1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/ISLTools.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/IntrinsicsNVPTX.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/IRReader/IRReader.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Linker/Linker.h" 35 #include "llvm/MC/TargetRegistry.h" 36 #include "llvm/Support/SourceMgr.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "isl/union_map.h" 41 #include <algorithm> 42 43 extern "C" { 44 #include "ppcg/cuda.h" 45 #include "ppcg/gpu.h" 46 #include "ppcg/ppcg.h" 47 } 48 49 #include "llvm/Support/Debug.h" 50 51 using namespace polly; 52 using namespace llvm; 53 54 #define DEBUG_TYPE "polly-codegen-ppcg" 55 56 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 57 cl::desc("Dump the computed GPU Schedule"), 58 cl::Hidden, cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::cat(PollyCategory)); 68 69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 70 cl::desc("Dump the kernel assembly code"), 71 cl::Hidden, cl::cat(PollyCategory)); 72 73 static cl::opt<bool> FastMath("polly-acc-fastmath", 74 cl::desc("Allow unsafe math optimizations"), 75 cl::Hidden, cl::cat(PollyCategory)); 76 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 77 cl::desc("Use shared memory"), cl::Hidden, 78 cl::cat(PollyCategory)); 79 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 80 cl::desc("Use private memory"), cl::Hidden, 81 cl::cat(PollyCategory)); 82 83 bool polly::PollyManagedMemory; 84 static cl::opt<bool, true> 85 XManagedMemory("polly-acc-codegen-managed-memory", 86 cl::desc("Generate Host kernel code assuming" 87 " that all memory has been" 88 " declared as managed memory"), 89 cl::location(PollyManagedMemory), cl::Hidden, 90 cl::init(false), cl::cat(PollyCategory)); 91 92 static cl::opt<bool> 93 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 94 cl::desc("Fail and generate a backtrace if" 95 " verifyModule fails on the GPU " 96 " kernel module."), 97 cl::Hidden, cl::cat(PollyCategory)); 98 99 static cl::opt<std::string> CUDALibDevice( 100 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 101 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 102 cl::cat(PollyCategory)); 103 104 static cl::opt<std::string> 105 CudaVersion("polly-acc-cuda-version", 106 cl::desc("The CUDA version to compile for"), cl::Hidden, 107 cl::init("sm_30"), cl::cat(PollyCategory)); 108 109 static cl::opt<int> 110 MinCompute("polly-acc-mincompute", 111 cl::desc("Minimal number of compute statements to run on GPU."), 112 cl::Hidden, cl::init(10 * 512 * 512)); 113 114 GPURuntime polly::GPURuntimeChoice; 115 static cl::opt<GPURuntime, true> 116 XGPURuntimeChoice("polly-gpu-runtime", 117 cl::desc("The GPU Runtime API to target"), 118 cl::values(clEnumValN(GPURuntime::CUDA, "libcudart", 119 "use the CUDA Runtime API"), 120 clEnumValN(GPURuntime::OpenCL, "libopencl", 121 "use the OpenCL Runtime API")), 122 cl::location(polly::GPURuntimeChoice), 123 cl::init(GPURuntime::CUDA), cl::cat(PollyCategory)); 124 125 GPUArch polly::GPUArchChoice; 126 static cl::opt<GPUArch, true> 127 XGPUArchChoice("polly-gpu-arch", cl::desc("The GPU Architecture to target"), 128 cl::values(clEnumValN(GPUArch::NVPTX64, "nvptx64", 129 "target NVIDIA 64-bit architecture"), 130 clEnumValN(GPUArch::SPIR32, "spir32", 131 "target SPIR 32-bit architecture"), 132 clEnumValN(GPUArch::SPIR64, "spir64", 133 "target SPIR 64-bit architecture")), 134 cl::location(polly::GPUArchChoice), 135 cl::init(GPUArch::NVPTX64), cl::cat(PollyCategory)); 136 137 extern bool polly::PerfMonitoring; 138 139 /// Return a unique name for a Scop, which is the scop region with the 140 /// function name. 141 std::string getUniqueScopName(const Scop *S) { 142 return "Scop Region: " + S->getNameStr() + 143 " | Function: " + std::string(S->getFunction().getName()); 144 } 145 146 /// Used to store information PPCG wants for kills. This information is 147 /// used by live range reordering. 148 /// 149 /// @see computeLiveRangeReordering 150 /// @see GPUNodeBuilder::createPPCGScop 151 /// @see GPUNodeBuilder::createPPCGProg 152 struct MustKillsInfo { 153 /// Collection of all kill statements that will be sequenced at the end of 154 /// PPCGScop->schedule. 155 /// 156 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 157 /// which merges schedules in *arbitrary* order. 158 /// (we don't care about the order of the kills anyway). 159 isl::schedule KillsSchedule; 160 /// Map from kill statement instances to scalars that need to be 161 /// killed. 162 /// 163 /// We currently derive kill information for: 164 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 165 /// consequently all be killed. 166 /// 2. Scalar arrays that are not used outside the Scop. This is 167 /// checked by `isScalarUsesContainedInScop`. 168 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 169 isl::union_map TaggedMustKills; 170 171 /// Tagged must kills stripped of the tags. 172 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 173 isl::union_map MustKills; 174 175 MustKillsInfo() : KillsSchedule() {} 176 }; 177 178 /// Check if SAI's uses are entirely contained within Scop S. 179 /// If a scalar is used only with a Scop, we are free to kill it, as no data 180 /// can flow in/out of the value any more. 181 /// @see computeMustKillsInfo 182 static bool isScalarUsesContainedInScop(const Scop &S, 183 const ScopArrayInfo *SAI) { 184 assert(SAI->isValueKind() && "this function only deals with scalars." 185 " Dealing with arrays required alias analysis"); 186 187 const Region &R = S.getRegion(); 188 for (User *U : SAI->getBasePtr()->users()) { 189 Instruction *I = dyn_cast<Instruction>(U); 190 assert(I && "invalid user of scop array info"); 191 if (!R.contains(I)) 192 return false; 193 } 194 return true; 195 } 196 197 /// Compute must-kills needed to enable live range reordering with PPCG. 198 /// 199 /// @params S The Scop to compute live range reordering information 200 /// @returns live range reordering information that can be used to setup 201 /// PPCG. 202 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 203 const isl::space ParamSpace = S.getParamSpace(); 204 MustKillsInfo Info; 205 206 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 207 // 1.1 phi nodes in scop. 208 // 1.2 scalars that are only used within the scop 209 SmallVector<isl::id, 4> KillMemIds; 210 for (ScopArrayInfo *SAI : S.arrays()) { 211 if (SAI->isPHIKind() || 212 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 213 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 214 } 215 216 Info.TaggedMustKills = isl::union_map::empty(ParamSpace.ctx()); 217 Info.MustKills = isl::union_map::empty(ParamSpace.ctx()); 218 219 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 220 // schedule: 221 // - filter: "[control] -> { }" 222 // So, we choose to not create this to keep the output a little nicer, 223 // at the cost of some code complexity. 224 Info.KillsSchedule = {}; 225 226 for (isl::id &ToKillId : KillMemIds) { 227 isl::id KillStmtId = isl::id::alloc( 228 S.getIslCtx(), 229 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 230 231 // NOTE: construction of tagged_must_kill: 232 // 2. We need to construct a map: 233 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 234 // To construct this, we use `isl_map_domain_product` on 2 maps`: 235 // 2a. StmtToScalar: 236 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 237 // 2b. PhantomRefToScalar: 238 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 239 // 240 // Combining these with `isl_map_domain_product` gives us 241 // TaggedMustKill: 242 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 243 244 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 245 isl::map StmtToScalar = isl::map::universe(ParamSpace); 246 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 247 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 248 249 isl::id PhantomRefId = isl::id::alloc( 250 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 251 nullptr); 252 253 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 254 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 255 PhantomRefToScalar = 256 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 257 PhantomRefToScalar = 258 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 259 260 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 261 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 262 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 263 264 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 265 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 266 267 // 3. Create the kill schedule of the form: 268 // "[param] -> { Stmt_phantom[] }" 269 // Then add this to Info.KillsSchedule. 270 isl::space KillStmtSpace = ParamSpace; 271 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 272 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 273 274 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 275 if (!Info.KillsSchedule.is_null()) 276 Info.KillsSchedule = isl::manage( 277 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 278 else 279 Info.KillsSchedule = KillSchedule; 280 } 281 282 return Info; 283 } 284 285 /// Create the ast expressions for a ScopStmt. 286 /// 287 /// This function is a callback for to generate the ast expressions for each 288 /// of the scheduled ScopStmts. 289 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 290 void *StmtT, __isl_take isl_ast_build *Build_C, 291 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 292 isl_id *Id, void *User), 293 void *UserIndex, 294 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 295 void *UserExpr) { 296 297 ScopStmt *Stmt = (ScopStmt *)StmtT; 298 299 if (!Stmt || !Build_C) 300 return NULL; 301 302 isl::ast_build Build = isl::manage_copy(Build_C); 303 isl::ctx Ctx = Build.ctx(); 304 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 305 306 Stmt->setAstBuild(Build); 307 308 for (MemoryAccess *Acc : *Stmt) { 309 isl::map AddrFunc = Acc->getAddressFunction(); 310 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 311 312 isl::id RefId = Acc->getId(); 313 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 314 315 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 316 MPA = MPA.coalesce(); 317 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 318 319 isl::ast_expr Access = Build.access_from(MPA); 320 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 321 RefToExpr = RefToExpr.set(RefId, Access); 322 } 323 324 return RefToExpr.release(); 325 } 326 327 /// Given a LLVM Type, compute its size in bytes, 328 static int computeSizeInBytes(const Type *T) { 329 int bytes = T->getPrimitiveSizeInBits() / 8; 330 if (bytes == 0) 331 bytes = T->getScalarSizeInBits() / 8; 332 return bytes; 333 } 334 335 /// Generate code for a GPU specific isl AST. 336 /// 337 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 338 /// generates code for general-purpose AST nodes, with special functionality 339 /// for generating GPU specific user nodes. 340 /// 341 /// @see GPUNodeBuilder::createUser 342 class GPUNodeBuilder final : public IslNodeBuilder { 343 public: 344 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 345 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 346 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 347 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 348 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 349 Prog(Prog), Runtime(Runtime), Arch(Arch) { 350 getExprBuilder().setIDToSAI(&IDToSAI); 351 } 352 353 /// Create after-run-time-check initialization code. 354 void initializeAfterRTH(); 355 356 /// Finalize the generated scop. 357 void finalize() override; 358 359 /// Track if the full build process was successful. 360 /// 361 /// This value is set to false, if throughout the build process an error 362 /// occurred which prevents us from generating valid GPU code. 363 bool BuildSuccessful = true; 364 365 /// The maximal number of loops surrounding a sequential kernel. 366 unsigned DeepestSequential = 0; 367 368 /// The maximal number of loops surrounding a parallel kernel. 369 unsigned DeepestParallel = 0; 370 371 /// Return the name to set for the ptx_kernel. 372 std::string getKernelFuncName(int Kernel_id); 373 374 private: 375 /// A vector of array base pointers for which a new ScopArrayInfo was created. 376 /// 377 /// This vector is used to delete the ScopArrayInfo when it is not needed any 378 /// more. 379 std::vector<Value *> LocalArrays; 380 381 /// A map from ScopArrays to their corresponding device allocations. 382 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 383 384 /// The current GPU context. 385 Value *GPUContext; 386 387 /// The set of isl_ids allocated in the kernel 388 std::vector<isl_id *> KernelIds; 389 390 /// A module containing GPU code. 391 /// 392 /// This pointer is only set in case we are currently generating GPU code. 393 std::unique_ptr<Module> GPUModule; 394 395 /// The GPU program we generate code for. 396 gpu_prog *Prog; 397 398 /// The GPU Runtime implementation to use (OpenCL or CUDA). 399 GPURuntime Runtime; 400 401 /// The GPU Architecture to target. 402 GPUArch Arch; 403 404 /// Class to free isl_ids. 405 class IslIdDeleter final { 406 public: 407 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 408 }; 409 410 /// A set containing all isl_ids allocated in a GPU kernel. 411 /// 412 /// By releasing this set all isl_ids will be freed. 413 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 414 415 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 416 417 /// Create code for user-defined AST nodes. 418 /// 419 /// These AST nodes can be of type: 420 /// 421 /// - ScopStmt: A computational statement (TODO) 422 /// - Kernel: A GPU kernel call (TODO) 423 /// - Data-Transfer: A GPU <-> CPU data-transfer 424 /// - In-kernel synchronization 425 /// - In-kernel memory copy statement 426 /// 427 /// @param UserStmt The ast node to generate code for. 428 void createUser(__isl_take isl_ast_node *UserStmt) override; 429 430 void createFor(__isl_take isl_ast_node *Node) override; 431 432 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 433 434 /// Create code for a data transfer statement 435 /// 436 /// @param TransferStmt The data transfer statement. 437 /// @param Direction The direction in which to transfer data. 438 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 439 enum DataDirection Direction); 440 441 /// Find llvm::Values referenced in GPU kernel. 442 /// 443 /// @param Kernel The kernel to scan for llvm::Values 444 /// 445 /// @returns A tuple, whose: 446 /// - First element contains the set of values referenced by the 447 /// kernel 448 /// - Second element contains the set of functions referenced by the 449 /// kernel. All functions in the set satisfy 450 /// `isValidFunctionInKernel`. 451 /// - Third element contains loops that have induction variables 452 /// which are used in the kernel, *and* these loops are *neither* 453 /// in the scop, nor do they immediately surroung the Scop. 454 /// See [Code generation of induction variables of loops outside 455 /// Scops] 456 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 457 isl::space> 458 getReferencesInKernel(ppcg_kernel *Kernel); 459 460 /// Compute the sizes of the execution grid for a given kernel. 461 /// 462 /// @param Kernel The kernel to compute grid sizes for. 463 /// 464 /// @returns A tuple with grid sizes for X and Y dimension 465 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 466 467 /// Get the managed array pointer for sending host pointers to the device. 468 /// \note 469 /// This is to be used only with managed memory 470 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 471 472 /// Compute the sizes of the thread blocks for a given kernel. 