersion; 2294 break; 2295 case GPUArch::SPIR32: 2296 case GPUArch::SPIR64: 2297 llvm_unreachable("No subtarget for SPIR architecture"); 2298 } 2299 2300 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2301 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2302 2303 SmallString<0> ASMString; 2304 raw_svector_ostream ASMStream(ASMString); 2305 llvm::legacy::PassManager PM; 2306 2307 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2308 2309 if (TargetM->addPassesToEmitFile( 2310 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2311 errs() << "The target does not support generation of this file type!\n"; 2312 return ""; 2313 } 2314 2315 PM.run(*GPUModule); 2316 2317 return ASMStream.str(); 2318 } 2319 2320 bool GPUNodeBuilder::requiresCUDALibDevice() { 2321 bool RequiresLibDevice = false; 2322 for (Function &F : GPUModule->functions()) { 2323 if (!F.isDeclaration()) 2324 continue; 2325 2326 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2327 if (CUDALibDeviceFunc.length() != 0) { 2328 F.setName(CUDALibDeviceFunc); 2329 RequiresLibDevice = true; 2330 } 2331 } 2332 2333 return RequiresLibDevice; 2334 } 2335 2336 void GPUNodeBuilder::addCUDALibDevice() { 2337 if (Arch != GPUArch::NVPTX64) 2338 return; 2339 2340 if (requiresCUDALibDevice()) { 2341 SMDiagnostic Error; 2342 2343 errs() << CUDALibDevice << "\n"; 2344 auto LibDeviceModule = 2345 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2346 2347 if (!LibDeviceModule) { 2348 BuildSuccessful = false; 2349 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2350 "kernel generation. Please set -polly-acc-libdevice " 2351 "accordingly.\n"); 2352 return; 2353 } 2354 2355 Linker L(*GPUModule); 2356 2357 // Set an nvptx64 target triple to avoid linker warnings. The original 2358 // triple of the libdevice files are nvptx-unknown-unknown. 2359 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2360 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2361 } 2362 } 2363 2364 std::string GPUNodeBuilder::finalizeKernelFunction() { 2365 2366 if (verifyModule(*GPUModule)) { 2367 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2368 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2369 DEBUG(dbgs() << "verifyModule Error:\n"; 2370 verifyModule(*GPUModule, &dbgs());); 2371 2372 if (FailOnVerifyModuleFailure) 2373 llvm_unreachable("VerifyModule failed."); 2374 2375 BuildSuccessful = false; 2376 return ""; 2377 } 2378 2379 addCUDALibDevice(); 2380 2381 if (DumpKernelIR) 2382 outs() << *GPUModule << "\n"; 2383 2384 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2385 // Optimize module. 2386 llvm::legacy::PassManager OptPasses; 2387 PassManagerBuilder PassBuilder; 2388 PassBuilder.OptLevel = 3; 2389 PassBuilder.SizeLevel = 0; 2390 PassBuilder.populateModulePassManager(OptPasses); 2391 OptPasses.run(*GPUModule); 2392 } 2393 2394 std::string Assembly = createKernelASM(); 2395 2396 if (DumpKernelASM) 2397 outs() << Assembly << "\n"; 2398 2399 GPUModule.release(); 2400 KernelIDs.clear(); 2401 2402 return Assembly; 2403 } 2404 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2405 /// @param PwAffs The list of piecewise affine functions to create an 2406 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2407 /// all the isl_pw_aff are used up by this function. 2408 /// 2409 /// @returns The `isl_pw_aff_list`. 2410 __isl_give isl_pw_aff_list * 2411 createPwAffList(isl_ctx *Context, 2412 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2413 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2414 2415 for (unsigned i = 0; i < PwAffs.size(); i++) { 2416 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2417 } 2418 return List; 2419 } 2420 2421 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2422 /// 2423 /// We loop over all `pw_aff` and align all of their spaces together to 2424 /// create a common space for all the `pw_aff`. This common space is the 2425 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2426 /// with the given `SeedSpace`. 2427 /// @param PwAffs The list of piecewise affine functions we want to align. 2428 /// This is an rvalue reference because the entire vector is 2429 /// used up by the end of the operation. 2430 /// @param SeedSpace The space to start the alignment process with. 2431 /// @returns A std::pair, whose first element is the aligned space, 2432 /// whose second element is the vector of aligned piecewise 2433 /// affines. 2434 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2435 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2436 __isl_take isl_space *SeedSpace) { 2437 assert(SeedSpace && "Invalid seed space given."); 2438 2439 isl_space *AlignSpace = SeedSpace; 2440 for (isl_pw_aff *PwAff : PwAffs) { 2441 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2442 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2443 } 2444 std::vector<isl_pw_aff *> AdjustedPwAffs; 2445 2446 for (unsigned i = 0; i < PwAffs.size(); i++) { 2447 isl_pw_aff *Adjusted = PwAffs[i]; 2448 assert(Adjusted && "Invalid pw_aff given."); 2449 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2450 AdjustedPwAffs.push_back(Adjusted); 2451 } 2452 return std::make_pair(AlignSpace, AdjustedPwAffs); 2453 } 2454 2455 namespace { 2456 class PPCGCodeGeneration : public ScopPass { 2457 public: 2458 static char ID; 2459 2460 GPURuntime Runtime = GPURuntime::CUDA; 2461 2462 GPUArch Architecture = GPUArch::NVPTX64; 2463 2464 /// The scop that is currently processed. 