1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 55 cl::desc("Dump the kernel LLVM-IR"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 /// Create the ast expressions for a ScopStmt. 60 /// 61 /// This function is a callback for to generate the ast expressions for each 62 /// of the scheduled ScopStmts. 63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 64 void *Stmt, isl_ast_build *Build, 65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 66 isl_id *Id, void *User), 67 void *UserIndex, 68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 69 void *User_expr) { 70 71 // TODO: Implement the AST expression generation. For now we just return a 72 // nullptr to ensure that we do not free uninitialized pointers. 73 74 return nullptr; 75 } 76 77 /// Generate code for a GPU specific isl AST. 78 /// 79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 80 /// generates code for general-prupose AST nodes, with special functionality 81 /// for generating GPU specific user nodes. 82 /// 83 /// @see GPUNodeBuilder::createUser 84 class GPUNodeBuilder : public IslNodeBuilder { 85 public: 86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 88 DominatorTree &DT, Scop &S, gpu_prog *Prog) 89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} 90 91 private: 92 /// A module containing GPU code. 93 /// 94 /// This pointer is only set in case we are currently generating GPU code. 95 std::unique_ptr<Module> GPUModule; 96 97 /// The GPU program we generate code for. 98 gpu_prog *Prog; 99 100 /// Create code for user-defined AST nodes. 101 /// 102 /// These AST nodes can be of type: 103 /// 104 /// - ScopStmt: A computational statement (TODO) 105 /// - Kernel: A GPU kernel call (TODO) 106 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 107 /// 108 /// @param UserStmt The ast node to generate code for. 109 virtual void createUser(__isl_take isl_ast_node *UserStmt); 110 111 /// Create GPU kernel. 112 /// 113 /// Code generate the kernel described by @p KernelStmt. 114 /// 115 /// @param KernelStmt The ast node to generate kernel code for. 116 void createKernel(__isl_take isl_ast_node *KernelStmt); 117 118 /// Create kernel function. 119 /// 120 /// Create a kernel function located in a newly created module that can serve 121 /// as target for device code generation. Set the Builder to point to the 122 /// start block of this newly created function. 123 /// 124 /// @param Kernel The kernel to generate code for. 125 void createKernelFunction(ppcg_kernel *Kernel); 126 127 /// Create the declaration of a kernel function. 128 /// 129 /// The kernel function takes as arguments: 130 /// 131 /// - One i8 pointer for each external array reference used in the kernel. 132 /// - Host iterators (TODO) 133 /// - Parameters (TODO) 134 /// - Other LLVM Value references (TODO) 135 /// 136 /// @param Kernel The kernel to generate the function declaration for. 137 /// @returns The newly declared function. 138 Function *createKernelFunctionDecl(ppcg_kernel *Kernel); 139 140 /// Finalize the generation of the kernel function. 141 /// 142 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 143 /// dump its IR to stderr. 144 void finalizeKernelFunction(); 145 }; 146 147 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 148 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 149 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 150 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 151 isl_id_free(Id); 152 isl_ast_expr_free(StmtExpr); 153 154 const char *Str = isl_id_get_name(Id); 155 if (!strcmp(Str, "kernel")) { 156 createKernel(UserStmt); 157 isl_ast_expr_free(Expr); 158 return; 159 } 160 161 isl_ast_expr_free(Expr); 162 isl_ast_node_free(UserStmt); 163 return; 164 } 165 166 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 167 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 168 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 169 isl_id_free(Id); 170 isl_ast_node_free(KernelStmt); 171 172 assert(Kernel->tree && "Device AST of kernel node is empty"); 173 174 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 175 176 createKernelFunction(Kernel); 177 178 Builder.SetInsertPoint(&HostInsertPoint); 179 180 finalizeKernelFunction(); 181 } 182 183 /// Compute the DataLayout string for the NVPTX backend. 