473 /// 474 /// @param Kernel The kernel to compute thread block sizes for. 475 /// 476 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 477 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 478 479 /// Store a specific kernel launch parameter in the array of kernel launch 480 /// parameters. 481 /// 482 /// @param ArrayTy Array type of \p Parameters. 483 /// @param Parameters The list of parameters in which to store. 484 /// @param Param The kernel launch parameter to store. 485 /// @param Index The index in the parameter list, at which to store the 486 /// parameter. 487 void insertStoreParameter(Type *ArrayTy, Instruction *Parameters, 488 Instruction *Param, int Index); 489 490 /// Create kernel launch parameters. 491 /// 492 /// @param Kernel The kernel to create parameters for. 493 /// @param F The kernel function that has been created. 494 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 495 /// 496 /// @returns A stack allocated array with pointers to the parameter 497 /// values that are passed to the kernel. 498 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 499 SetVector<Value *> SubtreeValues); 500 501 /// Create declarations for kernel variable. 502 /// 503 /// This includes shared memory declarations. 504 /// 505 /// @param Kernel The kernel definition to create variables for. 506 /// @param FN The function into which to generate the variables. 507 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 508 509 /// Add CUDA annotations to module. 510 /// 511 /// Add a set of CUDA annotations that declares the maximal block dimensions 512 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 513 /// PTX compiler to bound the number of allocated registers to ensure the 514 /// resulting kernel is known to run with up to as many block dimensions 515 /// as specified here. 516 /// 517 /// @param M The module to add the annotations to. 518 /// @param BlockDimX The size of block dimension X. 519 /// @param BlockDimY The size of block dimension Y. 520 /// @param BlockDimZ The size of block dimension Z. 521 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 522 Value *BlockDimZ); 523 524 /// Create GPU kernel. 525 /// 526 /// Code generate the kernel described by @p KernelStmt. 527 /// 528 /// @param KernelStmt The ast node to generate kernel code for. 529 void createKernel(__isl_take isl_ast_node *KernelStmt); 530 531 /// Generate code that computes the size of an array. 532 /// 533 /// @param Array The array for which to compute a size. 534 Value *getArraySize(gpu_array_info *Array); 535 536 /// Generate code to compute the minimal offset at which an array is accessed. 537 /// 538 /// The offset of an array is the minimal array location accessed in a scop. 539 /// 540 /// Example: 541 /// 542 /// for (long i = 0; i < 100; i++) 543 /// A[i + 42] += ... 544 /// 545 /// getArrayOffset(A) results in 42. 546 /// 547 /// @param Array The array for which to compute the offset. 548 /// @returns An llvm::Value that contains the offset of the array. 549 Value *getArrayOffset(gpu_array_info *Array); 550 551 /// Prepare the kernel arguments for kernel code generation 552 /// 553 /// @param Kernel The kernel to generate code for. 554 /// @param FN The function created for the kernel. 555 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 556 557 /// Create kernel function. 558 /// 559 /// Create a kernel function located in a newly created module that can serve 560 /// as target for device code generation. Set the Builder to point to the 561 /// start block of this newly created function. 562 /// 563 /// @param Kernel The kernel to generate code for. 564 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 565 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 566 /// kernel. 567 void createKernelFunction(ppcg_kernel *Kernel, 568 SetVector<Value *> &SubtreeValues, 569 SetVector<Function *> &SubtreeFunctions); 570 571 /// Create the declaration of a kernel function. 572 /// 573 /// The kernel function takes as arguments: 574 /// 575 /// - One i8 pointer for each external array reference used in the kernel. 576 /// - Host iterators 577 /// - Parameters 578 /// - Other LLVM Value references (TODO) 579 /// 580 /// @param Kernel The kernel to generate the function declaration for. 581 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 582 /// 583 /// @returns The newly declared function. 584 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 585 SetVector<Value *> &SubtreeValues); 586 587 /// Insert intrinsic functions to obtain thread and block ids. 588 /// 589 /// @param The kernel to generate the intrinsic functions for. 590 void insertKernelIntrinsics(ppcg_kernel *Kernel); 591 592 /// Insert function calls to retrieve the SPIR group/local ids. 593 /// 594 /// @param Kernel The kernel to generate the function calls for. 595 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 596 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 597 598 /// Setup the creation of functions referenced by the GPU kernel. 599 /// 600 /// 1. Create new function declarations in GPUModule which are the same as 601 /// SubtreeFunctions. 602 /// 603 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 604 /// old functions (that come from the original module) to new functions 605 /// (that are created within GPUModule). That way, we generate references 606 /// to the correct function (in GPUModule) in BlockGenerator. 607 /// 608 /// @see IslNodeBuilder::ValueMap 609 /// @see BlockGenerator::GlobalMap 610 /// @see BlockGenerator::getNewValue 611 /// @see GPUNodeBuilder::getReferencesInKernel. 612 /// 613 /// @param SubtreeFunctions The set of llvm::Functions referenced by 614 /// this kernel. 615 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 616 617 /// Create a global-to-shared or shared-to-global copy statement. 618 /// 619 /// @param CopyStmt The copy statement to generate code for 620 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 621 622 /// Create code for a ScopStmt called in @p Expr. 623 /// 624 /// @param Expr The expression containing the call. 625 /// @param KernelStmt The kernel statement referenced in the call. 626 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 627 628 /// Create an in-kernel synchronization call. 629 void createKernelSync(); 630 631 /// Create a PTX assembly string for the current GPU kernel. 632 /// 633 /// @returns A string containing the corresponding PTX assembly code. 634 std::string createKernelASM(); 635 636 /// Remove references from the dominator tree to the kernel function @p F. 637 /// 638 /// @param F The function to remove references to. 639 void clearDominators(Function *F); 640 641 /// Remove references from scalar evolution to the kernel function @p F. 642 /// 643 /// @param F The function to remove references to. 644 void clearScalarEvolution(Function *F); 645 646 /// Remove references from loop info to the kernel function @p F. 647 /// 648 /// @param F The function to remove references to. 649 void clearLoops(Function *F); 650 651 /// Check if the scop requires to be linked with CUDA's libdevice. 652 bool requiresCUDALibDevice(); 653 654 /// Link with the NVIDIA libdevice library (if needed and available). 655 void addCUDALibDevice(); 656 657 /// Finalize the generation of the kernel function. 658 /// 659 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 660 /// dump its IR to stderr. 661 /// 662 /// @returns The Assembly string of the kernel. 663 std::string finalizeKernelFunction(); 664 665 /// Finalize the generation of the kernel arguments. 666 /// 667 /// This function ensures that not-read-only scalars used in a kernel are 668 /// stored back to the global memory location they are backed with before 669 /// the kernel terminates. 670 /// 671 /// @params Kernel The kernel to finalize kernel arguments for. 672 void finalizeKernelArguments(ppcg_kernel *Kernel); 673 674 /// Create code that allocates memory to store arrays on device. 675 void allocateDeviceArrays(); 676 677 /// Create code to prepare the managed device pointers. 678 void prepareManagedDeviceArrays(); 679 680 /// Free all allocated device arrays. 681 void freeDeviceArrays(); 682 683 /// Create a call to initialize the GPU context. 684 /// 685 /// @returns A pointer to the newly initialized context. 686 Value *createCallInitContext(); 687 688 /// Create a call to get the device pointer for a kernel allocation. 689 /// 690 /// @param Allocation The Polly GPU allocation 691 /// 692 /// @returns The device parameter corresponding to this allocation. 693 Value *createCallGetDevicePtr(Value *Allocation); 694 695 /// Create a call to free the GPU context. 696 /// 697 /// @param Context A pointer to an initialized GPU context. 698 void createCallFreeContext(Value *Context); 699 700 /// Create a call to allocate memory on the device. 701 /// 702 /// @param Size The size of memory to allocate 703 /// 704 /// @returns A pointer that identifies this allocation. 705 Value *createCallAllocateMemoryForDevice(Value *Size); 706 707 /// Create a call to free a device array. 708 /// 709 /// @param Array The device array to free. 710 void createCallFreeDeviceMemory(Value *Array); 711 712 /// Create a call to copy data from host to device. 713 /// 714 /// @param HostPtr A pointer to the host data that should be copied. 715 /// @param DevicePtr A device pointer specifying the location to copy to. 716 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 717 Value *Size); 718 719 /// Create a call to copy data from device to host. 720 /// 721 /// @param DevicePtr A pointer to the device data that should be copied. 722 /// @param HostPtr A host pointer specifying the location to copy to. 723 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 724 Value *Size); 725 726 /// Create a call to synchronize Host & Device. 727 /// \note 728 /// This is to be used only with managed memory. 729 void createCallSynchronizeDevice(); 730 731 /// Create a call to get a kernel from an assembly string. 732 /// 733 /// @param Buffer The string describing the kernel. 734 /// @param Entry The name of the kernel function to call. 735 /// 736 /// @returns A pointer to a kernel object 737 Value *createCallGetKernel(Value *Buffer, Value *Entry); 738 739 /// Create a call to free a GPU kernel. 740 /// 741 /// @param GPUKernel THe kernel to free. 742 void createCallFreeKernel(Value *GPUKernel); 743 744 /// Create a call to launch a GPU kernel. 745 /// 746 /// @param GPUKernel The kernel to launch. 747 /// @param GridDimX The size of the first grid dimension. 748 /// @param GridDimY The size of the second grid dimension. 749 /// @param GridBlockX The size of the first block dimension. 750 /// @param GridBlockY The size of the second block dimension. 751 /// @param GridBlockZ The size of the third block dimension. 752 /// @param Parameters A pointer to an array that contains itself pointers to 753 /// the parameter values passed for each kernel argument. 754 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 755 Value *GridDimY, Value *BlockDimX, 756 Value *BlockDimY, Value *BlockDimZ, 757 Value *Parameters); 758 }; 759 760 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 761 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 762 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 763 } 764 765 void GPUNodeBuilder::initializeAfterRTH() { 766 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 767 &*Builder.GetInsertPoint(), &DT, &LI); 768 NewBB->setName("polly.acc.initialize"); 769 Builder.SetInsertPoint(&NewBB->front()); 770 771 GPUContext = createCallInitContext(); 772 773 if (!PollyManagedMemory) 774 allocateDeviceArrays(); 775 else 776 prepareManagedDeviceArrays(); 777 } 778 779 void GPUNodeBuilder::finalize() { 780 if (!PollyManagedMemory) 781 freeDeviceArrays(); 782 783 createCallFreeContext(GPUContext); 784 IslNodeBuilder::finalize(); 785 } 786 787 void GPUNodeBuilder::allocateDeviceArrays() { 788 assert(!PollyManagedMemory && 789 "Managed memory will directly send host pointers " 790 "to the kernel. There is no need for device arrays"); 791 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 792 793 for (int i = 0; i < Prog->n_array; ++i) { 794 gpu_array_info *Array = &Prog->array[i]; 795 auto *ScopArray = (ScopArrayInfo *)Array->user; 796 std::string DevArrayName("p_dev_array_"); 797 DevArrayName.append(Array->name); 798 799 Value *ArraySize = getArraySize(Array); 800 Value *Offset = getArrayOffset(Array); 801 if (Offset) 802 ArraySize = Builder.CreateSub( 803 ArraySize, 804 Builder.CreateMul(Offset, 805 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 806 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 807 // It makes no sense to have an array of size 0. The CUDA API will 808 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 809 // choose to be defensive and catch this at the compile phase. It is 810 // most likely that we are doing something wrong with size computation. 811 if (SizeSCEV->isZero()) { 812 errs() << getUniqueScopName(&S) 813 << " has computed array size 0: " << *ArraySize 814 << " | for array: " << *(ScopArray->getBasePtr()) 815 << ". This is illegal, exiting.\n"; 816 report_fatal_error("array size was computed to be 0"); 817 } 818 819 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 820 DevArray->setName(DevArrayName); 821 DeviceAllocations[ScopArray] = DevArray; 822 } 823 824 isl_ast_build_free(Build); 825 } 826 827 void GPUNodeBuilder::prepareManagedDeviceArrays() { 828 assert(PollyManagedMemory && 829 "Device array most only be prepared in managed-memory mode"); 830 for (int i = 0; i < Prog->n_array; ++i) { 831 gpu_array_info *Array = &Prog->array[i]; 832 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 833 Value *HostPtr; 834 835 if (gpu_array_is_scalar(Array)) 836 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 837 else 838 HostPtr = ScopArray->getBasePtr(); 839 HostPtr = getLatestValue(HostPtr); 840 841 Value *Offset = getArrayOffset(Array); 842 if (Offset) { 843 HostPtr = Builder.CreatePointerCast( 844 HostPtr, ScopArray->getElementType()->getPointerTo()); 845 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset); 846 } 847 848 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 849 DeviceAllocations[ScopArray] = HostPtr; 850 } 851 } 852 853 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 854 Value *BlockDimY, Value *BlockDimZ) { 855 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 856 857 for (auto &F : *M) { 858 if (F.getCallingConv() != CallingConv::PTX_Kernel) 859 continue; 860 861 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 862 863 Metadata *Elements[] = { 864 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 865 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 866 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 867 ValueAsMetadata::get(V[2]), 868 }; 869 MDNode *Node = MDNode::get(M->getContext(), Elements); 870 AnnotationNode->addOperand(Node); 871 } 872 } 873 874 void GPUNodeBuilder::freeDeviceArrays() { 875 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 876 for (auto &Array : DeviceAllocations) 877 createCallFreeDeviceMemory(Array.second); 878 } 879 880 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 881 const char *Name = "polly_getKernel"; 882 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 883 Function *F = M->getFunction(Name); 884 885 // If F is not available, declare it. 886 if (!F) { 887 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 888 std::vector<Type *> Args; 889 Args.push_back(Builder.getInt8PtrTy()); 890 Args.push_back(Builder.getInt8PtrTy()); 891 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 892 F = Function::Create(Ty, Linkage, Name, M); 893 } 894 895 return Builder.CreateCall(F, {Buffer, Entry}); 896 } 897 898 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 899 const char *Name = "polly_getDevicePtr"; 900 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 901 Function *F = M->getFunction(Name); 902 903 // If F is not available, declare