2465 Scop *S; 2466 2467 LoopInfo *LI; 2468 DominatorTree *DT; 2469 ScalarEvolution *SE; 2470 const DataLayout *DL; 2471 RegionInfo *RI; 2472 2473 PPCGCodeGeneration() : ScopPass(ID) {} 2474 2475 /// Construct compilation options for PPCG. 2476 /// 2477 /// @returns The compilation options. 2478 ppcg_options *createPPCGOptions() { 2479 auto DebugOptions = 2480 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2481 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2482 2483 DebugOptions->dump_schedule_constraints = false; 2484 DebugOptions->dump_schedule = false; 2485 DebugOptions->dump_final_schedule = false; 2486 DebugOptions->dump_sizes = false; 2487 DebugOptions->verbose = false; 2488 2489 Options->debug = DebugOptions; 2490 2491 Options->group_chains = false; 2492 Options->reschedule = true; 2493 Options->scale_tile_loops = false; 2494 Options->wrap = false; 2495 2496 Options->non_negative_parameters = false; 2497 Options->ctx = nullptr; 2498 Options->sizes = nullptr; 2499 2500 Options->tile = true; 2501 Options->tile_size = 32; 2502 2503 Options->isolate_full_tiles = false; 2504 2505 Options->use_private_memory = PrivateMemory; 2506 Options->use_shared_memory = SharedMemory; 2507 Options->max_shared_memory = 48 * 1024; 2508 2509 Options->target = PPCG_TARGET_CUDA; 2510 Options->openmp = false; 2511 Options->linearize_device_arrays = true; 2512 Options->allow_gnu_extensions = false; 2513 2514 Options->unroll_copy_shared = false; 2515 Options->unroll_gpu_tile = false; 2516 Options->live_range_reordering = true; 2517 2518 Options->live_range_reordering = true; 2519 Options->hybrid = false; 2520 Options->opencl_compiler_options = nullptr; 2521 Options->opencl_use_gpu = false; 2522 Options->opencl_n_include_file = 0; 2523 Options->opencl_include_files = nullptr; 2524 Options->opencl_print_kernel_types = false; 2525 Options->opencl_embed_kernel_code = false; 2526 2527 Options->save_schedule_file = nullptr; 2528 Options->load_schedule_file = nullptr; 2529 2530 return Options; 2531 } 2532 2533 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2534 /// 2535 /// Instead of a normal access of the form: 2536 /// 2537 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2538 /// 2539 /// a tagged access has the form 2540 /// 2541 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2542 /// 2543 /// where 'id' is an additional space that references the memory access that 2544 /// triggered the access. 2545 /// 2546 /// @param AccessTy The type of the memory accesses to collect. 2547 /// 2548 /// @return The relation describing all tagged memory accesses. 2549 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2550 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2551 2552 for (auto &Stmt : *S) 2553 for (auto &Acc : Stmt) 2554 if (Acc->getType() == AccessTy) { 2555 isl_map *Relation = Acc->getAccessRelation().release(); 2556 Relation = 2557 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2558 2559 isl_space *Space = isl_map_get_space(Relation); 2560 Space = isl_space_range(Space); 2561 Space = isl_space_from_range(Space); 2562 Space = 2563 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2564 isl_map *Universe = isl_map_universe(Space); 2565 Relation = isl_map_domain_product(Relation, Universe); 2566 Accesses = isl_union_map_add_map(Accesses, Relation); 2567 } 2568 2569 return Accesses; 2570 } 2571 2572 /// Get the set of all read accesses, tagged with the access id. 2573 /// 2574 /// @see getTaggedAccesses 2575 isl_union_map *getTaggedReads() { 2576 return getTaggedAccesses(MemoryAccess::READ); 2577 } 2578 2579 /// Get the set of all may (and must) accesses, tagged with the access id. 2580 /// 2581 /// @see getTaggedAccesses 2582 isl_union_map *getTaggedMayWrites() { 2583 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2584 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2585 } 2586 2587 /// Get the set of all must accesses, tagged with the access id. 2588 /// 2589 /// @see getTaggedAccesses 2590 isl_union_map *getTaggedMustWrites() { 2591 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2592 } 2593 2594 /// Collect parameter and array names as isl_ids. 2595 /// 2596 /// To reason about the different parameters and arrays used, ppcg requires 2597 /// a list of all isl_ids in use. As PPCG traditionally performs 2598 /// source-to-source compilation each of these isl_ids is mapped to the 2599 /// expression that represents it. As we do not have a corresponding 2600 /// expression in Polly, we just map each id to a 'zero' expression to match 2601 /// the data format that ppcg expects. 2602 /// 2603 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2604 __isl_give isl_id_to_ast_expr *getNames() { 2605 auto *Names = isl_id_to_ast_expr_alloc( 2606 S->getIslCtx(), 2607 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2608 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2609 2610 for (const SCEV *P : S->parameters()) { 2611 isl_id *Id = S->getIdForParam(P).release(); 2612 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2613 } 2614 2615 for (auto &Array : S->arrays()) { 2616 auto Id = Array->getBasePtrId().release(); 2617 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2618 } 2619 2620 isl_ast_expr_free(Zero); 2621 2622 return Names; 2623 } 2624 2625 /// Create a new PPCG scop from the current scop. 2626 /// 2627 /// The PPCG scop is initialized with data from the current polly::Scop. From 2628 /// this initial data, the data-dependences in the PPCG scop are initialized. 