184 /// 185 /// @param is64Bit Are we looking for a 64 bit architecture? 186 static std::string computeNVPTXDataLayout(bool is64Bit) { 187 std::string Ret = "e"; 188 189 if (!is64Bit) 190 Ret += "-p:32:32"; 191 192 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 193 194 return Ret; 195 } 196 197 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { 198 std::vector<Type *> Args; 199 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 200 201 for (long i = 0; i < Prog->n_array; i++) { 202 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 203 continue; 204 205 Args.push_back(Builder.getInt8PtrTy()); 206 } 207 208 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 209 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 210 GPUModule.get()); 211 FN->setCallingConv(CallingConv::PTX_Kernel); 212 213 auto Arg = FN->arg_begin(); 214 for (long i = 0; i < Kernel->n_array; i++) { 215 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 216 continue; 217 218 Arg->setName(Prog->array[i].name); 219 Arg++; 220 } 221 222 return FN; 223 } 224 225 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { 226 227 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 228 GPUModule.reset(new Module(Identifier, Builder.getContext())); 229 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 230 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 231 232 Function *FN = createKernelFunctionDecl(Kernel); 233 234 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 235 236 Builder.SetInsertPoint(EntryBlock); 237 Builder.CreateRetVoid(); 238 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 239 } 240 241 void GPUNodeBuilder::finalizeKernelFunction() { 242 243 if (DumpKernelIR) 244 outs() << *GPUModule << "\n"; 245 246 GPUModule.release(); 247 } 248 249 namespace { 250 class PPCGCodeGeneration : public ScopPass { 251 public: 252 static char ID; 253 254 /// The scop that is currently processed. 255 Scop *S; 256 257 LoopInfo *LI; 258 DominatorTree *DT; 259 ScalarEvolution *SE; 260 const DataLayout *DL; 261 RegionInfo *RI; 262 263 PPCGCodeGeneration() : ScopPass(ID) {} 264 265 /// Construct compilation options for PPCG. 266 /// 267 /// @returns The compilation options. 268 ppcg_options *createPPCGOptions() { 269 auto DebugOptions = 270 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 271 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 272 273 DebugOptions->dump_schedule_constraints = false; 274 DebugOptions->dump_schedule = false; 275 DebugOptions->dump_final_schedule = false; 276 DebugOptions->dump_sizes = false; 277 278 Options->debug = DebugOptions; 279 280 Options->reschedule = true; 281 Options->scale_tile_loops = false; 282 Options->wrap = false; 283 284 Options->non_negative_parameters = false; 285 Options->ctx = nullptr; 286 Options->sizes = nullptr; 287 288 Options->tile_size = 32; 289 290 Options->use_private_memory = false; 291 Options->use_shared_memory = false; 292 Options->max_shared_memory = 0; 293 294 Options->target = PPCG_TARGET_CUDA; 295 Options->openmp = false; 296 Options->linearize_device_arrays = true; 297 Options->live_range_reordering = false; 298 299 Options->opencl_compiler_options = nullptr; 300 Options->opencl_use_gpu = false; 301 Options->opencl_n_include_file = 0; 302 Options->opencl_include_files = nullptr; 303 Options->opencl_print_kernel_types = false; 304 Options->opencl_embed_kernel_code = false; 305 306 Options->save_schedule_file = nullptr; 307 Options->load_schedule_file = nullptr; 308 309 return Options; 310 } 311 312 /// Get a tagged access relation containing all accesses of type @p AccessTy. 313 /// 314 /// Instead of a normal access of the form: 315 /// 316 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 317 /// 318 /// a tagged access has the form 319 /// 320 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 321 /// 322 /// where 'id' is an additional space that references the memory access that 323 /// triggered the access. 324 /// 325 /// @param AccessTy The type of the memory accesses to collect. 326 /// 327 /// @return The relation describing all tagged memory accesses. 