it. 904 if (!F) { 905 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 906 std::vector<Type *> Args; 907 Args.push_back(Builder.getInt8PtrTy()); 908 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 909 F = Function::Create(Ty, Linkage, Name, M); 910 } 911 912 return Builder.CreateCall(F, {Allocation}); 913 } 914 915 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 916 Value *GridDimY, Value *BlockDimX, 917 Value *BlockDimY, Value *BlockDimZ, 918 Value *Parameters) { 919 const char *Name = "polly_launchKernel"; 920 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 921 Function *F = M->getFunction(Name); 922 923 // If F is not available, declare it. 924 if (!F) { 925 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 926 std::vector<Type *> Args; 927 Args.push_back(Builder.getInt8PtrTy()); 928 Args.push_back(Builder.getInt32Ty()); 929 Args.push_back(Builder.getInt32Ty()); 930 Args.push_back(Builder.getInt32Ty()); 931 Args.push_back(Builder.getInt32Ty()); 932 Args.push_back(Builder.getInt32Ty()); 933 Args.push_back(Builder.getInt8PtrTy()); 934 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 935 F = Function::Create(Ty, Linkage, Name, M); 936 } 937 938 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 939 BlockDimZ, Parameters}); 940 } 941 942 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 943 const char *Name = "polly_freeKernel"; 944 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 945 Function *F = M->getFunction(Name); 946 947 // If F is not available, declare it. 948 if (!F) { 949 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 950 std::vector<Type *> Args; 951 Args.push_back(Builder.getInt8PtrTy()); 952 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 953 F = Function::Create(Ty, Linkage, Name, M); 954 } 955 956 Builder.CreateCall(F, {GPUKernel}); 957 } 958 959 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 960 assert(!PollyManagedMemory && 961 "Managed memory does not allocate or free memory " 962 "for device"); 963 const char *Name = "polly_freeDeviceMemory"; 964 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 965 Function *F = M->getFunction(Name); 966 967 // If F is not available, declare it. 968 if (!F) { 969 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 970 std::vector<Type *> Args; 971 Args.push_back(Builder.getInt8PtrTy()); 972 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 973 F = Function::Create(Ty, Linkage, Name, M); 974 } 975 976 Builder.CreateCall(F, {Array}); 977 } 978 979 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 980 assert(!PollyManagedMemory && 981 "Managed memory does not allocate or free memory " 982 "for device"); 983 const char *Name = "polly_allocateMemoryForDevice"; 984 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 985 Function *F = M->getFunction(Name); 986 987 // If F is not available, declare it. 988 if (!F) { 989 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 990 std::vector<Type *> Args; 991 Args.push_back(Builder.getInt64Ty()); 992 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 993 F = Function::Create(Ty, Linkage, Name, M); 994 } 995 996 return Builder.CreateCall(F, {Size}); 997 } 998 999 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 1000 Value *DeviceData, 1001 Value *Size) { 1002 assert(!PollyManagedMemory && 1003 "Managed memory does not transfer memory between " 1004 "device and host"); 1005 const char *Name = "polly_copyFromHostToDevice"; 1006 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1007 Function *F = M->getFunction(Name); 1008 1009 // If F is not available, declare it. 1010 if (!F) { 1011 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1012 std::vector<Type *> Args; 1013 Args.push_back(Builder.getInt8PtrTy()); 1014 Args.push_back(Builder.getInt8PtrTy()); 1015 Args.push_back(Builder.getInt64Ty()); 1016 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1017 F = Function::Create(Ty, Linkage, Name, M); 1018 } 1019 1020 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1021 } 1022 1023 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1024 Value *HostData, 1025 Value *Size) { 1026 assert(!PollyManagedMemory && 1027 "Managed memory does not transfer memory between " 1028 "device and host"); 1029 const char *Name = "polly_copyFromDeviceToHost"; 1030 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1031 Function *F = M->getFunction(Name); 1032 1033 // If F is not available, declare it. 1034 if (!F) { 1035 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1036 std::vector<Type *> Args; 1037 Args.push_back(Builder.getInt8PtrTy()); 1038 Args.push_back(Builder.getInt8PtrTy()); 1039 Args.push_back(Builder.getInt64Ty()); 1040 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1041 F = Function::Create(Ty, Linkage, Name, M); 1042 } 1043 1044 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1045 } 1046 1047 void GPUNodeBuilder::createCallSynchronizeDevice() { 1048 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1049 "managed memory"); 1050 const char *Name = "polly_synchronizeDevice"; 1051 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1052 Function *F = M->getFunction(Name); 1053 1054 // If F is not available, declare it. 1055 if (!F) { 1056 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1057 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1058 F = Function::Create(Ty, Linkage, Name, M); 1059 } 1060 1061 Builder.CreateCall(F); 1062 } 1063 1064 Value *GPUNodeBuilder::createCallInitContext() { 1065 const char *Name; 1066 1067 switch (Runtime) { 1068 case GPURuntime::CUDA: 1069 Name = "polly_initContextCUDA"; 1070 break; 1071 case GPURuntime::OpenCL: 1072 Name = "polly_initContextCL"; 1073 break; 1074 } 1075 1076 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1077 Function *F = M->getFunction(Name); 1078 1079 // If F is not available, declare it. 1080 if (!F) { 1081 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1082 std::vector<Type *> Args; 1083 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1084 F = Function::Create(Ty, Linkage, Name, M); 1085 } 1086 1087 return Builder.CreateCall(F, {}); 1088 } 1089 1090 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1091 const char *Name = "polly_freeContext"; 1092 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1093 Function *F = M->getFunction(Name); 1094 1095 // If F is not available, declare it. 1096 if (!F) { 1097 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1098 std::vector<Type *> Args; 1099 Args.push_back(Builder.getInt8PtrTy()); 1100 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1101 F = Function::Create(Ty, Linkage, Name, M); 1102 } 1103 1104 Builder.CreateCall(F, {Context}); 1105 } 1106 1107 /// Check if one string is a prefix of another. 1108 /// 1109 /// @param String The string in which to look for the prefix. 1110 /// @param Prefix The prefix to look for. 1111 static bool isPrefix(std::string String, std::string Prefix) { 1112 return String.find(Prefix) == 0; 1113 } 1114 1115 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1116 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1117 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1118 1119 if (!gpu_array_is_scalar(Array)) { 1120 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1121 1122 isl::pw_aff OffsetDimZero = ArrayBound.at(0); 1123 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1124 1125 for (unsigned int i = 1; i < Array->n_index; i++) { 1126 isl::pw_aff Bound_I = ArrayBound.at(i); 1127 isl::ast_expr Expr = Build.expr_from(Bound_I); 1128 Res = Res.mul(Expr); 1129 } 1130 1131 Value *NumElements = ExprBuilder.create(Res.release()); 1132 if (NumElements->getType() != ArraySize->getType()) 1133 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1134 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1135 } 1136 return ArraySize; 1137 } 1138 1139 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1140 if (gpu_array_is_scalar(Array)) 1141 return nullptr; 1142 1143 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1144 1145 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1146 1147 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1148 1149 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) 1150 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1151 1152 if (Min.is_subset(ZeroSet)) { 1153 return nullptr; 1154 } 1155 1156 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.ctx(), 0)); 1157 1158 for (unsigned i : rangeIslSize(0, Min.tuple_dim())) { 1159 if (i > 0) { 1160 isl::pw_aff Bound_I = 1161 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1162 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1163 Result = Result.mul(BExpr); 1164 } 1165 isl::pw_aff DimMin = Min.dim_min(i); 1166 isl::ast_expr MExpr = Build.expr_from(DimMin); 1167 Result = Result.add(MExpr); 1168 } 1169 1170 return ExprBuilder.create(Result.release()); 1171 } 1172 1173 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1174 ScopArrayInfo *ArrayInfo) { 1175 assert(PollyManagedMemory && "Only used when you wish to get a host " 1176 "pointer for sending data to the kernel, " 1177 "with managed memory"); 1178 std::map<ScopArrayInfo *, Value *>::iterator it; 1179 it = DeviceAllocations.find(ArrayInfo); 1180 assert(it != DeviceAllocations.end() && 1181 "Device array expected to be available"); 1182 return it->second; 1183 } 1184 1185 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1186 enum DataDirection Direction) { 1187 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1188 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1189 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1190 isl_id *Id = isl_ast_expr_get_id(Arg); 1191 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1192 auto ScopArray = (ScopArrayInfo *)(Array->user); 1193 1194 Value *Size = getArraySize(Array); 1195 Value *Offset = getArrayOffset(Array); 1196 Value *DevPtr = DeviceAllocations[ScopArray]; 1197 1198 Value *HostPtr; 1199 1200 if (gpu_array_is_scalar(Array)) 1201 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1202 else 1203 HostPtr = ScopArray->getBasePtr(); 1204 HostPtr = getLatestValue(HostPtr); 1205 1206 if (Offset) { 1207 HostPtr = Builder.CreatePointerCast( 1208 HostPtr, ScopArray->getElementType()->getPointerTo()); 1209 HostPtr = Builder.CreateGEP(ScopArray->getElementType(), HostPtr, Offset); 1210 } 1211 1212 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1213 1214 if (Offset) { 1215 Size = Builder.CreateSub( 1216 Size, Builder.CreateMul( 1217 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1218 } 1219 1220 if (Direction == HOST_TO_DEVICE) 1221 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1222 else 1223 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1224 1225 isl_id_free(Id); 1226 isl_ast_expr_free(Arg); 1227 isl_ast_expr_free(Expr); 1228 isl_ast_node_free(TransferStmt); 1229 } 1230 1231 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1232 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1233 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1234 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1235 isl_id_free(Id); 1236 isl_ast_expr_free(StmtExpr); 1237 1238 const char *Str = isl_id_get_name(Id); 1239 if (!strcmp(Str, "kernel")) { 1240 createKernel(UserStmt); 1241 if (PollyManagedMemory) 1242 createCallSynchronizeDevice(); 1243 isl_ast_expr_free(Expr); 1244 return; 1245 } 1246 if (!strcmp(Str, "init_device")) { 1247 initializeAfterRTH(); 1248 isl_ast_node_free(UserStmt); 1249 isl_ast_expr_free(Expr); 1250 return; 1251 } 1252 if (!strcmp(Str, "clear_device")) { 1253 finalize(); 1254 isl_ast_node_free(UserStmt); 1255 isl_ast_expr_free(Expr); 1256 return; 1257 } 1258 if (isPrefix(Str, "to_device")) { 1259 if (!PollyManagedMemory) 1260 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1261 else 1262 isl_ast_node_free(UserStmt); 1263 1264 isl_ast_expr_free(Expr); 1265 return; 1266 } 1267 1268 if (isPrefix(Str, "from_device")) { 1269 if (!PollyManagedMemory) { 1270 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1271 } else { 1272 isl_ast_node_free(UserStmt); 1273 } 1274 isl_ast_expr_free(Expr); 1275 return; 1276 } 1277 1278 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1279 struct ppcg_kernel_stmt *KernelStmt = 1280 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1281 isl_id_free(Anno); 1282 1283 switch (KernelStmt->type) { 1284 case ppcg_kernel_domain: 1285 createScopStmt(Expr, KernelStmt); 1286 isl_ast_node_free(UserStmt); 1287 return; 1288 case ppcg_kernel_copy: 1289 createKernelCopy(KernelStmt); 1290 isl_ast_expr_free(Expr); 1291 isl_ast_node_free(UserStmt); 1292 return; 1293 case ppcg_kernel_sync: 1294 createKernelSync(); 1295 isl_ast_expr_free(Expr); 1296 isl_ast_node_free(UserStmt); 1297 return; 1298 } 1299 1300 isl_ast_expr_free(Expr); 1301 isl_ast_node_free(UserStmt); 1302 } 1303 1304 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1305 createForSequential(isl::manage(Node).as<isl::ast_node_for>(), false); 1306 } 1307 1308 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1309 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1310 auto LocalAddr = ExprBuilder.createAccessAddress(LocalIndex); 1311 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1312 auto GlobalAddr = ExprBuilder.createAccessAddress(Index); 1313 1314 if (KernelStmt->u.c.read) { 1315 LoadInst *Load = 1316 Builder.CreateLoad(GlobalAddr.second, GlobalAddr.first, "shared.read"); 1317 Builder.CreateStore(Load, LocalAddr.first); 1318 } else { 1319 LoadInst *Load = 1320 Builder.CreateLoad(LocalAddr.second, LocalAddr.first, "shared.write"); 1321 Builder.CreateStore(Load, GlobalAddr.first); 1322 } 1323 } 1324 1325 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1326 ppcg_kernel_stmt *KernelStmt) { 1327 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1328 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1329 1330 LoopToScevMapT LTS; 1331 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1332 1333 createSubstitutions(Expr, Stmt, LTS); 1334 1335 if (Stmt->isBlockStmt()) 1336 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1337 else 1338 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1339 } 1340 1341 void GPUNodeBuilder::createKernelSync() { 1342 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1343 const char *SpirName = "__gen_ocl_barrier_global"; 1344 1345 Function *Sync; 1346 1347 switch (Arch) { 1348 case GPUArch::SPIR64: 1349 case GPUArch::SPIR32: 1350 Sync = M->getFunction(SpirName); 1351 1352 // If Sync is not available, declare it. 1353 if (!Sync) { 1354 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1355 std::vector<Type *> Args; 1356 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1357 Sync = Function::Create(Ty, Linkage, SpirName, M); 1358 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1359 } 1360 break; 1361 case GPUArch::NVPTX64: 1362 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1363 break; 1364 } 1365 1366 Builder.CreateCall(Sync, {}); 1367 } 1368 1369 /// Collect llvm::Values referenced from @p Node 1370 /// 1371 /// This function only applies to isl_ast_nodes that are user_nodes referring 1372 /// to a ScopStmt. All other node types are ignore. 1373 /// 1374 /// @param Node The node to collect references for. 1375 /// @param User A user pointer used as storage for the data that is collected. 1376 /// 1377 /// @returns isl_bool_true if data could be collected successfully. 1378 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1379 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1380 return isl_bool_true; 1381 1382 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1383 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1384 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1385 const char *Str = isl_id_get_name(Id); 1386 isl_id_free(Id); 1387 isl_ast_expr_free(StmtExpr); 1388 isl_ast_expr_free(Expr); 1389 1390 if (!isPrefix(Str, "Stmt")) 1391 return isl_bool_true; 1392 1393 Id = isl_ast_node_get_annotation(Node); 1394 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1395 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1396 isl_id_free(Id); 1397 1398 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1399 1400 return isl_bool_true; 1401 } 1402 1403 /// A list of functions that are available in NVIDIA's libdevice. 