2629 /// We do not use Polly's dependence analysis for now, to ensure we match 2630 /// the PPCG default behaviour more closely. 2631 /// 2632 /// @returns A new ppcg scop. 2633 ppcg_scop *createPPCGScop() { 2634 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2635 2636 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2637 2638 PPCGScop->options = createPPCGOptions(); 2639 // enable live range reordering 2640 PPCGScop->options->live_range_reordering = 1; 2641 2642 PPCGScop->start = 0; 2643 PPCGScop->end = 0; 2644 2645 PPCGScop->context = S->getContext().release(); 2646 PPCGScop->domain = S->getDomains().release(); 2647 // TODO: investigate this further. PPCG calls collect_call_domains. 2648 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2649 PPCGScop->tagged_reads = getTaggedReads(); 2650 PPCGScop->reads = S->getReads().release(); 2651 PPCGScop->live_in = nullptr; 2652 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2653 PPCGScop->may_writes = S->getWrites().release(); 2654 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2655 PPCGScop->must_writes = S->getMustWrites().release(); 2656 PPCGScop->live_out = nullptr; 2657 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2658 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2659 2660 PPCGScop->tagger = nullptr; 2661 PPCGScop->independence = 2662 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2663 PPCGScop->dep_flow = nullptr; 2664 PPCGScop->tagged_dep_flow = nullptr; 2665 PPCGScop->dep_false = nullptr; 2666 PPCGScop->dep_forced = nullptr; 2667 PPCGScop->dep_order = nullptr; 2668 PPCGScop->tagged_dep_order = nullptr; 2669 2670 PPCGScop->schedule = S->getScheduleTree().release(); 2671 // If we have something non-trivial to kill, add it to the schedule 2672 if (KillsInfo.KillsSchedule.get()) 2673 PPCGScop->schedule = isl_schedule_sequence( 2674 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2675 2676 PPCGScop->names = getNames(); 2677 PPCGScop->pet = nullptr; 2678 2679 compute_tagger(PPCGScop); 2680 compute_dependences(PPCGScop); 2681 eliminate_dead_code(PPCGScop); 2682 2683 return PPCGScop; 2684 } 2685 2686 /// Collect the array accesses in a statement. 2687 /// 2688 /// @param Stmt The statement for which to collect the accesses. 2689 /// 2690 /// @returns A list of array accesses. 2691 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2692 gpu_stmt_access *Accesses = nullptr; 2693 2694 for (MemoryAccess *Acc : Stmt) { 2695 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2696 Access->read = Acc->isRead(); 2697 Access->write = Acc->isWrite(); 2698 Access->access = Acc->getAccessRelation().release(); 2699 isl_space *Space = isl_map_get_space(Access->access); 2700 Space = isl_space_range(Space); 2701 Space = isl_space_from_range(Space); 2702 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2703 isl_map *Universe = isl_map_universe(Space); 2704 Access->tagged_access = 2705 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2706 Access->exact_write = !Acc->isMayWrite(); 2707 Access->ref_id = Acc->getId().release(); 2708 Access->next = Accesses; 2709 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2710 Accesses = Access; 2711 } 2712 2713 return Accesses; 2714 } 2715 2716 /// Collect the list of GPU statements. 2717 /// 2718 /// Each statement has an id, a pointer to the underlying data structure, 2719 /// as well as a list with all memory accesses. 2720 /// 2721 /// TODO: Initialize the list of memory accesses. 2722 /// 2723 /// @returns A linked-list of statements. 2724 gpu_stmt *getStatements() { 2725 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2726 std::distance(S->begin(), S->end())); 2727 2728 int i = 0; 2729 for (auto &Stmt : *S) { 2730 gpu_stmt *GPUStmt = &Stmts[i]; 2731 2732 GPUStmt->id = Stmt.getDomainId().release(); 2733 2734 // We use the pet stmt pointer to keep track of the Polly statements. 2735 GPUStmt->stmt = (pet_stmt *)&Stmt; 2736 GPUStmt->accesses = getStmtAccesses(Stmt); 2737 i++; 2738 } 2739 2740 return Stmts; 2741 } 2742 2743 /// Derive the extent of an array. 2744 /// 2745 /// The extent of an array is the set of elements that are within the 2746 /// accessed array. For the inner dimensions, the extent constraints are 2747 /// 0 and the size of the corresponding array dimension. For the first 2748 /// (outermost) dimension, the extent constraints are the minimal and maximal 2749 /// subscript value for the first dimension. 2750 /// 2751 /// @param Array The array to derive the extent for. 2752 /// 2753 /// @returns An isl_set describing the extent of the array. 2754 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 2755 unsigned NumDims = Array->getNumberOfDimensions(); 2756 isl_union_map *Accesses = S->getAccesses().release(); 2757 Accesses = 2758 isl_union_map_intersect_domain(Accesses, S->getDomains().release()); 2759 Accesses = isl_union_map_detect_equalities(Accesses); 2760 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 2761 AccessUSet = isl_union_set_coalesce(AccessUSet); 2762 AccessUSet = isl_union_set_detect_equalities(AccessUSet); 2763 AccessUSet = isl_union_set_coalesce(AccessUSet); 2764 2765 if (isl_union_set_is_empty(AccessUSet)) { 2766 isl_union_set_free(AccessUSet); 2767 return isl_set_empty(Array->getSpace().release()); 2768 } 2769 2770 if (Array->getNumberOfDimensions() == 0) { 2771 isl_union_set_free(AccessUSet); 2772 return isl_set_universe(Array->getSpace().release()); 2773 } 2774 2775 isl_set *AccessSet = 2776 