328 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 329 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 330 331 for (auto &Stmt : *S) 332 for (auto &Acc : Stmt) 333 if (Acc->getType() == AccessTy) { 334 isl_map *Relation = Acc->getAccessRelation(); 335 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 336 337 isl_space *Space = isl_map_get_space(Relation); 338 Space = isl_space_range(Space); 339 Space = isl_space_from_range(Space); 340 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 341 isl_map *Universe = isl_map_universe(Space); 342 Relation = isl_map_domain_product(Relation, Universe); 343 Accesses = isl_union_map_add_map(Accesses, Relation); 344 } 345 346 return Accesses; 347 } 348 349 /// Get the set of all read accesses, tagged with the access id. 350 /// 351 /// @see getTaggedAccesses 352 isl_union_map *getTaggedReads() { 353 return getTaggedAccesses(MemoryAccess::READ); 354 } 355 356 /// Get the set of all may (and must) accesses, tagged with the access id. 357 /// 358 /// @see getTaggedAccesses 359 isl_union_map *getTaggedMayWrites() { 360 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 361 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 362 } 363 364 /// Get the set of all must accesses, tagged with the access id. 365 /// 366 /// @see getTaggedAccesses 367 isl_union_map *getTaggedMustWrites() { 368 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 369 } 370 371 /// Collect parameter and array names as isl_ids. 372 /// 373 /// To reason about the different parameters and arrays used, ppcg requires 374 /// a list of all isl_ids in use. As PPCG traditionally performs 375 /// source-to-source compilation each of these isl_ids is mapped to the 376 /// expression that represents it. As we do not have a corresponding 377 /// expression in Polly, we just map each id to a 'zero' expression to match 378 /// the data format that ppcg expects. 379 /// 380 /// @returns Retun a map from collected ids to 'zero' ast expressions. 381 __isl_give isl_id_to_ast_expr *getNames() { 382 auto *Names = isl_id_to_ast_expr_alloc( 383 S->getIslCtx(), 384 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 385 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 386 auto *Space = S->getParamSpace(); 387 388 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 389 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 390 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 391 } 392 393 for (auto &Array : S->arrays()) { 394 auto Id = Array.second->getBasePtrId(); 395 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 396 } 397 398 isl_space_free(Space); 399 isl_ast_expr_free(Zero); 400 401 return Names; 402 } 403 404 /// Create a new PPCG scop from the current scop. 405 /// 406 /// The PPCG scop is initialized with data from the current polly::Scop. From 407 /// this initial data, the data-dependences in the PPCG scop are initialized. 408 /// We do not use Polly's dependence analysis for now, to ensure we match 409 /// the PPCG default behaviour more closely. 410 /// 411 /// @returns A new ppcg scop. 412 ppcg_scop *createPPCGScop() { 413 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 414 415 PPCGScop->options = createPPCGOptions(); 416 417 PPCGScop->start = 0; 418 PPCGScop->end = 0; 419 420 PPCGScop->context = S->getContext(); 421 PPCGScop->domain = S->getDomains(); 422 PPCGScop->call = nullptr; 423 PPCGScop->tagged_reads = getTaggedReads(); 424 PPCGScop->reads = S->getReads(); 425 PPCGScop->live_in = nullptr; 426 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 427 PPCGScop->may_writes = S->getWrites(); 428 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 429 PPCGScop->must_writes = S->getMustWrites(); 430 PPCGScop->live_out = nullptr; 431 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 432 PPCGScop->tagger = nullptr; 433 434 PPCGScop->independence = nullptr; 435 PPCGScop->dep_flow = nullptr; 436 PPCGScop->tagged_dep_flow = nullptr; 437 PPCGScop->dep_false = nullptr; 438 PPCGScop->dep_forced = nullptr; 439 PPCGScop->dep_order = nullptr; 440 PPCGScop->tagged_dep_order = nullptr; 441 442 PPCGScop->schedule = S->getScheduleTree(); 443 PPCGScop->names = getNames(); 444 445 PPCGScop->pet = nullptr; 446 447 compute_tagger(PPCGScop); 448 compute_dependences(PPCGScop); 449 450 return PPCGScop; 451 } 452 453 /// Collect the array acesses in a statement. 