1404 const std::set<std::string> CUDALibDeviceFunctions = { 1405 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1406 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1407 1408 // A map from intrinsics to their corresponding libdevice functions. 1409 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1410 {"llvm.exp.f64", "exp"}, 1411 {"llvm.exp.f32", "expf"}, 1412 {"llvm.powi.f64.i32", "powi"}, 1413 {"llvm.powi.f32.i32", "powif"}}; 1414 1415 /// Return the corresponding CUDA libdevice function name @p Name. 1416 /// Note that this function will try to convert instrinsics in the list 1417 /// IntrinsicToLibdeviceFunc into libdevice functions. 1418 /// This is because some intrinsics such as `exp` 1419 /// are not supported by the NVPTX backend. 1420 /// If this restriction of the backend is lifted, we should refactor our code 1421 /// so that we use intrinsics whenever possible. 1422 /// 1423 /// Return "" if we are not compiling for CUDA. 1424 std::string getCUDALibDeviceFuntion(StringRef NameRef) { 1425 std::string Name = NameRef.str(); 1426 auto It = IntrinsicToLibdeviceFunc.find(Name); 1427 if (It != IntrinsicToLibdeviceFunc.end()) 1428 return getCUDALibDeviceFuntion(It->second); 1429 1430 if (CUDALibDeviceFunctions.count(Name)) 1431 return ("__nv_" + Name); 1432 1433 return ""; 1434 } 1435 1436 /// Check if F is a function that we can code-generate in a GPU kernel. 1437 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1438 assert(F && "F is an invalid pointer"); 1439 // We string compare against the name of the function to allow 1440 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1441 // "llvm.copysign". 1442 const StringRef Name = F->getName(); 1443 1444 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1445 return true; 1446 1447 return F->isIntrinsic() && 1448 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1449 Name.startswith("llvm.copysign")); 1450 } 1451 1452 /// Do not take `Function` as a subtree value. 1453 /// 1454 /// We try to take the reference of all subtree values and pass them along 1455 /// to the kernel from the host. Taking an address of any function and 1456 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1457 /// `Function`s. 1458 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1459 1460 /// Return `Function`s from `RawSubtreeValues`. 1461 static SetVector<Function *> 1462 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1463 bool AllowCUDALibDevice) { 1464 SetVector<Function *> SubtreeFunctions; 1465 for (Value *It : RawSubtreeValues) { 1466 Function *F = dyn_cast<Function>(It); 1467 if (F) { 1468 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1469 "Code should have bailed out by " 1470 "this point if an invalid function " 1471 "were present in a kernel."); 1472 SubtreeFunctions.insert(F); 1473 } 1474 } 1475 return SubtreeFunctions; 1476 } 1477 1478 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1479 isl::space> 1480 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1481 SetVector<Value *> SubtreeValues; 1482 SetVector<const SCEV *> SCEVs; 1483 SetVector<const Loop *> Loops; 1484 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1485 SubtreeReferences References = { 1486 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1487 &ParamSpace}; 1488 1489 for (const auto &I : IDToValue) 1490 SubtreeValues.insert(I.second); 1491 1492 // NOTE: this is populated in IslNodeBuilder::addParameters 1493 // See [Code generation of induction variables of loops outside Scops]. 1494 for (const auto &I : OutsideLoopIterations) 1495 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1496 1497 isl_ast_node_foreach_descendant_top_down( 1498 Kernel->tree, collectReferencesInGPUStmt, &References); 1499 1500 for (const SCEV *Expr : SCEVs) { 1501 findValues(Expr, SE, SubtreeValues); 1502 findLoops(Expr, Loops); 1503 } 1504 1505 Loops.remove_if([this](const Loop *L) { 1506 return S.contains(L) || L->contains(S.getEntry()); 1507 }); 1508 1509 for (auto &SAI : S.arrays()) 1510 SubtreeValues.remove(SAI->getBasePtr()); 1511 1512 isl_space *Space = S.getParamSpace().release(); 1513 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1514 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1515 assert(IDToValue.count(Id)); 1516 Value *Val = IDToValue[Id]; 1517 SubtreeValues.remove(Val); 1518 isl_id_free(Id); 1519 } 1520 isl_space_free(Space); 1521 1522 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1523 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1524 assert(IDToValue.count(Id)); 1525 Value *Val = IDToValue[Id]; 1526 SubtreeValues.remove(Val); 1527 isl_id_free(Id); 1528 } 1529 1530 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1531 // SubtreeValues. This is important, because we should not lose any 1532 // SubtreeValues in the process of constructing the 1533 // "ValidSubtree{Values, Functions} sets. Nor should the set 1534 // ValidSubtree{Values, Functions} have any common element. 1535 auto ValidSubtreeValuesIt = 1536 make_filter_range(SubtreeValues, isValidSubtreeValue); 1537 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1538 ValidSubtreeValuesIt.end()); 1539 1540 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1541 1542 SetVector<Function *> ValidSubtreeFunctions( 1543 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1544 1545 // @see IslNodeBuilder::getReferencesInSubtree 1546 SetVector<Value *> ReplacedValues; 1547 for (Value *V : ValidSubtreeValues) { 1548 auto It = ValueMap.find(V); 1549 if (It == ValueMap.end()) 1550 ReplacedValues.insert(V); 1551 else 1552 ReplacedValues.insert(It->second); 1553 } 1554 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1555 ParamSpace); 1556 } 1557 1558 void GPUNodeBuilder::clearDominators(Function *F) { 1559 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1560 std::vector<BasicBlock *> Nodes; 1561 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1562 Nodes.push_back(I->getBlock()); 1563 1564 for (BasicBlock *BB : Nodes) 1565 DT.eraseNode(BB); 1566 } 1567 1568 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1569 for (BasicBlock &BB : *F) { 1570 Loop *L = LI.getLoopFor(&BB); 1571 if (L) 1572 SE.forgetLoop(L); 1573 } 1574 } 1575 1576 void GPUNodeBuilder::clearLoops(Function *F) { 1577 SmallSet<Loop *, 1> WorkList; 1578 for (BasicBlock &BB : *F) { 1579 Loop *L = LI.getLoopFor(&BB); 1580 if (L) 1581 WorkList.insert(L); 1582 } 1583 for (auto *L : WorkList) 1584 LI.erase(L); 1585 } 1586 1587 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1588 std::vector<Value *> Sizes; 1589 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1590 1591 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1592 for (long i = 0; i < Kernel->n_grid; i++) { 1593 isl::pw_aff Size = GridSizePwAffs.at(i); 1594 isl::ast_expr GridSize = Context.expr_from(Size); 1595 Value *Res = ExprBuilder.create(GridSize.release()); 1596 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1597 Sizes.push_back(Res); 1598 } 1599 1600 for (long i = Kernel->n_grid; i < 3; i++) 1601 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1602 1603 return std::make_tuple(Sizes[0], Sizes[1]); 1604 } 1605 1606 std::tuple<Value *, Value *, Value *> 1607 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1608 std::vector<Value *> Sizes; 1609 1610 for (long i = 0; i < Kernel->n_block; i++) { 1611 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1612 Sizes.push_back(Res); 1613 } 1614 1615 for (long i = Kernel->n_block; i < 3; i++) 1616 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1617 1618 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1619 } 1620 1621 void GPUNodeBuilder::insertStoreParameter(Type *ArrayTy, 1622 Instruction *Parameters, 1623 Instruction *Param, int Index) { 1624 Value *Slot = Builder.CreateGEP( 1625 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1626 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1627 Builder.CreateStore(ParamTyped, Slot); 1628 } 1629 1630 Value * 1631 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1632 SetVector<Value *> SubtreeValues) { 1633 const int NumArgs = F->arg_size(); 1634 std::vector<int> ArgSizes(NumArgs); 1635 1636 // If we are using the OpenCL Runtime, we need to add the kernel argument 1637 // sizes to the end of the launch-parameter list, so OpenCL can determine 1638 // how big the respective kernel arguments are. 1639 // Here we need to reserve adequate space for that. 1640 Type *ArrayTy; 1641 if (Runtime == GPURuntime::OpenCL) 1642 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1643 else 1644 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1645 1646 BasicBlock *EntryBlock = 1647 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1648 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1649 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1650 Instruction *Parameters = new AllocaInst( 1651 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1652 1653 int Index = 0; 1654 for (long i = 0; i < Prog->n_array; i++) { 1655 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1656 continue; 1657 1658 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1659 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1660 1661 if (Runtime == GPURuntime::OpenCL) 1662 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1663 1664 Value *DevArray = nullptr; 1665 if (PollyManagedMemory) { 1666 DevArray = getManagedDeviceArray(&Prog->array[i], 1667 const_cast<ScopArrayInfo *>(SAI)); 1668 } else { 1669 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1670 DevArray = createCallGetDevicePtr(DevArray); 1671 } 1672 assert(DevArray != nullptr && "Array to be offloaded to device not " 1673 "initialized"); 1674 Value *Offset = getArrayOffset(&Prog->array[i]); 1675 1676 if (Offset) { 1677 DevArray = Builder.CreatePointerCast( 1678 DevArray, SAI->getElementType()->getPointerTo()); 1679 DevArray = Builder.CreateGEP(SAI->getElementType(), DevArray, 1680 Builder.CreateNeg(Offset)); 1681 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1682 } 1683 Value *Slot = Builder.CreateGEP( 1684 ArrayTy, Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1685 1686 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1687 Value *ValPtr = nullptr; 1688 if (PollyManagedMemory) 1689 ValPtr = DevArray; 1690 else 1691 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1692 1693 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1694 " to be stored into Parameters"); 1695 Value *ValPtrCast = 1696 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1697 Builder.CreateStore(ValPtrCast, Slot); 1698 } else { 1699 Instruction *Param = 1700 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1701 Launch + "_param_" + std::to_string(Index), 1702 EntryBlock->getTerminator()); 1703 Builder.CreateStore(DevArray, Param); 1704 Value *ParamTyped = 1705 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1706 Builder.CreateStore(ParamTyped, Slot); 1707 } 1708 Index++; 1709 } 1710 1711 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1712 1713 for (long i = 0; i < NumHostIters; i++) { 1714 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1715 Value *Val = IDToValue[Id]; 1716 isl_id_free(Id); 1717 1718 if (Runtime == GPURuntime::OpenCL) 1719 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1720 1721 Instruction *Param = 1722 new AllocaInst(Val->getType(), AddressSpace, 1723 Launch + "_param_" + std::to_string(Index), 1724 EntryBlock->getTerminator()); 1725 Builder.CreateStore(Val, Param); 1726 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1727 Index++; 1728 } 1729 1730 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1731 1732 for (long i = 0; i < NumVars; i++) { 1733 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1734 Value *Val = IDToValue[Id]; 1735 if (ValueMap.count(Val)) 1736 Val = ValueMap[Val]; 1737 isl_id_free(Id); 1738 1739 if (Runtime == GPURuntime::OpenCL) 1740 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1741 1742 Instruction *Param = 1743 new AllocaInst(Val->getType(), AddressSpace, 1744 Launch + "_param_" + std::to_string(Index), 1745 EntryBlock->getTerminator()); 1746 Builder.CreateStore(Val, Param); 1747 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1748 Index++; 1749 } 1750 1751 for (auto Val : SubtreeValues) { 1752 if (Runtime == GPURuntime::OpenCL) 1753 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1754 1755 Instruction *Param = 1756 new AllocaInst(Val->getType(), AddressSpace, 1757 Launch + "_param_" + std::to_string(Index), 1758 EntryBlock->getTerminator()); 1759 Builder.CreateStore(Val, Param); 1760 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1761 Index++; 1762 } 1763 1764 if (Runtime == GPURuntime::OpenCL) { 1765 for (int i = 0; i < NumArgs; i++) { 1766 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1767 Instruction *Param = 1768 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1769 Launch + "_param_size_" + std::to_string(i), 1770 EntryBlock->getTerminator()); 1771 Builder.CreateStore(Val, Param); 1772 insertStoreParameter(ArrayTy, Parameters, Param, Index); 1773 Index++; 1774 } 1775 } 1776 1777 auto Location = EntryBlock->getTerminator(); 1778 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1779 Launch + "_params_i8ptr", Location); 1780 } 1781 1782 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1783 SetVector<Function *> SubtreeFunctions) { 1784 for (auto Fn : SubtreeFunctions) { 1785 const std::string ClonedFnName = Fn->getName().str(); 1786 Function *Clone = GPUModule->getFunction(ClonedFnName); 1787 if (!Clone) 1788 Clone = 1789 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1790 ClonedFnName, GPUModule.get()); 1791 assert(Clone && "Expected cloned function to be initialized."); 1792 assert(ValueMap.find(Fn) == ValueMap.end() && 1793 "Fn already present in ValueMap"); 1794 ValueMap[Fn] = Clone; 1795 } 1796 } 1797 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1798 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1799 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1800 isl_id_free(Id); 1801 isl_ast_node_free(KernelStmt); 1802 1803 if (Kernel->n_grid > 1) 1804 DeepestParallel = std::max( 1805 DeepestParallel, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1806 else 1807 DeepestSequential = std::max( 1808 DeepestSequential, (unsigned)isl_space_dim(Kernel->space, isl_dim_set)); 1809 1810 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1811 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1812 1813 SetVector<Value *> SubtreeValues; 1814 SetVector<Function *> SubtreeFunctions; 1815 SetVector<const Loop *> Loops; 1816 isl::space ParamSpace; 1817 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1818 getReferencesInKernel(Kernel); 1819 1820 // Add parameters that appear only in the access function to the kernel 1821 // space. This is important to make sure that all isl_ids are passed as 1822 // parameters to the kernel, even though we may not have all parameters 1823 // in the context to improve compile time. 1824 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1825 1826 assert(Kernel->tree && "Device AST of kernel node is empty"); 1827 1828 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1829 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1830 ValueMapT HostValueMap = ValueMap; 1831 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1832 ScalarMap.clear(); 1833 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1834 EscapeMap.clear(); 1835 1836 // Create for all loops we depend on values that contain the current loop 1837 // iteration. These values are necessary to generate code for SCEVs that 1838 // depend on such loops. As a result we need to pass them to the subfunction. 