isl_union_set_extract_set(AccessUSet, Array->getSpace().release()); 2777 2778 isl_union_set_free(AccessUSet); 2779 isl_local_space *LS = 2780 isl_local_space_from_space(Array->getSpace().release()); 2781 2782 isl_pw_aff *Val = 2783 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0)); 2784 2785 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0); 2786 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0); 2787 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in, 2788 isl_pw_aff_dim(Val, isl_dim_in)); 2789 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in, 2790 isl_pw_aff_dim(Val, isl_dim_in)); 2791 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in, 2792 Array->getBasePtrId().release()); 2793 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in, 2794 Array->getBasePtrId().release()); 2795 2796 isl_set *Extent = isl_set_universe(Array->getSpace().release()); 2797 2798 Extent = isl_set_intersect( 2799 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val))); 2800 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val)); 2801 2802 for (unsigned i = 1; i < NumDims; ++i) 2803 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); 2804 2805 for (unsigned i = 0; i < NumDims; ++i) { 2806 isl_pw_aff *PwAff = 2807 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release()); 2808 2809 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2810 // Fortran array will we have a legitimate dimension. 2811 if (!PwAff) { 2812 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2813 continue; 2814 } 2815 2816 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( 2817 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set, 2818 i)); 2819 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, 2820 isl_pw_aff_dim(Val, isl_dim_in)); 2821 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in, 2822 isl_pw_aff_get_tuple_id(Val, isl_dim_in)); 2823 auto *Set = isl_pw_aff_gt_set(PwAff, Val); 2824 Extent = isl_set_intersect(Set, Extent); 2825 } 2826 2827 return Extent; 2828 } 2829 2830 /// Derive the bounds of an array. 2831 /// 2832 /// For the first dimension we derive the bound of the array from the extent 2833 /// of this dimension. For inner dimensions we obtain their size directly from 2834 /// ScopArrayInfo. 2835 /// 2836 /// @param PPCGArray The array to compute bounds for. 2837 /// @param Array The polly array from which to take the information. 2838 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2839 std::vector<isl_pw_aff *> Bounds; 2840 2841 if (PPCGArray.n_index > 0) { 2842 if (isl_set_is_empty(PPCGArray.extent)) { 2843 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2844 isl_local_space *LS = isl_local_space_from_space( 2845 isl_space_params(isl_set_get_space(Dom))); 2846 isl_set_free(Dom); 2847 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2848 Bounds.push_back(Zero); 2849 } else { 2850 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2851 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2852 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2853 isl_set_free(Dom); 2854 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2855 isl_local_space *LS = 2856 isl_local_space_from_space(isl_set_get_space(Dom)); 2857 isl_aff *One = isl_aff_zero_on_domain(LS); 2858 One = isl_aff_add_constant_si(One, 1); 2859 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2860 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2861 Bounds.push_back(Bound); 2862 } 2863 } 2864 2865 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2866 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2867 auto LS = isl_pw_aff_get_domain_space(Bound); 2868 auto Aff = isl_multi_aff_zero(LS); 2869 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2870 Bounds.push_back(Bound); 2871 } 2872 2873 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2874 /// to have the same parameter dimensions. So, we need to align them to an 2875 /// appropriate space. 2876 /// Scop::Context is _not_ an appropriate space, because when we have 2877 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2878 /// contain all parameter dimensions. 2879 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2880 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2881 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2882 2883 isl_space *AlignSpace = nullptr; 2884 std::vector<isl_pw_aff *> AlignedBounds; 2885 std::tie(AlignSpace, AlignedBounds) = 2886 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2887 2888 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2889 2890 isl_pw_aff_list *BoundsList = 2891 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2892 2893 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2894 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2895 2896 assert(BoundsSpace && "Unable to access space of array."); 2897 assert(BoundsList && "Unable to access list of bounds."); 2898 2899 PPCGArray.bound = 2900 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2901 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2902 } 2903 2904 /// Create the arrays for @p PPCGProg. 