454 /// 455 /// @param Stmt The statement for which to collect the accesses. 456 /// 457 /// @returns A list of array accesses. 458 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 459 gpu_stmt_access *Accesses = nullptr; 460 461 for (MemoryAccess *Acc : Stmt) { 462 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 463 Access->read = Acc->isRead(); 464 Access->write = Acc->isWrite(); 465 Access->access = Acc->getAccessRelation(); 466 isl_space *Space = isl_map_get_space(Access->access); 467 Space = isl_space_range(Space); 468 Space = isl_space_from_range(Space); 469 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 470 isl_map *Universe = isl_map_universe(Space); 471 Access->tagged_access = 472 isl_map_domain_product(Acc->getAccessRelation(), Universe); 473 Access->exact_write = Acc->isWrite(); 474 Access->ref_id = Acc->getId(); 475 Access->next = Accesses; 476 Accesses = Access; 477 } 478 479 return Accesses; 480 } 481 482 /// Collect the list of GPU statements. 483 /// 484 /// Each statement has an id, a pointer to the underlying data structure, 485 /// as well as a list with all memory accesses. 486 /// 487 /// TODO: Initialize the list of memory accesses. 488 /// 489 /// @returns A linked-list of statements. 490 gpu_stmt *getStatements() { 491 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 492 std::distance(S->begin(), S->end())); 493 494 int i = 0; 495 for (auto &Stmt : *S) { 496 gpu_stmt *GPUStmt = &Stmts[i]; 497 498 GPUStmt->id = Stmt.getDomainId(); 499 500 // We use the pet stmt pointer to keep track of the Polly statements. 501 GPUStmt->stmt = (pet_stmt *)&Stmt; 502 GPUStmt->accesses = getStmtAccesses(Stmt); 503 i++; 504 } 505 506 return Stmts; 507 } 508 509 /// Derive the extent of an array. 510 /// 511 /// The extent of an array is defined by the set of memory locations for 512 /// which a memory access in the iteration domain exists. 513 /// 514 /// @param Array The array to derive the extent for. 515 /// 516 /// @returns An isl_set describing the extent of the array. 517 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 518 isl_union_map *Accesses = S->getAccesses(); 519 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 520 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 521 isl_set *AccessSet = 522 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 523 isl_union_set_free(AccessUSet); 524 525 return AccessSet; 526 } 527 528 /// Derive the bounds of an array. 529 /// 530 /// For the first dimension we derive the bound of the array from the extent 531 /// of this dimension. For inner dimensions we obtain their size directly from 532 /// ScopArrayInfo. 533 /// 534 /// @param PPCGArray The array to compute bounds for. 535 /// @param Array The polly array from which to take the information. 536 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 537 if (PPCGArray.n_index > 0) { 538 isl_set *Dom = isl_set_copy(PPCGArray.extent); 539 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 540 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 541 isl_set_free(Dom); 542 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 543 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 544 isl_aff *One = isl_aff_zero_on_domain(LS); 545 One = isl_aff_add_constant_si(One, 1); 546 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 547 Bound = isl_pw_aff_gist(Bound, S->getContext()); 548 PPCGArray.bound[0] = Bound; 549 } 550 551 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 552 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 553 auto LS = isl_pw_aff_get_domain_space(Bound); 554 auto Aff = isl_multi_aff_zero(LS); 555 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 556 PPCGArray.bound[i] = Bound; 557 } 558 } 559 560 /// Create the arrays for @p PPCGProg. 