1839 for (const Loop *L : Loops) { 1840 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1841 SE.getUnknown(Builder.getInt64(1)), 1842 L, SCEV::FlagAnyWrap); 1843 Value *V = generateSCEV(OuterLIV); 1844 OutsideLoopIterations[L] = SE.getUnknown(V); 1845 SubtreeValues.insert(V); 1846 } 1847 1848 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1849 setupKernelSubtreeFunctions(SubtreeFunctions); 1850 1851 create(isl_ast_node_copy(Kernel->tree)); 1852 1853 finalizeKernelArguments(Kernel); 1854 Function *F = Builder.GetInsertBlock()->getParent(); 1855 if (Arch == GPUArch::NVPTX64) 1856 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1857 clearDominators(F); 1858 clearScalarEvolution(F); 1859 clearLoops(F); 1860 1861 IDToValue = HostIDs; 1862 1863 ValueMap = std::move(HostValueMap); 1864 ScalarMap = std::move(HostScalarMap); 1865 EscapeMap = std::move(HostEscapeMap); 1866 IDToSAI.clear(); 1867 Annotator.resetAlternativeAliasBases(); 1868 for (auto &BasePtr : LocalArrays) 1869 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1870 LocalArrays.clear(); 1871 1872 std::string ASMString = finalizeKernelFunction(); 1873 Builder.SetInsertPoint(&HostInsertPoint); 1874 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1875 1876 std::string Name = getKernelFuncName(Kernel->id); 1877 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1878 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1879 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1880 1881 Value *GridDimX, *GridDimY; 1882 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1883 1884 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1885 BlockDimZ, Parameters); 1886 createCallFreeKernel(GPUKernel); 1887 1888 for (auto Id : KernelIds) 1889 isl_id_free(Id); 1890 1891 KernelIds.clear(); 1892 } 1893 1894 /// Compute the DataLayout string for the NVPTX backend. 1895 /// 1896 /// @param is64Bit Are we looking for a 64 bit architecture? 1897 static std::string computeNVPTXDataLayout(bool is64Bit) { 1898 std::string Ret = ""; 1899 1900 if (!is64Bit) { 1901 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1902 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1903 "64-v128:128:128-n16:32:64"; 1904 } else { 1905 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1906 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1907 "64-v128:128:128-n16:32:64"; 1908 } 1909 1910 return Ret; 1911 } 1912 1913 /// Compute the DataLayout string for a SPIR kernel. 1914 /// 1915 /// @param is64Bit Are we looking for a 64 bit architecture? 1916 static std::string computeSPIRDataLayout(bool is64Bit) { 1917 std::string Ret = ""; 1918 1919 if (!is64Bit) { 1920 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1921 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1922 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1923 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1924 } else { 1925 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1926 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1927 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1928 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1929 } 1930 1931 return Ret; 1932 } 1933 1934 Function * 1935 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1936 SetVector<Value *> &SubtreeValues) { 1937 std::vector<Type *> Args; 1938 std::string Identifier = getKernelFuncName(Kernel->id); 1939 1940 std::vector<Metadata *> MemoryType; 1941 1942 for (long i = 0; i < Prog->n_array; i++) { 1943 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1944 continue; 1945 1946 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1947 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1948 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1949 Args.push_back(SAI->getElementType()); 1950 MemoryType.push_back( 1951 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1952 } else { 1953 static const int UseGlobalMemory = 1; 1954 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1955 MemoryType.push_back( 1956 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1957 } 1958 } 1959 1960 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1961 1962 for (long i = 0; i < NumHostIters; i++) { 1963 Args.push_back(Builder.getInt64Ty()); 1964 MemoryType.push_back( 1965 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1966 } 1967 1968 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1969 1970 for (long i = 0; i < NumVars; i++) { 1971 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1972 Value *Val = IDToValue[Id]; 1973 isl_id_free(Id); 1974 Args.push_back(Val->getType()); 1975 MemoryType.push_back( 1976 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1977 } 1978 1979 for (auto *V : SubtreeValues) { 1980 Args.push_back(V->getType()); 1981 MemoryType.push_back( 1982 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1983 } 1984 1985 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1986 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1987 GPUModule.get()); 1988 1989 std::vector<Metadata *> EmptyStrings; 1990 1991 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1992 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1993 } 1994 1995 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1996 FN->setMetadata("kernel_arg_addr_space", 1997 MDNode::get(FN->getContext(), MemoryType)); 1998 FN->setMetadata("kernel_arg_name", 1999 MDNode::get(FN->getContext(), EmptyStrings)); 2000 FN->setMetadata("kernel_arg_access_qual", 2001 MDNode::get(FN->getContext(), EmptyStrings)); 2002 FN->setMetadata("kernel_arg_type", 2003 MDNode::get(FN->getContext(), EmptyStrings)); 2004 FN->setMetadata("kernel_arg_type_qual", 2005 MDNode::get(FN->getContext(), EmptyStrings)); 2006 FN->setMetadata("kernel_arg_base_type", 2007 MDNode::get(FN->getContext(), EmptyStrings)); 2008 } 2009 2010 switch (Arch) { 2011 case GPUArch::NVPTX64: 2012 FN->setCallingConv(CallingConv::PTX_Kernel); 2013 break; 2014 case GPUArch::SPIR32: 2015 case GPUArch::SPIR64: 2016 FN->setCallingConv(CallingConv::SPIR_KERNEL); 2017 break; 2018 } 2019 2020 auto Arg = FN->arg_begin(); 2021 for (long i = 0; i < Kernel->n_array; i++) { 2022 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2023 continue; 2024 2025 Arg->setName(Kernel->array[i].array->name); 2026 2027 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2028 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2029 Type *EleTy = SAI->getElementType(); 2030 Value *Val = &*Arg; 2031 SmallVector<const SCEV *, 4> Sizes; 2032 isl_ast_build *Build = 2033 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2034 Sizes.push_back(nullptr); 2035 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2036 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2037 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2038 auto V = ExprBuilder.create(DimSize); 2039 Sizes.push_back(SE.getSCEV(V)); 2040 } 2041 const ScopArrayInfo *SAIRep = 2042 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2043 LocalArrays.push_back(Val); 2044 2045 isl_ast_build_free(Build); 2046 KernelIds.push_back(Id); 2047 IDToSAI[Id] = SAIRep; 2048 Arg++; 2049 } 2050 2051 for (long i = 0; i < NumHostIters; i++) { 2052 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2053 Arg->setName(isl_id_get_name(Id)); 2054 IDToValue[Id] = &*Arg; 2055 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2056 Arg++; 2057 } 2058 2059 for (long i = 0; i < NumVars; i++) { 2060 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2061 Arg->setName(isl_id_get_name(Id)); 2062 Value *Val = IDToValue[Id]; 2063 ValueMap[Val] = &*Arg; 2064 IDToValue[Id] = &*Arg; 2065 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2066 Arg++; 2067 } 2068 2069 for (auto *V : SubtreeValues) { 2070 Arg->setName(V->getName()); 2071 ValueMap[V] = &*Arg; 2072 Arg++; 2073 } 2074 2075 return FN; 2076 } 2077 2078 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2079 Intrinsic::ID IntrinsicsBID[2]; 2080 Intrinsic::ID IntrinsicsTID[3]; 2081 2082 switch (Arch) { 2083 case GPUArch::SPIR64: 2084 case GPUArch::SPIR32: 2085 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2086 case GPUArch::NVPTX64: 2087 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2088 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2089 2090 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2091 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2092 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2093 break; 2094 } 2095 2096 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2097 std::string Name = isl_id_get_name(Id); 2098 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2099 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2100 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2101 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2102 IDToValue[Id] = Val; 2103 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2104 }; 2105 2106 for (int i = 0; i < Kernel->n_grid; ++i) { 2107 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2108 addId(Id, IntrinsicsBID[i]); 2109 } 2110 2111 for (int i = 0; i < Kernel->n_block; ++i) { 2112 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2113 addId(Id, IntrinsicsTID[i]); 2114 } 2115 } 2116 2117 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2118 bool SizeTypeIs64bit) { 2119 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2120 "__gen_ocl_get_group_id1", 2121 "__gen_ocl_get_group_id2"}; 2122 2123 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2124 "__gen_ocl_get_local_id1", 2125 "__gen_ocl_get_local_id2"}; 2126 IntegerType *SizeT = 2127 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2128 2129 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2130 IntegerType *SizeT) mutable { 2131 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2132 Function *FN = M->getFunction(Name); 2133 2134 // If FN is not available, declare it. 2135 if (!FN) { 2136 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2137 std::vector<Type *> Args; 2138 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2139 FN = Function::Create(Ty, Linkage, Name, M); 2140 FN->setCallingConv(CallingConv::SPIR_FUNC); 2141 } 2142 2143 Value *Val = Builder.CreateCall(FN, {}); 2144 if (SizeT == Builder.getInt32Ty()) 2145 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2146 IDToValue[Id] = Val; 2147 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2148 }; 2149 2150 for (int i = 0; i < Kernel->n_grid; ++i) 2151 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2152 2153 for (int i = 0; i < Kernel->n_block; ++i) 2154 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2155 } 2156 2157 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2158 auto Arg = FN->arg_begin(); 2159 for (long i = 0; i < Kernel->n_array; i++) { 2160 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2161 continue; 2162 2163 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2164 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2165 isl_id_free(Id); 2166 2167 if (SAI->getNumberOfDimensions() > 0) { 2168 Arg++; 2169 continue; 2170 } 2171 2172 Value *Val = &*Arg; 2173 2174 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2175 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2176 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2177 Val = Builder.CreateLoad(SAI->getElementType(), TypedArgPtr); 2178 } 2179 2180 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2181 Builder.CreateStore(Val, Alloca); 2182 2183 Arg++; 2184 } 2185 } 2186 2187 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2188 auto *FN = Builder.GetInsertBlock()->getParent(); 2189 auto Arg = FN->arg_begin(); 2190 2191 bool StoredScalar = false; 2192 for (long i = 0; i < Kernel->n_array; i++) { 2193 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2194 continue; 2195 2196 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2197 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2198 isl_id_free(Id); 2199 2200 if (SAI->getNumberOfDimensions() > 0) { 2201 Arg++; 2202 continue; 2203 } 2204 2205 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2206 Arg++; 2207 continue; 2208 } 2209 2210 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2211 Value *ArgPtr = &*Arg; 2212 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2213 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2214 Value *Val = Builder.CreateLoad(SAI->getElementType(), Alloca); 2215 Builder.CreateStore(Val, TypedArgPtr); 2216 StoredScalar = true; 2217 2218 Arg++; 2219 } 2220 2221 if (StoredScalar) { 2222 /// In case more than one thread contains scalar stores, the generated 2223 /// code might be incorrect, if we only store at the end of the kernel. 2224 /// To support this case we need to store these scalars back at each 2225 /// memory store or at least before each kernel barrier. 2226 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2227 BuildSuccessful = 0; 2228 LLVM_DEBUG( 2229 dbgs() << getUniqueScopName(&S) 2230 << " has a store to a scalar value that" 2231 " would be undefined to run in parallel. Bailing out.\n";); 2232 } 2233 } 2234 } 2235 2236 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2237 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2238 2239 for (int i = 0; i < Kernel->n_var; ++i) { 2240 struct ppcg_kernel_var &Var = Kernel->var[i]; 2241 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2242 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2243 2244 Type *ArrayTy = EleTy; 2245 SmallVector<const SCEV *, 4> Sizes; 2246 2247 Sizes.push_back(nullptr); 2248 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2249 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2250 long Bound = isl_val_get_num_si(Val); 2251 isl_val_free(Val); 2252 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2253 } 2254 2255 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2256 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2257 long Bound = isl_val_get_num_si(Val); 2258 isl_val_free(Val); 2259 ArrayTy = ArrayType::get(ArrayTy, Bound); 2260 } 2261 2262 const ScopArrayInfo *SAI; 2263 Value *Allocation; 2264 if (Var.type == ppcg_access_shared) { 2265 auto GlobalVar = new GlobalVariable( 2266 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2267 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2268 GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8)); 2269 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2270 2271 Allocation = GlobalVar; 2272 } else if (Var.type == ppcg_access_private) { 2273 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2274 } else { 2275 llvm_unreachable("unknown variable type"); 2276 } 2277 SAI = 2278 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2279 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2280 IDToValue[Id] = Allocation; 2281 LocalArrays.push_back(Allocation); 2282 KernelIds.push_back(Id); 2283 IDToSAI[Id] = SAI; 2284 } 2285 } 2286 2287 void GPUNodeBuilder::createKernelFunction( 2288 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2289 SetVector<Function *> &SubtreeFunctions) { 2290 std::string Identifier = getKernelFuncName(Kernel->id); 2291 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2292 2293 switch (Arch) { 2294 case GPUArch::NVPTX64: 2295 if (Runtime == GPURuntime::CUDA) 2296 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2297 else if (Runtime == GPURuntime::OpenCL) 2298 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2299 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2300 break; 2301 case GPUArch::SPIR32: 2302 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2303 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2304 break; 2305 case GPUArch::SPIR64: 2306 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2307 