2905 /// 2906 /// @param PPCGProg The program to compute the arrays for. 2907 void createArrays(gpu_prog *PPCGProg, 2908 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2909 int i = 0; 2910 for (auto &Array : ValidSAIs) { 2911 std::string TypeName; 2912 raw_string_ostream OS(TypeName); 2913 2914 OS << *Array->getElementType(); 2915 TypeName = OS.str(); 2916 2917 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2918 2919 PPCGArray.space = Array->getSpace().release(); 2920 PPCGArray.type = strdup(TypeName.c_str()); 2921 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 2922 PPCGArray.name = strdup(Array->getName().c_str()); 2923 PPCGArray.extent = nullptr; 2924 PPCGArray.n_index = Array->getNumberOfDimensions(); 2925 PPCGArray.extent = getExtent(Array); 2926 PPCGArray.n_ref = 0; 2927 PPCGArray.refs = nullptr; 2928 PPCGArray.accessed = true; 2929 PPCGArray.read_only_scalar = 2930 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2931 PPCGArray.has_compound_element = false; 2932 PPCGArray.local = false; 2933 PPCGArray.declare_local = false; 2934 PPCGArray.global = false; 2935 PPCGArray.linearize = false; 2936 PPCGArray.dep_order = nullptr; 2937 PPCGArray.user = Array; 2938 2939 PPCGArray.bound = nullptr; 2940 setArrayBounds(PPCGArray, Array); 2941 i++; 2942 2943 collect_references(PPCGProg, &PPCGArray); 2944 } 2945 } 2946 2947 /// Create an identity map between the arrays in the scop. 2948 /// 2949 /// @returns An identity map between the arrays in the scop. 2950 isl_union_map *getArrayIdentity() { 2951 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 2952 2953 for (auto &Array : S->arrays()) { 2954 isl_space *Space = Array->getSpace().release(); 2955 Space = isl_space_map_from_set(Space); 2956 isl_map *Identity = isl_map_identity(Space); 2957 Maps = isl_union_map_add_map(Maps, Identity); 2958 } 2959 2960 return Maps; 2961 } 2962 2963 /// Create a default-initialized PPCG GPU program. 2964 /// 2965 /// @returns A new gpu program description. 2966 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 2967 2968 if (!PPCGScop) 2969 return nullptr; 2970 2971 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 2972 2973 PPCGProg->ctx = S->getIslCtx(); 2974 PPCGProg->scop = PPCGScop; 2975 PPCGProg->context = isl_set_copy(PPCGScop->context); 2976 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 2977 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 2978 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 2979 PPCGProg->tagged_must_kill = 2980 isl_union_map_copy(PPCGScop->tagged_must_kills); 2981 PPCGProg->to_inner = getArrayIdentity(); 2982 PPCGProg->to_outer = getArrayIdentity(); 2983 // TODO: verify that this assignment is correct. 2984 PPCGProg->any_to_outer = nullptr; 2985 2986 // this needs to be set when live range reordering is enabled. 2987 // NOTE: I believe that is conservatively correct. I'm not sure 2988 // what the semantics of this is. 2989 // Quoting PPCG/gpu.h: "Order dependences on non-scalars." 2990 PPCGProg->array_order = 2991 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2992 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 2993 PPCGProg->stmts = getStatements(); 2994 2995 // Only consider arrays that have a non-empty extent. 2996 // Otherwise, this will cause us to consider the following kinds of 2997 // empty arrays: 2998 // 1. Invariant loads that are represented by SAI objects. 2999 // 2. Arrays with statically known zero size. 3000 auto ValidSAIsRange = 3001 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3002 return !isl::manage(getExtent(SAI)).is_empty(); 3003 }); 3004 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3005 ValidSAIsRange.end()); 3006 3007 PPCGProg->n_array = 3008 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3009 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 3010 PPCGProg->n_array); 3011 3012 createArrays(PPCGProg, ValidSAIs); 3013 3014 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3015 return PPCGProg; 3016 } 3017 3018 struct PrintGPUUserData { 3019 struct cuda_info *CudaInfo; 3020 struct gpu_prog *PPCGProg; 3021 std::vector<ppcg_kernel *> Kernels; 3022 }; 3023 3024 /// Print a user statement node in the host code. 3025 /// 3026 /// We use ppcg's printing facilities to print the actual statement and 3027 /// additionally build up a list of all kernels that are encountered in the 3028 /// host ast. 3029 /// 3030 /// @param P The printer to print to 3031 /// @param Options The printing options to use 3032 /// @param Node The node to print 3033 /// @param User A user pointer to carry additional data. This pointer is 3034 /// expected to be of type PrintGPUUserData. 3035 /// 3036 /// @returns A printer to which the output has been printed. 3037 static __isl_give isl_printer * 3038 printHostUser(__isl_take isl_printer *P, 3039 __isl_take isl_ast_print_options *Options, 3040 __isl_take isl_ast_node *Node, void *User) { 3041 auto Data = (struct PrintGPUUserData *)User; 3042 auto Id = isl_ast_node_get_annotation(Node); 3043 3044 if (Id) { 3045 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3046 3047 // If this is a user statement, format it ourselves as ppcg would 3048 // otherwise try to call pet functionality that is not available in 3049 // Polly. 3050 if (IsUser) { 3051 P = isl_printer_start_line(P); 3052 P = isl_printer_print_ast_node(P, Node); 3053 P = isl_printer_end_line(P); 3054 isl_id_free(Id); 3055 isl_ast_print_options_free(Options); 3056 return P; 3057 } 3058 3059 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3060 isl_id_free(Id); 3061 Data->Kernels.push_back(Kernel); 3062 } 3063 3064 return print_host_user(P, Options, Node, User); 3065 } 3066 3067 /// Print C code corresponding to the control flow in @p Kernel. 