561 /// 562 /// @param PPCGProg The program to compute the arrays for. 563 void createArrays(gpu_prog *PPCGProg) { 564 int i = 0; 565 for (auto &Element : S->arrays()) { 566 ScopArrayInfo *Array = Element.second.get(); 567 568 std::string TypeName; 569 raw_string_ostream OS(TypeName); 570 571 OS << *Array->getElementType(); 572 TypeName = OS.str(); 573 574 gpu_array_info &PPCGArray = PPCGProg->array[i]; 575 576 PPCGArray.space = Array->getSpace(); 577 PPCGArray.type = strdup(TypeName.c_str()); 578 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 579 PPCGArray.name = strdup(Array->getName().c_str()); 580 PPCGArray.extent = nullptr; 581 PPCGArray.n_index = Array->getNumberOfDimensions(); 582 PPCGArray.bound = 583 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 584 PPCGArray.extent = getExtent(Array); 585 PPCGArray.n_ref = 0; 586 PPCGArray.refs = nullptr; 587 PPCGArray.accessed = true; 588 PPCGArray.read_only_scalar = false; 589 PPCGArray.has_compound_element = false; 590 PPCGArray.local = false; 591 PPCGArray.declare_local = false; 592 PPCGArray.global = false; 593 PPCGArray.linearize = false; 594 PPCGArray.dep_order = nullptr; 595 596 setArrayBounds(PPCGArray, Array); 597 i++; 598 599 collect_references(PPCGProg, &PPCGArray); 600 } 601 } 602 603 /// Create an identity map between the arrays in the scop. 604 /// 605 /// @returns An identity map between the arrays in the scop. 606 isl_union_map *getArrayIdentity() { 607 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 608 609 for (auto &Item : S->arrays()) { 610 ScopArrayInfo *Array = Item.second.get(); 611 isl_space *Space = Array->getSpace(); 612 Space = isl_space_map_from_set(Space); 613 isl_map *Identity = isl_map_identity(Space); 614 Maps = isl_union_map_add_map(Maps, Identity); 615 } 616 617 return Maps; 618 } 619 620 /// Create a default-initialized PPCG GPU program. 621 /// 622 /// @returns A new gpu grogram description. 623 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 624 625 if (!PPCGScop) 626 return nullptr; 627 628 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 629 630 PPCGProg->ctx = S->getIslCtx(); 631 PPCGProg->scop = PPCGScop; 632 PPCGProg->context = isl_set_copy(PPCGScop->context); 633 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 634 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 635 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 636 PPCGProg->tagged_must_kill = 637 isl_union_map_copy(PPCGScop->tagged_must_kills); 638 PPCGProg->to_inner = getArrayIdentity(); 639 PPCGProg->to_outer = getArrayIdentity(); 640 PPCGProg->may_persist = compute_may_persist(PPCGProg); 641 PPCGProg->any_to_outer = nullptr; 642 PPCGProg->array_order = nullptr; 643 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 644 PPCGProg->stmts = getStatements(); 645 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 646 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 647 PPCGProg->n_array); 648 649 createArrays(PPCGProg); 650 651 return PPCGProg; 652 } 653 654 struct PrintGPUUserData { 655 struct cuda_info *CudaInfo; 656 struct gpu_prog *PPCGProg; 657 std::vector<ppcg_kernel *> Kernels; 658 }; 659 660 /// Print a user statement node in the host code. 661 /// 662 /// We use ppcg's printing facilities to print the actual statement and 663 /// additionally build up a list of all kernels that are encountered in the 664 /// host ast. 665 /// 666 /// @param P The printer to print to 667 /// @param Options The printing options to use 668 /// @param Node The node to print 669 /// @param User A user pointer to carry additional data. This pointer is 670 /// expected to be of type PrintGPUUserData. 671 /// 672 /// @returns A printer to which the output has been printed. 673 static __isl_give isl_printer * 674 printHostUser(__isl_take isl_printer *P, 675 __isl_take isl_ast_print_options *Options, 676 __isl_take isl_ast_node *Node, void *User) { 677 auto Data = (struct PrintGPUUserData *)User; 678 auto Id = isl_ast_node_get_annotation(Node); 679 680 if (Id) { 681 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 682 683 // If this is a user statement, format it ourselves as ppcg would 684 // otherwise try to call pet functionality that is not available in 685 // Polly. 