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2308 break; 2309 } 2310 2311 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2312 2313 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2314 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2315 2316 DT.addNewBlock(EntryBlock, PrevBlock); 2317 2318 Builder.SetInsertPoint(EntryBlock); 2319 Builder.CreateRetVoid(); 2320 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2321 2322 ScopDetection::markFunctionAsInvalid(FN); 2323 2324 prepareKernelArguments(Kernel, FN); 2325 createKernelVariables(Kernel, FN); 2326 2327 switch (Arch) { 2328 case GPUArch::NVPTX64: 2329 insertKernelIntrinsics(Kernel); 2330 break; 2331 case GPUArch::SPIR32: 2332 insertKernelCallsSPIR(Kernel, false); 2333 break; 2334 case GPUArch::SPIR64: 2335 insertKernelCallsSPIR(Kernel, true); 2336 break; 2337 } 2338 } 2339 2340 std::string GPUNodeBuilder::createKernelASM() { 2341 llvm::Triple GPUTriple; 2342 2343 switch (Arch) { 2344 case GPUArch::NVPTX64: 2345 switch (Runtime) { 2346 case GPURuntime::CUDA: 2347 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2348 break; 2349 case GPURuntime::OpenCL: 2350 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2351 break; 2352 } 2353 break; 2354 case GPUArch::SPIR64: 2355 case GPUArch::SPIR32: 2356 std::string SPIRAssembly; 2357 raw_string_ostream IROstream(SPIRAssembly); 2358 IROstream << *GPUModule; 2359 IROstream.flush(); 2360 return SPIRAssembly; 2361 } 2362 2363 std::string ErrMsg; 2364 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2365 2366 if (!GPUTarget) { 2367 errs() << ErrMsg << "\n"; 2368 return ""; 2369 } 2370 2371 TargetOptions Options; 2372 Options.UnsafeFPMath = FastMath; 2373 2374 std::string subtarget; 2375 2376 switch (Arch) { 2377 case GPUArch::NVPTX64: 2378 subtarget = CudaVersion; 2379 break; 2380 case GPUArch::SPIR32: 2381 case GPUArch::SPIR64: 2382 llvm_unreachable("No subtarget for SPIR architecture"); 2383 } 2384 2385 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2386 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2387 2388 SmallString<0> ASMString; 2389 raw_svector_ostream ASMStream(ASMString); 2390 llvm::legacy::PassManager PM; 2391 2392 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2393 2394 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile, 2395 true /* verify */)) { 2396 errs() << "The target does not support generation of this file type!\n"; 2397 return ""; 2398 } 2399 2400 PM.run(*GPUModule); 2401 2402 return ASMStream.str().str(); 2403 } 2404 2405 bool GPUNodeBuilder::requiresCUDALibDevice() { 2406 bool RequiresLibDevice = false; 2407 for (Function &F : GPUModule->functions()) { 2408 if (!F.isDeclaration()) 2409 continue; 2410 2411 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2412 if (CUDALibDeviceFunc.length() != 0) { 2413 // We need to handle the case where a module looks like this: 2414 // @expf(..) 2415 // @llvm.exp.f64(..) 2416 // Both of these functions would be renamed to `__nv_expf`. 2417 // 2418 // So, we must first check for the existence of the libdevice function. 2419 // If this exists, we replace our current function with it. 2420 // 2421 // If it does not exist, we rename the current function to the 2422 // libdevice functiono name. 2423 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2424 F.replaceAllUsesWith(Replacement); 2425 else 2426 F.setName(CUDALibDeviceFunc); 2427 RequiresLibDevice = true; 2428 } 2429 } 2430 2431 return RequiresLibDevice; 2432 } 2433 2434 void GPUNodeBuilder::addCUDALibDevice() { 2435 if (Arch != GPUArch::NVPTX64) 2436 return; 2437 2438 if (requiresCUDALibDevice()) { 2439 SMDiagnostic Error; 2440 2441 errs() << CUDALibDevice << "\n"; 2442 auto LibDeviceModule = 2443 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2444 2445 if (!LibDeviceModule) { 2446 BuildSuccessful = false; 2447 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2448 "kernel generation. Please set -polly-acc-libdevice " 2449 "accordingly.\n"); 2450 return; 2451 } 2452 2453 Linker L(*GPUModule); 2454 2455 // Set an nvptx64 target triple to avoid linker warnings. The original 2456 // triple of the libdevice files are nvptx-unknown-unknown. 2457 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2458 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2459 } 2460 } 2461 2462 std::string GPUNodeBuilder::finalizeKernelFunction() { 2463 2464 if (verifyModule(*GPUModule)) { 2465 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2466 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2467 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2468 verifyModule(*GPUModule, &dbgs());); 2469 2470 if (FailOnVerifyModuleFailure) 2471 llvm_unreachable("VerifyModule failed."); 2472 2473 BuildSuccessful = false; 2474 return ""; 2475 } 2476 2477 addCUDALibDevice(); 2478 2479 if (DumpKernelIR) 2480 outs() << *GPUModule << "\n"; 2481 2482 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2483 // Optimize module. 2484 llvm::legacy::PassManager OptPasses; 2485 PassManagerBuilder PassBuilder; 2486 PassBuilder.OptLevel = 3; 2487 PassBuilder.SizeLevel = 0; 2488 PassBuilder.populateModulePassManager(OptPasses); 2489 OptPasses.run(*GPUModule); 2490 } 2491 2492 std::string Assembly = createKernelASM(); 2493 2494 if (DumpKernelASM) 2495 outs() << Assembly << "\n"; 2496 2497 GPUModule.release(); 2498 KernelIDs.clear(); 2499 2500 return Assembly; 2501 } 2502 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2503 /// @param PwAffs The list of piecewise affine functions to create an 2504 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2505 /// all the isl_pw_aff are used up by this function. 2506 /// 2507 /// @returns The `isl_pw_aff_list`. 2508 __isl_give isl_pw_aff_list * 2509 createPwAffList(isl_ctx *Context, 2510 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2511 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2512 2513 for (unsigned i = 0; i < PwAffs.size(); i++) { 2514 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2515 } 2516 return List; 2517 } 2518 2519 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2520 /// 2521 /// We loop over all `pw_aff` and align all of their spaces together to 2522 /// create a common space for all the `pw_aff`. This common space is the 2523 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2524 /// with the given `SeedSpace`. 2525 /// @param PwAffs The list of piecewise affine functions we want to align. 2526 /// This is an rvalue reference because the entire vector is 2527 /// used up by the end of the operation. 2528 /// @param SeedSpace The space to start the alignment process with. 2529 /// @returns A std::pair, whose first element is the aligned space, 2530 /// whose second element is the vector of aligned piecewise 2531 /// affines. 2532 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2533 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2534 __isl_take isl_space *SeedSpace) { 2535 assert(SeedSpace && "Invalid seed space given."); 2536 2537 isl_space *AlignSpace = SeedSpace; 2538 for (isl_pw_aff *PwAff : PwAffs) { 2539 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2540 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2541 } 2542 std::vector<isl_pw_aff *> AdjustedPwAffs; 2543 2544 for (unsigned i = 0; i < PwAffs.size(); i++) { 2545 isl_pw_aff *Adjusted = PwAffs[i]; 2546 assert(Adjusted && "Invalid pw_aff given."); 2547 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2548 AdjustedPwAffs.push_back(Adjusted); 2549 } 2550 return std::make_pair(AlignSpace, AdjustedPwAffs); 2551 } 2552 2553 namespace { 2554 class PPCGCodeGeneration final : public ScopPass { 2555 public: 2556 static char ID; 2557 2558 GPURuntime Runtime = GPURuntime::CUDA; 2559 2560 GPUArch Architecture = GPUArch::NVPTX64; 2561 2562 /// The scop that is currently processed. 2563 Scop *S; 2564 2565 LoopInfo *LI; 2566 DominatorTree *DT; 2567 ScalarEvolution *SE; 2568 const DataLayout *DL; 2569 RegionInfo *RI; 2570 2571 PPCGCodeGeneration() : ScopPass(ID) { 2572 // Apply defaults. 2573 Runtime = GPURuntimeChoice; 2574 Architecture = GPUArchChoice; 2575 } 2576 2577 /// Construct compilation options for PPCG. 2578 /// 2579 /// @returns The compilation options. 2580 ppcg_options *createPPCGOptions() { 2581 auto DebugOptions = 2582 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2583 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2584 2585 DebugOptions->dump_schedule_constraints = false; 2586 DebugOptions->dump_schedule = false; 2587 DebugOptions->dump_final_schedule = false; 2588 DebugOptions->dump_sizes = false; 2589 DebugOptions->verbose = false; 2590 2591 Options->debug = DebugOptions; 2592 2593 Options->group_chains = false; 2594 Options->reschedule = true; 2595 Options->scale_tile_loops = false; 2596 Options->wrap = false; 2597 2598 Options->non_negative_parameters = false; 2599 Options->ctx = nullptr; 2600 Options->sizes = nullptr; 2601 2602 Options->tile = true; 2603 Options->tile_size = 32; 2604 2605 Options->isolate_full_tiles = false; 2606 2607 Options->use_private_memory = PrivateMemory; 2608 Options->use_shared_memory = SharedMemory; 2609 Options->max_shared_memory = 48 * 1024; 2610 2611 Options->target = PPCG_TARGET_CUDA; 2612 Options->openmp = false; 2613 Options->linearize_device_arrays = true; 2614 Options->allow_gnu_extensions = false; 2615 2616 Options->unroll_copy_shared = false; 2617 Options->unroll_gpu_tile = false; 2618 Options->live_range_reordering = true; 2619 2620 Options->live_range_reordering = true; 2621 Options->hybrid = false; 2622 Options->opencl_compiler_options = nullptr; 2623 Options->opencl_use_gpu = false; 2624 Options->opencl_n_include_file = 0; 2625 Options->opencl_include_files = nullptr; 2626 Options->opencl_print_kernel_types = false; 2627 Options->opencl_embed_kernel_code = false; 2628 2629 Options->save_schedule_file = nullptr; 2630 Options->load_schedule_file = nullptr; 2631 2632 return Options; 2633 } 2634 2635 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2636 /// 2637 /// Instead of a normal access of the form: 2638 /// 2639 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2640 /// 2641 /// a tagged access has the form 2642 /// 2643 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2644 /// 2645 /// where 'id' is an additional space that references the memory access that 2646 /// triggered the access. 2647 /// 2648 /// @param AccessTy The type of the memory accesses to collect. 2649 /// 2650 /// @return The relation describing all tagged memory accesses. 2651 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2652 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2653 2654 for (auto &Stmt : *S) 2655 for (auto &Acc : Stmt) 2656 if (Acc->getType() == AccessTy) { 2657 isl_map *Relation = Acc->getAccessRelation().release(); 2658 Relation = 2659 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2660 2661 isl_space *Space = isl_map_get_space(Relation); 2662 Space = isl_space_range(Space); 2663 Space = isl_space_from_range(Space); 2664 Space = 2665 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2666 isl_map *Universe = isl_map_universe(Space); 2667 Relation = isl_map_domain_product(Relation, Universe); 2668 Accesses = isl_union_map_add_map(Accesses, Relation); 2669 } 2670 2671 return Accesses; 2672 } 2673 2674 /// Get the set of all read accesses, tagged with the access id. 2675 /// 2676 /// @see getTaggedAccesses 2677 isl_union_map *getTaggedReads() { 2678 return getTaggedAccesses(MemoryAccess::READ); 2679 } 2680 2681 /// Get the set of all may (and must) accesses, tagged with the access id. 2682 /// 2683 /// @see getTaggedAccesses 2684 isl_union_map *getTaggedMayWrites() { 2685 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2686 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2687 } 2688 2689 /// Get the set of all must accesses, tagged with the access id. 2690 /// 2691 /// @see getTaggedAccesses 2692 isl_union_map *getTaggedMustWrites() { 2693 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2694 } 2695 2696 /// Collect parameter and array names as isl_ids. 2697 /// 2698 /// To reason about the different parameters and arrays used, ppcg requires 2699 /// a list of all isl_ids in use. As PPCG traditionally performs 2700 /// source-to-source compilation each of these isl_ids is mapped to the 2701 /// expression that represents it. As we do not have a corresponding 2702 /// expression in Polly, we just map each id to a 'zero' expression to match 2703 /// the data format that ppcg expects. 2704 /// 2705 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2706 __isl_give isl_id_to_ast_expr *getNames() { 2707 auto *Names = isl_id_to_ast_expr_alloc( 2708 S->getIslCtx().get(), 2709 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2710 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2711 2712 for (const SCEV *P : S->parameters()) { 2713 isl_id *Id = S->getIdForParam(P).release(); 2714 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2715 } 2716 2717 for (auto &Array : S->arrays()) { 2718 auto Id = Array->getBasePtrId().release(); 2719 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2720 } 2721 2722 isl_ast_expr_free(Zero); 2723 2724 return Names; 2725 } 2726 2727 /// Create a new PPCG scop from the current scop. 2728 /// 2729 /// The PPCG scop is initialized with data from the current polly::Scop. From 2730 /// this initial data, the data-dependences in the PPCG scop are initialized. 2731 /// We do not use Polly's dependence analysis for now, to ensure we match 2732 /// the PPCG default behaviour more closely. 2733 /// 2734 /// @returns A new ppcg scop. 2735 ppcg_scop *createPPCGScop() { 2736 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2737 2738 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2739 2740 PPCGScop->options = createPPCGOptions(); 2741 // enable live range reordering 2742 PPCGScop->options->live_range_reordering = 1; 2743 2744 PPCGScop->start = 0; 2745 PPCGScop->end = 0; 2746 2747 PPCGScop->context = S->getContext().release(); 2748 PPCGScop->domain = S->getDomains().release(); 2749 // TODO: investigate this further. PPCG calls collect_call_domains. 2750 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2751 PPCGScop->tagged_reads = getTaggedReads(); 2752 PPCGScop->reads = S->getReads().release(); 2753 PPCGScop->live_in = nullptr; 2754 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2755 PPCGScop->may_writes = S->getWrites().release(); 2756 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2757 PPCGScop->must_writes = S->getMustWrites().release(); 2758 PPCGScop->live_out = nullptr; 2759 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2760 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2761 2762 PPCGScop->tagger = nullptr; 2763 PPCGScop->independence = 2764 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2765 PPCGScop->dep_flow = nullptr; 2766 PPCGScop->tagged_dep_flow = nullptr; 2767 PPCGScop->dep_false = nullptr; 2768 PPCGScop->dep_forced = nullptr; 2769 PPCGScop->dep_order = nullptr; 2770 PPCGScop->tagged_dep_order = nullptr; 2771 2772 PPCGScop->schedule = S->getScheduleTree().release(); 2773 // If we have something non-trivial to kill, add it to the schedule 2774 if (KillsInfo.KillsSchedule.get()) 2775 PPCGScop->schedule = isl_schedule_sequence( 2776 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2777 2778 PPCGScop->names = getNames(); 2779 PPCGScop->pet = nullptr; 2780 2781 compute_tagger(PPCGScop); 2782 compute_dependences(PPCGScop); 2783 eliminate_dead_code(PPCGScop); 2784 2785 return PPCGScop; 2786 } 2787 2788 /// Collect the array accesses in a statement. 2789 /// 2790 /// @param Stmt The statement for which to collect the accesses. 2791 /// 2792 /// @returns A list of array accesses. 