3068 /// 3069 /// @param Kernel The kernel to print 3070 void printKernel(ppcg_kernel *Kernel) { 3071 auto *P = isl_printer_to_str(S->getIslCtx()); 3072 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3073 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3074 P = isl_ast_node_print(Kernel->tree, P, Options); 3075 char *String = isl_printer_get_str(P); 3076 printf("%s\n", String); 3077 free(String); 3078 isl_printer_free(P); 3079 } 3080 3081 /// Print C code corresponding to the GPU code described by @p Tree. 3082 /// 3083 /// @param Tree An AST describing GPU code 3084 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3085 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3086 auto *P = isl_printer_to_str(S->getIslCtx()); 3087 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3088 3089 PrintGPUUserData Data; 3090 Data.PPCGProg = PPCGProg; 3091 3092 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3093 Options = 3094 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3095 P = isl_ast_node_print(Tree, P, Options); 3096 char *String = isl_printer_get_str(P); 3097 printf("# host\n"); 3098 printf("%s\n", String); 3099 free(String); 3100 isl_printer_free(P); 3101 3102 for (auto Kernel : Data.Kernels) { 3103 printf("# kernel%d\n", Kernel->id); 3104 printKernel(Kernel); 3105 } 3106 } 3107 3108 // Generate a GPU program using PPCG. 3109 // 3110 // GPU mapping consists of multiple steps: 3111 // 3112 // 1) Compute new schedule for the program. 3113 // 2) Map schedule to GPU (TODO) 3114 // 3) Generate code for new schedule (TODO) 3115 // 3116 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3117 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3118 // strategy directly from this pass. 3119 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3120 3121 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3122 3123 PPCGGen->ctx = S->getIslCtx(); 3124 PPCGGen->options = PPCGScop->options; 3125 PPCGGen->print = nullptr; 3126 PPCGGen->print_user = nullptr; 3127 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3128 PPCGGen->prog = PPCGProg; 3129 PPCGGen->tree = nullptr; 3130 PPCGGen->types.n = 0; 3131 PPCGGen->types.name = nullptr; 3132 PPCGGen->sizes = nullptr; 3133 PPCGGen->used_sizes = nullptr; 3134 PPCGGen->kernel_id = 0; 3135 3136 // Set scheduling strategy to same strategy PPCG is using. 3137 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3138 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3139 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3140 3141 isl_schedule *Schedule = get_schedule(PPCGGen); 3142 3143 int has_permutable = has_any_permutable_node(Schedule); 3144 3145 Schedule = 3146 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3147 3148 if (!has_permutable || has_permutable < 0) { 3149 Schedule = isl_schedule_free(Schedule); 3150 DEBUG(dbgs() << getUniqueScopName(S) 3151 << " does not have permutable bands. Bailing out\n";); 3152 } else { 3153 Schedule = map_to_device(PPCGGen, Schedule); 3154 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3155 } 3156 3157 if (DumpSchedule) { 3158 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3159 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3160 P = isl_printer_print_str(P, "Schedule\n"); 3161 P = isl_printer_print_str(P, "========\n"); 3162 if (Schedule) 3163 P = isl_printer_print_schedule(P, Schedule); 3164 else 3165 P = isl_printer_print_str(P, "No schedule found\n"); 3166 3167 printf("%s\n", isl_printer_get_str(P)); 3168 isl_printer_free(P); 3169 } 3170 3171 if (DumpCode) { 3172 printf("Code\n"); 3173 printf("====\n"); 3174 if (PPCGGen->tree) 3175 printGPUTree(PPCGGen->tree, PPCGProg); 3176 else 3177 printf("No code generated\n"); 3178 } 3179 3180 isl_schedule_free(Schedule); 3181 3182 return PPCGGen; 3183 } 3184 3185 /// Free gpu_gen structure. 3186 /// 3187 /// @param PPCGGen The ppcg_gen object to free. 3188 void freePPCGGen(gpu_gen *PPCGGen) { 3189 isl_ast_node_free(PPCGGen->tree); 3190 isl_union_map_free(PPCGGen->sizes); 3191 isl_union_map_free(PPCGGen->used_sizes); 3192 free(PPCGGen); 3193 } 3194 3195 /// Free the options in the ppcg scop structure. 3196 /// 3197 /// ppcg is not freeing these options for us. To avoid leaks we do this 3198 /// ourselves. 3199 /// 3200 /// @param PPCGScop The scop referencing the options to free. 3201 void freeOptions(ppcg_scop *PPCGScop) { 3202 free(PPCGScop->options->debug); 3203 PPCGScop->options->debug = nullptr; 3204 free(PPCGScop->options); 3205 PPCGScop->options = nullptr; 3206 } 3207 3208 /// Approximate the number of points in the set. 3209 /// 3210 /// This function returns an ast expression that overapproximates the number 3211 /// of points in an isl set through the rectangular hull surrounding this set. 3212 /// 3213 /// @param Set The set to count. 3214 /// @param Build The isl ast build object to use for creating the ast 3215 /// expression. 3216 /// 3217 /// @returns An approximation of the number of points in the set. 3218 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3219 __isl_keep isl_ast_build *Build) { 3220 3221 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3222 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3223 3224 isl_space *Space = isl_set_get_space(Set); 3225 Space = isl_space_params(Space); 3226 auto *Univ = isl_set_universe(Space); 3227 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3228 3229 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) { 3230 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3231 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3232 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3233 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3234 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3235 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3236 } 3237 3238 isl_set_free(Set); 3239 isl_pw_aff_free(OneAff); 3240 3241 return Expr; 3242 } 3243 3244 /// Approximate a number of dynamic instructions executed by a given 3245 /// statement. 