686 if (IsUser) { 687 P = isl_printer_start_line(P); 688 P = isl_printer_print_ast_node(P, Node); 689 P = isl_printer_end_line(P); 690 isl_id_free(Id); 691 isl_ast_print_options_free(Options); 692 return P; 693 } 694 695 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 696 isl_id_free(Id); 697 Data->Kernels.push_back(Kernel); 698 } 699 700 return print_host_user(P, Options, Node, User); 701 } 702 703 /// Print C code corresponding to the control flow in @p Kernel. 704 /// 705 /// @param Kernel The kernel to print 706 void printKernel(ppcg_kernel *Kernel) { 707 auto *P = isl_printer_to_str(S->getIslCtx()); 708 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 709 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 710 P = isl_ast_node_print(Kernel->tree, P, Options); 711 char *String = isl_printer_get_str(P); 712 printf("%s\n", String); 713 free(String); 714 isl_printer_free(P); 715 } 716 717 /// Print C code corresponding to the GPU code described by @p Tree. 718 /// 719 /// @param Tree An AST describing GPU code 720 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 721 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 722 auto *P = isl_printer_to_str(S->getIslCtx()); 723 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 724 725 PrintGPUUserData Data; 726 Data.PPCGProg = PPCGProg; 727 728 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 729 Options = 730 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 731 P = isl_ast_node_print(Tree, P, Options); 732 char *String = isl_printer_get_str(P); 733 printf("# host\n"); 734 printf("%s\n", String); 735 free(String); 736 isl_printer_free(P); 737 738 for (auto Kernel : Data.Kernels) { 739 printf("# kernel%d\n", Kernel->id); 740 printKernel(Kernel); 741 } 742 } 743 744 // Generate a GPU program using PPCG. 745 // 746 // GPU mapping consists of multiple steps: 747 // 748 // 1) Compute new schedule for the program. 749 // 2) Map schedule to GPU (TODO) 750 // 3) Generate code for new schedule (TODO) 751 // 752 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 753 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 754 // strategy directly from this pass. 755 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 756 757 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 758 759 PPCGGen->ctx = S->getIslCtx(); 760 PPCGGen->options = PPCGScop->options; 761 PPCGGen->print = nullptr; 762 PPCGGen->print_user = nullptr; 763 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 764 PPCGGen->prog = PPCGProg; 765 PPCGGen->tree = nullptr; 766 PPCGGen->types.n = 0; 767 PPCGGen->types.name = nullptr; 768 PPCGGen->sizes = nullptr; 769 PPCGGen->used_sizes = nullptr; 770 PPCGGen->kernel_id = 0; 771 772 // Set scheduling strategy to same strategy PPCG is using. 773 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 774 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 775 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 776 777 isl_schedule *Schedule = get_schedule(PPCGGen); 778 779 int has_permutable = has_any_permutable_node(Schedule); 780 781 if (!has_permutable || has_permutable < 0) { 782 Schedule = isl_schedule_free(Schedule); 783 } else { 784 Schedule = map_to_device(PPCGGen, Schedule); 785 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 786 } 787 788 if (DumpSchedule) { 789 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 790 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 791 P = isl_printer_print_str(P, "Schedule\n"); 792 P = isl_printer_print_str(P, "========\n"); 793 if (Schedule) 794 P = isl_printer_print_schedule(P, Schedule); 795 else 796 P = isl_printer_print_str(P, "No schedule found\n"); 797 798 printf("%s\n", isl_printer_get_str(P)); 799 isl_printer_free(P); 800 } 801 802 if (DumpCode) { 803 printf("Code\n"); 804 printf("====\n"); 805 if (PPCGGen->tree) 806 printGPUTree(PPCGGen->tree, PPCGProg); 807 else 808 printf("No code generated\n"); 809 } 810 811 isl_schedule_free(Schedule); 812 813 return PPCGGen; 814 } 815 816 /// Free gpu_gen structure. 817 /// 818 /// @param PPCGGen The ppcg_gen object to free. 819 void freePPCGGen(gpu_gen *PPCGGen) { 820 isl_ast_node_free(PPCGGen->tree); 821 isl_union_map_free(PPCGGen->sizes); 822 isl_union_map_free(PPCGGen->used_sizes); 823 free(PPCGGen); 824 } 825 826 /// Free the options in the ppcg scop structure. 