2793 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2794 gpu_stmt_access *Accesses = nullptr; 2795 2796 for (MemoryAccess *Acc : Stmt) { 2797 auto Access = 2798 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2799 Access->read = Acc->isRead(); 2800 Access->write = Acc->isWrite(); 2801 Access->access = Acc->getAccessRelation().release(); 2802 isl_space *Space = isl_map_get_space(Access->access); 2803 Space = isl_space_range(Space); 2804 Space = isl_space_from_range(Space); 2805 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2806 isl_map *Universe = isl_map_universe(Space); 2807 Access->tagged_access = 2808 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2809 Access->exact_write = !Acc->isMayWrite(); 2810 Access->ref_id = Acc->getId().release(); 2811 Access->next = Accesses; 2812 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2813 // TODO: Also mark one-element accesses to arrays as fixed-element. 2814 Access->fixed_element = 2815 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2816 Accesses = Access; 2817 } 2818 2819 return Accesses; 2820 } 2821 2822 /// Collect the list of GPU statements. 2823 /// 2824 /// Each statement has an id, a pointer to the underlying data structure, 2825 /// as well as a list with all memory accesses. 2826 /// 2827 /// TODO: Initialize the list of memory accesses. 2828 /// 2829 /// @returns A linked-list of statements. 2830 gpu_stmt *getStatements() { 2831 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2832 std::distance(S->begin(), S->end())); 2833 2834 int i = 0; 2835 for (auto &Stmt : *S) { 2836 gpu_stmt *GPUStmt = &Stmts[i]; 2837 2838 GPUStmt->id = Stmt.getDomainId().release(); 2839 2840 // We use the pet stmt pointer to keep track of the Polly statements. 2841 GPUStmt->stmt = (pet_stmt *)&Stmt; 2842 GPUStmt->accesses = getStmtAccesses(Stmt); 2843 i++; 2844 } 2845 2846 return Stmts; 2847 } 2848 2849 /// Derive the extent of an array. 2850 /// 2851 /// The extent of an array is the set of elements that are within the 2852 /// accessed array. For the inner dimensions, the extent constraints are 2853 /// 0 and the size of the corresponding array dimension. For the first 2854 /// (outermost) dimension, the extent constraints are the minimal and maximal 2855 /// subscript value for the first dimension. 2856 /// 2857 /// @param Array The array to derive the extent for. 2858 /// 2859 /// @returns An isl_set describing the extent of the array. 2860 isl::set getExtent(ScopArrayInfo *Array) { 2861 unsigned NumDims = Array->getNumberOfDimensions(); 2862 2863 if (Array->getNumberOfDimensions() == 0) 2864 return isl::set::universe(Array->getSpace()); 2865 2866 isl::union_map Accesses = S->getAccesses(Array); 2867 isl::union_set AccessUSet = Accesses.range(); 2868 AccessUSet = AccessUSet.coalesce(); 2869 AccessUSet = AccessUSet.detect_equalities(); 2870 AccessUSet = AccessUSet.coalesce(); 2871 2872 if (AccessUSet.is_empty()) 2873 return isl::set::empty(Array->getSpace()); 2874 2875 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2876 2877 isl::local_space LS = isl::local_space(Array->getSpace()); 2878 2879 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2880 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2881 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2882 OuterMin = OuterMin.add_dims(isl::dim::in, 2883 unsignedFromIslSize(Val.dim(isl::dim::in))); 2884 OuterMax = OuterMax.add_dims(isl::dim::in, 2885 unsignedFromIslSize(Val.dim(isl::dim::in))); 2886 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2887 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2888 2889 isl::set Extent = isl::set::universe(Array->getSpace()); 2890 2891 Extent = Extent.intersect(OuterMin.le_set(Val)); 2892 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2893 2894 for (unsigned i = 1; i < NumDims; ++i) 2895 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2896 2897 for (unsigned i = 0; i < NumDims; ++i) { 2898 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2899 2900 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2901 // Fortran array will we have a legitimate dimension. 2902 if (PwAff.is_null()) { 2903 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2904 continue; 2905 } 2906 2907 isl::pw_aff Val = isl::aff::var_on_domain( 2908 isl::local_space(Array->getSpace()), isl::dim::set, i); 2909 PwAff = PwAff.add_dims(isl::dim::in, 2910 unsignedFromIslSize(Val.dim(isl::dim::in))); 2911 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2912 isl::set Set = PwAff.gt_set(Val); 2913 Extent = Set.intersect(Extent); 2914 } 2915 2916 return Extent; 2917 } 2918 2919 /// Derive the bounds of an array. 2920 /// 2921 /// For the first dimension we derive the bound of the array from the extent 2922 /// of this dimension. For inner dimensions we obtain their size directly from 2923 /// ScopArrayInfo. 2924 /// 2925 /// @param PPCGArray The array to compute bounds for. 2926 /// @param Array The polly array from which to take the information. 2927 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2928 std::vector<isl_pw_aff *> Bounds; 2929 2930 if (PPCGArray.n_index > 0) { 2931 if (isl_set_is_empty(PPCGArray.extent)) { 2932 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2933 isl_local_space *LS = isl_local_space_from_space( 2934 isl_space_params(isl_set_get_space(Dom))); 2935 isl_set_free(Dom); 2936 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2937 Bounds.push_back(Zero); 2938 } else { 2939 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2940 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2941 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2942 isl_set_free(Dom); 2943 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2944 isl_local_space *LS = 2945 isl_local_space_from_space(isl_set_get_space(Dom)); 2946 isl_aff *One = isl_aff_zero_on_domain(LS); 2947 One = isl_aff_add_constant_si(One, 1); 2948 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2949 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2950 Bounds.push_back(Bound); 2951 } 2952 } 2953 2954 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2955 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2956 auto LS = isl_pw_aff_get_domain_space(Bound); 2957 auto Aff = isl_multi_aff_zero(LS); 2958 2959 // We need types to work out, which is why we perform this weird dance 2960 // with `Aff` and `Bound`. Consider this example: 2961 2962 // LS: [p] -> { [] } 2963 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2964 // This `~` is used to denote a "null space" (which is different from 2965 // a *zero dimensional* space), which is something that ISL does not 2966 // show you when pretty printing. 2967 2968 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2969 // space, not a "null space" which does not exist at all. 2970 2971 // When we pullback (precompose) `Bound` with `Zero`, we get: 2972 // Bound . Zero = 2973 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2974 // [p] -> { ~ -> [(10p)] } = 2975 // [p] -> [(10p)] (as ISL pretty prints it) 2976 // Bound Pullback: [p] -> { [(10p)] } 2977 2978 // We want this kind of an expression for Bound, without a 2979 // zero dimensional input, but with a "null space" input for the types 2980 // to work out later on, as far as I (Siddharth Bhat) understand. 2981 // I was unable to find a reference to this in the ISL manual. 2982 // References: Tobias Grosser. 2983 2984 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2985 Bounds.push_back(Bound); 2986 } 2987 2988 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2989 /// to have the same parameter dimensions. So, we need to align them to an 2990 /// appropriate space. 2991 /// Scop::Context is _not_ an appropriate space, because when we have 2992 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2993 /// contain all parameter dimensions. 2994 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2995 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2996 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2997 2998 isl_space *AlignSpace = nullptr; 2999 std::vector<isl_pw_aff *> AlignedBounds; 3000 std::tie(AlignSpace, AlignedBounds) = 3001 alignPwAffs(std::move(Bounds), SeedAlignSpace); 3002 3003 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 3004 3005 isl_pw_aff_list *BoundsList = 3006 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 3007 3008 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 3009 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 3010 3011 assert(BoundsSpace && "Unable to access space of array."); 3012 assert(BoundsList && "Unable to access list of bounds."); 3013 3014 PPCGArray.bound = 3015 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 3016 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 3017 } 3018 3019 /// Create the arrays for @p PPCGProg. 3020 /// 3021 /// @param PPCGProg The program to compute the arrays for. 3022 void createArrays(gpu_prog *PPCGProg, 3023 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 3024 int i = 0; 3025 for (auto &Array : ValidSAIs) { 3026 std::string TypeName; 3027 raw_string_ostream OS(TypeName); 3028 3029 OS << *Array->getElementType(); 3030 TypeName = OS.str(); 3031 3032 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3033 3034 PPCGArray.space = Array->getSpace().release(); 3035 PPCGArray.type = strdup(TypeName.c_str()); 3036 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3037 PPCGArray.name = strdup(Array->getName().c_str()); 3038 PPCGArray.extent = nullptr; 3039 PPCGArray.n_index = Array->getNumberOfDimensions(); 3040 PPCGArray.extent = getExtent(Array).release(); 3041 PPCGArray.n_ref = 0; 3042 PPCGArray.refs = nullptr; 3043 PPCGArray.accessed = true; 3044 PPCGArray.read_only_scalar = 3045 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3046 PPCGArray.has_compound_element = false; 3047 PPCGArray.local = false; 3048 PPCGArray.declare_local = false; 3049 PPCGArray.global = false; 3050 PPCGArray.linearize = false; 3051 PPCGArray.dep_order = nullptr; 3052 PPCGArray.user = Array; 3053 3054 PPCGArray.bound = nullptr; 3055 setArrayBounds(PPCGArray, Array); 3056 i++; 3057 3058 collect_references(PPCGProg, &PPCGArray); 3059 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3060 } 3061 } 3062 3063 /// Create an identity map between the arrays in the scop. 3064 /// 3065 /// @returns An identity map between the arrays in the scop. 3066 isl_union_map *getArrayIdentity() { 3067 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3068 3069 for (auto &Array : S->arrays()) { 3070 isl_space *Space = Array->getSpace().release(); 3071 Space = isl_space_map_from_set(Space); 3072 isl_map *Identity = isl_map_identity(Space); 3073 Maps = isl_union_map_add_map(Maps, Identity); 3074 } 3075 3076 return Maps; 3077 } 3078 3079 /// Create a default-initialized PPCG GPU program. 3080 /// 3081 /// @returns A new gpu program description. 3082 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3083 3084 if (!PPCGScop) 3085 return nullptr; 3086 3087 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3088 3089 PPCGProg->ctx = S->getIslCtx().get(); 3090 PPCGProg->scop = PPCGScop; 3091 PPCGProg->context = isl_set_copy(PPCGScop->context); 3092 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3093 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3094 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3095 PPCGProg->tagged_must_kill = 3096 isl_union_map_copy(PPCGScop->tagged_must_kills); 3097 PPCGProg->to_inner = getArrayIdentity(); 3098 PPCGProg->to_outer = getArrayIdentity(); 3099 // TODO: verify that this assignment is correct. 3100 PPCGProg->any_to_outer = nullptr; 3101 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3102 PPCGProg->stmts = getStatements(); 3103 3104 // Only consider arrays that have a non-empty extent. 3105 // Otherwise, this will cause us to consider the following kinds of 3106 // empty arrays: 3107 // 1. Invariant loads that are represented by SAI objects. 3108 // 2. Arrays with statically known zero size. 3109 auto ValidSAIsRange = 3110 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3111 return !getExtent(SAI).is_empty(); 3112 }); 3113 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3114 ValidSAIsRange.end()); 3115 3116 PPCGProg->n_array = 3117 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3118 PPCGProg->array = isl_calloc_array( 3119 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3120 3121 createArrays(PPCGProg, ValidSAIs); 3122 3123 PPCGProg->array_order = nullptr; 3124 collect_order_dependences(PPCGProg); 3125 3126 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3127 return PPCGProg; 3128 } 3129 3130 struct PrintGPUUserData { 3131 struct cuda_info *CudaInfo; 3132 struct gpu_prog *PPCGProg; 3133 std::vector<ppcg_kernel *> Kernels; 3134 }; 3135 3136 /// Print a user statement node in the host code. 3137 /// 3138 /// We use ppcg's printing facilities to print the actual statement and 3139 /// additionally build up a list of all kernels that are encountered in the 3140 /// host ast. 3141 /// 3142 /// @param P The printer to print to 3143 /// @param Options The printing options to use 3144 /// @param Node The node to print 3145 /// @param User A user pointer to carry additional data. This pointer is 3146 /// expected to be of type PrintGPUUserData. 3147 /// 3148 /// @returns A printer to which the output has been printed. 3149 static __isl_give isl_printer * 3150 printHostUser(__isl_take isl_printer *P, 3151 __isl_take isl_ast_print_options *Options, 3152 __isl_take isl_ast_node *Node, void *User) { 3153 auto Data = (struct PrintGPUUserData *)User; 3154 auto Id = isl_ast_node_get_annotation(Node); 3155 3156 if (Id) { 3157 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3158 3159 // If this is a user statement, format it ourselves as ppcg would 3160 // otherwise try to call pet functionality that is not available in 3161 // Polly. 3162 if (IsUser) { 3163 P = isl_printer_start_line(P); 3164 P = isl_printer_print_ast_node(P, Node); 3165 P = isl_printer_end_line(P); 3166 isl_id_free(Id); 3167 isl_ast_print_options_free(Options); 3168 return P; 3169 } 3170 3171 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3172 isl_id_free(Id); 3173 Data->Kernels.push_back(Kernel); 3174 } 3175 3176 return print_host_user(P, Options, Node, User); 3177 } 3178 3179 /// Print C code corresponding to the control flow in @p Kernel. 3180 /// 3181 /// @param Kernel The kernel to print 3182 void printKernel(ppcg_kernel *Kernel) { 3183 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3184 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3185 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3186 P = isl_ast_node_print(Kernel->tree, P, Options); 3187 char *String = isl_printer_get_str(P); 3188 outs() << String << "\n"; 3189 free(String); 3190 isl_printer_free(P); 3191 } 3192 3193 /// Print C code corresponding to the GPU code described by @p Tree. 3194 /// 3195 /// @param Tree An AST describing GPU code 3196 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3197 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3198 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3199 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3200 3201 PrintGPUUserData Data; 3202 Data.PPCGProg = PPCGProg; 3203 3204 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3205 Options = 3206 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3207 P = isl_ast_node_print(Tree, P, Options); 3208 char *String = isl_printer_get_str(P); 3209 outs() << "# host\n"; 3210 outs() << String << "\n"; 3211 free(String); 3212 isl_printer_free(P); 3213 3214 for (auto Kernel : Data.Kernels) { 3215 outs() << "# kernel" << Kernel->id << "\n"; 3216 printKernel(Kernel); 3217 } 3218 } 3219 3220 // Generate a GPU program using PPCG. 3221 // 3222 // GPU mapping consists of multiple steps: 3223 // 3224 // 1) Compute new schedule for the program. 