3246 /// 3247 /// @param Stmt The statement for which to compute the number of dynamic 3248 /// instructions. 3249 /// @param Build The isl ast build object to use for creating the ast 3250 /// expression. 3251 /// @returns An approximation of the number of dynamic instructions executed 3252 /// by @p Stmt. 3253 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3254 __isl_keep isl_ast_build *Build) { 3255 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3256 3257 long InstCount = 0; 3258 3259 if (Stmt.isBlockStmt()) { 3260 auto *BB = Stmt.getBasicBlock(); 3261 InstCount = std::distance(BB->begin(), BB->end()); 3262 } else { 3263 auto *R = Stmt.getRegion(); 3264 3265 for (auto *BB : R->blocks()) { 3266 InstCount += std::distance(BB->begin(), BB->end()); 3267 } 3268 } 3269 3270 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3271 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3272 return isl_ast_expr_mul(InstExpr, Iterations); 3273 } 3274 3275 /// Approximate dynamic instructions executed in scop. 3276 /// 3277 /// @param S The scop for which to approximate dynamic instructions. 3278 /// @param Build The isl ast build object to use for creating the ast 3279 /// expression. 3280 /// @returns An approximation of the number of dynamic instructions executed 3281 /// in @p S. 3282 __isl_give isl_ast_expr * 3283 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3284 isl_ast_expr *Instructions; 3285 3286 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3287 Instructions = isl_ast_expr_from_val(Zero); 3288 3289 for (ScopStmt &Stmt : S) { 3290 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3291 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3292 } 3293 return Instructions; 3294 } 3295 3296 /// Create a check that ensures sufficient compute in scop. 3297 /// 3298 /// @param S The scop for which to ensure sufficient compute. 3299 /// @param Build The isl ast build object to use for creating the ast 3300 /// expression. 3301 /// @returns An expression that evaluates to TRUE in case of sufficient 3302 /// compute and to FALSE, otherwise. 3303 __isl_give isl_ast_expr * 3304 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3305 auto Iterations = getNumberOfIterations(S, Build); 3306 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3307 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3308 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3309 } 3310 3311 /// Check if the basic block contains a function we cannot codegen for GPU 3312 /// kernels. 3313 /// 3314 /// If this basic block does something with a `Function` other than calling 3315 /// a function that we support in a kernel, return true. 3316 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3317 bool AllowCUDALibDevice) { 3318 for (const Instruction &Inst : *BB) { 3319 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3320 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3321 AllowCUDALibDevice)) { 3322 continue; 3323 } 3324 3325 for (Value *SrcVal : Inst.operands()) { 3326 PointerType *p = dyn_cast<PointerType>(SrcVal->getType()); 3327 if (!p) 3328 continue; 3329 if (isa<FunctionType>(p->getElementType())) 3330 return true; 3331 } 3332 } 3333 return false; 3334 } 3335 3336 /// Return whether the Scop S uses functions in a way that we do not support. 3337 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3338 for (auto &Stmt : S) { 3339 if (Stmt.isBlockStmt()) { 3340 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3341 AllowCUDALibDevice)) 3342 return true; 3343 } else { 3344 assert(Stmt.isRegionStmt() && 3345 "Stmt was neither block nor region statement"); 3346 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3347 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3348 return true; 3349 } 3350 } 3351 return false; 3352 } 3353 3354 /// Generate code for a given GPU AST described by @p Root. 3355 /// 3356 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3357 /// @param Prog The GPU Program to generate code for. 3358 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3359 ScopAnnotator Annotator; 3360 Annotator.buildAliasScopes(*S); 3361 3362 Region *R = &S->getRegion(); 3363 3364 simplifyRegion(R, DT, LI, RI); 3365 3366 BasicBlock *EnteringBB = R->getEnteringBlock(); 3367 3368 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3369 3370 // Only build the run-time condition and parameters _after_ having 3371 // introduced the conditional branch. This is important as the conditional 3372 // branch will guard the original scop from new induction variables that 3373 // the SCEVExpander may introduce while code generating the parameters and 3374 // which may introduce scalar dependences that prevent us from correctly 3375 // code generating this scop. 3376 BBPair StartExitBlocks; 3377 BranchInst *CondBr = nullptr; 3378 std::tie(StartExitBlocks, CondBr) = 3379 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3380 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3381 3382 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3383 3384 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3385 StartBlock, Prog, Runtime, Architecture); 3386 3387 // TODO: Handle LICM 3388 auto SplitBlock = StartBlock->getSinglePredecessor(); 3389 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3390 3391 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3392 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3393 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3394 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3395 isl_ast_build_free(Build); 3396 3397 // preload invariant loads. Note: This should happen before the RTC 3398 // because the RTC may depend on values that are invariant load hoisted. 