827 /// 828 /// ppcg is not freeing these options for us. To avoid leaks we do this 829 /// ourselves. 830 /// 831 /// @param PPCGScop The scop referencing the options to free. 832 void freeOptions(ppcg_scop *PPCGScop) { 833 free(PPCGScop->options->debug); 834 PPCGScop->options->debug = nullptr; 835 free(PPCGScop->options); 836 PPCGScop->options = nullptr; 837 } 838 839 /// Generate code for a given GPU AST described by @p Root. 840 /// 841 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 842 /// @param Prog The GPU Program to generate code for. 843 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 844 ScopAnnotator Annotator; 845 Annotator.buildAliasScopes(*S); 846 847 Region *R = &S->getRegion(); 848 849 simplifyRegion(R, DT, LI, RI); 850 851 BasicBlock *EnteringBB = R->getEnteringBlock(); 852 853 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 854 855 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 856 Prog); 857 858 // Only build the run-time condition and parameters _after_ having 859 // introduced the conditional branch. This is important as the conditional 860 // branch will guard the original scop from new induction variables that 861 // the SCEVExpander may introduce while code generating the parameters and 862 // which may introduce scalar dependences that prevent us from correctly 863 // code generating this scop. 864 BasicBlock *StartBlock = 865 executeScopConditionally(*S, this, Builder.getTrue()); 866 867 // TODO: Handle LICM 868 // TODO: Verify run-time checks 869 auto SplitBlock = StartBlock->getSinglePredecessor(); 870 Builder.SetInsertPoint(SplitBlock->getTerminator()); 871 NodeBuilder.addParameters(S->getContext()); 872 Builder.SetInsertPoint(&*StartBlock->begin()); 873 NodeBuilder.create(Root); 874 NodeBuilder.finalizeSCoP(*S); 875 } 876 877 bool runOnScop(Scop &CurrentScop) override { 878 S = &CurrentScop; 879 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 880 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 881 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 882 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 883 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 884 885 auto PPCGScop = createPPCGScop(); 886 auto PPCGProg = createPPCGProg(PPCGScop); 887 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 888 889 if (PPCGGen->tree) 890 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 891 892 freeOptions(PPCGScop); 893 freePPCGGen(PPCGGen); 894 gpu_prog_free(PPCGProg); 895 ppcg_scop_free(PPCGScop); 896 897 return true; 898 } 899 900 void printScop(raw_ostream &, Scop &) const override {} 901 902 void getAnalysisUsage(AnalysisUsage &AU) const override { 903 AU.addRequired<DominatorTreeWrapperPass>(); 904 AU.addRequired<RegionInfoPass>(); 905 AU.addRequired<ScalarEvolutionWrapperPass>(); 906 AU.addRequired<ScopDetection>(); 907 AU.addRequired<ScopInfoRegionPass>(); 908 AU.addRequired<LoopInfoWrapperPass>(); 909 910 AU.addPreserved<AAResultsWrapperPass>(); 911 AU.addPreserved<BasicAAWrapperPass>(); 912 AU.addPreserved<LoopInfoWrapperPass>(); 913 AU.addPreserved<DominatorTreeWrapperPass>(); 914 AU.addPreserved<GlobalsAAWrapperPass>(); 915 AU.addPreserved<PostDominatorTreeWrapperPass>(); 916 AU.addPreserved<ScopDetection>(); 917 AU.addPreserved<ScalarEvolutionWrapperPass>(); 918 AU.addPreserved<SCEVAAWrapperPass>(); 919 920 // FIXME: We do not yet add regions for the newly generated code to the 921 // region tree. 922 AU.addPreserved<RegionInfoPass>(); 923 AU.addPreserved<ScopInfoRegionPass>(); 924 } 925 }; 926 } 927 928 char PPCGCodeGeneration::ID = 1; 929 930 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 931 932 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 933 "Polly - Apply PPCG translation to SCOP", false, false) 934 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 936 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 937 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 938 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 939 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 940 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 941 "Polly - Apply PPCG translation to SCOP", false, false) 942