3225 // 2) Map schedule to GPU (TODO) 3226 // 3) Generate code for new schedule (TODO) 3227 // 3228 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3229 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3230 // strategy directly from this pass. 3231 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3232 3233 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3234 3235 PPCGGen->ctx = S->getIslCtx().get(); 3236 PPCGGen->options = PPCGScop->options; 3237 PPCGGen->print = nullptr; 3238 PPCGGen->print_user = nullptr; 3239 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3240 PPCGGen->prog = PPCGProg; 3241 PPCGGen->tree = nullptr; 3242 PPCGGen->types.n = 0; 3243 PPCGGen->types.name = nullptr; 3244 PPCGGen->sizes = nullptr; 3245 PPCGGen->used_sizes = nullptr; 3246 PPCGGen->kernel_id = 0; 3247 3248 // Set scheduling strategy to same strategy PPCG is using. 3249 isl_options_set_schedule_serialize_sccs(PPCGGen->ctx, false); 3250 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3251 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3252 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3253 3254 isl_schedule *Schedule = get_schedule(PPCGGen); 3255 3256 int has_permutable = has_any_permutable_node(Schedule); 3257 3258 Schedule = 3259 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3260 3261 if (!has_permutable || has_permutable < 0) { 3262 Schedule = isl_schedule_free(Schedule); 3263 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3264 << " does not have permutable bands. Bailing out\n";); 3265 } else { 3266 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3267 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3268 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3269 } 3270 3271 if (DumpSchedule) { 3272 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3273 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3274 P = isl_printer_print_str(P, "Schedule\n"); 3275 P = isl_printer_print_str(P, "========\n"); 3276 if (Schedule) 3277 P = isl_printer_print_schedule(P, Schedule); 3278 else 3279 P = isl_printer_print_str(P, "No schedule found\n"); 3280 3281 outs() << isl_printer_get_str(P) << "\n"; 3282 isl_printer_free(P); 3283 } 3284 3285 if (DumpCode) { 3286 outs() << "Code\n"; 3287 outs() << "====\n"; 3288 if (PPCGGen->tree) 3289 printGPUTree(PPCGGen->tree, PPCGProg); 3290 else 3291 outs() << "No code generated\n"; 3292 } 3293 3294 isl_schedule_free(Schedule); 3295 3296 return PPCGGen; 3297 } 3298 3299 /// Free gpu_gen structure. 3300 /// 3301 /// @param PPCGGen The ppcg_gen object to free. 3302 void freePPCGGen(gpu_gen *PPCGGen) { 3303 isl_ast_node_free(PPCGGen->tree); 3304 isl_union_map_free(PPCGGen->sizes); 3305 isl_union_map_free(PPCGGen->used_sizes); 3306 free(PPCGGen); 3307 } 3308 3309 /// Free the options in the ppcg scop structure. 3310 /// 3311 /// ppcg is not freeing these options for us. To avoid leaks we do this 3312 /// ourselves. 3313 /// 3314 /// @param PPCGScop The scop referencing the options to free. 3315 void freeOptions(ppcg_scop *PPCGScop) { 3316 free(PPCGScop->options->debug); 3317 PPCGScop->options->debug = nullptr; 3318 free(PPCGScop->options); 3319 PPCGScop->options = nullptr; 3320 } 3321 3322 /// Approximate the number of points in the set. 3323 /// 3324 /// This function returns an ast expression that overapproximates the number 3325 /// of points in an isl set through the rectangular hull surrounding this set. 3326 /// 3327 /// @param Set The set to count. 3328 /// @param Build The isl ast build object to use for creating the ast 3329 /// expression. 3330 /// 3331 /// @returns An approximation of the number of points in the set. 3332 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3333 __isl_keep isl_ast_build *Build) { 3334 3335 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3336 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3337 3338 isl_space *Space = isl_set_get_space(Set); 3339 Space = isl_space_params(Space); 3340 auto *Univ = isl_set_universe(Space); 3341 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3342 3343 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3344 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3345 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3346 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3347 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3348 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3349 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3350 } 3351 3352 isl_set_free(Set); 3353 isl_pw_aff_free(OneAff); 3354 3355 return Expr; 3356 } 3357 3358 /// Approximate a number of dynamic instructions executed by a given 3359 /// statement. 3360 /// 3361 /// @param Stmt The statement for which to compute the number of dynamic 3362 /// instructions. 3363 /// @param Build The isl ast build object to use for creating the ast 3364 /// expression. 3365 /// @returns An approximation of the number of dynamic instructions executed 3366 /// by @p Stmt. 3367 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3368 __isl_keep isl_ast_build *Build) { 3369 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3370 3371 long InstCount = 0; 3372 3373 if (Stmt.isBlockStmt()) { 3374 auto *BB = Stmt.getBasicBlock(); 3375 InstCount = std::distance(BB->begin(), BB->end()); 3376 } else { 3377 auto *R = Stmt.getRegion(); 3378 3379 for (auto *BB : R->blocks()) { 3380 InstCount += std::distance(BB->begin(), BB->end()); 3381 } 3382 } 3383 3384 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3385 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3386 return isl_ast_expr_mul(InstExpr, Iterations); 3387 } 3388 3389 /// Approximate dynamic instructions executed in scop. 3390 /// 3391 /// @param S The scop for which to approximate dynamic instructions. 3392 /// @param Build The isl ast build object to use for creating the ast 3393 /// expression. 3394 /// @returns An approximation of the number of dynamic instructions executed 3395 /// in @p S. 3396 __isl_give isl_ast_expr * 3397 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3398 isl_ast_expr *Instructions; 3399 3400 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3401 Instructions = isl_ast_expr_from_val(Zero); 3402 3403 for (ScopStmt &Stmt : S) { 3404 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3405 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3406 } 3407 return Instructions; 3408 } 3409 3410 /// Create a check that ensures sufficient compute in scop. 3411 /// 3412 /// @param S The scop for which to ensure sufficient compute. 3413 /// @param Build The isl ast build object to use for creating the ast 3414 /// expression. 3415 /// @returns An expression that evaluates to TRUE in case of sufficient 3416 /// compute and to FALSE, otherwise. 3417 __isl_give isl_ast_expr * 3418 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3419 auto Iterations = getNumberOfIterations(S, Build); 3420 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3421 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3422 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3423 } 3424 3425 /// Check if the basic block contains a function we cannot codegen for GPU 3426 /// kernels. 3427 /// 3428 /// If this basic block does something with a `Function` other than calling 3429 /// a function that we support in a kernel, return true. 3430 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3431 bool AllowCUDALibDevice) { 3432 for (const Instruction &Inst : *BB) { 3433 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3434 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3435 AllowCUDALibDevice)) 3436 continue; 3437 3438 for (Value *Op : Inst.operands()) 3439 // Look for functions among operands of Inst. 3440 if (isa<Function>(Op->stripPointerCasts())) { 3441 LLVM_DEBUG(dbgs() 3442 << Inst << " has illegal use of function in kernel.\n"); 3443 return true; 3444 } 3445 } 3446 return false; 3447 } 3448 3449 /// Return whether the Scop S uses functions in a way that we do not support. 3450 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3451 for (auto &Stmt : S) { 3452 if (Stmt.isBlockStmt()) { 3453 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3454 AllowCUDALibDevice)) 3455 return true; 3456 } else { 3457 assert(Stmt.isRegionStmt() && 3458 "Stmt was neither block nor region statement"); 3459 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3460 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3461 return true; 3462 } 3463 } 3464 return false; 3465 } 3466 3467 /// Generate code for a given GPU AST described by @p Root. 3468 /// 3469 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3470 /// @param Prog The GPU Program to generate code for. 3471 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3472 ScopAnnotator Annotator; 3473 Annotator.buildAliasScopes(*S); 3474 3475 Region *R = &S->getRegion(); 3476 3477 simplifyRegion(R, DT, LI, RI); 3478 3479 BasicBlock *EnteringBB = R->getEnteringBlock(); 3480 3481 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 3482 IRInserter(Annotator)); 3483 Builder.SetInsertPoint(EnteringBB->getTerminator()); 3484 3485 // Only build the run-time condition and parameters _after_ having 3486 // introduced the conditional branch. This is important as the conditional 3487 // branch will guard the original scop from new induction variables that 3488 // the SCEVExpander may introduce while code generating the parameters and 3489 // which may introduce scalar dependences that prevent us from correctly 3490 // code generating this scop. 3491 BBPair StartExitBlocks; 3492 BranchInst *CondBr = nullptr; 3493 std::tie(StartExitBlocks, CondBr) = 3494 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3495 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3496 3497 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3498 3499 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3500 StartBlock, Prog, Runtime, Architecture); 3501 3502 // TODO: Handle LICM 3503 auto SplitBlock = StartBlock->getSinglePredecessor(); 3504 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3505 3506 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3507 isl::ast_expr Condition = 3508 IslAst::buildRunCondition(*S, isl::manage_copy(Build)); 3509 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3510 Condition = 3511 isl::manage(isl_ast_expr_and(Condition.release(), SufficientCompute)); 3512 isl_ast_build_free(Build); 3513 3514 // preload invariant loads. Note: This should happen before the RTC 3515 // because the RTC may depend on values that are invariant load hoisted. 3516 if (!NodeBuilder.preloadInvariantLoads()) { 3517 // Patch the introduced branch condition to ensure that we always execute 3518 // the original SCoP. 3519 auto *FalseI1 = Builder.getFalse(); 3520 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3521 SplitBBTerm->setOperand(0, FalseI1); 3522 3523 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3524 S->getFunction().getName() + 3525 " | Scop Region: " + S->getNameStr()); 3526 // adjust the dominator tree accordingly. 3527 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3528 assert(ExitingBlock); 3529 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3530 assert(MergeBlock); 3531 polly::markBlockUnreachable(*StartBlock, Builder); 3532 polly::markBlockUnreachable(*ExitingBlock, Builder); 3533 auto *ExitingBB = S->getExitingBlock(); 3534 assert(ExitingBB); 3535 3536 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3537 DT->eraseNode(ExitingBlock); 3538 isl_ast_node_free(Root); 3539 } else { 3540 3541 if (polly::PerfMonitoring) { 3542 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3543 P.initialize(); 3544 P.insertRegionStart(SplitBlock->getTerminator()); 3545 3546 // TODO: actually think if this is the correct exiting block to place 3547 // the `end` performance marker. Invariant load hoisting changes 3548 // the CFG in a way that I do not precisely understand, so I 3549 // (Siddharth<[email protected]>) should come back to this and 3550 // think about which exiting block to use. 3551 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3552 assert(ExitingBlock); 3553 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3554 P.insertRegionEnd(MergeBlock->getTerminator()); 3555 } 3556 3557 NodeBuilder.addParameters(S->getContext().release()); 3558 Value *RTC = NodeBuilder.createRTC(Condition.release()); 3559 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3560 3561 Builder.SetInsertPoint(&*StartBlock->begin()); 3562 3563 NodeBuilder.create(Root); 3564 } 3565 3566 /// In case a sequential kernel has more surrounding loops as any parallel 3567 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3568 /// point in running it on a GPU. 3569 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3570 CondBr->setOperand(0, Builder.getFalse()); 3571 3572 if (!NodeBuilder.BuildSuccessful) 3573 CondBr->setOperand(0, Builder.getFalse()); 3574 } 3575 3576 bool runOnScop(Scop &CurrentScop) override { 3577 S = &CurrentScop; 3578 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3579 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3580 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3581 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3582 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3583 3584 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3585 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3586 3587 // We currently do not support functions other than intrinsics inside 3588 // kernels, as code generation will need to offload function calls to the 3589 // kernel. This may lead to a kernel trying to call a function on the host. 3590 // This also allows us to prevent codegen from trying to take the 3591 // address of an intrinsic function to send to the kernel. 3592 if (containsInvalidKernelFunction(CurrentScop, 3593 Architecture == GPUArch::NVPTX64)) { 3594 LLVM_DEBUG( 3595 dbgs() << getUniqueScopName(S) 3596 << " contains function which cannot be materialised in a GPU " 3597 "kernel. Bailing out.\n";); 3598 return false; 3599 } 3600 3601 auto PPCGScop = createPPCGScop(); 3602 auto PPCGProg = createPPCGProg(PPCGScop); 3603 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3604 3605 if (PPCGGen->tree) { 3606 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3607 CurrentScop.markAsToBeSkipped(); 3608 } else { 3609 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3610 << " has empty PPCGGen->tree. Bailing out.\n"); 3611 } 3612 3613 freeOptions(PPCGScop); 3614 freePPCGGen(PPCGGen); 3615 gpu_prog_free(PPCGProg); 3616 ppcg_scop_free(PPCGScop); 3617 3618 return true; 3619 } 3620 3621 void printScop(raw_ostream &, Scop &) const override {} 3622 3623 void getAnalysisUsage(AnalysisUsage &AU) const override { 3624 ScopPass::getAnalysisUsage(AU); 3625 3626 AU.addRequired<DominatorTreeWrapperPass>(); 3627 AU.addRequired<RegionInfoPass>(); 3628 AU.addRequired<ScalarEvolutionWrapperPass>(); 3629 AU.addRequired<ScopDetectionWrapperPass>(); 3630 AU.addRequired<ScopInfoRegionPass>(); 3631 AU.addRequired<LoopInfoWrapperPass>(); 3632 3633 // FIXME: We do not yet add regions for the newly generated code to the 3634 // region tree. 3635 } 3636 }; 3637 } // namespace 3638 3639 char PPCGCodeGeneration::ID = 1; 3640 3641 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3642 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3643 generator->Runtime = Runtime; 3644 generator->Architecture = Arch; 3645 return generator; 3646 } 3647 3648 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3649 "Polly - Apply PPCG translation to SCOP", false, false) 3650 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3651 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3652 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3653 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3655 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3656 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3657 "Polly - Apply PPCG translation to SCOP", false, false) 3658