3399 if (!NodeBuilder.preloadInvariantLoads()) { 3400 DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3401 S->getFunction().getName() + 3402 " | Scop Region: " + S->getNameStr()); 3403 // adjust the dominator tree accordingly. 3404 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3405 assert(ExitingBlock); 3406 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3407 assert(MergeBlock); 3408 polly::markBlockUnreachable(*StartBlock, Builder); 3409 polly::markBlockUnreachable(*ExitingBlock, Builder); 3410 auto *ExitingBB = S->getExitingBlock(); 3411 assert(ExitingBB); 3412 3413 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3414 DT->eraseNode(ExitingBlock); 3415 isl_ast_expr_free(Condition); 3416 isl_ast_node_free(Root); 3417 } else { 3418 3419 NodeBuilder.addParameters(S->getContext().release()); 3420 Value *RTC = NodeBuilder.createRTC(Condition); 3421 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3422 3423 Builder.SetInsertPoint(&*StartBlock->begin()); 3424 3425 NodeBuilder.create(Root); 3426 } 3427 3428 /// In case a sequential kernel has more surrounding loops as any parallel 3429 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3430 /// point in running it on a GPU. 3431 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3432 CondBr->setOperand(0, Builder.getFalse()); 3433 3434 if (!NodeBuilder.BuildSuccessful) 3435 CondBr->setOperand(0, Builder.getFalse()); 3436 } 3437 3438 bool runOnScop(Scop &CurrentScop) override { 3439 S = &CurrentScop; 3440 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3441 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3442 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3443 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3444 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3445 3446 // We currently do not support functions other than intrinsics inside 3447 // kernels, as code generation will need to offload function calls to the 3448 // kernel. This may lead to a kernel trying to call a function on the host. 3449 // This also allows us to prevent codegen from trying to take the 3450 // address of an intrinsic function to send to the kernel. 3451 if (containsInvalidKernelFunction(CurrentScop, 3452 Architecture == GPUArch::NVPTX64)) { 3453 DEBUG( 3454 dbgs() << getUniqueScopName(S) 3455 << " contains function which cannot be materialised in a GPU " 3456 "kernel. Bailing out.\n";); 3457 return false; 3458 } 3459 3460 auto PPCGScop = createPPCGScop(); 3461 auto PPCGProg = createPPCGProg(PPCGScop); 3462 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3463 3464 if (PPCGGen->tree) { 3465 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3466 CurrentScop.markAsToBeSkipped(); 3467 } else { 3468 DEBUG(dbgs() << getUniqueScopName(S) 3469 << " has empty PPCGGen->tree. Bailing out.\n"); 3470 } 3471 3472 freeOptions(PPCGScop); 3473 freePPCGGen(PPCGGen); 3474 gpu_prog_free(PPCGProg); 3475 ppcg_scop_free(PPCGScop); 3476 3477 return true; 3478 } 3479 3480 void printScop(raw_ostream &, Scop &) const override {} 3481 3482 void getAnalysisUsage(AnalysisUsage &AU) const override { 3483 AU.addRequired<DominatorTreeWrapperPass>(); 3484 AU.addRequired<RegionInfoPass>(); 3485 AU.addRequired<ScalarEvolutionWrapperPass>(); 3486 AU.addRequired<ScopDetectionWrapperPass>(); 3487 AU.addRequired<ScopInfoRegionPass>(); 3488 AU.addRequired<LoopInfoWrapperPass>(); 3489 3490 AU.addPreserved<AAResultsWrapperPass>(); 3491 AU.addPreserved<BasicAAWrapperPass>(); 3492 AU.addPreserved<LoopInfoWrapperPass>(); 3493 AU.addPreserved<DominatorTreeWrapperPass>(); 3494 AU.addPreserved<GlobalsAAWrapperPass>(); 3495 AU.addPreserved<ScopDetectionWrapperPass>(); 3496 AU.addPreserved<ScalarEvolutionWrapperPass>(); 3497 AU.addPreserved<SCEVAAWrapperPass>(); 3498 3499 // FIXME: We do not yet add regions for the newly generated code to the 3500 // region tree. 3501 AU.addPreserved<RegionInfoPass>(); 3502 AU.addPreserved<ScopInfoRegionPass>(); 3503 } 3504 }; 3505 } // namespace 3506 3507 char PPCGCodeGeneration::ID = 1; 3508 3509 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3510 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3511 generator->Runtime = Runtime; 3512 generator->Architecture = Arch; 3513 return generator; 3514 } 3515 3516 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3517 "Polly - Apply PPCG translation to SCOP", false, false) 3518 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3519 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3520 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3521 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3522 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3523 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3524 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3525 "Polly - Apply PPCG translation to SCOP", false, false) 3526